JP3767052B2 - 多段式真空ポンプ - Google Patents

多段式真空ポンプ Download PDF

Info

Publication number
JP3767052B2
JP3767052B2 JP33492496A JP33492496A JP3767052B2 JP 3767052 B2 JP3767052 B2 JP 3767052B2 JP 33492496 A JP33492496 A JP 33492496A JP 33492496 A JP33492496 A JP 33492496A JP 3767052 B2 JP3767052 B2 JP 3767052B2
Authority
JP
Japan
Prior art keywords
stage
pump
vacuum
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33492496A
Other languages
English (en)
Other versions
JPH10159775A (ja
Inventor
篤之 三浦
裕哉 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP33492496A priority Critical patent/JP3767052B2/ja
Priority to US08/980,848 priority patent/US6056510A/en
Publication of JPH10159775A publication Critical patent/JPH10159775A/ja
Application granted granted Critical
Publication of JP3767052B2 publication Critical patent/JP3767052B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/01Pressure before the pump inlet

Description

【0001】
【発明の属する技術分野】
本発明は、隣り合う単段ポンプの吸入口と排気口とを排気管によって接続して直列に連結される複数の個別の単段ポンプと、個別の単段ポンプをそれぞれ駆動する個別のモータと、少なくとも大気側に接する前記単段ポンプの回転数を可変にする駆動手段と、大気側に接する前記単段ポンプを駆動するモータの駆動電流を検出する駆動電流検出手段とから成り、直列につながる真空側の単段ポンプ排気口の背圧真空度を改善し、排気速度の低下を防止し、駆動力の増加を抑制する多段式真空ポンプに関する。
【0002】
【従来の技術】
従来の第1の多段式真空ポンプ(特開平5−240181)は、図9に示されるように複数のポンプ本体P1、P2が各々独立し、該ポンプ本体が独立したモータM1、M2により駆動され、該モータM1、M2は制御部CRにより制御されるインバータI1、I2の交流電力により駆動制御するものであった。
【0003】
従来の第2の多段式真空ポンプ(特開平7−305689)は、図10に示されるように複数のルーツポンプR1ないしR4を設け、そのケーシングCはそれぞれ別体に構成し、各ポンプ室PCを排気用配管E1ないしE4で直列に連結するとともに、各ルーツポンプR1ないしR4のロータRTの駆動軸をそれぞれ別体にし、ベルトまたはプーリー(図示せず)によってそれらをそれぞれ異なる回転数で駆動するものであった。
【0004】
【発明が解決しようとする課題】
【0005】
上記従来の第1の多段式真空ポンプは、実際の使用状態では、ガス流量によって各ポンプ本体P1、P2の負荷割合がアンバランスになるため、回転比はガス流量によって最適に配分した方がよいが、回転比を最適配分するためのフィードバック系を構成するために必要な温度・圧力・電流信号の検出手段および制御回路がないため、ガス流量に応じた最適回転比配分はできないので、真空度によって排気速度が変わってしまうという問題があった。
【0006】
上記従来の第2の多段式真空ポンプは、真空側の回転数をより高く設定すること、同一容量ポンプを使用すること、ロータのクリアランスが0.1mm以下であること等より、それぞれのポンプの排気管E1ないしE4にそれぞれ高価な真空計を配設して、真空度を検出するものであるため、コストが高くなるという問題があった。
【0007】
本発明者らは、隣り合う単段ポンプの吸入口と排気口とを排気管によって接続して直列に連結される複数の個別の単段ポンプを個別のモータによってそれぞれ駆動するとともに、大気側に接する該単段ポンプを駆動するモータの駆動電流を検出して、大気側に接する前記単段ポンプの回転数を制御するという本発明の技術的思想に着眼し、さらに研究開発を重ねた結果、安価なシステムにより、前記単段ポンプの背圧真空度を改善し、排気速度の低下を防止し、駆動力の増加を抑制するという目的を達成する本発明に到達した。
