RU2446185C2 - Способ получения полиариленэфиркетонов - Google Patents

Способ получения полиариленэфиркетонов Download PDF

Info

Publication number
RU2446185C2
RU2446185C2 RU2007117789/04A RU2007117789A RU2446185C2 RU 2446185 C2 RU2446185 C2 RU 2446185C2 RU 2007117789/04 A RU2007117789/04 A RU 2007117789/04A RU 2007117789 A RU2007117789 A RU 2007117789A RU 2446185 C2 RU2446185 C2 RU 2446185C2
Authority
RU
Russia
Prior art keywords
reaction
bisphenol
polycondensation
compound
polyarylene ether
Prior art date
Application number
RU2007117789/04A
Other languages
English (en)
Other versions
RU2007117789A (ru
Inventor
Александер РИХТЕР (DE)
Александер РИХТЕР
Вера ШИМАНН (DE)
Вера ШИМАНН
Юрген МАУЛЬ (DE)
Юрген МАУЛЬ
Бернд ГЮНЦЕЛЬ (DE)
Бернд ГЮНЦЕЛЬ
Original Assignee
Эвоник Дегусса Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38324034&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2446185(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Эвоник Дегусса Гмбх filed Critical Эвоник Дегусса Гмбх
Publication of RU2007117789A publication Critical patent/RU2007117789A/ru
Application granted granted Critical
Publication of RU2446185C2 publication Critical patent/RU2446185C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4093Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Настоящее изобретение относится к способу получения полиариленэфиркетонов. Согласно указанному способу молекулярная масса устанавливается при поликонденсации ароматического дигалогенового соединения с бисфенолом в присутствии карбоната щелочных и/или щелочноземельных металлов в высококипящем растворителе. Путем новой добавки бисфенола или органического галогенового соединения молекулярная масса в течение поликонденсации может быть приведена к целевому значению, которое соответствует вязкости раствора в форме значения J от 80 до 150 мл/г. Технический результат - разработка способа получения полиариленэфиркетонов, с помощью которого можно лучше регулировать и контролировать молекулярную массу. 6 з.п. ф-лы, 4 ил., 4 пр.

