PL217946B1 - Sposób pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania oraz kompozycja powłoki podkładowej przeznaczonej na podłoża stalowe - Google Patents
Sposób pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania oraz kompozycja powłoki podkładowej przeznaczonej na podłoża staloweInfo
- Publication number
- PL217946B1 PL217946B1 PL360653A PL36065301A PL217946B1 PL 217946 B1 PL217946 B1 PL 217946B1 PL 360653 A PL360653 A PL 360653A PL 36065301 A PL36065301 A PL 36065301A PL 217946 B1 PL217946 B1 PL 217946B1
- Authority
- PL
- Poland
- Prior art keywords
- weight
- coating
- primer
- silica
- binder
- Prior art date
Links
- 239000002987 primer (paints) Substances 0.000 title claims abstract description 87
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 50
- 239000010959 steel Substances 0.000 title claims abstract description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 171
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 63
- 239000011230 binding agent Substances 0.000 claims abstract description 60
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 49
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims abstract description 27
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 26
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 25
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 25
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 25
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 25
- 230000008569 process Effects 0.000 claims abstract description 20
- -1 ammonium ions Chemical class 0.000 claims abstract description 14
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 10
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims description 116
- 239000011248 coating agent Substances 0.000 claims description 90
- 239000000243 solution Substances 0.000 claims description 57
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 52
- 239000000203 mixture Substances 0.000 claims description 50
- 239000000049 pigment Substances 0.000 claims description 45
- 239000002245 particle Substances 0.000 claims description 44
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 24
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 19
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 18
- 238000005260 corrosion Methods 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 15
- 230000007797 corrosion Effects 0.000 claims description 14
- 239000000945 filler Substances 0.000 claims description 14
- 229910052593 corundum Inorganic materials 0.000 claims description 13
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 6
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 6
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 6
- 239000000440 bentonite Substances 0.000 claims description 6
- 229910000278 bentonite Inorganic materials 0.000 claims description 6
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 6
- 239000004927 clay Substances 0.000 claims description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 5
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 4
- 239000004111 Potassium silicate Substances 0.000 claims description 4
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 4
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 4
- 235000019353 potassium silicate Nutrition 0.000 claims description 4
- 239000002585 base Substances 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 23
- 238000005299 abrasion Methods 0.000 description 14
- 239000010408 film Substances 0.000 description 14
- 239000004615 ingredient Substances 0.000 description 13
- 239000008199 coating composition Substances 0.000 description 12
- 229910052725 zinc Inorganic materials 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 229910017053 inorganic salt Inorganic materials 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000008119 colloidal silica Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 239000004816 latex Substances 0.000 description 9
- 229920000126 latex Polymers 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 8
- 230000003750 conditioning effect Effects 0.000 description 8
- 229960002887 deanol Drugs 0.000 description 8
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 8
- 239000012266 salt solution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000004606 Fillers/Extenders Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000002174 Styrene-butadiene Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000004110 Zinc silicate Substances 0.000 description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical compound [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052912 lithium silicate Inorganic materials 0.000 description 3
- 239000000391 magnesium silicate Substances 0.000 description 3
- 229910052919 magnesium silicate Inorganic materials 0.000 description 3
- 235000019792 magnesium silicate Nutrition 0.000 description 3
- 229910052605 nesosilicate Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 150000004762 orthosilicates Chemical class 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 125000001453 quaternary ammonium group Chemical group 0.000 description 3
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 239000011115 styrene butadiene Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- 235000019352 zinc silicate Nutrition 0.000 description 3
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 3
- 229910000368 zinc sulfate Inorganic materials 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 241000871495 Heeria argentea Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 2
- NEMFQSKAPLGFIP-UHFFFAOYSA-N magnesiosodium Chemical compound [Na].[Mg] NEMFQSKAPLGFIP-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 125000005625 siliconate group Chemical group 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 2
- 239000001039 zinc pigment Substances 0.000 description 2
- 239000011686 zinc sulphate Substances 0.000 description 2
- 235000009529 zinc sulphate Nutrition 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- JHWIEAWILPSRMU-UHFFFAOYSA-N 2-methyl-3-pyrimidin-4-ylpropanoic acid Chemical compound OC(=O)C(C)CC1=CC=NC=N1 JHWIEAWILPSRMU-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- IHBCFWWEZXPPLG-UHFFFAOYSA-N [Ca].[Zn] Chemical compound [Ca].[Zn] IHBCFWWEZXPPLG-UHFFFAOYSA-N 0.000 description 1
- PGNYGWRFIFYBKV-UHFFFAOYSA-N [Mg].[Li].[Na] Chemical compound [Mg].[Li].[Na] PGNYGWRFIFYBKV-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- BTHCBXJLLCHNMS-UHFFFAOYSA-N acetyloxysilicon Chemical compound CC(=O)O[Si] BTHCBXJLLCHNMS-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- XQTIWNLDFPPCIU-UHFFFAOYSA-N cerium(3+) Chemical compound [Ce+3] XQTIWNLDFPPCIU-UHFFFAOYSA-N 0.000 description 1
- ITZXULOAYIAYNU-UHFFFAOYSA-N cerium(4+) Chemical compound [Ce+4] ITZXULOAYIAYNU-UHFFFAOYSA-N 0.000 description 1
- VZDYWEUILIUIDF-UHFFFAOYSA-J cerium(4+);disulfate Chemical compound [Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VZDYWEUILIUIDF-UHFFFAOYSA-J 0.000 description 1
- 229910000355 cerium(IV) sulfate Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- OQDJKSVVHFVCAZ-UHFFFAOYSA-H dialuminum;diphosphate Chemical compound [Al+3].[Al+3].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O OQDJKSVVHFVCAZ-UHFFFAOYSA-H 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- AXNCVDQWNPJQOM-UHFFFAOYSA-N n-triethoxysilylpropan-1-amine Chemical compound CCCN[Si](OCC)(OCC)OCC AXNCVDQWNPJQOM-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229920000555 poly(dimethylsilanediyl) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012799 strong cation exchange Methods 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/002—Priming paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/10—Anti-corrosive paints containing metal dust
- C09D5/106—Anti-corrosive paints containing metal dust containing Zn
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
- Artificial Fish Reefs (AREA)
- Coating With Molten Metal (AREA)
- Lining And Supports For Tunnels (AREA)
Description
Wynalazek dotyczy sposobu pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania, obejmującego powlekanie stali powłoką podkładową, zawierającą krzemionkowy środek wiążący, jak również kompozycji powłoki podkładowej, przeznaczonej na podłoża stalowe, zawierającej krzemionkowy środek wiążący. Wynalazek znajduje zastosowanie w odniesieniu do powlekania półwyrobów stalowych, które mają następnie zostać poddane intensywnej obróbce cieplnej i pokryte powłokami.
Tego rodzaju półwyroby stalowe wykorzystywane są w przemyśle stoczniowym oraz w konstrukcjach wielkoskalowych, takich jak platformy wiertnicze i obejmują płyty stalowe, przykładowo o grubości od 6 do 75 mm, pręty, dźwigary i różnego rodzaju elementy stalowe, wykorzystywane jako elementy usztywniające. Najważniejszym procesem termicznym jest spawanie i zasadniczo wszystkie tego rodzaju półwyroby stalowe są spawane. Do innych procesów obróbki cieplnej należą cięcie, na przykład cięcie tlenowo-paliwowe, cięcie plazmowe czy cięcie laserowe, a także profilowanie na gorąco, gdzie stal wyginana jest do pożądanego kształtu przy jednoczesnym podgrzewaniu. Takie produkty stalowe narażone są często na działanie czynników atmosferycznych podczas składowania przed budową i w czasie budowy i są one w ogólności pokrywane pewną powłoką, zwaną podkładem warsztatowym (shop primer) lub powłoką wstępną przed zabudową, w celu uniknięcia korozji stali, zanim konstrukcja stalowa, na przykład statku, pokryta zostanie pełną powłoką farby antykorozyjnej, dzięki czemu unika się problemów, związanych z koniecznością pokrywania lub usuwania produktów korozji stali. W większości dużych stoczni nakładanie podkładu warsztatowego jest jednym z kilku procesów obróbki, prowadzonych bezpośrednio na linii produkcyjnej, w których stal jest, przykładowo, podgrzewana, śrutowana, oczyszczana strumieniowo-ściernie w celu usunięcia zgorzeliny walcowniczej i produktów korozji, pokrywana podkładem warsztatowym i przepuszczana przez stanowisko suszenia. Ewentualnie, podkład warsztatowy może być nanoszony przez sprzedawcę lub producenta stali, zanim stal ta dostarczona zostanie do stoczni lub w inne miejsce budowy.
Pomimo tego, iż głównym zadaniem podkładu warsztatowego jest stworzenie tymczasowego zabezpieczenia przed korozją na czas budowy, korzystne byłoby dla stoczniowców, aby podkład ten nie musiał być usuwany ale mógł pozostać na stali w trakcie i po zakończeniu budowy. Stal pokryta podkładem warsztatowym musi zatem nadawać się do spawania bez usuwania podkładu warsztatowego oraz musi dawać możliwość pokrywania jej powłokami antykorozyjnymi, jakie stosowane są powszechnie na statkach i innych konstrukcjach stalowych, z zachowaniem dobrej przyczepności między podkładem a kolejno nakładaną powłoką. Stal pokryta podkładem warsztatowym powinna korzystnie nadawać się do spawania bez znaczącego pogorszenia jakości spawu ani zmniejszenia szybkości procesu spawania i winna być wystarczająco odporna na ciepło, tak aby podkład warsztatowy zachował swoje własności antykorozyjne w obszarach podgrzewanych podczas profilowania czy spawania przeciwległej powierzchni stali.
Dostępne dzisiaj podkłady warsztatowe, które odniosły sukces komercyjny, są powłokami rozpuszczalnikowymi na bazie spoiw z hydrolizowanego wstępnie ortokrzemianu tetraetylu i proszku cynkowego. Powłoki te zawierają duże ilości lotnego rozpuszczalnika organicznego, zwykle około 650 gramów na litr, w celu stabilizacji spoiwa oraz umożliwienia nakładania produktu w postaci cienkiej warstwy, nawet o grubości około 20 mikronów. Uwalnianie organicznego rozpuszczalnika może być szkodliwe dla środowiska i w wielu krajach podlega regulacjom prawnym. Istnieje więc zapotrzebowanie na podkład warsztatowy, który nie uwalnia lub uwalnia w znacznie mniejszym stopniu lotny rozpuszczalnik organiczny. Przykłady takich powłok opisano w dokumentach US-A-4 888 056 i JP-A-770476.
Zgłoszenie JP-A-6-200188 związane jest z powłokami podkładu warsztatowego i wskazuje na możliwość wykorzystania wodnego spoiwa na bazie soli krzemianu alkalicznego. Powłoki zawierające wodny krzemian metalu alkalicznego oraz proszek cynkowy są także proponowane w zgłoszeniach GB-A-1226360, GB-A-1007481, GB-A-997094, US-A-4 230 496 oraz JP-A-55-106271. Spoiwa na bazie krzemianów alkalicznych dla powłok antykorozyjnych wymieniane są również z dokumentach US-A-3 522 066, US-A-3 620 784, US-A-4 162 169 oraz US-A-4 479 824. W dokumencie EP-A-295 834 wymienione są powłoki, zawierające mieszankę krzemianu metalu alkalicznego z mniejszą ilością krzemionki koloidalnej, sproszkowanym AI2O3 w charakterze wypełniacza, a także sproszkowanego metalu w charakterze środka zagęszczającego. Zgłoszenie US-A-3 721 574 sugeruje powłoki, zawierające mieszankę krzemianu metalu alkalicznego z mniejszą ilością koloidalnej, korzystnie modyfikoPL 217 946 B1 wanej AI2O3, krzemionki oraz pyłem cynkowym. Zauważyliśmy, iż wodne powłoki podkładowe na bazie spoiwa krzemianu alkalicznego, zawierające proszek cynkowy, mogą dawać odpowiednią ochronę antykorozyjną i pozwalają na spawanie pokrytych nimi powierzchni stali, ale stwarzają problemy podczas ich pokrywania. Krzemiany wodne zawierają duże ilości kationów metali alkalicznych, które konieczne są do utrzymywania krzemianu w roztworze wodnym, przy czym jony te obecne są w dalszym ciągu w powłoce po jej wysuszeniu. Zauważyliśmy, że jeżeli powłoki podkładowe, zawierające takie duże ilości jonów metali alkalicznych, pokrywane są jakąś konwencjonalną powłoką organiczną, a następnie zanurzane w wodzie, występuje zjawisko pęcherzenia (blistering) powłoki (lokalnego rozwarstwienia powłoki). Wykonaliśmy testy, które pokazują, że problem ten może zostać zredukowany, jeśli przed nałożeniem kolejnej powłoki, powłoka ta zostanie poddana wietrzeniu na zewnątrz przez pewien czas po naniesieniu podkładu warsztatowego lub przemyta. Procesy te nie mogą być jednakże stosowane we współczesnych stoczniach o wysokiej produktywności.