【0008】
【課題を解決するための手段】
本発明(請求項1に記載された第1発明)の多段式真空ポンプは、
隣り合う単段ポンプの吸入口と排気口とを排気管によって接続して直列に連結される複数の個別の単段ポンプと、
個別の単段ポンプをそれぞれ駆動する個別のモータと、
少なくとも大気側に接する前記単段ポンプの回転数を可変にする駆動手段と、 大気側に接する前記単段ポンプを駆動するモータの駆動電流を検出する駆動電流検出手段と
検出された駆動電流に基づき大気側に接する前記単段ポンプの回転数を制御する制御手段とを備えている
ものである。
【0009】
本発明(請求項2に記載された第2発明)の多段式真空ポンプは、
前記第1発明において、
真空側の入口の圧力を検出する圧力検出手段を備えている
ものである。
【0010】
本発明(請求項3に記載された第3発明)の多段式真空ポンプは、
前記第2発明において、
前記圧力検出手段によって検出された圧力に基づき、前記単段ポンプのモータ回転数を設定する制御手段を備えている
ものである。
【0011】
本発明(請求項4に記載された第4発明)の多段式真空ポンプは、
前記第2発明において、
隣り合う前記単段ポンプの吸入口と排気口とを接続する少なくとも1つ以上の排気管に配設され、各単段ポンプの出口温度を検出する温度検出手段を備え、
前記単段ポンプのモータ回転数が制御されるように構成されている
ものである。
【0012】
本発明(請求項5に記載された第5発明)の多段式真空ポンプは、
前記第2発明において、
前記圧力検出手段が、真空側の入口の真空度を検出し、
検出された真空度に基づき個別多段ポンプの回転数を設定する制御回路を備えている
ものである。
【0013】
本発明(請求項6に記載された第6発明)の多段式真空ポンプは、
前記第4発明において、
各単段ポンプの出口温度を測定する温度センサを備え、
ガス通路内の温度を排気ガスが凝縮・固化しない温度に保つように回転数を制御することができる制御回路を備えている
ものである。
【0014】
本発明(請求項7に記載された第7発明)の多段式真空ポンプは、
前記第4発明において、
隣り合う単段ポンプの吸入口と排気口とを連結する少なくとも1つ以上の前記排気管に配設され、該排気管を冷却するインタークーラを備えている
ものである。
【0015】
本発明(請求項8に記載された第9発明)の多段式真空ポンプは、
前記第7発明において、
前記インタクーラに対して、ガス通路内の温度を排気ガスが凝縮・固化しない温度に保つように流量が調整された冷却水を循環させる冷却水循環手段を備えている
ものである。
【0016】
【発明の作用および効果】
上記構成より成る第1発明の多段式真空ポンプは、前記個別のモータが、隣り合う単段ポンプの吸入口と排気口とを排気管によって接続して直列に連結される複数の前記個別の単段ポンプをそれぞれ駆動するとともに、前記駆動電流検出手段が大気側に接する前記単段ポンプを駆動する前記モータの駆動電流を検出して、前記制御手段が該検出された駆動電流に基づき大気側に接する前記単段ポンプの回転数を制御するので、安価なシステムにより、前記単段ポンプの背圧真空度を改善するとともに、駆動力の増加を抑制するという効果を奏する。
【0017】
上記構成より成る第2発明の多段式真空ポンプは、前記第1発明において、前記圧力検出手段が、真空側の入口の圧力を検出するので、検出された入口の圧力に基づく制御が可能になるという効果を奏する。
【0018】
上記構成より成る第3発明の多段式真空ポンプは、前記第2発明において、前記制御手段が、前記圧力検出手段によって検出された圧力に基づき、前記単段ポンプのモータ回転数を設定するので、検出された圧力に応じて前記単段ポンプの回転数が制御されるため、直列につながる真空側の単段ポンプ排出口を改善するとともに、駆動力の増加を抑制するという効果を奏する。
【0019】
上記構成より成る第4発明の多段式真空ポンプは、前記第2発明において、隣り合う前記単段ポンプの吸入口と排気口とを接続する少なくとも1つ以上の排気管に配設された前記温度検出手段が、各単段ポンプの出口温度を検出し、前記単段ポンプのモータ回転数が制御され、前記排気管内を断熱圧縮によって発熱させ、排気ガスが凝固・固化しない温度に維持することが出来るという効果を奏する。
【0020】
上記構成より成る第5発明の多段式真空ポンプは、前記第2発明において、前記圧力検出手段を構成する前記真空検出手段が、真空側の入口の真空度を検出し、前記制御回路が、検出された真空度に基づき個別単段ポンプの回転数比を設定するので、前記単段ポンプの背圧真空度を改善し、排気速度の低下を防止し、駆動力の増加を抑制するという効果を奏する。
