RU2007132873A - Способ работы насосной системы - Google Patents

Способ работы насосной системы Download PDF

Info

Publication number
RU2007132873A
RU2007132873A RU2007132873/06A RU2007132873A RU2007132873A RU 2007132873 A RU2007132873 A RU 2007132873A RU 2007132873/06 A RU2007132873/06 A RU 2007132873/06A RU 2007132873 A RU2007132873 A RU 2007132873A RU 2007132873 A RU2007132873 A RU 2007132873A
Authority
RU
Russia
Prior art keywords
electric drive
controller
maximum
pumping
pressure
Prior art date
Application number
RU2007132873/06A
Other languages
English (en)
Other versions
RU2421632C2 (ru
Inventor
Саймон Гарольд БРЮС (GB)
Саймон Гарольд БРЮС
Original Assignee
Эдвардс Лимитед (Gb)
Эдвардс Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эдвардс Лимитед (Gb), Эдвардс Лимитед filed Critical Эдвардс Лимитед (Gb)
Publication of RU2007132873A publication Critical patent/RU2007132873A/ru
Application granted granted Critical
Publication of RU2421632C2 publication Critical patent/RU2421632C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0204Frequency of the electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/08Amplitude of electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/09Electric current frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Control Of Electric Motors In General (AREA)

Claims (47)