Dostępne są w sprzedaży wodne zole krzemionkowe o bardzo małej zawartości jonów metali alkalicznych, ale powłoki na bazie takich zoli odznaczają się zwykle bardzo słabą wytrzymałością (początkową) warstwy pod względem adhezji, kohezji, twardości i odporności na ścieranie oraz wodę. Te słabe właściwości fizyczne powłoki czynią ją podatną na uszkodzenia podczas przenoszenia lub dalszej obróbki. Powoduje to potencjalną konieczność istotnej naprawy powłoki z konsekwencją w postaci zwiększonych kosztów. Sugerowane udoskonalenia powłok na bazie zolu krzemionkowego opisano w dokumencie US-A-3 320 082, gdzie dodaje się nie ulegającą mieszaniu się z wodą organiczną aminę, w dokumencie GB-A-1541022, gdzie dodaje się rozpuszczalny w wodzie polimer akrylamidowy, w dokumencie GB-A-1485169, gdzie dodaje się czwartorzędowy krzemian amonowy lub krzemian metalu alkalicznego, a także w dokumencie JP 55 100921, gdzie dodaje się materiały gliniaste i/lub tlenki metali, jak AI2O3 i bifosforan glinu i/lub ortokrzemian etylowy. Powłoki takie nie osiągnęły jednakże własności fizycznych, podobnych właściwości powłok na bazie krzemianów metali alkalicznych. Powłoki na bazie zoli krzemionkowych odznaczają się niewielkim pęcherzeniem po pokryciu/zanurzeniu. Mimo, iż zawartość rozpuszczalnych w wodzie soli i ciśnienie osmotyczne są niskie, pęcherzenie w dalszym ciągu może występować, gdyż powłoka ta odznacza się małą odpornością na inicjację/rozwój pęcherzenia, ze względu na słabe własności fizyczne.
Dokument WO00/55261, zgłoszony przed datą pierwszeństwa niniejszego zgłoszenia, lecz opublikowany po tej dacie, dotyczy sposobu który jest najbardziej zbliżony do niniejszego wynalazku. Sposób ten dotyczy pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania, w którym stal pokrywa się powłoką podkładową, zawierającą krzemionkowy lub krzemianowy środek wiążący zawierający wodny zol krzemionkowy lub krzemian metalu alkalicznego i posiadający stosunek molowy SiO2/M2O równy co najmniej 6:1, gdzie M oznacza całkowitą ilość jonów metali alkalicznych i jonów amonowych; a po wysuszeniu powłoki podkładowej do stanu suchości w dotyku, poddaje się ją działaniu roztworu zwiększającego wytrzymałość powłoki podkładowej.
Istnieje zapotrzebowanie na podkład warsztatowy na bazie wody o niskiej zawartości jonów metali alkalicznych, który odznacza się lepszą adhezją do podłoży oraz większą wytrzymałością warstwy pod względem właściwości, omówionych powyżej, w celu uzyskania odporności na inicjację/rozwój procesu pęcherzenia.
Istnieje, ponadto, zapotrzebowanie na nieulegający pęcherzeniu podkład warsztatowy na bazie wody, odznaczający się szybkim nabieraniem właściwości fizycznych powłoki po naniesieniu, w celu uzyskania możliwości przenoszenia i prowadzenia dalszej obróbki podłoża bez ryzyka uszkodzenia powłoki.
Ważna jest także żywotność kompozycji. W celu poszerzenia obszaru możliwych zastosowań tych powłok, żywotność winna być tak duża, jak tylko jest to możliwe.
Przedmiotem wynalazku jest sposób pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania, w którym przeznaczoną do powlekania stal ewentualnie, podgrzewa się, ewentualnie, stal śrutuje się lub oczyszcza strumieniowo-ściernie do usunięcia zgorzeliny walcowniczej i produktów korozji, po czym powleka się stal powłoką podkładową o stężeniu objętościowym pigmentu wynoszącym 40-75% i zawierającą krzemionkowy środek wiążący, pigment(y), oraz wypełniacze pigmentowe, przy czym proszek cynkowy i/lub stop cynku stanowią zasadniczo całość składnika pigmentowego powłoki, względnie stanowią do 70% objętościowych powłoki w stosunku do suchej powłoki, a następnie suszy się nałożoną powłokę, charakteryzujący się tym, że jako krzemionkowy środek wiążący stosuje się środek wiążący zawierający stabilizowany tlenkiem glinowym wodny zol krzemionkowy o stosunku molowym SiO2/M2O przynajmniej 25:1, gdzie M oznacza całkowitą ilość
PL 217 946 B1 jonów metali alkalicznych i amonu i od 0,05 do 2% wagowych tlenku glinu, obliczonych jako procent wagi Al2O3 w odniesieniu do zolu krzemionkowego, gdzie doprowadza się pH środka wiążącego do wartości z zakresu od 9 do 11,5, gdzie cząstki krzemionki mają średnią wielkość równą lub mniejszą niż 22 nm, przy czym nakłada się powłokę podkładową do uzyskania warstwy o grubości do 40 μm, z wyłączeniem sposobu, w którym stal pokrywa się powłoką podkładową, składającą się z 25,8% wagowych modyfikowanego tlenkiem glinowym zolu o średniej wielkości cząstki wynoszącej 12 nm oraz stosunku molowym SiO2/Na2O wynoszącym 125:1, 20,4% wagowych wody, 0,2% wagowych tiksotropu ilastego Bentonite, 45,5% pyłu cynkowego oraz 8,1% wagowych kalcynowanego gIinokrzemianowego pigmentu wypełniającego o średniej wielkości cząstki 1,4 μm, i w którym po wysuszeniu powłoki podkładowej w temperaturze 20°C i przy 35% wilgotności względnej do stanu suchości w dotyku, natryskuje się na powłokę podkładową 0,2 g wodnego zawierającego 5% wagowych chlorku potasu albo 0,2 g wodnego roztworu zawierającego 8% wagowych krzemianu potasu, a następnie suszy się w temperaturze 15-20°C i wilgotności względnej 35%.
Korzystnie, krzemionkowy środek wiążący zawiera dodatkowo niewielką ilość krzemianu metalu alkalicznego.
Korzystnie, po wysuszeniu powłoki podkładowej do stanu suchości w dotyku, poddaje się ją działaniu roztworu zwiększającego wytrzymałość powłoki.
Korzystnie, jako stabilizowany tlenkiem glinowym zol krzemionkowy stosuje się zol krzemionkowy o powierzchni modyfikowanej tlenkiem glinowym.
Korzystnie, stosuje się środek wiążący zawierający od 0,05 do 2,0% wagowych tlenku glinowego, obliczonych jako procent wagi Al2O3 w odniesieniu do zolu krzemionkowego oraz cząstek krzemianu obecnych w kompozycji.
Korzystnie, cząstki krzemionki mają średnią wielkość równą lub mniejszą niż 16 nm.
Korzystnie, stosuje się powłokę podkładową zawierającą dodatkowo żywicę organiczną.
Korzystnie, po wysuszeniu powłoki podkładowej do stanu suchości w dotyku, pokryte podłoże zanurza się w wodzie lub alternatywnie przetrzymuje się w warunkach atmosferycznych przy wilgotności względnej przynajmniej 50%.
Przedmiotem wynalazku jest również kompozycja powłoki podkładowej przeznaczonej na podłoża stalowe, o stężeniu objętościowym pigmentu wynoszącym 40-75%, zawierająca krzemionkowy środek wiążący, pigment(y), oraz wypełniacze pigmentowe, przy czym proszek cynkowy i/lub stop cynku stanowią zasadniczo całość składnika pigmentowego powłoki względnie stanowią do 70% objętościowych powłoki w stosunku do suchej powłoki, charakteryzująca się tym, że jako krzemionkowy środek wiążący kompozycja zawiera stabilizowany tlenkiem glinowym wodny zol krzemionkowy o stosunku molowym SiO2/M2O przynajmniej 25:1, gdzie M oznacza całkowitą ilość jonów metali alkalicznych i amonu, i od 0,05 do 2% wagowych tlenku glinu, obliczonych jako procent wagi AI2O3 w odniesieniu do zolu krzemionkowego, gdzie środek wiążący ma pH w zakresie od 9 do 11,5, gdzie cząstki krzemionki mają średnią wielkość równą lub mniejszą niż 22 nm, z wyłączeniem kompozycji powłoki podkładowej składającej się z 25,8% wagowych modyfikowanego tlenkiem glinowym zolu o średniej wielkości cząstki wynoszącej 12 nm oraz stosunku molowym SiO2/Na2O wynoszącym 125:1, 20,4% wagowych wody, 0,2% wagowych tiksotropu ilastego Bentonite, 45,5% pyłu cynkowego oraz 8,1% wagowych kalcynowanego gIinokrzemianowego pigmentu wypełniającego o średniej wielkości cząstki 1,4 μm.
Korzystnie, krzemionkowy środek wiążący zawiera dodatkowo niewielką ilość krzemianu metalu alkalicznego.
Korzystnie, środek wiążący jest zolem krzemionkowym modyfikowanym tlenkiem glinowym, zawierającym od 0,05 do 2,0% wagowych tlenku glinowego, obliczonych jako procent wagi AI2O3 w odniesieniu do zolu krzemionkowego oraz cząstek krzemianu obecnych w kompozycji.
Sposób według wynalazku przynosi rozwiązanie wymienionych wyżej problemów i niedogodności.
Dla celów wynalazku, roztwór zwiększający wytrzymałość warstwy, jest roztworem, który zwiększa wytrzymałość warstwy powłoki podkładowej i/lub przyspiesza osiąganie wytrzymałości tej warstwy w czasie.
W tym zastosowaniu, zawartość tlenku glinowego w kompozycji powłoki wyrażana jest jako wagowa zawartość procentowa AI2O3 względem zolu krzemionkowego lub cząstek krzemianu obecnych w kompozycji.
Spoiwo jest najkorzystniej spoiwem na bazie wodnego zolu krzemionkowego. Zole tego rodzaju oferowane są przez spółkę Akzo Nobel pod zarejestrowanym znakiem towarowym Bindzil lub spółkę
PL 217 946 B1
DuPont pod zarejestrowanym znakiem Ludox, pomimo, iż w związanej z nimi literaturze podkreśla się, że krzemionki koloidalne o konwencjonalnej jakości nie tworzą dobrych warstw. Dostępne są różne klasy zolu o różnych wielkościach cząstek krzemionki koloidalnej i zawierające rozmaite stabilizatory. Wielkość cząstek krzemionki koloidalnej może leżeć przykładowo w zakresie od 3 do 100 nm, przy czym korzystne są wielkości leżące w dolnej granicy tego zakresu, na przykład od 5 do 22 nm. Jeszcze bardziej korzystne są wielkości cząstek w zakresie między 3 a 15 nm, a jeszcze korzystniej pomiędzy 3 a 10 nm. Zol krzemionkowy posiada korzystnie stosunek molowy SiO2/M2O o wartości przynajmniej 25:1, korzystniej przynajmniej 50:1, a może odznaczać się stosunkiem molowym SiO2/M2O o wartości 200:1 lub więcej. Ponadto, możliwe jest zastosowanie mieszanki dwóch lub większej liczby zoli krzemionkowych o różnych wartościach współczynnika molowego SiO2/M2O, przy czym stosunek molowy SiO2/M2O mieszanki wynosi przynajmniej 25:1. M oznacza całkowitą zawartość jonów metali alkalicznych i amonu, przy czym M może oznaczać przykładowo Na, K, Li, i tym podobne. Zol ten może być stabilizowany przez zasadę, na przykład wodorotlenek sodu, potasu czy litu lub czwartorzędowy wodorotlenek amonowy lub też przez rozpuszczalną w wodzie aminę organiczną, na przykład alkanolaminę. Kompozycja powłoki winna być zasadniczo wolna od zolu krzemionkowego, stabilizowanego amoniakiem, gdyż obecność zolu stabilizowanego amoniakiem może powodować żelowanie się kompozycji, w szczególności gdy spoiwo składa się głównie z zolu krzemionkowego stabilizowanego amonem, a kompozycja powłoki zawiera również proszek cynkowy.
W celu wydłużenia jej żywotności, kompozycja powłoki zawiera zol stabilizowany tlenkiem glinowym. Dla potrzeb zgłoszenia żywotność zdefiniowana jest jako 50% spadek właściwości warstwy powłoki, mierzonych 1 godzinę po naniesieniu.
W celu uzyskania optymalnych właściwości, korzystne jest zastosowanie zoli krzemionkowych modyfikowanych tlenkiem glinowym, na przykład zolu krzemionkowego modyfikowanego przy użyciu 0,05 do 2,0% wagowo tlenku glinowego. W zolach tych, które określa się również jako zole krzemionkowe o powierzchni modyfikowanej Al, powierzchnia cząstek modyfikowana jest przez glinian sodu związany z tymi cząstkami.
W celu otrzymania zolu krzemionkowego o powierzchni modyfikowanej Al, powierzchnia cząstek zolu krzemionkowego może być modyfikowana przy zastosowaniu glinianu, w sposób opisany, na przykład, przez R.K. Iler w pracy The Chemistry of Silica (John Wiley and Sons, 1979), 407-409.
Powierzchnia cząstek zolu krzemionkowego, stosowanego w przykładach tego opisu patentowego, modyfikowana była w następujący sposób. Pewna ilość zolu krzemionkowego o wartości współczynnika pH ~10 poddana została dejonizacji poprzez przepuszczenie jej przez silną kolumnę kationowymienną. Powstały dejonizowany zol odznaczał się pH ~2. Trzy części wagowe tego dejonizowanego zolu o współczynniku pH ~2, dodano do dwóch części wagowych nie dejonizowanego zolu krzemionkowego o współczynniku pH ~10 i poddano intensywnemu mieszaniu. Otrzymana mieszanka odznaczała się wartością współczynnika pH od 7,5 do 8. Następnie, 30 minut po przygotowaniu tej mieszanki, dodano do niej intensywnie mieszając w przybliżeniu jedną część wagową roztworu glinianu sodu (10% wagowo w wodzie dejonizowanej). Dodatek tego glinianu powodował wzrost współczynnika pH mieszanki do wartości pH ~10. Dla znawcy dostępne są inne sposoby otrzymywania zolu krzemionkowego modyfikowanego tlenkiem glinowym.
Optymalne stężenie tlenku glinowego w kompozycji stanowi kompromis między żywotnością a właściwościami powłokowymi. Wyższe stężenia tlenku glinowego prowadzą do większej żywotności, ale mogą również prowadzić do spadku szybkości osiągania właściwości powłokowych.