【0021】
上記構成より成る第6発明の多段式真空ポンプは、前記第4発明において、前記温度センサが各単段ポンプの出口温度を測定し、前記制御回路が回転数を制御するので、ガス通路内の温度を排気ガスが凝縮・固化しない温度に保つことが出来るという効果を奏する。
【0022】
上記構成より成る第7発明の多段式真空ポンプは、前記第4発明において、隣り合う単段ポンプの吸入口と排気口とを連結する少なくとも1つ以上の前記排気管に配設された前記インタークーラが、前記排気管を冷却するので、排気加熱に伴う熱膨張による前記単段ポンプの可動部の干渉を防止するという効果を奏する。
【0023】
上記構成より成る第8発明の多段式真空ポンプは、前記第7発明において、前記冷却水循環手段が、前記インタクーラに対して循環する冷却水の流量を調整するので、前記ガス通路内の温度を排気ガスが凝縮・固化しない温度に維持するという効果を奏する。
【0024】
【発明の実施の形態】
本発明の実施の形態について、以下図面に基づいて説明する。
【0025】
(第1実施形態)
第1実施形態の多段式真空ポンプは、図1に示されるように隣り合う単段ポンプ1ないし4の吸入口と排気口とを排気管23ないし25によって接続して直列に連結される複数の個別の単段ポンプ1ないし4と、個別の単段ポンプ1ないし4をそれぞれ駆動する個別のモータ5ないし8と、前記単段ポンプ1ないし4の回転数を可変にする駆動手段9ないし12と、大気側に接する単段ポンプを駆動するモータの駆動電流を検出する駆動電流検出手段とから成るものである。
【0026】
図1に示されるように、大気側に接する前記単段ポンプ4を駆動する前記モータ8の前記駆動電源12からの駆動電流を検出する駆動電流検出手段36を備え、検出した電流値を制御手段35に伝達するように構成されている。
【0027】
真空側の入口18の圧力を検出する圧力検出手段13が、真空側の入口の真空度を検出するピラニータイプの真空検出手段によって構成され、検出された真空度に基づき個別単段ポンプ1ないし4の回転数比を設定する制御手段35を備えている。
【0028】
各前記単段ポンプ1ないし4の前記排気口とを接続する前記排気管23ないし26に配設され、各単段ポンプ1ないし4の出口温度を検出する温度検出手段14ないし17を備え、前記制御手段35に接続されガス通路内の温度を排気ガスが凝縮・固化しない温度に保つように回転数を制御することができるように構成されている。
【0029】
インタークーラ27ないし30は、図1に示されるように隣り合う単段ポンプ1ないし4のケースおよび吸入口と排気口とを連結する前記排気管23ないし26に配設され、該ポンプのケースおよび排気管を冷却するように構成されている。
【0030】
冷却水循環手段37は、図1に示されるように冷却水源(図示せず)に接続され、流量を調整する可変流量バルブとしての流量調整弁31ないし34が配設され、前記インタクーラ27ないし30に対して、冷却水を循環させ、ガス通路内の温度を排気ガスが凝縮・固化しない温度に保つように構成されている。
【0031】
前記制御手段35は、制御フローおよびデータを予め格納したROMを備えたCPUによって構成され、信号ケーブル20によって前記圧力センサ13および温度センサ14ないし17に接続され、信号ケーブル20によって前記流量調節弁31ないし34に接続されているとともに、信号ケーブル21によって駆動電源9〜11に接続され該制御手段35の出力信号が出力されるように構成されている。
【0032】
上記構成より成る第1実施形態の多段式真空ポンプにおいて、前記真空側の単段ポンプ1の前記入口18は、図示しない真空チャンバに連結されており、大気圧から1Pa台まで真空引きする。
【0033】
高真空時は、前記単段ポンプ1の入口圧力と出口圧力の差圧は数+Pa程度であり、駆動力は少なくてもよいため、小容量モータで回転数を高く設定することができる。逆に、前記単段ポンプ4の入口出口の差圧は数+kPaあるため、多くの駆動力を必要とし、大容量モータで回転数を低くして使用される。
【0034】
低真空時、特に大気圧に近い真空度におけるルーツポンプは、高真空時に比べて単段ポンプ1の体積効率は低下するため、排気速度は低下してしまう。このとき、図2に示されるように入口出口の差圧は大きくなり、より大きな駆動力が必要になる。逆に、前記単段ポンプ4の入口出口の差圧は小さくなり、必要な駆動力は減る。
【0035】
従って、前記単段ポンプ4の回転数を上げることにより、単段ポンプ1の背圧側真空度を改善し、図3中一点鎖線で示されるように排気速度の落ち込みを防ぐとともに、図2中一点鎖線で示されるように単段ポンプ1の駆動力増加を抑制することができる。
【0036】