1. Насосная система, содержащая насосный механизм; электропривод для запуска насосного механизма и контроллер для управления электроприводом, при этом контроллер устанавливает максимальное значение частоты вращения электропривода и максимальное значение тока электропривода, а для оптимизации режима работы насосной системы регулирует указанные максимальные значения во время работы насосной системы.
2. Система по п.1, отличающаяся тем, что контроллер выполнен с возможностью увеличения максимального значения тока в электроприводе во время работы насосной системы при относительно высоком давлении и увеличения максимального значения для частоты вращения электродвигателя во время работы насосной системы при относительно низком давлении.
3. Система по п.1, отличающаяся тем, что содержит инвертер для подвода мощности переменной частоты к электроприводу, при этом контроллер выполнен с возможностью регулирования амплитуды и частоты мощности, подводимой к электроприводу, во время работы насосной системы.
4. Система по любому из пп.1-3, отличающаяся тем, что контроллер выполнен с возможностью приема входного сигнала от, по меньшей мере, одного датчика для контроля одного или большего числа состояний в системе и регулирования, по меньшей мере, одного из указанных максимальных значений в зависимости от контролируемых состояний.
5. Система по п.4, отличающаяся тем, что, по меньшей мере, один датчик выполнен в возможностью формирования сигнала, показывающего давление газа в насосной системе, при этом контроллер выполнен с возможностью регулирования, по меньшей мере, одного из указанных максимальных значений в зависимости от принятого сигнала.
6. Система по п.5, отличающаяся тем, что контроллер выполнен с возможностью регулирования максимального значения тока в электроприводе, когда давление газа ниже первого заданного значения.
7. Система по п.6, отличающаяся тем, что первое предварительно установленное значение составляет около 100 мбар.
8. Система по п.6, отличающаяся тем, что контроллер выполнен с возможностью регулирования максимального значения частоты вращения электропривода, когда давление газа ниже второго заданного значения, при этом второе заданное значение ниже, чем первое заданное значение.
9. Система по п.8, отличающаяся тем, что второе заданное значение находится в пределах от 1 мбар до 100 мбар.
10. Система по п.9, отличающаяся тем, что второе заданное значение находится в пределах от 10 мбар до 100 мбар.
11. Система по п.5, отличающаяся тем, что два датчика выполнены с возможностью определения соответствующих перепадов давления в насосной системе, а контроллер выполнен с возможностью регулирования, по меньшей мере, одного из максимальных значений в зависимости от соотношения между двумя определенными давлениями.
12. Система по п.5, отличающаяся тем, что, по меньшей мере, один датчик выполнен в возможностью определения давления газа, поступающего к насосному механизму.
13. Система по п.5, отличающаяся тем, что, по меньшей мере, один датчик выполнен в возможностью определения давления газа, выходящего из насосного механизма.
14. Система по п.1, отличающаяся тем, что содержит редукционный клапан, гидравлически сообщающийся с выходом из насосного механизма для избирательного выпуска в атмосферу газа, сжатого насосным механизмом.
15. Система по п.14, отличающаяся тем, что, по меньшей мере, один датчик выполнен в возможностью опознавания положения редукционного клапана, а контроллер выполнен с возможностью регулирования, по меньшей мере, одного из максимальных значений в зависимости от опознанного положения.
16. Система по п.15, отличающаяся тем, что контроллер выполнен с возможностью уменьшения максимального значения тока в электроприводе, когда редукционный клапан переключается от открытого положения в закрытое положение.
17. Система по любому из пп.14-16, отличающаяся тем, что редукционный клапан выполнен с возможностью переключения из закрытого положения в открытое положение, когда давление газа, сжатого насосным механизмом, выше атмосферного давления.
18. Система по п.4, отличающаяся тем, что, по меньшей мере, один датчик выполнен в возможностью подачи сигнала, показывающего температуру в насосной системе, при этом контроллер выполнен с возможностью регулирования, по меньшей мере, одного из указанных максимальных значений в зависимости от принятых сигналов.
19. Система по п.18, отличающаяся тем, что контроллер выполнен с возможностью регулирования максимального значения тока электропривода, когда температура выше первого заданного значения.
20. Система по п.19, отличающаяся тем, что контроллер выполнен с возможностью регулирования максимального значения частоты вращения электропривода, когда температура выше второго заданного значения, при этом второе заданное значение отличается от первого заданного значения.
21. Система по п.18, отличающаяся тем, что два датчика выполнены с возможностью определения соответствующих различных температур в насосной системе, а контроллер выполнен с возможностью регулирования, по меньшей мере, одного из максимальных значений в зависимости от соотношения между определенными температурами.