Zol krzemionkowy może być mieszany z niewielką ilością krzemianu metalu alkalicznego, na przykład krzemianu litu, krzemianu sodowo-litowego lub krzemianu potasu lub też z czwartorzędowym krzemianem amonowym. Inne przykłady odpowiednich mieszanek zolowo-krzemianowych można znaleźć w dokumencie US 4 902 442. Dodatek krzemianu metalu alkalicznego lub amonu może poprawić początkowe własności formujące warstwę zolu krzemionkowego, ale ilość krzemianu metalu alkalicznego winna być wystarczająco mała, aby stosunek molowy SiO2/M2O zolu wynosił przynajmniej 6:1, korzystnie przynajmniej 8:1, a najkorzystniej powyżej 15:1. Dla potrzeb zgłoszenia, określenie niewielka ilość krzemianu metalu alkalicznego oznacza, że stosunek wagowy krzemianu metalu alkalicznego do zolu krzemionkowego w kompozycji jest mniejszy niż 0,5, korzystnie mniejszy niż 0,25, najkorzystniej mniejszy niż 0,1.
Zol krzemionkowy może dodatkowo lub alternatywnie zawierać rozpuszczoną lub rozproszoną żywicę organiczną. Żywicą organiczną jest korzystnie lateks, przykładowo lateks na bazie polimeru butadienowo-styrenowego, lateks na bazie kopolimeru styrenowo-akrylowego, lateks na bazie kopoli6
PL 217 946 B1 meru octanu winylu i etylenu, dyspersja poliwinyIowobutyralowa, dyspersja silikonowo-siloksanowa lub też dyspersja lateksowa na bazie akrylu. Przykładami odpowiednich dyspersji lateksowych, które ® mogą być zastosowane, są XZ94770 i XZ94755 (obydwie produkcji Dow Chemicals), Airflex®500, Airflex® EP3333 DEV, Airflex® CEF 52, a także Flexcryl® SAF34 (wszystkie firmy AIR Products), Primal® E-330DF oraz Primal® MV23 LO (obydwie Rohm and Haas), a także SiIres® MP42 E, SiIres® M50E oraz SLM 43164 (wszystkie Wacker Chemicals). Użyte mogą zostać polimery rozpuszczalne w wodzie, takie jak polimery akryloamidowe, ale są one mniej korzystne. Żywica organiczna stosowana jest korzystnie w ilości do 35% wagowo względem stałego spoiwa. W przypadku kompozycji obejmujących spoiwo zawierające cząstki krzemionki koloidalnej o średniej wielkości równej lub mniejszej niż 10 nm, organiczna żywica stosowana jest korzystnie w ilości do 20% wagowo, korzystniej 1-15% wagowo względem spoiwa stałego. W przypadku kompozycji obejmujących spoiwo zawierające cząstki krzemionki koloidalnej o średniej wielkości powyżej 10 nm, na przykład między 12 a 22 nm lub między 12 a 16 nm, korzystna jest większa zawartość żywicy organicznej do 35% wagowo względem spoiwa stałego. Większe ilości żywicy organicznej mogą powodować porowatość zgrzewu podczas następującego później spawania. Odkryto, iż dodatek żywicy organicznej poprawia adhezję/kohezję mierzoną metodą siatki nacięć (cross hatch test).
Alternatywnie, zol krzemionkowy może zawierać siIanowy środek sprzęgający, który zawiera grupy alkoksysilanowe oraz resztę organiczną, zawierający grupę funkcyjną, taką jak na przykład grupa aminowa, epoksydowa czy izocyjanianowa. Silanowy środek sprzęgający jest korzystnie aminosilanem, takim jak gamma-aminopropyIotrietoksysiIan lub jego częściowy hydrolizat, pomimo iż zastosowany może być także epoksy-silan, taki jak gamma-gIicydoksypropyIotrimetoksysiIan. Silanowy środek sprzęgający obecny jest korzystnie w ilości do 30% wagowo, na przykład 1-20% wagowo względem krzemionki.
Spoiwo powłoki podkładowej może dodatkowo zawierać wodny roztwór krzemianu metalu alkalicznego lub amonu, stabilizowany przez silikonian zastąpiony przez przynajmniej jedną grupę anionową o niższej wartości współczynnika pKa niż kwas krzemowy, taką jak na przykład grupa karboksylanowa czy suIfonianowa. Spoiwo takie jest korzystnie roztworem o stosunku molowym SiO2/M2O w zakresie od 8:1 do 30:1 oraz współczynniku pH w zakresie od 7 do 10,5, przygotowanym poprzez obniżenie współczynnika pH roztworu krzemianu i silikonianu w wyniku wymiany jonowej. Silikonian może być dodany zatem w stosunkowo niewielkich ilościach, na przykład w stosunku molowym od 1:2 do 1:20, do konwencjonalnego krzemianu alkalicznego 3,9:1 SiO2/K2O. Następnie zredukowane mogą zostać cząstki stałe w celu poprawienia łatwości obróbki i dalszej poprawy stabilności. Na tym etapie, roztwór ten odznacza się współczynnikiem pH o wartości od 12 do 12,5. Roztwór poddany jest wymianie jonowej przy użyciu standardowej żywicy wymiany jonowej. Jony K+ zastępowane są jonami H+, zmniejszając zarówno alkaliczność spoiwa jak i wartość współczynnika pH. Bez obecności silikonianu, krzemian mógłby ulegać żelowaniu przy obniżaniu wartości pH. Otrzymano czyste, stabilne roztwory z niską wartością pH 8. Powstałe spoiwo posiada stosunek molowy SiO2/K2O typowo w zakresie 8 - 20:1 i może zostać skoncentrowane, jeżeli pożądane jest zwiększenie udziału fazy stałej. Spoiwo stanowi czysty, stabilny roztwór i jest ono stabilne w obecności cynku, ale powłoki na bazie takich spoiw z dokonaną wymianą jonową odznaczają się stosunkowo słabą wytrzymałością warstwy w porównaniu z powłokami na bazie spoiw krzemianów alkalicznych.
Korzystnie, stosowane jest spoiwo o współczynniku pH w zakresie od 9 do 11,5, korzystniej w zakresie 9,5 do 11. O ile nie chcemy być ograniczeni przez jakąkolwiek teorię, wyjaśniającą wpływ pH na własności warstwy, wydaje się, że większa wartość pH powoduje obecność większej ilości rozpuszczalnej krzemionki w roztworze. Wydaje się, iż daje to potencjalne wzmocnienie żelu in situ po naniesieniu kompozycji powłoki. Dodatkowo, dopasowanie wartości współczynnika pH może mieć mniejszy wpływ na wydłużenie żywotności. Gdy nie jest wykorzystywana komercyjnie dostępna krzemionka, wybrany może zostać zol o wysokiej wartości pH i/lub pH zolu może zostać dopasowane. Wartość współczynnika pH może zostać dopasowana, na przykład poprzez zmianę ilości AI2O3 lub w wyniku dodania wpływających na wartość współczynnika pH środków wydłużających żywotność, takich jak dimetyloaminoetanol (DMAE) lub poprzez dodatek rozcieńczonego kwasu siarkowego lub też w wyniku dodatku wodorotlenku sodowego.
Przykładowo, dostępne w sprzedaży zole krzemionkowe o wielkości cząstki 22 nm odznaczają się zwykle wartością pH od około 8,5 do 9. Zwiększenie zakresu pH tych zoli, na przykład do wartości od 10 do 11, znacząco poprawia szybkość uzyskiwania własności powłokowych.
PL 217 946 B1
Powłoka podkładowa zawiera korzystnie proszek cynku i/lub stop cynku. Taki proszek cynkowy odznacza się korzystnie uśrednioną po objętości wielkością cząstki od 2 do 12 mikronów, a najkorzystniej proszek cynkowy jest produktem, dostępnym jako pył cynkowy, odznaczający się średnią wielkością cząstek od 2 do 8 mikronów. Proszek cynkowy chroni stal za pośrednictwem mechanizmu galwanicznego i może także tworzyć warstwę ochronną produktów korozji cynku, zwiększając ochronę antykorozyjną, jaką daje powłoka. Całość lub część proszku cynkowego może zostać zastąpiona przez stop cynku. Ilość proszku cynkowego i/lub stopu w powłoce wynosi w ogólności przynajmniej 10% a może wynosić do 90% powłoki w stosunku objętościowym względem suchej masy. Proszek cynkowy i/lub stop mogą stanowić zasadniczo całą zawartość pigmentu w powłoce lub też mogą stanowić przykładowo do 70%, na przykład od 25 do 55% objętościowo, powłoki względem suchej masy, przy czym powłoka zawiera także pewien pomocniczy inhibitor korozji, na przykład molibdenian, fosforan, wolframian lub wanadan, jak opisano w zgłoszeniu US-A-5 246 488, bardzo rozdrobniony dwutlenek tytanu, jak wyszczególniono w dokumencie KR 8101300 i/lub tlenek cynku i/lub pewien wypełniacz, taki jak krzemionka, kaIcynowana glina, glinokrzemian, talk, baryty, mika, krzemian magnezu lub też kalcynowany glinokrzemian. W przypadku kompozycji zawierających spoiwo, posiadające cząstki krzemionki koloidalnej o średniej wielkości 10 nm lub mniej, ilość proszku cynkowego i/lub stopu w powłoce wynosi między 40 a 60%, korzystnie pomiędzy 45 a 55% objętościowo w powłoce względem suchej masy. W przypadku kompozycji, zawierających spoiwo posiadające cząstki krzemionki koloidalnej o średniej wielkości powyżej 10 nm, na przykład pomiędzy 12 a 22 nm lub też pomiędzy 12 a 16 nm, ilość proszku cynkowego i/lub stopu w powłoce wynosi korzystnie między 35 a 50%. Jednakże, razem z pigmentami na bazie cynku, zastosowane mogą zostać również inne barwniki. Do przykładów tych innych, niecynkowych pigmentów należą przewodzące wypełniacze, takie jak fosforek żelaza (II) (Ferrophos®), tlenek żelaza (III) blaszkowaty i tym podobne. Zastosowanie tych przewodzących, niecynkowych pigmentów może pozwolić na zmniejszenie ilości cynku, przy zachowaniu skutecznej ochrony przed korozją. W celu uzyskania optymalnych własności powłokowych, wypełniacze te są korzystnie wystarczająco zdyspergowane w kompozycji powłoki. Rodzaje i rozmiary stosowanych wypełniaczy mogą być dopasowywane w celu uzyskania należytego stanu dyspersji. Przykładowo, gdy wybrany zostanie pigment Satintone (Lawrence Industries), zastosowany winien zostać średni wymiar cząstki poniżej 3 μm, korzystnie poniżej 2 μm.
Korzystnie, objętościowe stężenie pigmentu (PVC) powłoki wynosi między 40 a 75%. Powyżej 75% pogorszeniu ulegają własności powłokowe, zaś poniżej 40% ilość cynku jest niewystarczająca do uzyskania skutecznej ochrony przed korozją. W przypadku kompozycji, zawierających spoiwo z cząstkami krzemionki koloidalnej o średniej wielkości poniżej 10 nm, wartość PVC wynosi korzystnie między 55 a 75%, korzystniej między 65 a 75%. W przypadku kompozycji, zawierających spoiwo z cząstkami krzemionki koloidalnej o średnim rozmiarze cząstek równym lub większym niż 10 nm, uzyskać można lepsze własności wczesnych powłok przy użyciu powłok o wartości PVC pomiędzy 40 a 65%, korzystniej pomiędzy 45 a 55%.
Objętościowe stężenie pigmentu (PVC) jest objętościową, procentową zawartością pigmentu w suchej, nałożonej warstwie. Krytyczne objętościowe stężenie pigmentu (CPVC) jest zwykle definiowane jako objętościowe stężenie pigmentu, gdy ilość spoiwa jest już wystarczająca do utworzenia całkowicie zaadsorbowanej warstwy spoiwa na powierzchniach pigmentu i do wypełnienia szczelin między cząstkami w ciasno upakowanym systemie. Krytyczne objętościowe stężenie pigmentu może zostać wyznaczone poprzez zwilżenie suchego pigmentu wystarczającą ilością oleju lnianego w celu utworzenia spójnej masy. Sposób ten daje wartość znaną jako absorpcja oleju, na podstawie której wyznaczone może zostać krytyczne objętościowe stężenie pigmentu. Sposób wyznaczania absorpcji oleju opisany jest w normie brytyjskiej British Standard 3483 (BS3483). Zawartość substancji stałej w powłoce podkładowej wynosi generalnie przynajmniej 15% w stosunku objętościowym, a korzystnie leży w zakresie od 20 do 35% objętościowo. Objętościowa zawartość substancji stałej jest teoretyczną wartością, obliczoną względem wszystkich składników, występujących w kompozycji powłoki. Powłoka odznacza się korzystnie taką lepkością, że może być łatwo nanoszona przy użyciu typowych narzędzi, takich jak spray, w szczególności bezpowietrzne lub wysokoobjętościowe niskociśnieniowe (HVLP) urządzenia natryskujące, w celu utworzenia powłoki o grubości warstwy w stanie suchym mniejszej niż 40 mikronów, korzystnie pomiędzy 12 a 25 do 30 mikronów.