特に、真空チャンバ内を大気圧から真空引きする場合や、パージガスを定量流す場合などは、この条件に適合するため、速やかな到達真空度の達成を得るには、低真空時に単段ポンプ4を高回転側に回転数を変えることが望ましい。
【0037】
この制御を実行させるために、多段ポンプの前記入口18の圧力を圧力計13によって計測し、その圧力に応じて、前記制御手段35によってDCブラシレスモータによって構成される前記モータ5ないし8の回転数が設定される。
【0038】
またはより簡便な方法として、前記モータ5ないし7の回転数は常に一定とし、前記駆動電源12に出力している回転数情報と前記電流検出手段36より得られる電流値から、真空度を推定することもできる。
【0039】
一方、多段ポンプのガス通路内温度は排気ガスが凝縮・固化しない温度に保つことが求められている。この要件を満足するためには、多段ポンプを構成する前記単段ポンプ1ないし4の回転数の配分を変え、単段ポンプの間に介在する配管23〜26内を断熱圧縮によって発熱させ、所定の温度を維持する。
【0040】
そのために、前記単段ポンプ1ないし4の出口温度を、温度検出手段14ないし17によって前記制御手段35に取り込み、各排気管23ないし26の温度を所定の温度を維持するように回転数が制御される。
【0041】
同様の目的で、前記単段ポンプ1ないし4の前記排気管23ないし26とともにポンプケースを冷却する方法も考えられる。その場合、冷却水流量によって冷却能力を調節するため、冷却水入口側に前記制御手段35によって制御される前記可変流量バルブ31ないし34を連結し、過熱してロータ接触の危険がある単段ポンプには流量バルブを全開に開いてガス通路内温度を下げ、低温度で排気ガスが凝縮・固化する危険性がある前記単段ポンプ1ないし4には、該当する前記流量バルブ31ないし34を絞ることによって、ガス通路内温度を上げて所定の温度範囲に保つようにするものである。
【0042】
上記第1実施形態の多段式真空ポンプは、前記個別の単段モータ1ないし4が、隣り合う単段ポンプの吸入口と排気口とを前記排気管23ないし25によって接続して直列に連結される複数の前記個別の単段ポンプをそれぞれ駆動するとともに、前記駆動手段12が、少なくとも大気側に接する大容量の前記単段ポンプ4の回転数を制御するので、安価なシステムにより、直列につながる真空側の単段ポンプ排出口の背圧真空度を改善するという効果を奏する。
【0043】
また第1実施形態の多段式真空ポンプは、前記駆動電流検出手段36が、大気側に接する前記単段ポンプ4を駆動する前記モータ8の駆動電流を検出するので、該検出した駆動電流に基づき大気側に接する前記単段ポンプ4の回転数を制御するため、駆動力の増加を抑制するという効果を奏する。
【0044】
さらに第1実施形態の多段式真空ポンプは、前記制御手段35が、前記圧力検出手段13によって検出された圧力に基づき、前記単段ポンプ1ないし4の前記モータ5ないし8の回転数を設定するので、検出された圧力に応じて前記単段ポンプ1ないし4の回転数が制御されるため、前記単段ポンプの背圧真空度を改善するとともに、駆動力の増加を抑制するという効果を奏する。
【0045】
また第1実施形態の多段式真空ポンプは、隣り合う前記単段ポンプ1ないし4の吸入口と排気口とを接続する前記排気管23ないし26に配設された前記温度検出手段14ないし17が、各単段ポンプ1ないし4の出口温度を検出し、前記単段ポンプ1ないし4の前記モータ5ないし8の回転数が制御され、前記排気管23ないし26内を断熱圧縮によって発熱させ、排気ガスが凝固・固化しない温度に維持することが出来るという効果を奏する。
【0046】
さらに第1実施形態の多段式真空ポンプは、前記圧力検出手段13が、真空側の入口の真空度を検出し、前記制御手段35が、検出された真空度に基づき個別単段ポンプ1ないし4の回転数を設定するので、前記単段ポンプ1ないし4の背圧真空度を改善し、排気速度の低下を防止し、駆動力の増加を抑制するという効果を奏する。
【0047】
さらに第1実施形態の多段式真空ポンプは、隣り合う単段ポンプ1ないし4の吸入口と排気口とを連結する少なくとも1つ以上の前記排気管23ないし26に配設された前記インタークーラ27ないし30が、前記排気管23ないし26およびポンプケースを冷却するので、排気加熱に伴う熱膨張による前記単段ポンプ1ないし4の可動部の干渉を防止するという効果を奏する。
【0048】
また第1実施形態の多段式真空ポンプは、前記冷却水循環手段37が、前記インタクーラ27ないし30に対して循環する冷却水の流量を、前記制御手段35からの指令に従い前記流量制御弁31ないし34により調整するので、前記ガス通路内の温度を排気ガスが凝縮・固化しない温度に維持するという効果を奏する。
【0049】
(第2実施形態)