Description

Предложенное изобретение относится к химии кетонов, в частности к способу получения полиариленэфиркетонов (ПАЭК).
В обычных методиках получения полиариленэфиркетоны получают путем поликонденсации. При так называемых нуклеофильных путях пригодное органическое диоловое соединение подвергают взаимодействию с пригодным органическим дигалогеновым соединением. Обычно реакцию проводят в растворителе, как, например, дифенилсульфон, при применении так называемых вспомогательных оснований, которые представлены в виде твердых составляющих в реакционной смеси; обычно здесь применяют смесь из карбоната натрия и карбоната калия в приблизительных стехиометрических количествах. Данный метод получения описывают в многочисленных патентных заявках, например в заявках на европейский патент ЕР-А-0001879, ЕР-А-0182648 и ЕР-А-0244167. Обычно для получения ПАЭК применяют ароматические дифторовые соединения и бисфенолы; таким образом, при получении полиэфирэфиркетона (ПЭЭК) нуклеофильным путем в качестве диолового компонента применяют гидрохинон и в качестве дигалогенового компонента 4,4'-дифторбензофенон.
Путем точной навески мономеров и вместе с тем целенаправленной регулировки молярного соотношения мономеров возможно оказание влияния на конечный продукт. Однако недостатком является то, что данный метод не приводит к удовлетворительной воспроизводимости, так как во время реакции неконтролируемые мономеры с газовым потоком (водяного пара и диоксида углерода из реакции вспомогательного основания с диоловым компонентом) выносятся из реакционной смеси и вместе с тем нарушают молярное соотношение из точной навески. Таким образом, получают полимер с недостаточной молярной массой. Если пытаются рассчитывать уже при навеске, в противоположном случае может произойти, что указанная молярная масса станет так высока, что реакционную смесь можно выводить и перерабатывать только лишь с большим трудом. Полученный таким образом полимер затем из-за высокой вязкости расплава при известных обстоятельствах перерабатывается только с большим трудом.
Так как сторонами заявителя требуется точное соблюдение спецификаций продукта, то ставится задача разработать способ получения полиариленэфиркетонов, с помощью которого можно лучше регулировать и контролировать молярную массу.
Решением данной задачи является способ, по которому молярная масса устанавливается при превращении ароматического дигалогенового соединения с бисфенолом в присутствии карбоната щелочных и/или щелочноземельных металлов или гидрокарбоната щелочных и/или щелочноземельных металлов в высококипящем растворителе до получения ПАЭК, в то время как в течение реакции поликонденсации молярная масса приводится к целевому значению путем новой добавки бисфенола или органического галогенового соединения.
Пригодными ароматическими дигалогеновыми соединениями являются, например, 4,4'-дифторбензофенон, 4,4'-дихлорбензофенон, 4,4'-дихлордифенилсульфон, 4,4-дифтордифенилсульфон, 1,4-бис(4-фторбензоил)бензол, 1,4-бис(4-хлорбензоил)бензол, 4-хлор-4'-фторбензофенон и 4,4'-бис(4-фторбензоил)бифенил. Галогеновая группа активирована, в общем, пара-концевой группой карбонила или сульфонила. В случае пара-концевой группы карбонила предпочтительным галогеном является хлор или предпочтительно фтор; в случае пара-концевой группы сульфонила галогеном может быть фтор или хлор, причем из-за достаточной реакционной способности и низкой стоимости здесь, в общем, предпочтителен хлор в качестве галогена. Также могут применяться смеси различных дигалогеновых соединений.
Пригодными бисфенолами являются, например, гидрохинон, 4,4'-дигидроксибензофенон, 4,4'-дигидроксидифенилсульфон, 2,2'-бис(4-гидроксифенил)пропан, 4,4'-дигидроксибифенил, простой бис(4-гидроксифениловый)эфир, простой бис(4-гидроксифенил)тиоэфир, простой бис(4-гидроксинафтиловый)эфир, 1,4-дигидроксинафталин, 1,5-дигидроксинафталин или 2,6-дигидроксинафталин, 1,4-бис(4-гидроксибензоил)бензол, 4,4'-бис(4-гидроксибензоил)бифенил, простой 4,4'-бис(4-гидроксибензоил)дифениловый эфир или простой 4,4-бис(4-гидроксибензоилдифенил)тиоэфир. Разумеется, также могут применяться смеси различных бисфенолов.
Пригодные карбонаты щелочных и щелочноземельных металлов и гидрокарбонаты щелочных и щелочноземельных металлов выводятся из лития, натрия, калия, рубидия, цезия, магния, кальция, стронция или бария.
Обычно согласно стандарту техники применяют смесь из карбоната натрия и карбоната калия. Из карбонатов щелочных или щелочноземельных металлов или гидрокарбонатов щелочных или щелочноземельных металлов обычно применяют незначительный избыток, например избыток около 5% выше стехиометрического количества.
Высококипящим апротонным растворителем согласно уровню техники является предпочтительно соединение формулы
Figure 00000001
причем Т представляет прямую связь, один атом кислорода или два атома водорода; Z и Z' означают водород или группы фенила. Предпочтительно здесь речь идет о дифенилсульфоне.
ПАЭК содержит элементы формул
(-Аr-Х) и (-Ar'-Y-),
причем Ar и Аr' представляют двухатомный ароматический остаток, предпочтительно 1,4-фенилен, 4,4'-бифенилен, а также 1,4-нафтилен, 1,5-нафтилен или 2,6-нафтилен. Х означает тянущую электроны группу, предпочтительно карбонил или сульфонил, в то время как Y означает другую группу, как О, S, CH2, изопропилиден или т.п. При этом по меньшей 50%, предпочтительно, по меньшей мере, 70% и особенно предпочтительно, по меньшей мере, 80% групп Х должны представлять группу карбонила, в то время как, по меньшей мере, 50%, предпочтительно, по меньшей мере, 70% и особенно предпочтительно, по меньшей мере, 80% групп Y должны состоять из кислорода.
В особенно предпочтительном варианте осуществления 100% групп Х состоят из групп карбонила и 100% групп Y из кислорода. В данном варианте осуществления ПАЭК может означать, например, полиэфирэфиркетон (ПЭЭК; формулы 1), полиэфиркетон (ПЭК; формулы II), полиэфиркетонкетон (ПЭКК; формулы III) или полиэфирэфиркетонкетон (ПЭЭКК; формулы IV), тем не менее, конечно также возможно другое распределение групп карбонила и кислорода.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
