RU2018123710A - Система, способ и устройство для оптимизации эффективности сгорания газов для производства чистой энергии - Google Patents

Система, способ и устройство для оптимизации эффективности сгорания газов для производства чистой энергии Download PDF

Info

Publication number
RU2018123710A
RU2018123710A RU2018123710A RU2018123710A RU2018123710A RU 2018123710 A RU2018123710 A RU 2018123710A RU 2018123710 A RU2018123710 A RU 2018123710A RU 2018123710 A RU2018123710 A RU 2018123710A RU 2018123710 A RU2018123710 A RU 2018123710A
Authority
RU
Russia
Prior art keywords
inlet
gases
channels
optimizing
efficiency
Prior art date
Application number
RU2018123710A
Other languages
English (en)
Other versions
RU2719412C2 (ru
RU2018123710A3 (ru
Inventor
Марсело Фернандо ПИМЕНТЕЛ
Original Assignee
Дзе Блюдот Эллайанс Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Блюдот Эллайанс Б.В. filed Critical Дзе Блюдот Эллайанс Б.В.
Publication of RU2018123710A publication Critical patent/RU2018123710A/ru
Publication of RU2018123710A3 publication Critical patent/RU2018123710A3/ru
Application granted granted Critical
Publication of RU2719412C2 publication Critical patent/RU2719412C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/02Engines characterised by means for increasing operating efficiency
    • F02B43/04Engines characterised by means for increasing operating efficiency for improving efficiency of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B43/12Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/045Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2400/00Pretreatment and supply of gaseous fuel
    • F23K2400/10Pretreatment

Claims (66)

1. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии, отличающееся тем, что содержит:
магнитный сердечник (30); и
впускные и выпускные каналы (41a, 42a);
причем впускные и выпускные каналы (41a, 42a) выполнены с возможностью приема газов (201), газы (201) попеременно устанавливают потоки между впускными каналами (41a) и выпускными каналами (42a), и наоборот, магнитный сердечник (30) выполнен с возможностью генерирования и воздействия магнитных полей (35) на газы (201) внутри впускных и выпускных каналов (41a, 42a),
чередование потоков между впускными и выпускными каналами (41a, 42a) и воздействие магнитных полей (35) способствуют динамическим и тепловым расширениям и магнитному воздействию на газы (201).
2. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 1, отличающееся тем, что впускные и выпускные каналы (41а, 42а) проходят в непосредственной близости вокруг внешней поверхности магнитного сердечника (30).
3. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 1, отличающееся тем, что впускные и выпускные каналы (41а, 42а) проходят в непосредственной близости и по спирали вокруг внешней поверхности магнитного сердечника (30).
4. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 3, отличающееся тем, что каждый впускной и выпускной канал (41a, 42a) имеет по меньшей мере три оборота по 360° вокруг внешней поверхности магнитного сердечника (30).
5. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-4, отличающееся тем, что впускные и выпускные каналы (41a, 42a) имеют такие размеры, чтобы интенсифицировать воздействие на газы (201) максимальным числом магнитных полей (35) переменной интенсивности, ориентации, направления и полярности, создаваемых магнитным сердечником (30).
6. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-5, отличающееся тем, что магнитные поля 35 действуют перпендикулярно движению атомов газов (201).
7. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-6, отличающееся тем, что магнитный сердечник (30) имеет три магнитных стержня (31), причем стержни (31) обеспечены магнитными элементами (31а) магнитов из редкоземельных металлов и зазорами (31b), расположенными внутри магнитных стержней (31), и выполнены с возможностью образования магнитных полей переменной интенсивности, ориентации, направления и полярности.
8. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 7, отличающееся тем, что магнитные элементы (31а) выполнены из сплава неодим-железо-бор Nd-Fe-B.
9. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 7 или 8, отличающееся тем, что каждый стержень (31) содержит 32 магнитных элемента (31а).
10. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 7-9, отличающееся тем, что магнитные элементы (31а) образуют магнитные поля (35) с интенсивностью до 950 Тл внутри магнитного сердечника (30) и до 1500 Тл на внешней поверхности магнитного сердечника (30).
11. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 7-10, отличающееся тем, что магнитные стержни (31) расположены попеременно, таким образом, что образуется угол приблизительно 120° между центрами стержней (31).
12. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-11, отличающееся тем, что динамическое расширение происходит посредством чередования потоков между впускными и выпускными каналами (41a, 42a), когда газы (201) проходят через расширительную камеру (10).
13. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-11, отличающееся тем, что термическое расширение происходит посредством чередования потоков между впускными и выпускными каналами (41a, 42a), когда газы (201) проходят через нагревательную колонну (20).
14. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 13, отличающееся тем, что нагревательная колонна (20) соединена концентрически с внешней поверхностью расширительной камеры (10).
15. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 13-14, отличающееся тем, что нагревательная колонна (20) выполнена с возможностью работы в диапазоне от 55°C до 65°C.
16. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 13-15, отличающееся тем, что нагревательная колонна (20) представляет собой кольцевой резистор.
17. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-16, отличающееся тем, что динамическое и тепловое расширения вызывают снижение давления и увеличение объема и температуры газов (201, 202).
18. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-16, отличающееся тем, что динамическое и тепловое расширения газов (201, 202) осуществляются по меньшей мере 6 раз устройством (1).
19. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-18, отличающееся тем, что газы (201) представляют собой смесь гремучего газа и ионизированного воздуха.
20. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 19, отличающееся тем, что гремучий газ образуется с помощью электролитического элемента (200).
21. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по любому из пп. 1-20, отличающееся тем, что оптимизированные газы (202) используются устройством (300) генерирования механической энергии.
22. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 1, отличающееся тем, что впускные и выпускные каналы (41a, 42a) образуют наборы (41, 42) впускных и выпускных каналов.
23. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 22, отличающееся тем, что газы (201) принимаются одним единственным впускным каналом из впускных каналов (41а).
24. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии по п. 23, отличающееся тем, что оптимизированные газы (202) поступают в один единственный выпускной канал из выпускных каналов (42а).
25. Устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии, отличающееся тем, что содержит:
расширительную камеру (10);
нагревательную колонну (20);
магнитный сердечник (30);
набор (41) впускных каналов; и
набор (42) выпускных каналов,
причем наборы (41, 42) впускных и выпускных каналов снабжены множеством впускных и выпускных каналов (41a, 42a), которые проходят в непосредственной близости вокруг внешней поверхности магнитного сердечника (30), наборы (41, 42) впускных и выпускных каналов являются концентрическими по отношению к магнитному сердечнику (30),