第2実施形態の多段式真空ポンプは、図4および図5に示されるように真空側の入口の真空度を検出することなく、駆動電流検出手段36が検出した大気側に接する前記単段ポンプ4を駆動する前記モータ8の駆動電流のみに基づき大気側に接する前記単段ポンプ4の回転数を制御する点が、前記第1実施形態との相違点であり、以下相違点を中心に説明する。
【0050】
本第2実施形態においては、図4における負荷としての単段ポンプ4は、図5に示されるモータ8によって回転駆動されるルーツポンプによって構成される。
【0051】
制御手段としてのマイコン35は、図6に示されるようにステップ101において、前記ルーツポンプ4を回転駆動する前記モータ8の回転数を回転数検出手段38により読み取り、ステップ102において、駆動電流検出手段36によって前記モータ8の駆動電流の電流値が読み取られる。
【0052】
ステップ103において、読み取られた前記電流値が設定値と等しいがどうかが判定され、等しい場合はステップ101に戻り、等しくない場合は、ステップ104において、読み取られた前記電流値が設定値より少ないかどうか判定される。
【0053】
少ない場合はステップ105において、速度指令値が増加され、多い場合はステップ106において、速度指令値が減少される。
【0054】
上記第2実施形態の多段式真空ポンプは、前記駆動電流検出手段36が、大気側に接する前記単段ポンプ4を駆動する前記モータ8の駆動電流を検出するので、該検出した駆動電流に基づき大気側に接する大容量の前記単段ポンプ4の回転数を制御するため、駆動力の増加を抑制するという効果を奏する。
【0055】
また第2実施形態の多段式真空ポンプは、上述したように前記モータの駆動電流に基づき、前記モータの回転数(回転速度)を制御するものであるため、高価な真空度検出装置を不要にするので、システム全体を安価かつ制御をシンプルにするという効果を奏する。
【0056】
(第3実施形態)
第3実施形態の多段式真空ポンプは、図7および図8に示されるように真空側の入口の真空度を直接検出することにより、前記単段ポンプ4の回転数を制御する点が、前記第2実施形態との相違点であり、以下相違点を中心に説明する。
【0057】
本第3実施形態においては、制御手段としてのマイコン35は、図8に示されるようにステップ201において、前記ルーツポンプ4を回転駆動する前記モータ8の回転数を読み取り、ステップ202において、ピラニータイプの真空計39によって真空側の入口の真空度が読み取られる。
【0058】
ステップ203において、読み取られた前記真空度に対して回転数が適正かどうかが判定され、適正な場合はステップ201に戻り、適正でない場合は、ステップ204において、読み取られた前記回転数が前記真空度に対して低いかどうか判定される。
【0059】
低い場合はステップ205において、速度指令値が増加され、高い場合はステップ206において、速度指令値が減少される。
【0060】
上記第3実施形態の多段式真空ポンプは、前記真空計39が、真空側の入口の真空度を検出し、前記制御手段35が、検出された真空度に基づき個別単段ポンプ1ないし4の回転数比を設定するので、前記単段ポンプ1ないし4の背圧真空度を改善し、排気速度の低下を防止し、駆動力の増加を抑制するという効果を奏する。
【0061】
また第3実施形態の多段式真空ポンプは、上述したように前記真空計39によって、真空側の入口の真空度を直接検出し、検出した真空度と回転数との関係に基づき、前記モータの回転数(回転速度)を制御するものであるため、前記モータの回転数を適正かつ精度良く制御することが出来るという効果を奏する。
【0062】
上述の実施形態は、説明のために例示したもので、本発明としてはそれらに限定されるものでは無く、特許請求の範囲、発明の詳細な説明および図面の記載から当業者が認識することができる本発明の技術的思想に反しない限り、変更および付加が可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態の多段式真空ポンプのシステム全体を示すブロック図である。
【図2】本第1実施形態における真空度と動力との関係を示す線図である。
【図3】本第1実施形態における真空度と排気速度との関係を示す線図である。
【図4】本発明の第2実施形態の多段式真空ポンプを示すブロック図である。
【図5】本第2実施形態におけるポンプとしてのルーツポンプを示す側面図である。
【図6】本第2実施形態における制御フローを示すチャート図である。
【図7】本発明の第3実施形態の多段式真空ポンプを示すブロック図である。
【図8】本第3実施形態における制御フローを示すチャート図である。
【図9】従来の第1の多段式真空ポンプを示すブロック図である。
【図10】従来の第2の多段式真空ポンプを示すブロック図である。
【符号の説明】
1ないし4 ポンプ
5ないし8 モータ
9ないし12 駆動電源
23ないし25 排気管