Ewentualnie, kompozycja powłoki zawierać może inne dodatki, dobrze znane znawcy, na przykład środki kontrolujące właściwości tiksotropowe i/lub reologiczne (organogliny, gumę ksantanową, zagęszczacze celulozowe, poliuretany polieterowo-mocznikowe, akryle i tym podobne), środki prze8
PL 217 946 B1 ciwpieniące (w szczególności wtedy, gdy obecne są modyfikatory lateksowe) i ewentualnie, dodatkowe środki wydłużające żywotność, takie jak chromiany (na przykład dichromian sodowy) lub aminy trzeciorzędowe (na przykład trietyloamina lub dimetyloaminoetanol). Do korzystnych środków kontrolujących właściwości tiksotropowe i/lub reologiczne należą Bentone EW (spółki Elementis), który jest krzemianem sodowo-magnezowym (organoglina), Bentolite WH (Rockwood), który jest wodnym krzemianem glinowym, Laponite RD (Rockwood), który jest wodnym krzemianem sodowo-magnezowo-litowym a także Rheolate 425 (Elementis), który stanowi zastrzeżona akrylowa dyspersja wodna. Do korzystnych środków przeciwpieniących należą Foamaster NDW (Cognis) oraz Dapro 1760 (Elementis). Zauważono, że również inne związki, które mogą występować w kompozycji powłoki z innych przyczyn, mogą działać jako drugorzędne środki wydłużające żywotność. Przykładowo, dodatek pigmentów antykorozyjnych na bazie bieli molibdenowej lub lateksu styrenowo-butadienowo, może prowadzić do niewielkiego wydłużenia żywotności. Korzystnymi środkami wydłużającymi żywotność są trzeciorzędowe aminy, które oferują bezchromianową możliwość wydłużenia żywotności.
System powlekania jest zazwyczaj systemem dwu lub więcej składnikowym, w którym składniki są dokładnie mieszane przed naniesieniem powłoki.
Po otrzymaniu kompozycji o dużej żywotności, szybkość uzyskiwania własności powłokowych zależy od sposobu dalszej obróbki, jakiej poddawana będzie naniesiona warstwa.
W celu uzyskania szybkiego rozwoju właściwości, powłoka podkładowa może zostać poddana obróbce przy użyciu roztworu zwiększającego wytrzymałość. W procesie takim, powłoka podkładowa, zanim zostanie poddana działaniu roztworu wzmacniającego, suszona jest do takiego stopnia, aby była sucha w dotyku.
Rozwój właściwości powłokowych może zostać przyspieszony również poprzez zanurzenie pokrytego podłoża w wodzie lub przez kondycjonowanie w atmosferze o wilgotności względnej, wynoszącej przynajmniej 50%, korzystnie przynajmniej 80%. Proces taki może obejmować dodatkowo obróbkę roztworem zwiększającym wytrzymałość warstwy. Proces taki jest przedmiotem odrębnego zgłoszenia patentowego.
Gdy szybkie wysuszenie nie jest ważne, możliwe jest schnięcie powłoki, nie poddanej jeszcze obróbce końcowej, przy niskiej wilgotności względnej, na przykład między 25 a 50%. Rozwój właściwości powłokowych następował będzie wtedy wolniej, ale w końcu otrzymuje się dobre właściwości powłokowe.
Czas konieczny do uzyskania stanu suchości w dotyku wynosi generalnie od około 10 do 15 minut w temperaturze otoczenia od 15 do 20°C lub 3 do 4 minut w temperaturze 40°C dla powłoki o grubości suchej warstwy (dft) wynoszącej 15-20 μm. Czas suszenia zależny jest również od przepływu powietrza i grubości warstwy. W temperaturze 35°C i przy przepływie powietrza 0,5 m/s, czas suszenia dla powłoki o grubości suchej warstwy, wynoszącej 20 μm, wynosi w przybliżeniu około 2 minut. Czas ten może ulec dalszemu skróceniu w wyniku podniesienia temperatury powietrza.
W ogólności, czas suszenia może zostać zredukowany poprzez zwiększenie temperatury podłoża, zwiększenie temperatury powietrza, zastosowanie przepływu powietrza lub stosując dowolną kombinację powyższych środków.
Korzystne jest suszenie powłoki podkładowej w temperaturze 10-60°C, korzystnie 25-50°C przy wymuszonym przepływie powietrza, korzystnie przy przepływie przynajmniej 0,1 m/s, zwłaszcza wtedy, gdy krycie podkładowe, suszenie i naniesienie opcjonalnego roztworu zwiększającego wytrzymałość powłoki prowadzone mają być w procesie bezpośrednim. Osiągnięcie szybkiego suszenia jest bardzo ważne w zastosowaniach bezpośrednich w stoczniach lub stalowniach.
Wykonanie obróbki roztworem, zanim podkład nie osiągnie stanu suchości w dotyku, nie powoduje wzmocnienia warstwy.
Roztwór, który zwiększa wytrzymałość powłoki podkładowej, będzie w ogólności wodnym roztworem soli nieorganicznej lub też roztworem materiału, zawierającego reaktywne grupy, zawierające krzem. Wzrost wytrzymałości warstwy może być wykryty poprzez znaczący wzrost twardości, odporności na ścieranie i zwykle adhezji. Twardość zmierzona może zostać przy zastosowaniu ołówkowego testu twardości (pencil hardness test) według normy British Standard 3900, część E19 (1999) (twardość ołówka, konieczna do zarysowania powłoki). Odporność na ścieranie zmierzona może zostać przy zastosowaniu testu podwójnego potarcia (double rub test), w którym powłoka pocierana jest automatycznie na sucho lub po zwilżeniu wodą. O ile znaczny wzrost odporności na ścieranie na sucho lub po zwilżeniu może być uważany za wzrost wytrzymałości powłoki podkładowej, zauważono, że obróbka według wynalazku powoduje w ogólności wzrost zarówno odporności na ścieranie w stanie
PL 217 946 B1 suchym jak i w stanie mokrym. Adhezja może być mierzona przy zastosowaniu metody siatki nacięć, opisanej w normie British Standard 3900, część E6 (1992).
Ilość stosowanego wobec powłoki podkładowej roztworu wzmacniającego warstwę leży generalnie w zakresie od 0,005-0,2, korzystnie 0,01-0,08 litra na metr kwadratowy pokrytej powłoką pod2 kładową powierzchni (l/m ) dla powłok o standardowej grubości suchej warstwy (15-20 μm). Taka ilość roztworu może być dogodnie naniesiona poprzez natryskiwanie. Nie trzeba dodawać, że koncentracja lub objętość roztworu obróbki końcowej winna ulec zwiększeniu, jeśli powłoka jest następnie nakładana, tj. grubość suchej warstwy jest większa niż 20 μm.
W charakterze obróbki końcowej dla powłok z krzemianu cynku na bazie spoiwa z krzemianu metalu alkalicznego, sugerowano wcześniej płukanie, co jednak wiązało się z dużymi ilościami wody, koniecznej do spłukania soli metalu alkalicznego z powłok o stosunku molowym SiO2/M2O o wartości od około 3:1 do 4:1. Natryskiwanie równoważną ilością wody lub przepuszczenie podkładu przez komorę parową na linii o typowej prędkości (to znaczy z czasem ekspozycji < 2 min.), nie powoduje istotnego zwiększenia wytrzymałości warstwy.
O ile nie jest naszą intencją ograniczenie przez jakąkolwiek teorię, wyjaśniającą zjawisko wzmocnienia powłoki, wydaje się, że kiedy roztwór obróbki jest wodnym roztworem soli nieorganicznej, następuje albo rozpuszczanie i ponowne wytrącanie krzemionki albo też sól ta działa jako środek wzmacniający między cząstkami zolu krzemionkowego. Gdy roztwór obróbki zawiera reaktywne rodzaje krzemionki, mogą one osadzać się pomiędzy cząstkami zolu krzemionkowego, wzmacniając ich wiązanie. Zauważyliśmy, iż te same materiały wzmacniające, gdy zostaną dodane do powłoki podkładowej w czasie lub po operacji nanoszenia na podłoże, nie powodują wzmocnienia powstającej powłoki podkładowej.
Gdy ewentualnie nanoszony roztwór wzmacniający powłokę jest wodnym roztworem soli nieorganicznej, odznacza się on w ogólności stężeniem molowym przynajmniej 0,01M a korzystnie przynajmniej 0,03M. Stężenie roztworu soli nieorganicznej może wynosić do 0,5M lub 1M lub nawet więcej. Sól nieorganiczna może być solą kationu jednowartościowego, jak na przykład sól metalu alkalicznego czy amonu, kationu dwuwartościowego, takiego jak cynk, magnez, wapń, miedź (II) czy żelazo (II), kationu trójwartościowego, takiego jak glin czy cer (III) lub też kationu czterowartościowego, takiego jak na przykład cer (IV), a także jednowartościowego anionu, jak halogenek, na przykład fluorek, chlorek czy bromek, grupa azotanowa lub też anionu wielowartościowego, jak siarczan czy fosforan. Stosowane mogą być także mieszanki wyżej wymienionych soli. Do przykładów roztworów soli nieorganicznych, które okazały się skuteczne, należą siarczan magnezu, siarczan cynku, siarczan potasu, siarczan glinu, siarczan żelaza, siarczan ceru (IV), siarczan miedzi, chlorek sodu i chlorek potasu, chociaż chlorki mogą nie być korzystne, ze względu na ich skłonności do wywoływania korozji. Wagowe stężenie roztworu soli nieorganicznej leży korzystnie w zakresie od 0,5 do 20% wagowych.
Jednym z przykładów materiałów, zawierających aktywne grupy krzemowe jest krzemian. Roztwór wzmacniający powłokę może być roztworem krzemianu metalu alkalicznego, na przykład krzemianu potasu czy krzemianu litu lub roztworem krzemianu amonu albo też może być roztworem silikonianu metalu alkalicznego, na przykład roztworem silikonianu alkilu. Korzystne stężenie takiego roztworu mieści się w zakresie od 0,5 do 20% wagowo.
Gdy roztwór wzmacniający powłokę jest roztworem soli nieorganicznej lub krzemianem metalu alkalicznego, dodany materiał spowoduje zwiększenie zawartości soli powłoki podkładowej na bazie krzemianu cynku. Będzie to skutkować zwiększeniem siły osmotycznej w przypadku, gdy powłoka ta jest przykrywana, a tym samym możliwością osmotycznego pęcherzenia powłoki, gdy powleczone podłoże zostanie zanurzone. Ilość naniesionej nieorganicznej soli krzemianu metalu alkalicznego jest korzystnie wystarczająco mała, aby utrzymać stosunek molowy SiO2/M2O spoiwa powłoki podkładowej powyżej wartości 6:1, korzystnie powyżej 8:1, a najkorzystniej ponad 10:1. W celu osiągnięcia tego, ilość zastosowanej soli nieorganicznej lub krzemianu metalu alkalicznego w roztworze wzmacniającym 2 powłokę jest korzystnie mniejsza niż 10 g/m2 względem suchej masy, najbardziej korzystnie mniejsza 2 niż 5 g/m , dla powłoki o grubości suchej warstwy od 15 do 20 μm.
Alternatywnym przykładem materiału, zawierającego reaktywne grupy, zawierające krzem, jest aIkoksysiIan lub acyloksysilan, na przykład acetoksysilan. Może to być, przykładowo, tetraalkoksysilan (ortokrzemian alkilu), taki jak tetraetoksysilan czy tetraizopropoksysiIan lub też triaIkoksysiIan, taki jak na przykład trimetoksysilan metylu (MTMS, spółki Aldrich) czy bistrimetoksysiIanoetan. Alkoksysilan 1 może zawierać dodatkowe grupy funkcyjne, na przykład triaIkoksysiIan może mieć wzór RSi(OR1)3, 1 gdzie każda grupa R1 jest 1-3C alkilem, zaś R jest grupą alkilową lub arylową, podstawioną przez
PL 217 946 B1 grupę aminową, alkiloaminową, dialkilaminową, amidową, atom halogenu, grupą karbaminianową, epoksydową, izocyjanianową, azyrydynową, sulfonianową, karboksylową, fosforanową lub hydroksylową. Korzystnymi przykładami są aminosilany, takie jak trietoksysililopropyloamina (Aminosilane A1100 spółki Witco), trimetoksysiIiIopropyIoamina (Aminosilane A1110 spółki Witco), trimetoksysiIiIopropyloetylenodiamina (Aminosilane A1120 spółki Witco), trimetoksysililopropyldietylenotriamina (Aminosilane A1130 spółki Witco) czy też bistrimetoksysililopropyloetylenodiamina. Ponadto, alkoksysilan ten może być bis(trialkoksysilanem), na przykład łańcuchem alkilenosilanu lub polidimetylosilanu, zakończonym grupami -SiOR3'. Alkoksysilan ten może być przynajmniej częściowo hydrolizowany, na przykład może być częściowo hydrolizowanym tetraalkoksysilanem czy hydrolizowanym aIkiIotriaIkoksysiIanem lub też zastosowany może zostać aminoalkilotrialkoksysilan. Alkoksysilan wprowadzany jest korzystnie z roztworu wodnego, chociaż wodny roztwór może zawierać mieszający się z wodą rozpuszczalnik organiczny, na przykład alkohol, taki jak na przykład etanol.
Ponadto, zauważono, że bardzo skutecznymi środkami, poprawiającymi właściwości w procesie obróbki końcowej, są ortokrzemiany. Skutecznymi środkami są wodne roztwory ortokrzemianu tetrametylu (TMOS) i ortokrzemianu tetraetylu (TEOS). Lepsze rezultaty uzyskuje się, gdy TMOS lub TEOS są hydrolizowane w środowisku o pH 1-2. Przy tej wartości współczynnika pH, żywotność roztworu obróbki końcowej może przekraczać nawet 7 dni.
Stężenie aIkoksysiIanu lub ortokrzemianów w ewentualnie stosowanym roztworze leży korzystnie w zakresie od 1 do 25% wagowo.
Korzystne jest zastosowanie w roztworze ewentualnej obróbki końcowej alkoksysilanów i/lub ortokrzemianów, gdyż związki te nie wprowadzają do powłoki podkładowej praktycznie żadnych soli rozpuszczalnych w wodzie.