22. Система по п.18, отличающаяся тем, что, по меньшей мере, один датчик выполнен с возможностью передачи сигнала, показывающего температуру газа, выходящего из насосного механизма.
23. Система по п.18, отличающаяся тем, что, по меньшей мере, один датчик выполнен с возможностью передачи сигнала, показывающего температуру газа, входящего в насосный механизм.
24. Система по п.18, отличающаяся тем, что, по меньшей мере, один датчик выполнен с возможностью передачи сигнала, показывающего температуру насосного механизма.
25. Система по любому из пп.1-3, отличающаяся тем, что контроллер выполнен с возможностью регулирования максимальных значений в соответствии с заданным временным соотношением.
26. Способ работы насосной системы, содержащей насосный механизм и электропривод для запуска насосного механизма, заключающийся в том, что устанавливают максимальное значение частоты вращения электропривода и максимальное значение тока электропривода и регулируют указанные максимальные значения во время работы насосной системы для оптимизации режима работы насосной системы.
27. Способ по п.26, отличающийся тем, что увеличивают максимальное значение тока электропривода во время работы насосной системы при относительно высоком давлении и увеличивают максимальное значение частоты вращения электропривода во время работы насосной системы при относительно низком давлении.
28. Способ по п.26, отличающийся тем, что во время работы насосной системы регулируют амплитуду и частоту мощности, подаваемой на электропривод.
29. Способ по любому из пп.26-28, отличающийся тем, что регулируют, по меньшей мере, одно из максимальных значений в зависимости от одного или большего числа рабочих состояний системы.
30. Способ по п.29, отличающийся тем, что регулируют, по меньшей мере, одно из указанных максимальных значений в зависимости от, по меньшей мере, одного давления газа в насосной системе.
31. Способ по п.30, отличающийся тем, что уменьшают максимальное значение тока электропривода, когда давление газа падает ниже первого заданного значения.
32. Способ по п.31, отличающийся тем, что первое заданное значение составляет выше 100 мбар.
33. Способ по п.31, отличающийся тем, что уменьшают максимальное значение частоты вращения электропривода, когда давление газа падает ниже второго заданного значения, при этом второе заданное значение ниже, чем первое заданное значение.
34. Способ по п.33, отличающийся тем, что второе заданное значение находится в пределах от 1 мбар до 100 мбар.
35. Способ по п.34, отличающийся тем, что второе заданное значение находится в пределах от 10 мбар до 100 мбар.
36. Способ по п.29, отличающийся тем, что регулируют, по меньшей мере, одно из указанных максимальных значений в зависимости от соотношения между двумя давлениями газа в насосной системе.
37. Способ по п.30, отличающийся тем, что в качестве, по меньшей мере, одного давления газа используют давление газа, поступающего к насосному механизму.
38. Способ по п.30, отличающийся тем, что в качестве, по меньшей мере, одного давления газа используют давление газа, выходящего из насосного механизма.
39. Способ по п.26, отличающийся тем, что насосная система содержит редукционный клапан позади по ходу потока насосного механизма, при этом регулируют, по меньшей мере, одно из максимальных значений в зависимости от положения редукционного клапана.
40. Способ по п.39, отличающийся тем, что уменьшают максимальное значение тока электропривода, когда редукционный клапан переключается из открытого положения в закрытое положение.
41. Способ по п.29, отличающийся тем, что регулируют, по меньшей мере, одно из указанных максимальных значений в зависимости от, по меньшей мере, одной температуры насосной системы.
42. Способ по п.41, отличающийся тем, что уменьшают максимальное значение тока электропривода, когда, по меньшей мере, одна температура выше первого заданного значения.
43. Способ по п.42, отличающийся тем, что увеличивают максимальное значение частоты вращения электропривода, когда, по меньшей мере, одна температура выше второго заданного значения, при этом второе заданное значение отличается от первого заданного значения.
44. Способ по п.41, отличающийся тем, что регулируют, по меньшей мере, одно из указанных максимальных значений в зависимости от соотношения между, по меньшей мере, двумя температурами насосной системы.
45. Способ по любому из пп.41-44, отличающийся тем, что в качестве, по меньшей мере, одной температуры используют температуру газа, выходящего из насосного механизма.
46. Способ по любому из пп.41-44, отличающихся тем, что в качестве, по меньшей мере, одной температуры используют температуру насосного механизма.
47. Способ по любому из пп.26-28, отличающийся тем, что регулируют максимальные значения в соответствии с заданным временным соотношением.
RU2007132873A 2005-02-02 2006-01-23 Способ работы насосной системы RU2421632C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0502149A GB0502149D0 (en) 2005-02-02 2005-02-02 Method of operating a pumping system
GB0502149.8 2005-02-02