Claims (8)

  1. 隣り合う単段ポンプの吸入口と排気口とを排気管によって接続して直列に連結される複数の個別の単段ポンプと、
    個別の単段ポンプをそれぞれ駆動する個別のモータと、
    少なくとも大気側に接する前記単段ポンプの回転数を可変にする駆動手段と、 大気側に接する前記単段ポンプを駆動するモータの駆動電流を検出する駆動電流検出手段と
    検出された駆動電流に基づき大気側に接する前記単段ポンプの回転数を制御する制御手段とを備えている
    ことを特徴とする多段式真空ポンプ。
  2. 請求項1において、
    真空側の入口の圧力を検出する圧力検出手段を備えている
    ことを特徴とする多段式真空ポンプ。
  3. 請求項2において、
    前記圧力検出手段によって検出された圧力に基づき、前記単段ポンプのモータ回転数を設定する制御手段を備えている
    ことを特徴とする多段式真空ポンプ。
  4. 請求項2において、
    隣り合う前記単段ポンプの吸入口と排気口とを接続する少なくとも1つ以上の排気管に配設され、各単段ポンプの出口温度を検出する温度検出手段を備え、
    前記単段ポンプのモータ回転数が制御されるように構成されている
    ことを特徴とする多段式真空ポンプ。
  5. 請求項2において、
    前記圧力検出手段が、真空側の入口の真空度を検出し、
    検出された真空度に基づき個別多段ポンプの回転数を設定する制御回路を備えている
    ことを特徴とする多段式真空ポンプ。
  6. 請求項4において、
    各単段ポンプの出口温度を測定する温度センサを備え、
    ガス通路内の温度を排気ガスが凝縮・固化しない温度に保つように回転数を制御することができる制御回路を備えている
    ことを特徴とする多段式真空ポンプ。
  7. 請求項4において、
    隣り合う単段ポンプの吸入口と排気口とを連結する少なくとも1つ以上の前記排気管に配設され、該排気管を冷却するインタークーラを備えている
    ことを特徴とする多段式真空ポンプ。
  8. 請求項7において、
    前記インタクーラに対して、ガス通路内の温度を排気ガスが凝縮・固化しない温度に保つように流量が調整された冷却水を循環させる冷却水循環手段を備えている
    ことを特徴とする多段式真空ポンプ。
JP33492496A 1996-11-30 1996-11-30 多段式真空ポンプ Expired - Fee Related JP3767052B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33492496A JP3767052B2 (ja) 1996-11-30 1996-11-30 多段式真空ポンプ
US08/980,848 US6056510A (en) 1996-11-30 1997-12-01 Multistage vacuum pump unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33492496A JP3767052B2 (ja) 1996-11-30 1996-11-30 多段式真空ポンプ