Ewentualne naniesienie roztworu obróbki, a korzystnie także suszenie poddanej obróbce powłoki podkładowej, aż do momentu, gdy będzie ona ponownie sucha w dotyku, może być prowadzone w procesie bezpośrednim po naniesieniu powłoki podkładowej na stal i wysuszenie jej do stanu su2 chości w dotyku. Ilość stosowanego roztworu wzmacniającego powłokę wynosi korzystnie 0,005-0,2 l/m2 2 pokrytej powłoką podkładową powierzchni, zaś najkorzystniej 0,08 l/m2 lub mniej, jeżeli powłoka ta jest poddawana obróbce i suszona w trybie bezpośrednim w celu uzyskania powłoki o grubości w stanie suchym, wynoszącej 15-20 μm. Czas suszenia dla powłoki, poddanej działaniu takiej ilości roztworu wzmacniającego, wynosi w ogólności od około 5 do 10 minut w temperaturze 15-20°C lub od około 1,5 do 2 minut w temperaturze 40°C. Czas suszenia może ulec dodatkowemu skróceniu poprzez umieszczenie zagruntowanego podłoża w strumieniu powietrza.
W ogólności, czas suszenia może zostać skrócony poprzez zwiększenie temperatury podłoża, zwiększenie temperatury powietrza, zastosowanie przepływu powietrza lub w wyniku dowolnej ich kombinacji.
Stosowany ewentualnie roztwór obróbkowy nanoszony jest korzystnie i suszony w temperaturze z zakresu 10-60°C, korzystnie 25-50°C przy wymuszonym przepływie powietrza, korzystnie przy szybkości przepływu powietrza, wynoszącej przynajmniej 0,1 m/s. Roztwór obróbkowy może być nanoszony przy użyciu standardowego wyposażenia, na przykład natrysku bezpowietrznego lub natrysku HVLP lub też przy zastosowaniu zwykłego rozpylacza, poprzez zamontowanie drugiego pistoletu natryskowego w dole linii powłoki podkładowej, poniżej pistoletu nanoszącego podkład. Alternatywnie, roztwór ten może być nanoszony poprzez zastosowanie techniki nanoszenia z mgły. Roztwór może być nanoszony na obydwie strony podłoża, na przykład obydwie strony stalowej płyty, wykorzystywanej do budowy statków, niezależnie od orientacji podłoża; objętość roztworu, wymaganego do wzmocnienia powłoki, jest taka, że roztwór może być nanoszony na spodnią powierzchnię płyty bez zaciekania czy kapania. Możliwe są też inne sposoby nanoszenia, na przykład nanoszenie przy użyciu wałka, ale nie są one korzystne. Poddana tej obróbce powłoka podkładowa wymaga jedynie pozostawienia w celu wyschnięcia na podłożu i nie wymaga dalszego mycia czy podgrzewania. Po wyschnięciu poddanego obróbce podkładu, powleczony produkt może być poddany zwykłym procesom obróbki.
Ten ewentualny proces obróbki zwiększa twardość, spójność oraz odporność na ścieranie podkładu warsztatowego, bez powodowania pęcherzenia przy jego przykryciu. Ponadto, proces obróbki przyspiesza osiąganie korzystnych właściwości. Poprawia to odporność na uszkodzenia podczas przenoszenia i obróbki w stoczni czy stalowni. Poza tymi korzyściami, podłoże pokryte podkładem warsztatowym, poddanym obróbce końcowej, wykazuje własności, wymagane na rynku podkładów warsztatowych, mianowicie odporność na korozję przez 6 miesięcy przy wystawieniu na działanie
PL 217 946 B1 warunków atmosferycznych, doskonałe właściwości spawalnicze/tnące, a także zdolność do pokrywania dużym zakresem powłok podkładowych, bez oznak pęcherzenia czy powstawania wżerów.
Przykładowo, gdy działaniu roztworu wzmacniającego powłokę poddawany jest zol krzemionkowy wypełniany cynkiem, odporność na ścieranie w stanie suchym 10 minut po naniesieniu powłoki ulega przynajmniej pięciokrotnemu zwiększeniu, podczas gdy odporność na ścieranie w stanie mokrym ulega zwykle wzrostowi dziesięciokrotnemu, a nawet większemu. Twardość ołówkowa zmienia się zwykle od 2B do H lub nawet jeszcze bardziej. Stosunek molowy SiO2/M2O powłoki podkładowej może ulec zmniejszeniu na przykład od zakresu 50-200 do 15-35, jeśli stosowanym roztworem wzmacniającym jest roztwór soli nieorganicznej czy roztwór krzemianu metalu alkalicznego, ale dla typowej grubości suchej powłoki podkładowej rzędu 15-20 μm, stosunek ten jest w dalszym ciągu powyżej wartości, przy której następuje znaczące pęcherzenie. Stosunek molowy SiO2/M2O może być utrzymany na jeszcze większym poziomie, jeśli roztwór wzmacniający powłokę jest roztworem alkoksysilanu. Poddane obróbce powłoki podkładowe mogą być pokrywane powłoką z żywicy epoksydowej wulkanizowanej aminowo lub też dowolną wytrzymałą powłoką, taką jak poliuretan, przy grubości warstwy 100 μm czy 200 μm, zaś po utwardzeniu przez 7 dni, mogą być zanurzane w słodkiej lub morskiej wodzie na okres ponad 6 miesięcy (najdłuższy dotychczas okres testu) w temperaturze 40°C bez pęcherzenia.
Wynalazek wyjaśniony zostanie w nawiązaniu do następujących przykładów. Przykłady te mają za zadanie ilustrację wynalazku, a nie jego jakiekolwiek ograniczenie.
Wyznaczenie wielkości zoli krzemionkowych, wykorzystywanych w przykładach, dokonane zostało przy zastosowaniu metodą miareczkowania, opisaną w pracy G. W. Sears, Anal. Chem., 12, 1981 (1956). Metodą tą wyznaczono pole powierzchni właściwej, wyrażone w metrach kwadratowych na gram. W przypadku sferycznych cząstek zolu, tak wyznaczone pole powierzchni przekształcone zostało na wielkość cząstki.
Wyznaczenie procentowej zawartości wagowej tlenku glinowego w zolach krzemionkowych, modyfikowanych tlenkiem glinowym, stosowanych w przykładach, dokonane zostało przy zastosowaniu rentgenowskiej spektroskopii fluorescencyjnej.
Związki, wykorzystywane jako surowce w przykładach, mają następujące pochodzenie:
Ludox® SM | zol krzemionkowy o stężeniu 30% wagowo, wielkości cząstek 7 nm, stosunku molowym SiO2/M2O 50:1, produkcji DuPont, pH 10,3; |
Bindzil® 25AT/360 | zol krzemionkowy modyfikowany tlenkiem glinowym o stężeniu 22-27% wagowo, średniej wielkości cząstki 7 nm, stosunku molowym SiO2/M2O 50:1, produkcji Akzo Nobel (Eka Chemicals), pH 9,8-10; |
Nyacol | zol krzemionkowy o stężeniu 40% wagowo i średniej wielkości cząstek 16 nm, stosunku molowym SiO2/M2O 105:1, produkcji Akzo Nobel (Eka Chemicals), pH 9,8; |
Nyacol Al | wersja Nyacol modyfikowana tlenkiem glinowym, pH 9,9; |
XZ 94770 | organiczny lateks styrenowo-butadienowy o 50% zawartości w stosunku objętościowym substancji stałej, produkcji Dow Chemicals; |
Huber 90C | kalcynowany glinokrzemianowy wypełniacz barwnikowy o średniej wielkości cząstki 0,7 ąm, spółki JM Huber/Marlow Chemicals; |
pył cynkowy | sproszkowany metal o średniej wielkości cząstki 7 ąm, spółki Trident Alloys; |
Molywhite 212 | molibdenian wapniowo-cynkowy, pigment antykorozyjny o wielkości cząstki 4,1 ąm, spółki Sherwin Williams; |
Minex 20 | wypełniacz barwnikowy sodowo-potasowy glinokrzemian o średniej wielkości cząstki 2,95 ąm, spółki North Cape Minerale; |
Bentone EW | tiksotrop krzemianu sodowo-magnezowego, spółki Elements. |
P r z y k ł a d y od 1 do 5
W celu określenia wpływu zawartości tlenku glinowego na żywotność warsztatowych powłok podkładowych, przygotowano kilka kompozycji o koncentracji substancji stałej 28% w stosunku objętościowym. Powłoki podkładowe odznaczały się objętościowym stężeniem pigmentu o wartości 71,0%, co stanowi 1,4 wartości krytycznego stężenia objętościowego pigmentu.
PL 217 946 B1 ków:
Kompozycja wykorzystywana w przykładzie 1 przygotowana została z następujących składniSkładnik zol krzemionkowy woda tiksotrop bentonitowy pył cynkowy
Huber 90C % w stosunku wagowym
30,6
13,5
0,2
48,2
7,5
W przypadku przykładów od 2 do 5, kompozycje przygotowane zostały przy użyciu następujących składników:
Składnik % w stosunku wagowym zol krzemionkowy 36 woda 8,1 tiksotrop bentonitowy 0,2 pył cynkowy 48,2
Huber 90C 7,5
Podkład przygotowany został poprzez wymieszanie zolu krzemionkowego z wodą oraz tiksotropem, zaś powstałe spoiwo zmieszane zostało z pigmentami bezpośrednio przed naniesieniem na podłoże stalowe, jak ma to zwykle miejsce w przypadku powłok krzemianowo cynkowych. Otrzymana powłoka podkładowa naniesiona została na panele stalowe o wymiarach 15 cm na 10 cm, dla grubości suchej warstwy 15-20 μm w temperaturze 35°C i wilgotności względnej 30%. Umożliwiono wyschnięcie podkładu w środowisku otoczenia (20°C, 60% wilgotności względnej).
Żywotność jest to czas, jaki upływa od wymieszania wszystkich składników, gdy po naniesieniu powłoki obserwuje się pogorszenie właściwości powłoki, mierzonych po 1 godzinie od naniesienia. W niniejszych eksperymentach, jako wskaźnik przekroczenia żywotności przyjęto 50% spadek własności powłokowych, mierzonych 1 godzinę po naniesieniu powłoki.
T a b e l a 1
Przykład | Zol krzemionkowy | % zawartość wagowa tlenku glinowego | Żywotność |
11 | Ludox SM | - | 30 - 60 min |
2 | Bindzil 25AT/360 | 0,27 | 4 - 6 godzin |
3 | Bindzil 25AT/360 | 0,39 | 24 - 48 godzin |
4 | Bindzil 25AT/360 | 0,49 | > 48 godzin |
5 | Bindzil 25AT/360 | 0,69 | > 60 godzin |
1) Przykład porównawczy
P r z y k ł a d y od 6 do 9
Przygotowano kompozycje podkładów warsztatowych z przykładów 1, 2, 3 i 4. Po upływie 0,5, 1,5, 4, 6 i/lub 24 godzin po wymieszaniu składników, kompozycje te naniesiono na stalowe płytki o wymiarach 15 cm na 10 cm przy grubości suchej warstwy 15-20 μm w temperaturze 35°C i 30% wilgotności względnej. Umożliwiono wyschnięcie podkładu w środowisku otoczenia (23°C, 60% wilgotność względna).
Odporność na ścieranie naniesionej powłoki zmierzona została (metoda podwójnego potarcia, WDR) po 1 godzinie oraz po 24 godzinach. W teście podwójnego potarcia powierzchnię zwilżono kilkoma kroplami wody (w przypadku podwójnego potarcia na mokro), następnie potarta została bawełnianym wacikiem przy wywarciu lekkiego nacisku. Jedno pociągnięcie tam i z powrotem stanowi podwójne potarcie. Wyniki wyrażone są jako liczba cykli podwójnego potarcia, aż do usunięcia powłoki. Jeżeli powłoka wytrzymuje 100 cykli, końcowa grubość suchej warstwy (dft) porównywana jest z wartością początkową. Jeżeli grubość suchej warstwy ulega zmniejszeniu o więcej niż 25%, wynik wyrażany jest jako wartość większa od 100 (> 100). Jeśli zaś grubość suchej warstwy ulega zmniejszeniu o mniej niż 25%, wynik wyraża się jako dużo większy od 100 (>> 100).
Wyniki przedstawiono poniżej w tabeli 2.
PL 217 946 B1
T a b e l a 2
Przykład | Zol krzemionkowy | % zawartość wagowa tlenku glinowego | Czas między wymieszaniem a naniesieniem (godz) | WDR 1 godz. | WDR 24 godz. |
6a1 | Ludox SM | - | świeży (0) | 70 | >> 100 |
6b1 | Ludox SM | - | 0,5 | 42 | > 100 |
6c 1 | Ludox SM | - | 1,5 | 6 | 14 |
6d1 | Ludox SM | - | 4 | 2 | 2 |
7a | Bindzil 25AT/360 | 0,27 | świeży (0) | 60 | >> 100 |
7b | Bindzil 25AT/360 | 0,2 | 0,5 | 20 | >> 100 |
7c | Bindzil 25AT/360 | 0,27 | 6 | 13 | > 100 |
7c | Bindzil 25AT/360 | 0,27 | 24 | 8 | 24 |
8a | Bindzil 25AT/360 | 0,39 | świeży (0) | 60 | >> 100 |
8b | Bindzil 25AT/360 | 0,39 | 0,5 | 53 | >> 100 |
8c | Bindzil 25AT/360 | 0,39 | 6 | 50 | >> 100 |
8d | Bindzil 25AT/360 | 0,39 | 24 | 50 | >> 100 |
9a | Bindzil 25AT/360 | 0,47 | świeży (0) | 10 | 25 |
9b | Bindzil 25AT/360 | 0,47 | 0,5 | 8 | 25 |
9c | Bindzil 25AT/360 | 0,47 | 6 | 11 | 25 |
9d | Bindzil 25AT/360 | 0,47 | 24 | 12 | 27 |
1) Przykład porównawczy 2) Kompozycja powłoki zżelowana przed naniesieniem na podłoże
P r z y k ł a d y od 10 do 13
Przygotowano kompozycje podkładów warsztatowych z przykładów 1, 2, 3 i 4. Po upływie 0,5, 1,5, 4, 6 i/lub 24 godzin po wymieszaniu składników, kompozycje te naniesiono na stalowe płytki o wymiarach 15 cm na 10 cm przy grubości suchej warstwy 15-20 μm w temperaturze 35°C i 30% wilgotności względnej.