набор (41) впускных каналов устанавливает сообщение по текучей среде с расширительной камерой (10) и тепловое сообщение с нагревательной колонной (20), расширительная камера (10) устанавливает сообщение по текучей среде с набором (42) выпускных каналов, набор (42) выпускных каналов устанавливает сообщение по текучей среде с набором (41) впускных каналов, таким образом, что:
впускные и выпускные каналы (41a, 42a) принимают газы (201), газы (201) попеременно устанавливают потоки между впускными каналами (41a) и выпускными каналами (42a), и наоборот, магнитный сердечник (30) выполнен с возможностью генерирования и воздействия магнитных полей (35) на газы (201) внутри впускных и выпускных каналов (41a, 42a),
чередование потоков между впускными и выпускными каналами (41a, 42a) способствует динамическому расширению газов (201), когда газы (201) проходят через расширительную камеру (10), термическому расширению газов (201) когда газы (201) проходят через нагревательную колонну (20) и воздействию на газы (201) магнитных полей (35), образованных с помощью магнитного сердечника (30).
26. Система для оптимизации эффективности сгорания газов для производства чистой энергии, отличающаяся тем, что содержит:
устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии; и
устройство (300) генерирования механической энергии,
причем устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии снабжено впускными и выпускными каналами (41a, 42a) и магнитным сердечником (30),
причем впускные и выпускные каналы (41a, 42a) выполнены с возможностью приема газов (201), газы (201) попеременно устанавливают потоки между впускными каналами (41a) и выпускными каналами (42a), и наоборот, магнитный сердечник (30) выполнен с возможностью генерирования и воздействия магнитных полей (35) на газы (201) внутри впускных и выпускных каналов (41a, 42a),
чередование потоков между впускными и выпускными каналами (41a, 42a) и воздействие магнитных полей (35) способствуют динамическому и тепловому расширению и магнитному воздействию на газы (201),
оптимизированные газы (202) поступают в устройство (300) генерирования механической энергии.
27. Система для оптимизации эффективности сгорания газов для производства чистой энергии, отличающаяся тем, что содержит:
устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии; и
устройство (300) генерирования механической энергии,
причем устройство (1) для оптимизации эффективности сгорания газов для производства чистой энергии снабжено наборами (41, 42) впускных и выпускных каналов, которые имеют множество впускных и выпускных каналов (41a, 42a), которые проходят в вблизи вокруг внешней поверхности магнитного сердечника (30), наборы (41, 42) впускных и выпускных каналов являются концентрическими по отношению к магнитному сердечнику (30),
набор (41) впускных каналов устанавливает сообщение по текучей среде с расширительной камерой (10) и тепловое сообщение с нагревательной колонной (20), расширительная камера (10) устанавливает сообщение по текучей среде с набором (42) выпускных каналов, набор (42) выпускных каналов устанавливает сообщение по текучей среде с набором (41) впускных каналов, таким образом, что:
впускные и выпускные каналы (41a, 42a) принимают газы (201), газы (201) попеременно устанавливают потоки между впускными каналами (41a) и выпускными каналами (42a), и наоборот, магнитный сердечник (30) выполнен с возможностью генерирования и воздействия магнитных полей (35) на газы (201) внутри впускных и выпускных каналов (41a, 42a),
чередование потоков между впускными и выпускными каналами (41a, 42a) способствует динамическому расширению газов (201), когда газы (201) проходят через расширительную камеру (10), термическому расширению газов (201) когда газы (201) проходят через нагревательную колонну (20) и воздействию на газы (201) магнитных полей (35), образованных с помощью магнитного сердечника (30),
оптимизированные газы (202) поступают в устройство (300) генерирования механической энергии.
28. Способ для оптимизации эффективности сгорания газов для производства чистой энергии, отличающийся тем, что включает стадии:
- установления потоков газов (201) попеременно между впускными каналами (41а) и выпускными каналами (42а), и наоборот, таким образом, чтобы газы (201) динамически расширялись;
- теплового расширения газов (201) для каждого потока между впускными каналами (41а) и выпускными каналами (42а); и
- подвергания газов (201) воздействию магнитных полей (35) для каждого потока между впускными каналами (41а) и выпускными каналами (42а), и наоборот.
29. Способ для оптимизации эффективности сгорания газов для производства чистой энергии, отличающийся тем, что включает стадии:
- размещения наборов (41, 42) впускных и выпускных каналов в вблизи вокруг внешней поверхности магнитного сердечника (30);
- установления сообщения по текучей среде между набором (41) впускных каналов и расширительной камерой (10) и теплового сообщения с нагревательной колонной (20);
- установления сообщения по текучей среде между расширительной камерой (10) и набором (42) выпускных каналов;
- установления сообщения по текучей среде между набором (42) выпускных каналов и набором (41) впускных каналов;
- введения газов (201) в набор (41) впускных каналов;
- установления потоков газов (201) попеременно между впускными каналами (41а) и выпускными каналами (42а), и наоборот, таким образом, чтобы газы (201) динамически расширялись;
- теплового расширения газов (201) для каждого потока между впускными каналами (41а) и выпускными каналами (42а); и
- подвергания газов (201) воздействию магнитных полей (35) для каждого потока между впускными каналами (41а) и выпускными каналами (42а), и наоборот.
RU2018123710A 2015-11-30 2016-11-30 Система, способ и устройство для оптимизации эффективности сгорания газов для производства чистой энергии RU2719412C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BR102015030045-0A BR102015030045B1 (pt) 2015-11-30 2015-11-30 gas-boosting device for clean energy generation
BRBR1020150300450 2015-11-30
PCT/BR2016/050312 WO2017091880A1 (en) 2015-11-30 2016-11-30 System, method and device to optimize the efficiency of the combustion of gases for the production of clean energy