Publications (2)

Publication Number Publication Date
RU2007132873A true RU2007132873A (ru) 2009-03-10
RU2421632C2 RU2421632C2 (ru) 2011-06-20

Family

ID=34307860

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007132873A RU2421632C2 (ru) 2005-02-02 2006-01-23 Способ работы насосной системы

Country Status (9)

Country Link
US (2) US9062684B2 (ru)
EP (1) EP1844237B1 (ru)
JP (1) JP5189842B2 (ru)
KR (1) KR101394718B1 (ru)
CN (1) CN101184921B (ru)
GB (1) GB0502149D0 (ru)
RU (1) RU2421632C2 (ru)
TW (1) TWI372209B (ru)
WO (1) WO2006082366A1 (ru)

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0502149D0 (en) 2005-02-02 2005-03-09 Boc Group Inc Method of operating a pumping system
GB0508872D0 (en) * 2005-04-29 2005-06-08 Boc Group Plc Method of operating a pumping system
DE102007060174A1 (de) * 2007-12-13 2009-06-25 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe sowie Verfahren zum Betreiben einer Vakuumpumpe
CN101903714B (zh) * 2008-01-11 2012-08-15 江森自控科技公司 蒸汽压缩系统
TWI467092B (zh) * 2008-09-10 2015-01-01 Ulvac Inc 真空排氣裝置
KR100988283B1 (ko) * 2008-09-18 2010-10-18 자동차부품연구원 미션오일 공급펌프 구동장치 및 방법
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
CN102072185B (zh) * 2011-01-27 2013-05-29 高毅夫 基于烟尘量计算优化模型的除尘风机节能控制方法
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
DE102011076785A1 (de) * 2011-05-31 2012-12-06 Robert Bosch Gmbh Steuervorrichtung für eine elektrische Vakuumpumpe und Verfahren zum Ansteuern einer elektrischen Vakuumpumpe
CN102508474B (zh) * 2011-11-01 2014-06-25 杭州哲达科技股份有限公司 工业企业用冷却循环水优化运行控制系统
JP5557056B2 (ja) * 2011-11-30 2014-07-23 アイシン精機株式会社 ポンプ制御ユニット
US20150017024A1 (en) * 2012-03-02 2015-01-15 Shell Oil Company Method of controlling an electric submersible pump
GB2501735B (en) * 2012-05-02 2015-07-22 Edwards Ltd Method and apparatus for warming up a vacuum pump arrangement
GB2502134B (en) * 2012-05-18 2015-09-09 Edwards Ltd Method and apparatus for adjusting operating parameters of a vacuum pump arrangement
WO2014001090A1 (de) * 2012-06-28 2014-01-03 Sterling Industry Consult Gmbh Verfahren und pumpenanordnung zum evakuieren einer kammer
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
JP6050081B2 (ja) * 2012-10-05 2016-12-21 株式会社荏原製作所 ドライ真空ポンプ装置
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
CN103925214A (zh) * 2013-01-11 2014-07-16 珠海格力电器股份有限公司 一种精抽泵机组及具有其的精抽系统
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US20140311581A1 (en) * 2013-04-19 2014-10-23 Applied Materials, Inc. Pressure controller configuration for semiconductor processing applications
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
WO2015065228A1 (ru) * 2013-10-31 2015-05-07 Владимир Григорьевич МАКАРЕНКО Способ выпаривания текучих продуктов и выпарное устройство для его осуществления
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
RU2564288C2 (ru) * 2013-11-05 2015-09-27 Андрей Федорович Александров Плёнка двумерно упорядоченного линейно-цепочечного углерода и способ её получения
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
CN104632629A (zh) * 2013-11-13 2015-05-20 中国科学院沈阳科学仪器股份有限公司 用于高效抽除小分子量气体的真空系统
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
CN104199310B (zh) * 2014-09-03 2016-10-19 国家电网公司 海水直流冷却循环水系统潮差影响模型的应用
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9771884B2 (en) * 2014-10-31 2017-09-26 GM Global Technology Operations LLC System and method for controlling the amount of purge fluid delivered to cylinders of an engine based on an operating parameter of a purge pump
US11686517B2 (en) 2014-11-14 2023-06-27 Carrier Corporation On board chiller capacity calculation
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
DE102016200112A1 (de) * 2016-01-07 2017-07-13 Leybold Gmbh Vakuumpumpenantrieb mit Stern-Dreieck-Umschaltung
BE1024040B1 (nl) * 2016-04-08 2017-11-06 Atlas Copco Airpower, N.V. Elektrisch aangedreven mobiele compressor
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
DE202016007609U1 (de) 2016-12-15 2018-03-26 Leybold Gmbh Vakuumpumpsystem
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
JP2018178846A (ja) * 2017-04-12 2018-11-15 株式会社荏原製作所 真空ポンプ装置の運転制御装置、及び運転制御方法
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
FR3067069B1 (fr) * 2017-06-06 2019-08-02 Pfeiffer Vacuum Procede de surveillance d'un etat de fonctionnement d'un dispositif de pompage
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
EP3499039B1 (de) * 2017-12-15 2021-03-31 Pfeiffer Vacuum Gmbh Schraubenvakuumpumpe
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
FR3087504B1 (fr) * 2018-10-17 2020-10-30 Pfeiffer Vacuum Procede de controle de la temperature d’une pompe a vide, pompe a vide et installation associees
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
CN111029319B (zh) * 2019-11-19 2021-09-17 西安西整熔断器有限公司 一种电触发晶闸管换流阀及其使用方法
GB2592573A (en) * 2019-12-19 2021-09-08 Leybold France S A S Lubricant-sealed vacuum pump, lubricant filter and method.
US11668304B2 (en) 2020-02-27 2023-06-06 Gardner Denver, Inc. Low coefficient of expansion rotors for vacuum boosters
US11746782B2 (en) * 2020-04-03 2023-09-05 Gardner Denver, Inc. Low coefficient of expansion rotors for blowers