ПАЭК в общем является частично кристаллическим, что обнаруживается, например, в ДСК-анализе (анализ кривых, полученных методом Дифференциальной Сканирующей Калориметрии) путем нахождения кристаллической точки плавления Тm, которая соответственно измерению в большинстве случаев находится около 300°С или выше. Однако существо данного изобретения также применимо для аморфного ПАЭК. В общем, считается, что группы сульфонила, группы бифенилена, группы нафтилена или громоздкие группы Y, как, например, группа изопропилидена, уменьшают кристалличность.
При предложенном согласно изобретению получении ПАЭК молярное соотношение бисфенола к дигалогеновому соединению находится предпочтительно в области от 1:1,001 до 1:1,05. Это имеет значение, в частности, также при получении ПЭЭК из гидрохинона и 4,4'-дифторбензофенона. Обычно концентрация устанавливается от 25 до 35% мас. полимера (в расчете на растворитель). Кроме того, предпочтительно, что соответственно уровню техники, в качестве вспомогательного основания применяется смесь из карбоната натрия и карбоната калия в массовом соотношении приблизительно 100: 5. На основании заявленной реакционной способности функциональных групп, а также плохой растворимости ПАЭК при низких температурах реакция проводится обычно в температурной области от приблизительно 200 до 400°С, причем предпочтительна область от приблизительно 250 до 350°С. Конечная температуре реакции находится предпочтительно в области от 300°С до 320°С. Так как вязкость реакционной смеси является функцией молярной массы полимеров, развитие реакции может определяться с помощью вязкости раствора, что может происходить согласно каждой методике уровня техники. Например, вязкость можно установить через крутящий момент, получаемый от привода агрегата с мешалкой.
Бисфенолом, добавляемым для достижения целевой вязкости, как правило, после затухания реакции, может быть каждый любой бисфенол; примером являются подобные бисфенолы, как указаны выше для основной реакции. В большинстве случаев рекомендуется применение подобного бисфенола, как при основной реакции. Под «затуханием реакции» понимают момент, от которого до полного окончания реакции возрастает вязкость только лишь максимально на 20%, предпочтительно максимально на 15%, особенно предпочтительно максимально на 10%, в частности предпочтительно максимально на 5% и совершенно предпочтительно только лишь максимально на 2,5%.
В качестве органического галогенового соединения может применяться каждое галогеновое соединение, которое, в первую очередь, взаимодействует с фенолятанионом при замещении. Пригодными галогеновыми соединениями являются, например, метилхлорид, метилбромид, метилиодид, этилхлорид, аллилхлорид, пропаргилхлорид, бензилхлорид, более того, подобные дигалогеновые соединения, как указаны выше для основной реакции, а также соответствующие моногалогеновые соединения, например 4-фторбензофенон или 4-хлордифенилсульфон. Более того, в принципе имеется большое число равнодействующих соединений с хорошо отделяемой группой, как, например, диметилсульфат, метилтозилат или 4-нитробензофенон; их применение эквивалентно применению галогенового соединения.
Обычное течение реакции поликонденсации представлено на фигуре 1 и схематически показывает спокойное течение реакции в виде сигмоидальной кривой, когда вязкость или крутящий момент изображают в виде функции времени реакции.
В принципе после затухания реакции поликонденсации затем добавляют бисфенол, если продукт демонстрирует нежелаемую высокую вязкость в реакционной смеси из-за уже указанных проблем, как нарушение стехиометрии, путем неточной навески со следующей подпиткой бисфенолом или потерей бисфенола через газовый поток из реактора. Путем целенаправленного дозирования бисфенола из внешней емкости в реакционную смесь также возможно снова запустить и целенаправленно продолжить реакцию. Данная стадия способа многократно повторяется. На фигуре 2 это представляют на примере получения ПЭЭК из 4,4'-дифторбензофенона и гидрохинона.
Также затем, если стехиометрия нарушена таким образом, что бисфенол находится в избытке, после затухания реакции ароматическое дигалогеновое соединения вида, как которое также может применяться для основной реакции, можно целенаправленно дозировать из внешней емкости в реакционную смесь, чтобы снова запустить и целенаправленно продолжить реакцию. Данная стадия способа также многократно повторяется.
Из-за нарушения стехиометрии путем неточной навески или потери мономеров через газовый поток из реактора течение реакции должно быть таким, что если продукт угрожает нарушить желаемую вязкость, реакцию в реакторе можно подавить или сразу остановить добавкой органического галогенового соединения, например метилхлорида или 4,4'-дифторбензофенона. На фигуре 3 схематически представляют различные течения реакций при применении или метилхлорида или 4,4'-дифторбензофенона (БДФ).
Несмотря на данные ответные меры вязкость реакционной смеси должна выходить выше, чем желаемо, таким образом существует возможность целенаправленно понизить вязкость в реакционной смеси путем продленного ввода органического моногалогенового соединения, как, например, метилхлорид. После индукционной фазы полимерные цепи разрушаются с помощью метилхлорида, что выражается падающей вязкостью реакционного раствора. Подача метилхлорида в раствор прекращается, затем останавливается разрушение полимерных цепей и вязкость остается постоянной. На фигуре 4 схематически показывают течение реакции.
Целевое значение молярной массы ПАЭК соответствует вязкости раствора в форме значения J, измеренного согласно DIN EN ISO 307 в 97%-ном H2SO4 (250 мг в 50 мл; 25°С), от 80 до 150 мл/г.