Publications (3)

Publication Number Publication Date
RU2018123710A true RU2018123710A (ru) 2020-01-15
RU2018123710A3 RU2018123710A3 (ru) 2020-02-19
RU2719412C2 RU2719412C2 (ru) 2020-04-17

Family

ID=56416126

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018123710A RU2719412C2 (ru) 2015-11-30 2016-11-30 Система, способ и устройство для оптимизации эффективности сгорания газов для производства чистой энергии

Country Status (15)

Country Link
US (1) US10787958B2 (ru)
JP (1) JP6940501B2 (ru)
KR (1) KR20180094936A (ru)
CN (1) CN108700290A (ru)
AU (1) AU2016363681A1 (ru)
BR (1) BR102015030045B1 (ru)
CA (1) CA3006783A1 (ru)
IL (1) IL259663A (ru)
MX (1) MX2018006653A (ru)
MY (1) MY188855A (ru)
PH (1) PH12018501136A1 (ru)
RU (1) RU2719412C2 (ru)
UA (1) UA122257C2 (ru)
WO (1) WO2017091880A1 (ru)
ZA (1) ZA201804021B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403217A (zh) * 2020-10-27 2021-02-26 西北矿冶研究院 一种硫化氢气体的高效率自动化净化装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2820286B8 (en) 2012-02-27 2019-12-11 Hytech Power Inc. Oxygen-rich plasma generators for boosting internal combustion engines
KR20220123330A (ko) 2016-03-07 2022-09-06 하이테크 파워, 인크. 내연 엔진용 제 2 연료를 생성 및 분배하는 방법
CN107570095B (zh) * 2016-07-04 2020-07-14 哈尔滨万宇科技股份有限公司 虚光子催化装置和使用该催化装置进行催化处理的方法
US10563596B2 (en) 2017-03-31 2020-02-18 Generac Power Systems, Inc. Carbon monoxide detecting system for internal combustion engine-based machines
US20190234348A1 (en) 2018-01-29 2019-08-01 Hytech Power, Llc Ultra Low HHO Injection
FR3120399A1 (fr) 2021-03-03 2022-09-09 Societe Cofex Procédé et dispositif de traitement du combustible gaz naturel ou fioul d’une chaudière ou d’un moteur thermique
FR3121184A1 (fr) * 2021-03-27 2022-09-30 Ecopra Sas Appareil a prefiltre actif pour comburant fluide pour tout type de combustion et dispositif utilisant un carburant.
IT202100025313A1 (it) * 2021-10-04 2023-04-04 Hyperion S R L S Sistema integrato per l’ottimizzazione della combustione di motori a combustione interna con effetto magnetizzante, irraggiamento ir, uv, a microonde e elettrolizzatore
IT202100025316A1 (it) * 2021-10-04 2023-04-04 Hyperion S R L S Sistema integrato per l’ottimizzazione della combustione di motori a combustione interna con effetto magnetizzante, irraggiamento ir, uv e elettrolizzatore