Po wyschnięciu powłoki, tak iż była ona sucha w dotyku, poddano ją działaniu 5% roztworu częściowo hydrolizowanego (pH=2) TEOS (ortokrzemianu tetraetylu) w wodzie. Podkład był następnie składowany w warunkach otoczenia (23°C, 60% wilgotności względnej). Po upływie 1 godziny oraz 24 godzin od obróbki roztworem TEOS, dokonano pomiaru odporności na ścieranie (test podwójnego potarcia). Wyniki przedstawiono poniżej w tabeli 3.
PL 217 946 B1
T a b e l a 3
Przykład | Zol krzemionkowy | % zawartość wagowa tlenku glinowego | Czas między wymieszaniem a naniesieniem (godz) | WDR 1 godz.3 | WDR 24 godz.4 |
10a1 | Ludox SM | - | 0,5 | > 100 | >> 100 |
10b1 | Ludox SM | - | 1,5 | 18 | > 100 |
10C1 | Ludox SM | - | 4 | 2 | 2 |
11a | Bindzil 25AT/360 | 0,27 | 0,5 | > 100 | >> 100 |
11b | Bindzil 25AT/360 | 0,27 | 6 | 50 | > 100 |
11c | Bindzil 25AT/360 | 0,27 | 24 | 24 | 24 |
12a | Bindzil 25AT/360 | 0,39 | 0,5 | > 100 | >> 100 |
12b | Bindzil 25AT/360 | 0,39 | 6 | > 100 | >> 100 |
12c | Bindzil 25AT/360 | 0,39 | 24 | > 100 | >> 100 |
13a | Bindzil 25AT/360 | 0,47 | 0,5 | 27 | >> 100 |
13b | Bindzil 25AT/360 | 0,47 | 6 | 30 | >> 100 |
13c | Bindzil 25AT/360 | 0,47 | 24 | 27 | >> 100 |
1) Przykład porównawczy 2) Kompozycja powłoki zżelowana przed naniesieniem na podłoże 3) Podwójne potarcia na mokro mierzone po upływie jednej godziny obróbki roztworem TEOS 4) Podwójne potarcia na mokro mierzone po upływie 24 godzin obróbki roztworem TEOS
P r z y k ł a d 14
W celu określenia wpływu różnych sposobów kondycjonowania powłoki po jej naniesieniu, z następujących składników przygotowano kompozycję o stężeniu substancji stałej, wynoszącym 28% w stosunku objętościowym. Powłoka podkładowa zawierała pigment w stężeniu objętościowym 70%, co stanowi 1,06 krytycznego stężenia objętościowego pigmentu.
Składnik | % wagowy |
zol krzemionkowy | 32,5 |
(0,39% wagowo tlenku glinowego) | |
cynk | 41,6 |
Minex 20 | 9,1 |
Molywhite 212 | 2,2 |
Bentone EW | 0,2 |
woda | 12,6 |
XZ94770 | 1,8 |
Przygotowano podkład poprzez wymieszanie zolu | krzemionkowego z wodą oraz Bentone, |
a powstałe spoiwo wymieszano z pigmentami bezpośrednio przed naniesieniem na stal. Otrzymana powłoka podkładowa naniesiona została na płytki stalowe o wymiarach 15 cm na 10 cm przy grubości suchej warstwy 15-20 μm w temperaturze 35°C i 30% wilgotności względnej. Umożliwiono wyschnięcie podkładu w warunkach otoczenia (20°C, 60% wilgotności względnej).
W eksperymencie 14a, po wysuszeniu powłoki do stanu suchości w dotyku, poddano ją działaniu 5% roztworu ZnSO4 w wodzie.
W eksperymencie 14b, pokryte płytki przechowywane były w temperaturze 23°C i 60% wilgotności względnej.
W eksperymencie 14c, pokryte płytki przechowywane były w temperaturze 23°C i 35% wilgotności względnej.
PL 217 946 B1
Odporność na ścieranie powłok wyznaczono (test podwójnego potarcia) po upływie 10 minut, 1 godziny i 24 godzin od kondycjonowania. Zmierzono ponadto twardość ołówkową. Wyniki przedstawiono poniżej w tabeli 4.
T a b e l a 4
Przykład | Kondycjonowanie po naniesieniu | WDR/PH 10 min1 | WDR/PH 1 godz. 2 | WDR/PH 24 godz. 3 | WDR/PH 48 godz. 4 |
14a | 5% ZnSO4 | >> 100/6H | >> 100/6H | nie zmierzono | nie zmierzono |
14b | 23°C, 60% wilg. wzgl. | 28/2H | >> 100/4H | >> 100/6H | nie zmierzono |
14c | 23°C, 35% wilg. wzgl. | 20/HB | 25/H | 53/4H | >> 100/4H |
1) Podwójne potarcia na mokro i twardość ołówka zmierzone 10 minut po kondycjonowaniu 2) Podwójne potarcia na mokro i twardość ołówka zmierzone 1 godzinę po kondycjonowaniu 3) Podwójne potarcia na mokro i twardość ołówka zmierzone 24 godziny po kondycjonowaniu 4) Podwójne potarcia na mokro i twardość ołówka zmierzone 48 godzin po kondycjonowaniu
P r z y k ł a d y 15 i 16
W celu przedstawienia wpływu modyfikacji tlenkiem glinowym na żywotność oraz szybkość uzyskiwania właściwości dla zoli o dużych cząstkach, przygotowano formułę ze stężeniem substancji stałej 28% objętościowo oraz objętościową koncentracją pigmentu 50%, co stanowi 0,72 krytycznego objętościowego stężenia pigmentu.
Formuła ta przygotowana została z następujących składników: | |
Składnik | % wagowy |
zol krzemionkowy | 35,0 |
cynk | 42,2 |
Minex 20 | 1,7 |
Molywhite 212 | 2,2 |
Bentone EW | 0,2 |
woda | 15,6 |
XZ94770 | 3,1 |
Przygotowano dwa podkłady przy użyciu dwóch różnych zoli krzemionkowych, a mianowicie 16 nm |
zolu Nyacol dla przykładu porównawczego 15 oraz 16 nm zolu Nyacol Al dla przykładu 16. Otrzymane powłoki podkładowe naniesione zostały na stalowe płytki o wymiarach 15 cm na 10 cm bezpośrednio, 2 godziny, 5 godzin oraz 24 godziny po wymieszaniu kompozycji do grubości suchej warstwy 15-20 μm w temperaturze 35°C i 30% wilgotności względnej. Podkłady te pozostawiono do wyschnięcia w warunkach otoczenia (20°C, 60% wilgotności względnej).
Odporność na ścieranie powłok została zmierzona (test podwójnego potarcia) po upływie 1 godziny oraz 24 godzin od ich naniesienia. Zmierzono ponadto twardość ołówkową.
Wyniki przedstawiono poniżej w tabeli 5.
T a b e l a 5
Przykład | Zol krzemionkowy | % zawartość wagowa tlenku glinowego | Czas między wymieszaniem a naniesieniem (godz.) | WDR/PH 1 godz. 2 | WDR/PH 24 godz. 3 |
15a1 | Nyacol 16 nm | - | świeży (0) | 35/HB | >> 100/3H |
15b1 | Nyacol 16 nm | - | 2 | 5/3B | |
15c1 | Nyacol 16 nm | - | 24 | 4 | |
16a | Nyacol Al 16 nm | 0,4 | świeży (0) | 30/HB | >> 100/H |
16b | Nyacol Al 16 nm | 0,4 | 2 | 23/HB | |
16c | Nyacol Al 16 nm | 0,4 | 5 | 18/HB | |
16d | Nyacol Al 16 nm | 0,4 | 24 | 14/HB |
1) Przykład porównawczy 2) Podwójne potarcia na mokro i twardość ołówka zmierzone 1 godzinę po naniesieniu 3) Podwójne potarcia na mokro i twardość ołówka zmierzone 24 godziny po naniesieniu 4) Kompozycja powłoki zżelowana przed naniesieniem na podłoże
PL 217 946 B1
P r z y k ł a d y 17 i 18
W celu określenia wpływu wielkości zolu, modyfikowanego tlenkiem glinowym, na właściwości powłok podkładu warsztatowego, przygotowano dwie kompozycje o stężeniu objętościowym pigmentu, wynoszącym 50%. W przypadku przykładu 17, kompozycję tę przygotowano z następujących składników:
Składnik | % wagowy |
Zol krzemionkowy Bindzil 25AT/360 | 50,8 |
(7 nm) 25,5% wagowo w wodzie | |
cynk | 42,2 |
Minex 20 | 3,5 |
Molywhite 212 | 2,2 |
Bentone EW | 0,2 |
woda | - |
XZ94770 | 3,1 |
Dla przykładu 18 przygotowano kompozycję z przykładu 16. Podkłady pozostawiono do wy- |
schnięcia w warunkach otoczenia (23°C, 60% wilgotności względnej).
Badano odporność powłok na ścieranie (test podwójnego potarcia) po upływie 1 godziny i 24 godzin od ich naniesienia. Zmierzono też twardość ołówkową. Wyniki przedstawiono w tabeli 6.
T a b e l a 6
Przykład | Zol krzemionkowy | Wielkość zolu | % zawartość wagowa tlenku glinowego | WDR/PH 1 godz. 1 | WDR/PH 24 godz. 2 |
17 | Bindzil 25AT/360 | 7 nm | 0,44 | 25/H | >> 100/3H |
18 | Nyacol Al | 16 nm | 0,44 | 30/HB | >> 100/3h |
1) Podwójne potarcia na mokro i twardość ołówka zmierzone 1 godzinę po naniesieniu 2) Podwójne potarcia na mokro i twardość ołówka zmierzone 24 godziny po naniesieniu
P r z y k ł a d y od 19 do 21
W celu ukazania wpływu modyfikacji tlenkiem glinowym oraz dodatku dimetyloaminoetanolu (DMAE) jako drugorzędnego środka wydłużającego żywotność, na szybkość uzyskiwania właściwości oraz na żywotność w przypadku małych zoli, przygotowano kilka kompozycji. Powłoki podkładowe odznaczały się stężeniem objętościowym pigmentu o wartości 50,0%, co stanowi 0,72 krytycznego stężenia objętościowego pigmentu.
W przykładzie 19, przygotowano kompozycję o stężeniu objętościowym substancji stałej, wynoszącym 28% objętościowo, z następujących składników:
Składnik % wagowy
Ludox SM 7 nm 46,7 cynk 42,2
Minex 20 1,7
Molywhite 212 2,2
Bentone EW 0,2 woda 3,9
XZ94770 3,1
W przykładzie 20 przygotowano kompozycję o stężeniu objętościowym substancji stałej, wynoszącym 26% objętościowo, z następujących składników:
Składnik % wagowy
Bindzil 25AT/360 7 nm 50,7 (0,44% wagowo tlenku glinowego) cynk 42,2
Minex 20 1,6
Molywhite 212 2,2
Bentone EW 0,2
XZ94770 3,1
PL 217 946 B1
W przykładzie 21 przygotowano kompozycję z przykładu 20 i wymieszano z DMAE. Ilość DMAE w mieszance wynosiła 1% wagowo względem całkowitej masy mieszanki.
Odporność na ścieranie warstw powłokowych zmierzona została (test podwójnego potarcia) po upływie 1 godziny po naniesieniu. Zmierzono ponadto twardość ołówkową. W eksperymentach tych przyjęto, iż 50% pogorszenie właściwości powłokowych, mierzonych 1 godzinę po naniesieniu powłoki, oznacza osiągnięcie czasu żywotności. Wyniki zestawiono w tabeli 7.
T a b e l a 7
Przykład | Zol krzemionkowy | % wagowo tlenku glinowego | % wagowo DMAE | Czas między wymieszaniem a naniesieniem (godz.) | WDR/PH 1 godz. 2 | Żywotność |
19a1 | Ludox SM | - | - | świeży (0) | 33/HB | < 30 min |
19b1 | Ludox SM | - | - | 0,5 | 12/B | < 30 min |
19C1 | Ludox SM | - | - | 1 | 4/B | < 30 min |
20a | Bindzil 25AT/360 | 0,44 | - | świeży (0) | 32/HB | ~ 1 godz. |
20b | Bindzil 25AT/360 | 0,44 | - | 0,5 | 26/B | ~ 1 godz. |
20c | Bindzil 25AT/360 | 0,44 | - | 1 | 18/B | ~ 1 godz. |
20d | Bindzil 25AT/360 | 0,44 | - | 2 | 8/B | ~ 1 godz. |
21a | Bindzil 25AT/360 | 0,44 | 1 | świeży (0) | 67/H | 2 - 4 godz. |
21b | Bindzil 25AT/360 | 0,44 | 1 | 0,5 | 64/H | 2 - 4 godz. |
21c | bindzie 25AT/360 | 0,44 | 1 | 1 | 64/HB | 2 - 4 godz. |
21d | Bindzil 25AT/360 | 0,44 | 1 | 2 | 51/HB | 2 - 4 godz. |
21e | Bindzil 25AT/360 | 0,44 | 1 | 4 | 29/HB | 2 - 4 godz. |
1) Przykład porównawczy 2) Podwójne potarcia na mokro i twardość ołówkowa zmierzone 1 godzinę po naniesieniu
Claims (11)
1. Sposób pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania, w którym przeznaczoną do powlekania stal ewentualnie, podgrzewa się, ewentualnie, stal śrutuje się lub oczyszcza strumieniowo-ściernie do usunięcia zgorzeliny walcowniczej i produktów korozji, po czym powleka się stal powłoką podkładową o stężeniu objętościowym pigmentu wynoszącym 40-75% i zawierającą krzemionkowy środek wiążący, pigment(y), oraz wypełniacze pigmentowe, przy czym proszek cynkowy i/lub stop cynku stanowią zasadniczo całość składnika pigmentowego powłoki, względnie stanowią do 70% objętościowych powłoki w stosunku do suchej powłoki, a następnie suszy się nałożoną powłokę, znamienny tym, że jako krzemionkowy środek wiążący stosuje się środek wiążący zawierający stabilizowany tlenkiem glinowym wodny zol krzemionkowy o stosunku molowym SiO2/M2O przynajmniej 25:1, gdzie M oznacza całkowitą ilość jonów metali alkalicznych i amonu i od 0,05 do 2% wagowych tlenku glinu, obliczonych jako procent wagi AI2O3 w odniesieniu do zolu krzemionkowego, gdzie doprowadza się pH środka wiążącego do wartości z zakresu od 9 do 11,5, gdzie cząstki krzemionki mają średnią wielkość równą lub mniejszą niż 22 nm, przy czym nakłada się powłokę podkładową do uzyskania warstwy o grubości do 40 μm, z wyłączeniem sposobu, w którym stal pokrywa się powłoką podkładową, składającą się z 25,8% wagowych modyfikowanego tlenkiem glinowym zolu o średniej wielkości cząstki wynoszącej 12 nm oraz stosunku molowym SiO2/Na2O wynoszącym 125:1, 20,4% wagowych wody, 0,2% wagowych tiksotropu ilastego Bentonite, 45,5% pyłu cynkowego oraz 8,1% wagowych kalcynowanego glinokrzemianowego pigmentu wypełniającego o średniej wielkości cząstki 1,4 μm, i w którym po wysuszeniu powłoki podkładowej w temperaturze
PL 217 946 B1
20°C i przy 35% wilgotności względnej do stanu suchości w dotyku, natryskuje się na powłokę podkładową 0,2 g wodnego zawierającego 5% wagowych chlorku potasu albo 0,2 g wodnego roztworu zawierającego 8% wagowych krzemianu potasu, a następnie suszy się w temperaturze 15-20°C i wilgotności względnej 35%.
2. Sposób według zastrz. 1, znamienny tym, że krzemionkowy środek wiążący zawiera dodatkowo niewielką ilość krzemianu metalu alkalicznego.
3. Sposób według zastrz. 1, znamienny tym, że po wysuszeniu powłoki podkładowej do stanu suchości w dotyku, poddaje się ją działaniu roztworu zwiększającego wytrzymałość powłoki.
4. Sposób według zastrz. 1 albo 2 albo 3, znamienny tym, że jako stabilizowany tlenkiem glinowym zol krzemionkowy stosuje się zol krzemionkowy o powierzchni modyfikowanej tlenkiem glinowym.
5. Sposób według zastrz. 1 albo 2 albo 3, znamienny tym, że stosuje się środek wiążący zawierający od 0,05 do 2,0% wagowych tlenku glinowego, obliczonych jako procent wagi AI2O3 w odniesieniu do zolu krzemionkowego oraz cząstek krzemianu obecnych w kompozycji.
6. Sposób według zastrz. 1, znamienny tym, że cząstki krzemionki mają średnią wielkość równą lub mniejszą niż 16 nm.
7. Sposób według zastrz. 1 albo 2 albo 3 albo 6, znamienny tym, że stosuje się powłokę podkładową zawierającą dodatkowo żywicę organiczną.
8. Sposób według zastrz. 1 albo 2 albo 3 albo 6, znamienny tym, że po wysuszeniu powłoki podkładowej do stanu suchości w dotyku, pokryte podłoże zanurza się w wodzie lub alternatywnie przetrzymuje się w warunkach atmosferycznych przy wilgotności względnej przynajmniej 50%.
9. Kompozycja powłoki podkładowej przeznaczonej na podłoża stalowe, o stężeniu objętościowym pigmentu wynoszącym 40-75%, zawierająca krzemionkowy środek wiążący, pigment(y), oraz wypełniacze pigmentowe, przy czym proszek cynkowy i/lub stop cynku stanowią zasadniczo całość składnika pigmentowego powłoki względnie stanowią do 70% objętościowych powłoki w stosunku do suchej powłoki, znamienna tym, że jako krzemionkowy środek wiążący kompozycja zawiera stabilizowany tlenkiem glinowym wodny zol krzemionkowy o stosunku molowym SiO2/M2O przynajmniej 25:1, gdzie M oznacza całkowitą ilość jonów metali alkalicznych i amonu, i od 0,05 do 2% wagowych tlenku glinu, obliczonych jako procent wagi AI2O3 w odniesieniu do zolu krzemionkowego, gdzie środek wiążący ma pH w zakresie od 9 do 11,5, gdzie cząstki krzemionki mają średnią wielkość równą lub mniejszą niż 22 nm, z wyłączeniem kompozycji powłoki podkładowej składającej się z 25,8% wagowych modyfikowanego tlenkiem glinowym zolu o średniej wielkości cząstki wynoszącej 12 nm oraz stosunku molowym SiO2/Na2O wynoszącym 125:1, 20,4% wagowych wody, 0,2% wagowych tiksotropu ilastego Bentonite, 45,5% pyłu cynkowego oraz 8,1% wagowych kalcynowanego glinokrzemianowego pigmentu wypełniającego o średniej wielkości cząstki 1,4 μm.
10. Kompozycja powłoki podkładowej według zastrz. 9, znamienna tym, że krzemionkowy środek wiążący zawiera dodatkowo niewielką ilość krzemianu metalu alkalicznego.
11. Kompozycja powłoki podkładowej według zastrz. 9 albo 10, znamienna tym, że środek wiążący jest zolem krzemionkowym modyfikowanym tlenkiem glinowym, zawierającym od 0,05 do 2,0% wagowych tlenku glinowego, obliczonych jako procent wagi AI2O3 w odniesieniu do zolu krzemionkowego oraz cząstek krzemianu obecnych w kompozycji.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00307957 | 2000-09-13 | ||
PCT/EP2001/010552 WO2002022745A1 (en) | 2000-09-13 | 2001-09-11 | Primer coating of steel |
Publications (2)
Publication Number | Publication Date |
---|---|
PL360653A1 PL360653A1 (pl) | 2004-09-20 |
PL217946B1 true PL217946B1 (pl) | 2014-09-30 |
Family
ID=8173257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL360653A PL217946B1 (pl) | 2000-09-13 | 2001-09-11 | Sposób pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania oraz kompozycja powłoki podkładowej przeznaczonej na podłoża stalowe |
Country Status (19)
Country | Link |
---|---|
US (1) | US8048215B2 (pl) |
EP (1) | EP1317515B1 (pl) |
JP (1) | JP5207575B2 (pl) |
KR (1) | KR100802886B1 (pl) |
CN (1) | CN1226356C (pl) |
AT (1) | ATE313602T1 (pl) |
AU (2) | AU9381001A (pl) |
BR (1) | BR0113808B1 (pl) |
CA (1) | CA2421944C (pl) |
DE (1) | DE60116117T2 (pl) |
DK (1) | DK1317515T3 (pl) |
ES (1) | ES2253428T3 (pl) |
MX (1) | MXPA03002172A (pl) |
NO (1) | NO333682B1 (pl) |
PL (1) | PL217946B1 (pl) |
RU (1) | RU2269555C2 (pl) |
TW (1) | TW555823B (pl) |
WO (1) | WO2002022745A1 (pl) |
ZA (1) | ZA200302007B (pl) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1177260T3 (da) | 1999-03-18 | 2005-04-11 | Akzo Nobel Coatings Int Bv | Grunding af stål |
KR100802887B1 (ko) | 2000-09-13 | 2008-02-13 | 아크조 노벨 엔.브이. | 강철의 프라이머 코팅 방법 |
JP5207575B2 (ja) | 2000-09-13 | 2013-06-12 | アクゾ ノーベル ナムローゼ フェンノートシャップ | 鋼のプライマーコーティング |
UA81258C2 (en) | 2002-08-09 | 2007-12-25 | Akzo Nobel Coatings Int Bv | Quaternized polymer with acidic blocking groups, method for obtaining and use thereof, and composition, containing this polymer |
DE10260540B3 (de) * | 2002-12-21 | 2004-07-29 | Bk Giulini Chemie Gmbh & Co. Ohg | Verwendung tertiärer Amine als Stabilisatoren für Wasserglassysteme |
KR100638157B1 (ko) * | 2003-09-04 | 2006-10-26 | 주고꾸 도료 가부시키가이샤 | 1차 방청도료 조성물 및 1차 방청도막을 갖는 강판 |
US20050191503A1 (en) * | 2004-02-27 | 2005-09-01 | Jones Brian A. | Polycarbosilane treatment of substrates |
WO2006069376A2 (en) * | 2004-12-22 | 2006-06-29 | University Of Cincinnati | Improved superprimer |
HRP20110603T1 (hr) | 2005-01-25 | 2011-09-30 | Sigma Coatings B.V. | Sastav veziva |
FR2884739B1 (fr) * | 2005-04-20 | 2007-06-29 | Pechiney Electrometallurgie So | Produits du type "dry-spray" pour la protection des moules de coulee centrifugee des tuyaux de fonte, en association avec un produit du type "wet-spray" |
JP4806995B2 (ja) * | 2005-08-04 | 2011-11-02 | 住友金属工業株式会社 | レーザー切断用鋼材とそのための塗料組成物 |
DE102006002545A1 (de) * | 2006-01-18 | 2007-07-19 | Ewald Dörken Ag | Siliziumbasiertes Korrosionsschutzmittel |
TWI477565B (zh) | 2007-04-19 | 2015-03-21 | Akzo Nobel Coatings Int Bv | 用於金屬基材之塗料組合物 |
DE602008006076D1 (en) * | 2007-07-09 | 2011-05-19 | Sappi Netherlands Services Bv | Papier für offsetdruck |
CH704939B1 (de) * | 2008-03-10 | 2012-11-15 | Akzo Nobel Chemicals Int Bv | Lichtdurchlässiges Hitzeschutzelement mit aluminat- oder boratmodifiziertem Siliziumdioxid. |
JP5467431B2 (ja) * | 2008-04-04 | 2014-04-09 | 敏倫 森実 | 水系無機ジンクリッチ塗料組成物 |
GB2473002A (en) * | 2009-08-25 | 2011-03-02 | Nippon Sheet Glass Co Ltd | Reinforcement structure for rubber articles and methods of preparation |
JP5340090B2 (ja) * | 2009-09-10 | 2013-11-13 | アイシン化工株式会社 | 水性コーティング剤及びコーティング膜 |
DE102011084183A1 (de) | 2011-03-25 | 2012-09-27 | Evonik Degussa Gmbh | Wässrige Korrosionsschutzformulierung auf Silanebasis |
CN102607323A (zh) * | 2011-12-18 | 2012-07-25 | 镇江市清源科技工程有限公司 | 一种板式换热器的金属板 |
ES2602553T5 (es) * | 2012-09-28 | 2020-05-29 | Henkel Ag & Co Kgaa | Composición alcalina de pasivación a base de vidrio soluble |
CN103788734B (zh) * | 2012-11-02 | 2017-10-27 | 中冶建筑研究总院有限公司 | 一种水性无机富锌涂料及其制备方法 |
WO2014126584A1 (en) * | 2013-02-15 | 2014-08-21 | Latitude 18, Inc. | Inorganic coating and composition |
JP5568191B1 (ja) * | 2014-03-19 | 2014-08-06 | 日新製鋼株式会社 | 塗装鋼板および外装建材 |
CN107531574B (zh) * | 2015-03-13 | 2021-03-23 | 普莱克斯S.T.技术有限公司 | 不含铬酸盐的陶瓷涂层组合物 |
WO2017009032A1 (de) * | 2015-07-10 | 2017-01-19 | Evonik Degussa Gmbh | Metalloxid enthaltende dispersion mit hoher salzstabilität |
PL3319906T3 (pl) * | 2015-07-10 | 2022-01-31 | Evonik Operations Gmbh | Zawierająca SiO2 dyspersja o wysokiej stabilności soli |
CN107922199B (zh) * | 2015-07-10 | 2021-12-07 | 赢创运营有限公司 | 具有高盐稳定性的含SiO2的分散体 |
ES2764465T3 (es) * | 2015-07-24 | 2020-06-03 | Onderzoekscentrum Voor Aanwending Van Staal N V | Método para proporcionar un sustrato de acero recubierto de metal de esmalte vítreo con una capa de imprimación libre de Co y Ni y una composición de imprimador para ello |
US10767103B2 (en) | 2015-10-26 | 2020-09-08 | Evonik Operations Gmbh | Method of obtaining mineral oil using a silica fluid |
CN105400331A (zh) * | 2015-12-17 | 2016-03-16 | 常熟市万象涂料有限公司 | 一种底漆 |
EP3199597A1 (en) * | 2016-01-29 | 2017-08-02 | Jotun A/S | Shop primer |
CN106065280A (zh) * | 2016-07-12 | 2016-11-02 | 天长市银狐漆业有限公司 | 一种海船用铁红防锈漆的制备工艺 |
EP3398998A1 (de) | 2017-05-03 | 2018-11-07 | Evonik Degussa GmbH | Wässrige sol-gel-zusammensetzung als lagerstabile vorstufe für zinkstaubfarben |
EP3831980A4 (en) * | 2018-07-31 | 2021-08-25 | JFE Steel Corporation | INSULATING COATING SOLUTION AND GRAIN ORIENTED ELECTRIC STEEL SHEET WITH INSULATING COATING FILM ATTACHED TO IT AND METHOD FOR MANUFACTURING IT |
EP3722374B1 (en) | 2019-04-08 | 2024-09-04 | Hamilton Sundstrand Corporation | Low temperature-cured corrosion inhibition coating |
CN113174152A (zh) * | 2021-04-20 | 2021-07-27 | 厦门大学 | 一种硅酸锂系渗透型防护涂料组合物及其制备方法 |
US20230086092A1 (en) * | 2021-09-17 | 2023-03-23 | Z Technologies Corporation | Solvent reducable urethane coating |
CN115873428B (zh) * | 2022-10-27 | 2023-08-22 | 陕西宝光陶瓷科技有限公司 | 一种用于陶瓷烧结垫块的涂覆溶液及其制备方法和应用 |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2998328A (en) | 1957-07-22 | 1961-08-29 | Amercoat Corp | Protective coating and method of producing same |
US3142583A (en) * | 1960-04-05 | 1964-07-28 | Walter M Mcmahon | Inorganic coating composition |
GB997094A (en) | 1960-12-20 | 1965-06-30 | Alex Cameron & Sons Ltd | Improvements in or relating to coating compositions and the like |
US3130061A (en) * | 1961-02-06 | 1964-04-21 | American Pipe & Constr Co | Inorganic coating composition |
US3258346A (en) | 1961-04-27 | 1966-06-28 | Ind Metal Protectives Inc | Curing materials and method for silicate coatings |
US3180746A (en) | 1961-08-03 | 1965-04-27 | Exxon Research Engineering Co | Protective coating |
NL124542C (pl) | 1963-01-30 | |||
US3345194A (en) | 1963-09-24 | 1967-10-03 | Philadelphia Quartz Co | Organic ammonium silicate coating compositions |
US3392039A (en) | 1964-12-17 | 1968-07-09 | Philadelphia Quartz Company Of | Lithium silicate composition |
US3455709A (en) | 1965-04-02 | 1969-07-15 | Du Pont | Self-curing inorganic zinc-rich paint |
US3522066A (en) | 1966-12-06 | 1970-07-28 | Lithium Corp | Process for preparing aqueous mixed lithium and sodium (and/or potassium) silicate solutions |
US3549375A (en) | 1967-05-08 | 1970-12-22 | Gaf Corp | Antistatic photographic film |
DE1669187B2 (de) | 1967-08-18 | 1977-02-24 | Henkel & Cie GmbH, 4000 Düsseldorf | Metallstaubhaltige anstrichmittel |
US3620784A (en) | 1968-01-24 | 1971-11-16 | Nasa | Potassium silicate-zinc coatings |
US3721574A (en) * | 1968-08-06 | 1973-03-20 | R Schneider | Silicate coatings compositions |
US3634286A (en) * | 1969-07-09 | 1972-01-11 | Du Pont | Stable homogeneous suspension of silicaphosphate composition and method of preparation |
US3977888A (en) | 1969-12-08 | 1976-08-31 | Kansai Paint Company, Ltd. | Inorganic coating compositions with alkali silicate |
US3715224A (en) | 1970-06-12 | 1973-02-06 | Corning Glass Works | Soluble and colloidal silicates |
JPS4837327B1 (pl) | 1970-06-25 | 1973-11-10 | ||
US3745126A (en) * | 1971-04-22 | 1973-07-10 | Du Pont | Stable positively charged alumina coated silica sols |
US4006030A (en) | 1972-11-21 | 1977-02-01 | Nissan Chemical Industries, Ltd. | Method of preventing deterioration of inorganic substrate surface |
US3893864A (en) | 1973-12-20 | 1975-07-08 | Exxon Research Engineering Co | Quick-curing water resistant silica-alkali metal coatings and processes therefor |
US4086096A (en) | 1975-01-21 | 1978-04-25 | Mobile Oil Corporation | Coating composition |
SU583182A1 (ru) * | 1975-04-14 | 1977-12-05 | Научно-Исследовательский И Конструкторско-Технологический Институт Эмалированного Химического Оборудования | Состав покрыти дл защиты углеродистых сталей от окислени при термообработке |
GB1541022A (en) | 1976-09-23 | 1979-02-21 | Monsanto Europe Sa | Coating compositions |
JPS53123916A (en) * | 1977-04-05 | 1978-10-28 | Fuji Photo Film Co Ltd | Improving method for adhesion resistance of photographic material |
US4162169A (en) | 1977-12-21 | 1979-07-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Alkali-metal silicate binders and methods of manufacture |
US4277284A (en) | 1978-04-28 | 1981-07-07 | Union Carbide Corporation | Single-package zinc-rich coatings |
US4230496A (en) | 1978-09-22 | 1980-10-28 | Pq Corporation | Zinc rich paint vehicle |
KR810001300B1 (ko) | 1978-10-02 | 1981-10-13 | 이께다 에쓰지 | 방청피복조성물(防鯖被覆組成物) |
JPS55106271A (en) | 1979-02-09 | 1980-08-14 | Nippon Oil & Fats Co Ltd | Aqueous inorganic zinc-rich primer |
SU821508A1 (ru) * | 1979-06-27 | 1981-04-15 | Предприятие П/Я В-8173 | Покрытие дл защиты металлов отОКиСлЕНи пРи НАгРЕВЕ |
JPS55100921A (en) * | 1980-01-25 | 1980-08-01 | Nippon Steel Corp | Heat treatment of steel material |
USRE32250E (en) | 1981-03-30 | 1986-09-23 | Dow Corning Corporation | Stabilization of silicates using salts of substituted nitrogen or sulfur containing siliconates |
JPS5844634B2 (ja) | 1981-06-17 | 1983-10-04 | 品川白煉瓦株式会社 | 耐熱性組成物 |
JPS5995971A (ja) * | 1982-11-24 | 1984-06-02 | Inax Corp | 無機質塗膜の形成方法 |
US4479824A (en) | 1983-05-04 | 1984-10-30 | Schutt John B | Silicate binders and coatings |
US4917960A (en) * | 1983-12-29 | 1990-04-17 | Sermatech International, Inc. | Porous coated product |
US4572862A (en) * | 1984-04-25 | 1986-02-25 | Delphic Research Laboratories, Inc. | Fire barrier coating composition containing magnesium oxychlorides and high alumina calcium aluminate cements or magnesium oxysulphate |
JPS6176556A (ja) * | 1984-09-21 | 1986-04-19 | Nippon Oil & Fats Co Ltd | 水系無機質ジンクリツチプライマ− |
JPS61213270A (ja) * | 1985-03-20 | 1986-09-22 | Kansai Paint Co Ltd | 耐熱性防食被覆組成物 |
JPS62127366A (ja) * | 1985-11-26 | 1987-06-09 | Kansai Paint Co Ltd | 無機質亜鉛末塗料 |
KR970000997B1 (ko) | 1987-02-13 | 1997-01-25 | 라보피나 쏘이에떼 아노뉨 | 개선된 예비제조 프라이머(primer) 조성물 |
EP0295834A1 (en) * | 1987-06-16 | 1988-12-21 | Minnesota Mining And Manufacturing Company | High temperature resistant inorganic composition |
US5221497A (en) | 1988-03-16 | 1993-06-22 | Nissan Chemical Industries, Ltd. | Elongated-shaped silica sol and method for preparing the same |
US5246488A (en) | 1988-03-31 | 1993-09-21 | Nippon Paint Co., Ltd. | Temporary rust resisting coating composition |
US4902442A (en) | 1988-10-24 | 1990-02-20 | The Dow Chemical Company | Stabilized mixtures of colloidal silica and soluble silicate and a method of producing porous silica compositions therefrom |
JPH0813348B2 (ja) | 1988-11-08 | 1996-02-14 | シチズン時計株式会社 | 時計ケース等の装身具類の金属表層及びその形成方法 |
JP2852175B2 (ja) | 1992-09-17 | 1999-01-27 | 中国塗料株式会社 | 一次防錆塗料組成物 |
JPH0770476A (ja) * | 1993-09-02 | 1995-03-14 | Chugoku Marine Paints Ltd | 一次防錆塗料組成物 |
JPH09240175A (ja) * | 1996-03-05 | 1997-09-16 | Sekisui Chem Co Ltd | Icカードの製造方法 |
JPH09241531A (ja) * | 1996-03-05 | 1997-09-16 | Inax Corp | 無機質塗膜形成用組成物及び無機質塗膜の形成方法 |
JPH10330646A (ja) * | 1997-06-02 | 1998-12-15 | Shiro Tago | 水性無機質塗料用組成物および塗膜形成方法 |
US5888280A (en) | 1997-06-18 | 1999-03-30 | Ameron International Corporation | Protective coating composition with early water resistance |
JP2000109722A (ja) * | 1998-10-05 | 2000-04-18 | Nippon Paint Co Ltd | 無機質水性塗料組成物およびそれを用いた無機塗膜形成方法 |
DK1177260T3 (da) * | 1999-03-18 | 2005-04-11 | Akzo Nobel Coatings Int Bv | Grunding af stål |
US6468336B1 (en) | 1999-05-26 | 2002-10-22 | J.C. Hempel's Skibsfarve-Fabrik A/S | Water-borne zinc silicate shop primers |
US6329059B1 (en) | 1999-11-12 | 2001-12-11 | Amsil Ltd. | Polymeric composition having self-extinguishing properties |
EP1178093B1 (en) | 1999-12-20 | 2004-03-10 | Kansai Paint Co., Ltd. | Coating composition and coated metal plate with coating film obtained therefrom |
AU8847101A (en) * | 2000-08-31 | 2002-03-13 | Rtp Pharma Inc | Milled particles |
JP5207575B2 (ja) | 2000-09-13 | 2013-06-12 | アクゾ ノーベル ナムローゼ フェンノートシャップ | 鋼のプライマーコーティング |
-
2001
- 2001-09-11 JP JP2002526988A patent/JP5207575B2/ja not_active Expired - Lifetime
- 2001-09-11 PL PL360653A patent/PL217946B1/pl unknown
- 2001-09-11 EP EP01974247A patent/EP1317515B1/en not_active Expired - Lifetime
- 2001-09-11 AT AT01974247T patent/ATE313602T1/de not_active IP Right Cessation
- 2001-09-11 DE DE60116117T patent/DE60116117T2/de not_active Expired - Lifetime
- 2001-09-11 BR BRPI0113808-1A patent/BR0113808B1/pt not_active IP Right Cessation
- 2001-09-11 CA CA002421944A patent/CA2421944C/en not_active Expired - Fee Related
- 2001-09-11 WO PCT/EP2001/010552 patent/WO2002022745A1/en active IP Right Grant
- 2001-09-11 RU RU2003110418/04A patent/RU2269555C2/ru not_active IP Right Cessation
- 2001-09-11 MX MXPA03002172A patent/MXPA03002172A/es not_active Application Discontinuation
- 2001-09-11 KR KR1020037003206A patent/KR100802886B1/ko not_active Expired - Lifetime
- 2001-09-11 AU AU9381001A patent/AU9381001A/xx active Pending
- 2001-09-11 AU AU2001293810A patent/AU2001293810B2/en not_active Ceased
- 2001-09-11 ES ES01974247T patent/ES2253428T3/es not_active Expired - Lifetime
- 2001-09-11 DK DK01974247T patent/DK1317515T3/da active
- 2001-09-11 US US10/380,129 patent/US8048215B2/en not_active Expired - Fee Related
- 2001-09-11 CN CNB018155758A patent/CN1226356C/zh not_active Expired - Lifetime
- 2001-12-05 TW TW090130108A patent/TW555823B/zh not_active IP Right Cessation
-
2003
- 2003-03-12 NO NO20031125A patent/NO333682B1/no not_active IP Right Cessation
- 2003-03-12 ZA ZA200302007A patent/ZA200302007B/en unknown
Also Published As
Publication number | Publication date |
---|---|
US8048215B2 (en) | 2011-11-01 |
ATE313602T1 (de) | 2006-01-15 |
NO20031125L (no) | 2003-05-12 |
CN1455805A (zh) | 2003-11-12 |
CN1226356C (zh) | 2005-11-09 |
ZA200302007B (en) | 2004-06-25 |
KR100802886B1 (ko) | 2008-02-13 |
AU2001293810B2 (en) | 2006-09-28 |
TW555823B (en) | 2003-10-01 |
DE60116117D1 (de) | 2006-01-26 |
NO20031125D0 (no) | 2003-03-12 |
JP5207575B2 (ja) | 2013-06-12 |
DE60116117T2 (de) | 2006-08-31 |
PL360653A1 (pl) | 2004-09-20 |
CA2421944A1 (en) | 2002-03-21 |
MXPA03002172A (es) | 2003-07-24 |
EP1317515A1 (en) | 2003-06-11 |
BR0113808B1 (pt) | 2012-07-24 |
US20040037964A1 (en) | 2004-02-26 |
KR20030034168A (ko) | 2003-05-01 |
BR0113808A (pt) | 2003-07-29 |
JP2004509228A (ja) | 2004-03-25 |
NO333682B1 (no) | 2013-08-12 |
CA2421944C (en) | 2009-11-24 |
WO2002022745A1 (en) | 2002-03-21 |
ES2253428T3 (es) | 2006-06-01 |
DK1317515T3 (da) | 2006-05-01 |
EP1317515B1 (en) | 2005-12-21 |
AU9381001A (en) | 2002-03-26 |
HK1057229A1 (en) | 2004-03-19 |
RU2269555C2 (ru) | 2006-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL217946B1 (pl) | Sposób pokrywania podłoża ze stali przeznaczonego do dalszej obróbki i powlekania oraz kompozycja powłoki podkładowej przeznaczonej na podłoża stalowe | |
EP1179035B1 (en) | Coating composition for metal substrates | |
RU2293750C2 (ru) | Композиция для покрытия для металлических субстратов | |
EP1319049B1 (en) | Primer coating of steel | |
AU2001293810A1 (en) | Primer coating of steel | |
AU2002210505A1 (en) | Primer coating of steel |