После окончания реакции продукт перерабатывают согласно уровню техники. Полученный ПАЭК после переработки представлен в форме частиц. ПАЭК может применяться непосредственно в данной форме, например, в виде материала покрытия, однако также может быть гранулирован и при этом, при желании, перерабатываться путем добавки следующих веществ, как наполнители, пигменты, стабилизаторы, другие полимеры, технологические добавки и т.п., до получения компаунда. Подходящие компаунды, их получение и применение известно специалисту в данной области.
Данное изобретение поясняется далее с помощью примеров.
Сравнительный пример 1 (без вмешательства в поликонденсацию)
В реактор с двойными стенками при температуре 60°С последовательно добавляют 34,6 кг дифенилсульфона, 13,1 кг 4,4'-дифторбензофенона, 6,6 кг гидрохинона, 6,6 кг карбоната натрия и 320 г карбоната калия в твердой форме. Реактор закрывают и насыщают азотом. После того как температура стенок достигла 160°С, подключают мешалку с 50 об/мин. Когда внутренняя температура также достигнет 160°С, медленно нагревают до 320°С. Через крутящий момент, который определяется из потребления тока двигателем с мешалкой, можно наблюдать течение реакции. Крутящий момент повышается после около 6 часов и стабилизируется после следующих приблизительно 2 часов на постоянной области около 55% выше начального уровня. Продукт выводят, охлаждают, измельчают и перерабатывают согласно уровню техники. Значение J продукта составляет 134 мл/г.
Пример 1 (вмешательство в поликонденсацию с помощью метиленхлорида)
В реактор с двойными стенками при температуре 60°С последовательно добавляют 34,6 кг дифенилсульфона, 13,1 кг 4,4'-дифторбензофенона, 6,6 кг гидрохинона, 6,6 кг карбоната натрия и 320 г карбоната калия в твердой форме. Реактор закрывают и насыщают азотом. После того как температура стенок достигла 160°С, подключают мешалку с 50 об/мин. Когда внутренняя температура также достигнет 160°С, медленно нагревают до 320°С. Через крутящий момент, который определяется из потребления тока двигателем с мешалкой, можно наблюдать течение реакции. Крутящий момент повышается после около 6 часов и сигнализирует о начале реакции. Примерно через 30 минут крутящий момент находится около 25% выше исходного значения. Метиленхлорид продавливается в котел через насадку в нижней части реактора в количестве 20 нормолитр/час. В течение введения наблюдают выравнивание возрастания крутящего момента. Через приблизительно 1 час добавку метилхлорида останавливают, и крутящий момент стабилизируется на постоянной области около 42% выше начального уровня. Продукт выводят, охлаждают, измельчают и перерабатывают согласно уровню техники. Значение J продукта составляет 122 мл/г.
Пример 2 (вмешательство в поликонденсацию с помощью БДФ)
Вначале действуют по методике примера 1. Когда крутящий момент после в целом около 6,5 часов находится около 25% выше исходного значения, через отверстие в крышке реактора из приемной емкости в реактор отправляют 1000 г 4,4'-дифторбензофенона в короткое время. Через около 10 минут после добавки БДФ крутящий момент поворачивается и остается на постоянном уровне в течение следующих 2,5 часов. Уровень крутящего момента после добавки БДФ находится постоянно около 27% выше исходного значения. Продукт выводят, охлаждают, измельчают и перерабатывают согласно уровню техники. Значение J продукта составляет 81 мл/г.
Пример 3 (вмешательство в поликонденсацию с помощью метилхлорида после окончания поликонденсации)
Вначале действуют по методике сравнительного примера 1. Крутящий момент повышается после около 6,5 часов и после следующих приблизительно 2,5 часов стабилизируется на постоянной области около 53% выше начального уровня. После того как данный уровень сохраняется в течение следующих 30 минут, метилхлорид в количестве 20 нормолитр/час продавливается в котел через насадку в нижней части реактора. Через около 40 минут измеряют легкое падение в крутящем моменте, которое продолжался в течение следующих 4 часов времени испытания. Затем добавку метилхлорида заканчивают. Крутящий момент поворачивается после следующих около 30 минут на постоянный уровень около 46% выше исходного значения до начала реакции. Продукт выводят, охлаждают, измельчают и перерабатывают согласно уровню техники. Значение J продукта составляет 126 мл/г.
Пример 4 (вмешательство в поликонденсацию добавкой гидрохинона по частям)
В реактор с двойными стенками при температуре 60°С последовательно добавляют 34,6 кг дифенилсульфона, 13,1 кг 4,4'-дифторбензофенона, 6,5 кг гидрохинона, 6,6 кг карбоната натрия и 320 г карбоната калия в твердой форме. Реактор закрывают и насыщают азотом. После того как температура стенок достигла 160°С, подключают мешалку с 50 об/мин. Когда внутренняя температура также достигнет 160°С, медленно нагревают до 320°С. Через крутящий момент, который определяется из потребления тока двигателем с мешалкой, можно наблюдать течение реакции. Крутящий момент повышается после около 5 часов и сигнализирует о начале реакции. Примерно через 5 часов крутящий момент находится постоянно около 15% выше исходного значения. В отдельной, нагреваемой и перемешиваемой емкости расплавляют смесь из 10% мас. дифенилсульфона и 1% мас. гидрохинона при температуре 180°С. 400 мл данной смеси проводят в реактор через трубопровод. Спустя около 10 минут через потребление тока двигателем с мешалкой можно наблюдать повышение вязкости, которое указывает на последующую реакцию полимера. Через примерно 1 час крутящий момент вырос на около 25% выше исходного значения и остался постоянным. Стадию повторяют со следующими 400 мл смеси дифенилсульфон-гидрохинон, и через 1 час крутящий момент вырос на около 35% выше исходного значения и остался постоянным. Вторичное повторение данной стадии с 300 мл смеси дифенилсульфон-гидрохинон вытекает в новое повышение крутящего момента; через 1 час достигает значения около 60% выше исходного значения; данное значение остается постоянным в течение следующих 1,5 часов. Затем продукт выводят, охлаждают, измельчают и перерабатывают согласно уровню техники. Значение J продукта составляет 138 мл/г.