Publications (2)

Publication Number Publication Date
JPH10159775A JPH10159775A (ja) 1998-06-16
JP3767052B2 true JP3767052B2 (ja) 2006-04-19

Family

ID=18282771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33492496A Expired - Fee Related JP3767052B2 (ja) 1996-11-30 1996-11-30 多段式真空ポンプ

Country Status (2)

Country Link
US (1) US6056510A (ja)
JP (1) JP3767052B2 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057486B2 (ja) * 1997-01-22 2000-06-26 セイコー精機株式会社 ターボ分子ポンプ
JP2000283024A (ja) * 1999-03-30 2000-10-10 Aisin Seiki Co Ltd ポンプ装置
WO2000060428A1 (fr) * 1999-04-07 2000-10-12 Alcatel Systeme de regulation de pression d'une enceinte sous vide, groupe de pompage a vide pourvu d'un tel systeme
BE1012944A3 (nl) * 1999-10-26 2001-06-05 Atlas Copco Airpower Nv Meertraps-compressoreenheid en werkwijze voor het regelen van een der gelijke meertraps-compressoreenheid.
JP2005256845A (ja) * 1999-11-17 2005-09-22 Nabtesco Corp 真空排気装置
GB2367332B (en) * 2000-09-25 2003-12-03 Compair Uk Ltd Improvements in multi-stage screw compressor drive arrangements
JP3751208B2 (ja) * 2001-02-23 2006-03-01 株式会社神戸製鋼所 多段可変速圧縮機の制御方法
US6579067B1 (en) * 2001-12-31 2003-06-17 Carrier Corporation Variable speed control of multiple compressors
US6659726B2 (en) * 2001-12-31 2003-12-09 Carrier Corporation Variable speed control of multiple motors
JP4105605B2 (ja) * 2003-07-22 2008-06-25 株式会社荏原製作所 真空ステーション及びその運転方法
JP4218756B2 (ja) * 2003-10-17 2009-02-04 株式会社荏原製作所 真空排気装置
JP4633370B2 (ja) * 2004-02-17 2011-02-16 財団法人国際科学振興財団 真空装置
US7028491B2 (en) * 2004-03-29 2006-04-18 Tecumseh Products Company Method and apparatus for reducing inrush current in a multi-stage compressor
US7253107B2 (en) * 2004-06-17 2007-08-07 Asm International N.V. Pressure control system
GB0418771D0 (en) 2004-08-20 2004-09-22 Boc Group Plc Evacuation of a load lock enclosure
GB0424198D0 (en) * 2004-11-01 2004-12-01 Boc Group Plc Pumping arrangement
GB0502149D0 (en) * 2005-02-02 2005-03-09 Boc Group Inc Method of operating a pumping system
US7433762B2 (en) * 2005-02-08 2008-10-07 Halliburton Energy Services, Inc. Methods for controlling multiple actuators
US7392113B2 (en) * 2005-02-08 2008-06-24 Halliburton Energy Services, Inc. Systems for controlling multiple actuators
GB0508872D0 (en) * 2005-04-29 2005-06-08 Boc Group Plc Method of operating a pumping system
CN101268281A (zh) * 2005-09-19 2008-09-17 英格索尔-兰德公司 包括变速马达的多级压缩系统
WO2007095537A1 (en) * 2006-02-13 2007-08-23 Ingersoll-Rand Company Multi-stage compression system and method of operating the same
JP4737770B2 (ja) * 2006-09-12 2011-08-03 アネスト岩田株式会社 真空ポンプの運転制御装置および方法
DE102006050943B4 (de) * 2006-10-28 2020-04-16 Pfeiffer Vacuum Gmbh Vakuumpumpe und Verfahren zum Betrieb derselben
JP5110882B2 (ja) 2007-01-05 2012-12-26 株式会社日立産機システム 無給油式スクリュー圧縮機
US20080226480A1 (en) * 2007-03-15 2008-09-18 Ion Metrics, Inc. Multi-Stage Trochoidal Vacuum Pump
JP5071967B2 (ja) * 2007-03-30 2012-11-14 アネスト岩田株式会社 ロータリコンプレッサ及びその運転制御方法
BE1018096A3 (nl) * 2008-04-14 2010-05-04 Atlas Copco Airpower Nv Werkwijze voor het regelen van een meertrapscompressor.
CN102089481B (zh) * 2008-07-10 2013-12-18 喷射器股份有限公司 用于控制真空排水系统中的真空发生器的方法
JPWO2010021307A1 (ja) * 2008-08-19 2012-01-26 エドワーズ株式会社 真空ポンプ
US8128379B2 (en) * 2008-11-19 2012-03-06 Wabtec Holding Corp. Temperature management system for a 2CD type air compressor
CN105181900B (zh) * 2015-09-21 2017-01-11 北京航天长征飞行器研究所 大容积温度和压力可同步连续调节的高温热辐射试验装置及方法
JP6935216B2 (ja) * 2017-03-31 2021-09-15 株式会社荏原製作所 ルーツ型真空ポンプ
FR3067069B1 (fr) * 2017-06-06 2019-08-02 Pfeiffer Vacuum Procede de surveillance d'un etat de fonctionnement d'un dispositif de pompage
CN108194353B (zh) * 2018-02-02 2019-12-13 中山市天元真空设备技术有限公司 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵
FR3087504B1 (fr) * 2018-10-17 2020-10-30 Pfeiffer Vacuum Procede de controle de la temperature d’une pompe a vide, pompe a vide et installation associees
CN110469484A (zh) * 2019-09-15 2019-11-19 芜湖聚创新材料有限责任公司 一种工业用大型真空机系统
EP3916231A1 (en) * 2020-05-29 2021-12-01 Agilent Technologies, Inc. Vacuum pumping system having a plurality of positive displacement vacuum pumps and method for operating the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584977A (en) * 1969-04-17 1971-06-15 Du Pont Process for metering liquid through serially connected pumps
US4279574A (en) * 1979-04-23 1981-07-21 Dresser Industries, Inc. Energy recovery system
DE4010049C1 (en) * 1990-03-29 1991-10-10 Grundfos International A/S, Bjerringbro, Dk Pump unit for heating or cooling circuit - uses frequency regulator to reduce rotation of pump motor upon detected overheating
US5496393A (en) * 1991-05-31 1996-03-05 Kabushiki Kaisha Toshiba Gas purification capability measuring method for gas purification apparatus and gas purification apparatus
US5584914A (en) * 1992-08-07 1996-12-17 Miura Co., Ltd Membrane deaerator apparatus
JP3847357B2 (ja) * 1994-06-28 2006-11-22 株式会社荏原製作所 真空系の排気装置
US5971711A (en) * 1996-05-21 1999-10-26 Ebara Corporation Vacuum pump control system

Also Published As

Publication number Publication date
US6056510A (en) 2000-05-02
JPH10159775A (ja) 1998-06-16

Similar Documents

Publication Publication Date Title
JP3767052B2 (ja) 多段式真空ポンプ
JP5189842B2 (ja) ポンプシステムの作動方法
KR100576761B1 (ko) 진공배기장치 및 방법
WO2007095537A1 (en) Multi-stage compression system and method of operating the same
JP2006291952A (ja) エネルギー消費を制限しながら、エンクロージャを迅速に排気すること
JPH02238185A (ja) 複合圧縮機
JP5675568B2 (ja) 無給油式スクリュー圧縮機及びその制御方法
JP6258422B2 (ja) 圧縮機及びその制御方法
JP2003139055A (ja) 真空排気装置
JP3950304B2 (ja) 冷凍装置用スクリュ圧縮機
US20070274822A1 (en) Vacuum Pump
JP3916513B2 (ja) スクリュ圧縮機
JP7117458B2 (ja) バランスシールピストン、並びに関連する冷却回路及び方法
KR20110136899A (ko) 용적 펌프를 위한 러프 펌핑 방법
JP3916418B2 (ja) スクリュ圧縮機の制御方法
JP3406514B2 (ja) 圧縮機の容量調節方法およびその装置
JP3996404B2 (ja) 空気調和機
JP3628353B2 (ja) 火葬炉の排気装置
JP2009114984A (ja) 真空ポンプ装置
JP2002147365A (ja) 真空排気系の排気圧制御装置
JP3965706B2 (ja) 空気圧縮装置
JPH0433384Y2 (ja)
JP6947413B2 (ja) 排気システムおよび排気装置制御方法
JPH0742693A (ja) ドライ真空ポンプ
JP3107794U (ja) 真空排気装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

LAPS Cancellation because of no payment of annual fees