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669274A (en) * 1969-12-29 1972-06-13 George M Happ Magnetic structure for treating liquids containing calcareous matter
US4357237A (en) * 1979-11-28 1982-11-02 Sanderson Charles H Device for the magnetic treatment of water and liquid and gaseous fuels
US4430785A (en) * 1980-07-14 1984-02-14 Sanderson Charles H Method of manufacturing a magnetic fuel or water treatment device
US4372852A (en) 1980-11-17 1983-02-08 Kovacs Albert J Magnetic device for treating hydrocarbon fuels
JPS5993954A (ja) * 1982-11-19 1984-05-30 Naonobu Nakajima 燃料油及び燃料ガスの磁気処理装置
US4568901A (en) 1984-11-21 1986-02-04 A Z Industries Magnetic fuel ion modifier
JPS6477743A (en) * 1987-09-16 1989-03-23 Naisu Kk Liquid fuel improving device
PL161859B1 (pl) 1989-03-29 1993-08-31 Boleslaw Onyszczuk Urzadzenie do uzdatniania paliwa plynnego oraz cieczy chlodzacej PL PL PL
CN2061666U (zh) * 1989-09-09 1990-09-05 马雁鸿 民用流体燃料处理装置
US4995425A (en) 1990-05-11 1991-02-26 Weisenbarger Gale M Magnetic fluid conditioner
JP3156312B2 (ja) * 1991-03-05 2001-04-16 株式会社日本自動車部品総合研究所 燃料供給装置
US5161512A (en) 1991-11-15 1992-11-10 Az Industries, Incorporated Magnetic fluid conditioner
JPH0833840A (ja) * 1994-06-28 1996-02-06 Aavan Ekorojii:Kk 磁化器並びに磁化処理方法及び化学反応制御方法
US5520158A (en) * 1995-01-12 1996-05-28 Gasmaster International, Inc. Magnetic field fuel treatment device
US5637226A (en) 1995-08-18 1997-06-10 Az Industries, Incorporated Magnetic fluid treatment
US6024935A (en) 1996-01-26 2000-02-15 Blacklight Power, Inc. Lower-energy hydrogen methods and structures
US5943998A (en) 1998-02-10 1999-08-31 1184949 Ontario Inc. Magnetic fuel enhancer
CA2240016C (en) * 1998-06-08 2005-03-29 Omni-Tech Inc. An apparatus for magnetically treating flowing fluids
JP3057827U (ja) * 1998-09-18 1999-06-08 陳福恭 ガス増熱装置
CN1287213A (zh) * 1999-09-07 2001-03-14 杨青山 机动车氢氧助燃环保节油方法及节油器
ITCR20010004A1 (it) * 2001-06-08 2002-12-08 Crete Trading Srl Rocedimento di riscaldamento e doppia polarizzazione elettromagneticaper combuatibili liquidi e gassosi e relativo dispositivo
JP2003014222A (ja) * 2001-06-29 2003-01-15 Tamio Sasaki 燃焼装置及び燃料供給装置
US6972118B2 (en) * 2001-12-14 2005-12-06 Hadronic Press, Inc. Apparatus and method for processing hydrogen, oxygen and other gases
JP4444568B2 (ja) * 2001-12-28 2010-03-31 スティーヴン・サックス 液体及び気体の磁気処理及び磁気処理用装置
JP2003269268A (ja) * 2002-03-11 2003-09-25 Toshiaki Tsunematsu 液体燃料磁気処理装置
US6851413B1 (en) 2003-01-10 2005-02-08 Ronnell Company, Inc. Method and apparatus to increase combustion efficiency and to reduce exhaust gas pollutants from combustion of a fuel
RU40766U1 (ru) * 2004-06-03 2004-09-27 ООО Научно-производственная фирма "Транс-Титан" Агрегат для обработки жидкого топлива магнитным полем постоянных магнитов
DE202006015219U1 (de) * 2006-10-05 2007-02-01 Wasse, Dirk Vorrichtung zur Optimierung der Verbrennung von festen, flüssigen und gasförmigen Brennstoffen
CN101205857A (zh) * 2006-12-22 2008-06-25 孙伯叨 减少内燃机碳氢燃料排放物的处理装置
DE202007001730U1 (de) * 2007-02-01 2007-04-26 Berger, Jürgen Brennstoffaufbereiter zur Erhöhung des Brennwerts und zur Reduzierung der Emissionen bei flüssigen und gasförmigen Brennstoffen
US20080290038A1 (en) 2007-05-26 2008-11-27 Gordon Thomas Kaitting Magnetic hydrocarbon treatment device and method
FR2928848B1 (fr) * 2008-03-20 2010-04-16 Sairem Soc Pour L Applic Indle Dispositif d'application d'energie electromagnetique a un milieu reactif
US8517000B2 (en) * 2008-09-18 2013-08-27 Wayne Rowland Fuel treatment device using heat and magnetic field
FR2947010A1 (fr) 2009-06-17 2010-12-24 Jean-Francois Mirabella Principe de fonctionnement du moteur thermique a bi-combustion
WO2011008754A2 (en) 2009-07-13 2011-01-20 Mason Elmer B Magnetohydrodynamic fluid conditioner
US8444853B2 (en) 2010-02-22 2013-05-21 Lev Nikolaevich Popov Leo-polarizer for treating a fluid flow by magnetic field
US8999158B2 (en) * 2010-09-16 2015-04-07 Wallace Taylor Irvin In-line fuel conditioner
KR101061216B1 (ko) * 2010-12-10 2011-08-31 이흑규 유체 활성화 장치
CN103032213A (zh) * 2011-09-28 2013-04-10 吴玟颉 磁化油品装置
US9200561B2 (en) * 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US20150252757A1 (en) * 2012-11-12 2015-09-10 Mcalister Technologies, Llc Chemical fuel conditioning and activation
BR102014003647A2 (pt) * 2014-02-17 2015-12-01 José Roberto Fernandes Beraldo processo de obtenção e controle de energia limpa a partir da água, conversão da água em combustível através da extração e utilização do hidrogênio, e respectivo equipamento expansor molecular de gás