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863088A (ja) 1981-10-09 1983-04-14 Ebara Corp 揚水ポンプ系における保護装置
JPS63283492A (ja) 1987-05-15 1988-11-21 Mitsubishi Electric Corp 圧縮機用電動機の制御装置
JPS6419198U (ru) 1987-07-24 1989-01-31
US5141402A (en) * 1991-01-29 1992-08-25 Vickers, Incorporated Power transmission
IT1270767B (it) * 1993-03-18 1997-05-07 Cartigliano Spa Off Impianto a vuoto per esseccatoi di pelli industriali a pianali multipli ed essiccatoio incorporante tale impianto
KR100344716B1 (ko) 1993-09-20 2002-11-23 가부시키 가이샤 에바라 세이사꾸쇼 펌프의운전제어장치
DE4421065A1 (de) 1994-06-16 1995-12-21 Raytek Sensorik Gmbh Vorrichtung zur Temperaturmessung
JP3847357B2 (ja) * 1994-06-28 2006-11-22 株式会社荏原製作所 真空系の排気装置
US5618167A (en) 1994-07-28 1997-04-08 Ebara Corporation Vacuum pump apparatus having peltier elements for cooling the motor & bearing housing and heating the outer housing
US5624239A (en) * 1994-12-14 1997-04-29 Osika; Thomas W. Portable pneumatic vacuum source apparatus and method
JP3125207B2 (ja) 1995-07-07 2001-01-15 東京エレクトロン株式会社 真空処理装置
KR100225422B1 (ko) * 1995-12-19 1999-10-15 세구치 류이치 제어장치의 출력보정방법과 이를 사용한 제어장치 및 유압펌프 제어장치
US6158965A (en) 1996-07-30 2000-12-12 Alaris Medical Systems, Inc. Fluid flow resistance monitoring system
JP3767052B2 (ja) 1996-11-30 2006-04-19 アイシン精機株式会社 多段式真空ポンプ
JP3057486B2 (ja) 1997-01-22 2000-06-26 セイコー精機株式会社 ターボ分子ポンプ
US5944049A (en) * 1997-07-15 1999-08-31 Applied Materials, Inc. Apparatus and method for regulating a pressure in a chamber
US6123522A (en) 1997-07-22 2000-09-26 Koyo Seiko Co., Ltd. Turbo molecular pump
JPH1137087A (ja) 1997-07-24 1999-02-09 Osaka Shinku Kiki Seisakusho:Kk 分子ポンプ
JPH11132186A (ja) 1997-10-29 1999-05-18 Shimadzu Corp ターボ分子ポンプ
JP2000110735A (ja) * 1998-10-01 2000-04-18 Internatl Business Mach Corp <Ibm> ポンプ保護装置、ポンプ保護方法及びポンプ装置
US6695589B1 (en) * 1999-03-26 2004-02-24 General Motors Corporation Control for an electric motor driven pump
US6257001B1 (en) 1999-08-24 2001-07-10 Lucent Technologies, Inc. Cryogenic vacuum pump temperature sensor
FR2801645B1 (fr) * 1999-11-30 2005-09-23 Matsushita Electric Ind Co Ltd Dispositif d'entrainement d'un compresseur lineaire, support et ensemble d'informations
JP2002048088A (ja) 2000-07-31 2002-02-15 Seiko Instruments Inc 真空ポンプ
US7143016B1 (en) * 2001-03-02 2006-11-28 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of pumping system operation and diagnostics
DE10113251A1 (de) 2001-03-19 2002-10-02 Siemens Ag Druckerzeuger für strömende Medien
DE10114969A1 (de) 2001-03-27 2002-10-10 Leybold Vakuum Gmbh Turbomolekularpumpe
KR100408068B1 (ko) * 2001-07-31 2003-12-03 엘지전자 주식회사 왕복동식 압축기의 스트로크 제어장치 및 방법
JP4156830B2 (ja) 2001-12-13 2008-09-24 エドワーズ株式会社 真空ポンプ
JP2003287463A (ja) 2002-03-28 2003-10-10 Boc Edwards Technologies Ltd 放射温度測定装置及び該放射温度測定装置を搭載したターボ分子ポンプ
US6739840B2 (en) 2002-05-22 2004-05-25 Applied Materials Inc Speed control of variable speed pump
JP2004116319A (ja) 2002-09-24 2004-04-15 Boc Edwards Technologies Ltd 真空ポンプ
JP3967245B2 (ja) 2002-09-30 2007-08-29 株式会社東芝 回転機の寿命予測方法及び回転機を有する製造装置
GB0223769D0 (en) 2002-10-14 2002-11-20 Boc Group Plc A pump
JP3923422B2 (ja) * 2002-12-11 2007-05-30 株式会社日立産機システム スクリュー圧縮機
JP2004197644A (ja) * 2002-12-18 2004-07-15 Toyota Industries Corp 真空ポンプの制御装置
ITTO20030392A1 (it) * 2003-05-28 2004-11-29 Varian Spa Sistema di pompaggio per vuoto.
JP4218756B2 (ja) 2003-10-17 2009-02-04 株式会社荏原製作所 真空排気装置
JP4558349B2 (ja) * 2004-03-02 2010-10-06 財団法人国際科学振興財団 真空ポンプ
JP2005320905A (ja) 2004-05-10 2005-11-17 Boc Edwards Kk 真空ポンプ
GB0502149D0 (en) 2005-02-02 2005-03-09 Boc Group Inc Method of operating a pumping system
GB0508872D0 (en) 2005-04-29 2005-06-08 Boc Group Plc Method of operating a pumping system
JP5045894B2 (ja) 2006-05-09 2012-10-10 株式会社島津製作所 磁気軸受装置