Claims (7)

1. Способ получения полиариленэфиркетонов, отличающийся тем, что молярная масса устанавливается при поликонденсации одного ароматического дигалогенового соединения с бисфенолом в присутствии карбоната щелочных и/или щелочноземельных металлов в высококипящем растворителе путем новой добавки бисфенола или органического галогенового соединения, в течение поликонденсации молярная масса приводится к целевому значению, соответствующему вязкости раствора в форме значения J, измеренного согласно DIN EN ISO 307 в 97% H2SO4 (250 мг в 50 мл; 25°С), от 80 до 150 мл/г.
2. Способ по п.1, отличающийся тем, что при недостатке бисфенола после затухания реакции поликонденсации реакцию снова запускают добавлением бисфенола.
3. Способ по п.1, отличающийся тем, что при недостатке дигалогенового соединения после затухания реакции поликонденсации реакцию снова запускают добавлением ароматического дигалогенового соединения.
4. Способ по п.1, отличающийся тем, что реакция поликонденсации подавляется или прекращается путем добавки органического галогенового соединения.
5. Способ по п.1, отличающийся тем, что после затухания реакции поликонденсации молярная масса понижается путем дозирования органического моногалогенового соединения в реакционную смесь.
6. Способ по п.5, отличающийся тем, что органическим моногалогеновым соединением является метилхлорид.
7. Способ по одному из пп.1-6, отличающийся тем, что используемым при поликонденсации ароматическим дигалогеновым соединением является 4,4'-дифторбензофенон и используемым при поликонденсации бисфенолом является гидрохинон.
RU2007117789/04A 2006-05-15 2007-05-14 Способ получения полиариленэфиркетонов RU2446185C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006022550A DE102006022550A1 (de) 2006-05-15 2006-05-15 Verfahren zur Herstellung von Polyarylenetherketonen
DE102006022550.3 2006-05-15

Publications (2)

Publication Number Publication Date
RU2007117789A RU2007117789A (ru) 2008-11-20
RU2446185C2 true RU2446185C2 (ru) 2012-03-27

Family

ID=38324034

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007117789/04A RU2446185C2 (ru) 2006-05-15 2007-05-14 Способ получения полиариленэфиркетонов

Country Status (8)

Country Link
US (1) US20070265414A1 (ru)
EP (1) EP1857486B1 (ru)
JP (1) JP2007308699A (ru)
KR (1) KR20070110792A (ru)
CN (1) CN101077908B (ru)
BR (1) BRPI0704949A (ru)
DE (1) DE102006022550A1 (ru)
RU (1) RU2446185C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775553C1 (ru) * 2021-04-23 2022-07-04 Акционерное общество "Институт пластмасс имени Г.С. Петрова" Способ получения модифицированного сополиарилэфирфиркетона

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002084A1 (de) * 2005-01-14 2006-07-20 Degussa Ag Verfahren zur Herstellung von Polyarylenetherketonen
TWI461458B (zh) 2007-08-10 2014-11-21 Solvay Advanced Polymers Llc 改良之聚(芳基醚酮)類及製造彼等之方法
US7772355B2 (en) * 2008-01-28 2010-08-10 The United States Of America As Represented By The Secretary Of The Navy Divinylsilane-terminated aromatic ether-aromatic ketone-containing compounds
DE102008001873A1 (de) * 2008-05-20 2009-11-26 Evonik Degussa Gmbh Kerbschlagzähe Polyarylenetherketon-Formmasse
DE102008002460A1 (de) * 2008-06-17 2009-12-24 Evonik Degussa Gmbh Verfahren zur Herstellung von Polyarylenetherketonen
JP2010235750A (ja) * 2009-03-31 2010-10-21 Sumitomo Chemical Co Ltd 芳香族ポリエーテルの製造方法
JP2010235749A (ja) * 2009-03-31 2010-10-21 Sumitomo Chemical Co Ltd 芳香族ポリエーテルの製造方法
GB201317183D0 (en) * 2013-09-27 2013-11-06 Appleyard Lees Polymeric Material
WO2015130652A1 (en) 2014-02-25 2015-09-03 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Synthesis of oligomeric divinyldialkylsilane containing compositions
CN103980478B (zh) * 2014-05-22 2016-11-02 吉林大学 低熔体粘度聚芳醚酮共聚物及其制备方法
US9512312B2 (en) 2014-08-21 2016-12-06 Ticona Llc Polyaryletherketone composition
US20160053107A1 (en) 2014-08-21 2016-02-25 Ticona Llc Composition Containing a Polyaryletherketone and Low Naphthenic Liquid Crystalline Polymer
CN110312752B (zh) 2016-12-21 2022-05-06 索尔维特殊聚合物美国有限责任公司 聚(醚酮酮)聚合物、相应的合成方法和聚合物组合物以及由其制成的制品
CN107722203B (zh) * 2017-11-09 2019-12-10 大连九信精细化工有限公司 一种无溶剂制备聚醚醚酮的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767838A (en) * 1985-06-12 1988-08-30 Amoco Corporation Chain-extended poly(aryl ether ketones)
US4820790A (en) * 1987-03-13 1989-04-11 Amoco Corporation Chain-extended poly(aryl ether ketones)
EP0358017A2 (de) * 1988-08-30 1990-03-14 BASF Aktiengesellschaft Polyaryletherketone
RU2063404C1 (ru) * 1994-03-10 1996-07-10 Лилия Михайловна Болотина Способ получения ароматических полиэфиров

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2731816A1 (de) * 1977-07-14 1979-02-01 Basf Ag Verfahren zur herstellung von polyaethern
DE3518277A1 (de) * 1984-10-06 1986-04-10 Hüls AG, 4370 Marl Thermoplastische massen auf basis von polyphenylenethern und polyoctenylenen sowie verfahren zu ihrer herstellung
EP0211693A1 (en) * 1985-08-21 1987-02-25 Amoco Corporation Preparation of poly(aryl ether ketones)
US4777235A (en) * 1987-07-01 1988-10-11 Amoco Corporation Production of polyarylene ether from activated dihalo benzenoid monomer, dihydroxy benzenoid monomer and Bis(hydroxyphenyl) monomer
JPH02308814A (ja) * 1989-05-22 1990-12-21 Idemitsu Kosan Co Ltd 芳香族ポリエーテルケトンの製造方法
DE102004062761A1 (de) * 2004-12-21 2006-06-22 Degussa Ag Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767838A (en) * 1985-06-12 1988-08-30 Amoco Corporation Chain-extended poly(aryl ether ketones)
US4820790A (en) * 1987-03-13 1989-04-11 Amoco Corporation Chain-extended poly(aryl ether ketones)
EP0358017A2 (de) * 1988-08-30 1990-03-14 BASF Aktiengesellschaft Polyaryletherketone
RU2063404C1 (ru) * 1994-03-10 1996-07-10 Лилия Михайловна Болотина Способ получения ароматических полиэфиров

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775553C1 (ru) * 2021-04-23 2022-07-04 Акционерное общество "Институт пластмасс имени Г.С. Петрова" Способ получения модифицированного сополиарилэфирфиркетона
RU2775553C9 (ru) * 2021-04-23 2022-08-04 Акционерное общество "Институт пластмасс имени Г.С. Петрова" Способ получения модифицированного сополиарилэфирэфиркетона

Also Published As

Publication number Publication date
KR20070110792A (ko) 2007-11-20
DE102006022550A1 (de) 2007-11-22
EP1857486B1 (de) 2013-12-04
BRPI0704949A (pt) 2008-05-06
US20070265414A1 (en) 2007-11-15
CN101077908B (zh) 2012-07-04
JP2007308699A (ja) 2007-11-29
CN101077908A (zh) 2007-11-28
EP1857486A1 (de) 2007-11-21
RU2007117789A (ru) 2008-11-20

Similar Documents

Publication Publication Date Title
RU2446185C2 (ru) Способ получения полиариленэфиркетонов
US4636557A (en) Process for the preparation of aromatic polyethers with mixture of carbonate catalysts
US4731429A (en) Novel poly(aryl ether ketones)
US4774314A (en) Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts
US4952665A (en) Process for production of aromatic polyethers with alkali metal carbonate/bicarbonate/fluoride cocatalyst
US4829143A (en) Modified poly(aryl ether ketones) derived from biphenol
US4954604A (en) Process for the production of aromatic polyether ketones
JPH01210424A (ja) ポリアリールエーテルケトン
EP0193187B1 (en) Process for preparing crystalline aromatic polyetherketones
EP0187638B1 (en) Polycyanoaryl ether and method of preparing the same
JP2010095614A (ja) ポリエーテルエーテルケトンの製法
JPH02272025A (ja) 芳香族ポリエーテルケトン類の製造方法
JPH0357135B2 (ru)
CA2022912A1 (en) Process for the preparation of an aromatic polyether in the presence of finely divided codensation auxiliaries
EP0010868A2 (en) Production of aromatic polyethers
JPS627730A (ja) 結晶性芳香族ポリエ−テルケトンの製造方法
US5298592A (en) Preparation of polyaryl ethers with nitrogen compound catalysts
JP2540521B2 (ja) 熱可塑性芳香族ポリエ−テルピリジンおよびその製造方法
JPH0586186A (ja) 芳香族ポリエーテルスルホンの製造方法
JP2572268B2 (ja) 芳香族エーテルケトン系共重合体
JPH02284921A (ja) 芳香族ポリエーテルケトン類の製造方法
JP2004352920A (ja) 芳香族ポリエーテルスルホンの製造方法
CN113563578B (zh) 一种制备聚(芳基醚酮)的方法及聚(芳基醚酮)
JPH02173120A (ja) 芳香族ポリエーテルケトンの製造方法
JP7359779B2 (ja) 芳香族ポリスルホンの製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150515