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403217A (zh) * 2020-10-27 2021-02-26 西北矿冶研究院 一种硫化氢气体的高效率自动化净化装置及方法

Also Published As

Publication number Publication date
IL259663A (en) 2018-07-31
PH12018501136A1 (en) 2019-02-04
JP6940501B2 (ja) 2021-09-29
WO2017091880A1 (en) 2017-06-08
UA122257C2 (uk) 2020-10-12
ZA201804021B (en) 2019-09-25
MY188855A (en) 2022-01-10
US10787958B2 (en) 2020-09-29
RU2719412C2 (ru) 2020-04-17
JP2019504272A (ja) 2019-02-14
MX2018006653A (es) 2019-07-04
US20180363542A1 (en) 2018-12-20
CN108700290A (zh) 2018-10-23
KR20180094936A (ko) 2018-08-24
BR102015030045B1 (pt) 2017-07-18
BR102015030045A2 (pt) 2016-07-26
RU2018123710A3 (ru) 2020-02-19
AU2016363681A1 (en) 2018-06-28
CA3006783A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
RU2018123710A (ru) Система, способ и устройство для оптимизации эффективности сгорания газов для производства чистой энергии
RU2013102015A (ru) Камера сгорания, переходный элемент камеры сгорания и способ увеличения теплоотдачи в переходном элементе камеры сгорания
RU2014101047A (ru) Способ и устройство для защиты труб теплообменника, а также керамический конструктивный элемент
RU2014137999A (ru) Центробежный сепаратор
RU2013137144A (ru) Способ и устройство для получения высокотемпературного водяного пара, обогащенного активными частицами, с использованием плазмы
RU2016138842A (ru) Промышленная печь для нагрева изделий, таких как изделия черной металлургии
CN216244856U (zh) 一种固态三相电热泵
PH12018500470A1 (en) Air intake device for combustion apparatus
MX2015001291A (es) Sistema y metodo para enfriar un generador de gas en el fondo del pozo.
RU158256U1 (ru) Конусный теплоутилизатор дымовых газов бытовых котлов
CN103335399B (zh) 新型高能效双锅锅炉
CN204176907U (zh) 空气电加温器
CN203700422U (zh) 淬火感应器
CN103835905A (zh) 多级会切磁场等离子体推动器的变截面通道
CN110519903A (zh) 空气筒状等离子发生器间隙结构
CN204373435U (zh) 耐火材料窑炉的排气通道
RU144055U1 (ru) Тепловой аккумулятор
EP3160637A1 (en) Pulsed plasma engine and method
CN113623867B (zh) 一种固态三相电热泵及其使用方法
RU167002U1 (ru) Устройство для подготовки топлива к сгоранию на основе постоянных магнитов
EA201900233A1 (ru) Способ получения оксидов азота
RU149985U1 (ru) Генератор озона
TH1801003181A (ru)
KR101776074B1 (ko) 연료 자화장치
CN104588648A (zh) 快速冷却筒体法兰的压力烧结炉