Also Published As

Publication number Publication date
JP5189842B2 (ja) 2013-04-24
KR101394718B1 (ko) 2014-05-15
WO2006082366A8 (en) 2007-11-08
US9062684B2 (en) 2015-06-23
TWI372209B (en) 2012-09-11
CN101184921B (zh) 2010-05-26
JP2008529472A (ja) 2008-07-31
GB0502149D0 (en) 2005-03-09
KR20070099635A (ko) 2007-10-09
EP1844237A1 (en) 2007-10-17
RU2421632C2 (ru) 2011-06-20
TW200632221A (en) 2006-09-16
US20100047080A1 (en) 2010-02-25
US20150125312A1 (en) 2015-05-07
US9903378B2 (en) 2018-02-27
WO2006082366A1 (en) 2006-08-10
CN101184921A (zh) 2008-05-21
EP1844237B1 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
RU2007132873A (ru) Способ работы насосной системы
JP2008529472A5 (ru)
KR100726203B1 (ko) 복수 개의 압축기를 포함하는 압축 공기 장치를 제어하기 위한 방법, 이 방법에 사용되는 제어 박스 및 이 방법을 사용하는 압축 공기 장치
JP4248077B2 (ja) 圧縮機装置
JP5651196B2 (ja) 容積式ポンプの動作制御装置、ポンプシステム、およびこれらの作動方法
JP2012522182A5 (ru)
EP3245404B1 (en) Method for controlling a gas supply to a vacuum pump
JP2016539277A5 (ru)
JP2015501733A (ja) 機械工具のための冷却システム
JP4675774B2 (ja) 空気圧縮機
CN100439722C (zh) 液压控制装置和液压控制方法
EP1726464A3 (en) Self-learning control system and method for controlling fan speed
EP2827971B1 (en) Method and device for separating gases
JP2005061298A (ja) 建設機械
KR200389969Y1 (ko) 인버터 이동방식의 부스터펌프 시스템
CN102840139A (zh) 蒸汽驱动式压缩装置
KR20060013684A (ko) 전력 조종 장치의 전자 펌프 구동 모터를 제어하는 방법
US20140005802A1 (en) Process control apparatus &amp; method
KR100624790B1 (ko) 유니터리 에어컨
JP6619053B2 (ja) インバータ駆動油圧ユニット
JPH0571310A (ja) 蒸気供給装置の圧力制御方法
KR20100071527A (ko) 비상조향/전기조향 통합 펌프를 이용한 휠로더의 조향 장치
JP2020502410A (ja) 真空ポンプシステム、及び真空ポンプシステムを作動させるための方法
JP4813685B2 (ja) ポンプ装置及びその能力制御方法
EP4321959A1 (en) A flow control system for a system of valves connected to a splitter

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner