KR840001545B1 - 산화막의 광화적 저온 증착법 - Google Patents

산화막의 광화적 저온 증착법 Download PDF

Info

Publication number
KR840001545B1
KR840001545B1 KR1019800004820A KR800004820A KR840001545B1 KR 840001545 B1 KR840001545 B1 KR 840001545B1 KR 1019800004820 A KR1019800004820 A KR 1019800004820A KR 800004820 A KR800004820 A KR 800004820A KR 840001545 B1 KR840001545 B1 KR 840001545B1
Authority
KR
South Korea
Prior art keywords
reaction
sio
present
oxygen
radiation
Prior art date
Application number
KR1019800004820A
Other languages
English (en)
Other versions
KR830004445A (ko
Inventor
더블유 피터즈 존
Original Assignee
휴우즈 애어크라프트 캄파니
애라하이가지안
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴우즈 애어크라프트 캄파니, 애라하이가지안 filed Critical 휴우즈 애어크라프트 캄파니
Publication of KR830004445A publication Critical patent/KR830004445A/ko
Application granted granted Critical
Publication of KR840001545B1 publication Critical patent/KR840001545B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/471Inorganic layers
    • H01L21/473Inorganic layers composed of oxides or glassy oxides or oxide based glass

Abstract

내용 없음.

Description

산화막의 광화적 저온 증착법
제1도는 중성 산소 원자가 산소 함유 선구물질(precursor)의 수은 감광해리(解離)에 의하여 형성되고 도핑(doping) 또는 도핑되지 않은 산화막을 각각 형성하도록 반응되는, 본 발명의 제1 및 제2 실시예에 따른 방법을 수행하기에 양호한 소정 장치의 개략도.
제2도는 중성 산소 원자가 산소 함유 선구물질의 직접 해리에 의하여 형성되고 도핑되지 않은 산화막을 각각 형성하도록 반응되는, 본 발명의제3 및, 4 실시예에 따른 방법을 수행하기에 양호한 장치의 개략도.
본 발명은 일반적으로 반도체 장치의 제조 방법에 관한 것으로, 더욱 상세하게 말하자면 저온 및 비이온화 방사선을 사용하여 선택된 반도체 물질 또는 광학기판의 표면에 유전 산화막을 형성하기 위한 광화학적 증착법에 관한 것이다.
반도체 장치를 제조할 때에는, 기판의 표면을 영구적으로 보호하기 위한 부동층이나 식각, 고상 확산 또는 이온 주입 등과 같은 공정 중의 마스크(msak)전유로서 층을 형성시켜야 할 경우가 있게된다. 이산화실리콘(SiO2)과 같은 산화막을 형성시키는 한 방법은 제임즈 에이. 아미크, 지이·엘·슈네이블 및 제이·엘·보센(James A. Amick, G.L. Schnable, and J.L. Vossen)이 진공과학 기술지(Journal of Vacuum Science Technology), 제14권, 제5호, 1977년 9-10월호, 제1053-1063페이지에 기고한 유전 박막 또는 반도체 장치의 증착기술(Deposition Techniques For Dielectric Films or Semiconductor Devices)”라는 제하의 논문에 기술된 바와 같은 플라즈마-증가 화학 증착법이다. 이러한 플라즈마 증가법에서는실란(SiH4) 및 아산화질소(N2O)와 같은 증기상 반응물이 고주파 방전되어, 반응물이 고주파 방전되어 반응물 개스의 이온화 플라즈마를 생성시킨다. 이때 이온화 반응물들은 바람직한 반응 생성물을 형성하도록 상호작용한다. 그러나, 반응물 개스를 고주파 방전에 노출시키는 결과로, 500Å정도로 낮은 파장을 가지며 X선 지역내로 균일하게 신장되는 고에너지 방사선 뿐만 아니라, 다수의 외부 이온화 중성 입자가 생성되어, 산화물이 생성되는 기판의 표면에 충격을 준다. 기판이 전하 결합 장치 또는 소정의 화합물 반도체(예 : Insb,HgCdTe 또는 GaAs)로 형성된 장치와 같은 감응 장치 형태로 구성되면, 전술한 전하입자 및 바람직하지 못한 방사선은 종종 이 감응 장치에 손상을 주는 경우가 있다. 예를들어, 증착된 산화막은 전하 또는 댕글링 결합(dangling bond)을 포함하는 수가 있는데, 이들 전하 또는 댕글링 결합은 반도체 장치/산화막 경계면에서 높은 표면 상태 밀도(Nss)를 발생시키고 또 이 장치에 전압이 인가될 때 전하를 트렙(trap)시키어 최적한 장치성능을 방해한다. 부수적으로 플라즈마 증가 증착법은 기판의 플라즈마-유도 열이 기판에 의한 고주파에너지의 선택적인 흡수의 결과로서 발생하여, 기판의 온도가 불확실하게 함으로써, 증착된 산화막의 특을 최적하게 하지 못한다는 결점을 갖고 있다.
산화막이 형성되게 하는 다른 방법은 비반응성 또는 반응성 스퍼터링(sputtering) 기술을 사용하는 것이다. 예를들어, 전술한 아미크(Amick) 등의 논문에 기재된 바와 같은 비반응성 스퍼터링 기술에 의하면, SiO2와 같은 선택된 산화물질의 디스크는 아르곤 이온에 의해 충격을 받아, SiO2가 증발되고 이어서 증발된 SiO2는 선택된 기판상에 증착된다. 예를들어 전술한 아미크등의 논문에 기재된 바와 같은 반응성 퍼터링 기술에 의하면, 실리콘 디스크는 산소 이온으로 충격을 받아 실리콘이 증발되고 이어서 증발된 실리콘 이온과 산소 이온은 바람직한 SiO2를 생성하도록 반응하게 된다. 그러나, 이 스퍼터링 기술들은 감응 장치의 전하 충격 또는 방사선 충격으로 인해 감응 장치에 손상을 주는 경우가 허다하다는 점에서 전술한 플라즈마법과 유사하다. 또한 스퍼터링 기술에 의하여 생성된 박막은 과립상으로서 조밀하지 못하고 또 비경성이다(즉, 양호한 광반사성을 갖고 있지 않다)
스퍼터링법 및플라즈마 증가법에 의한 화학증착법은 선정된 도핑제 물질(dopant material)을 혼합한 유전막을 증착시키는데 사용될 수 있다. 전자의 경우에는 적결히 도핑처리한 타켓트가 선정된 이온으로 충격을 받을 수 있다. 후자의 경우에는, 도핑제 포함물질이 이온화되는 반응물 개스에 추가된다. 그러나, 전술한 스퍼터링법과 플라즈마 증가법은 전술한 난문제 특히 전하 충격이나 방사선 충격 및 기판의 플라즈마-유도 열로 인한 손상으로 곤란을 받고 있다.
산화막이 형성되게 하는 또다른 방법은 전술한 아미크등의 논문에 기술된 바와 같은 열처리 방법을 사용하는 것이다. 예를 들어, 열처리에 의하여 SiO2를 형성하기 위하여, 저온에서 실란을 산소와 접촉시키면 자연 반응이 일어나 SiO2가 형성된다 그러나, 열처리에 의하여 형성된 박막은 통상과립상으로서, 양호한 접착력을 갖지 못하고, 트렙(trap)들을 결합시키려고 한다.
본 발명의 목적은 감응 장치에 산화막을 형성하는 동안의 전하 충격 또는 방사선 충격으로 인해 감응 장치가 손상을 입는 종래기술의 단점을 완화시키려는 것이다.
본 발명의 주요 목적은 광학적 저온 증착법에 의하여 선택된 기판의 표면에 선정된 물질의 산화막을 증착시키기 위한 새롭고 개량된 방법을 제공하는 것이다. 이 방법은, 전술한 종래 기술의 산화막 증착법의 대부분의 장점을 갖고 전술한 많은 결점들을 해소시킨다.
본 발명의 전술한 주요 목적은 광화학적으로 발생한 중성(비이온성) 산소 원자의 존재시에 기판을 선택 증기상 반응물에 노출시킴으로써 달성된다. 산소원자는 기판상에 막으로서 증착되는 바람직한 산화물을 형성하도록 증기상 반응물과 반응한다. 광화학적으로 발생된 중성산소 원자를 사용하면 전하충격이나 방사선충격으로 인한 기판의 손상이 생기지 않게 된다. 따라서, 본 발명의 목적은 전하 또는 방사선 충격에 의한 기판의 손상을 회피할 수 있는 신규의 화학적 저온 증착법에 의하여 선택된 기판의 표면에 선정된 물질의 산화막을 증착시키기 위한 새롭고 개량된 방법을 제공하는 것이다.
본 발명의 다른 목적은 산화물/반도체 기판 경계면에서의 표면 상태 밀도값을 최소화시키어, 증착된 산화막 내의 전하트 렙을 최소화시키는 방법을 제공하는 것이다.
또다른 목적은 증착된산화막 내의 저밀도의 발생/재결합 중심을 발생시킴으로써 소수의 캐리어 수명을 양호하게 하고 본 발명의 이 방법에 의하여 형성된 장치 내에서의 방사선 손상에 대한 민감성을 경감시키는 방법을 제공하는 것이다.
또 다른 목적은 실온(예컨대, 30℃) 정도의 저온에서 실시하여 임계이동의 문제를 제거시키고 고온에서의 고밀도/고속 장치의 제조시에 생기는 장치의 생산량의 감소 문제를 제거시키는 방법을 제공하는 것이다.
본 발명의 또다른 목적은 선택된 기판상에 조밀한 비-과립상 점착산화 박막을 생성하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 기판에 전하 충격 및 방사선 충격으로 인한 손상을 주지 않는 화학적 증착법에 의하여 선택된 도핑제를 함유하는 선정된 산화막을 기판의 표면에 증착시키기 위한 새롭고 개량된 방법을 제공하는 것이다.
또 다른 목적은 광화학 기술을 이용하여 선택된 도핑제를 함유하는 선정된 산화막을 기판의 표면에 증착시키기 위한 새롭고 개량된 방법을 제공하는 것이다.
이제, 본 발명의 양호한 실시예를 도시한 첨부된 도면을 참조하여 본 발명의 전술한 목적과 그외의 다른목적, 특징 및 장점에 대해서 상술하겠다.
제1도는 아산화질소(N2O), 분자상 산소(O2) 또는 이산화질소(NO2)와 같은 화학적으로 반응성이 없는 산소 함유 선구 물질의 수은 감광해리에 의하여 중성 산소 원자가 생성되는 본 발명의 2개의 방법 실시 예를 실시하는데 적합한 장치의 개략도를 도시한 것이다(본 명세서에서 사용된 화학적으로 반응성이 없는이란 용어는 물질이 정상적인 혼합 상태하에서 지정된 반응물과 반응하지 않는다는 것을 의미한다). 화학 증착반응인 일어나는 반응실(10)은 이 반응실(10)의 상부면과 일체로 된 석영창(12)를 갖추고 있다. 이 석영창(12)는 후술하는 바람직한 광화학 반응을 개시하는데 방사선의 선택된 파장을 투과시키고, 선택된 파장의 이 방사선(14)는 예를들어 저압 수은 증기아아크 램프 배열로 될 수 있는 방사선 발생장치에 의하여 발생된다. 반응실(10)내에는 바람직한 산화막을 상부에 증착시키는 기판(20)을 수용하는 기판 홀더(18)이 있다.
반응실(10)의 외부의 저부면 부근에는, 예를들오 니크롬선으로 형성될 수 있고 제어 전압을 인가함으로써 작동되는 가열 소자(21)이 있다. 이 가열 소자(21)은 밀도와 같은 증착막의 적당한 특성이 얻어질 수 있도록 기판(20)을 필요한 온도로 가열시키기 위해 임의로 사용될 수 있다. 반응실(10)내의 온도는 실온 정도의 저온(즉, 30℃) 또는 필요한 만큼의 고온(예를들어, 300℃ 이상)으로 유지될 수 있다. 그러나 수은 증기 아아크 램프는 예를 들어 증가된 온도에서 효율성이 적게 되므로 외부 수냉원이나 외부 기냉원 또는 질소냉원을 갖추어 이 램프들을 냉각시키고 소정의 상승 온도(예를들어, 600℃ 이상)에서 기판(20) 및 기판홀더(18)에 의하여 발생된 방사열을 제거시켜야 한다. 이 목적을 위하여, 방사선 발생 장치(16)은 알루미늄 덮개(23)내에 완전히 수용되고, 제1도에 도시한 바와 같은 통수관 또는 질소 유통관과 같은 외부 냉각 장치(25)는 덮개을 냉각시키도록 작동된다. 덮개(23)을 냉각시키도록 작동된다. 덮개(23)은 석영창를(12)둘 러싸고 있는 반응실(10)의 외면에 고착되어 있으나, 필요에 따라 제거할 수도 있다. 그러므로, 처리 온도는 램프 성능을 효율적으로 제공하기 위해 램프를 충분히 냉각시킬 수 있는 레벨로 유지된다. 또한 덮개(23)은 방사선(14)로부터 작업자의 눈을 보호해 주는 역할로 한다. 반응실(10)으로부터는 관(22)가 도출되는데, 이 관은 밸브(24)를 통하여 증착 반응을 일으킬 수 있도록 반응실(10)을 충분히 저압으로 진공화 시키는 펌프 등의 진공 발생 장치(도시하지 않았음)에 접속된다.
반응실(10)의 외부에는 선택된 화학 증착 반응에 필요한 각각의 반응 개스, 예를 들어 실란과 아산화질소를 함유하는 반응 개스실(26), (28)이 있다. 이 반응 개스실(26), (28)은 도관(34)에 도입되는 반응물질의 양을 제어하는 데 사용되는 제어 밸브 또는 유량계(30), (32)에 각각 접속된다. 선택적으로, 다음에 설명하는 본 발명의 제2방법 실시예의 경우에는, 포스핀 등의 선택된 도핑제의 선구 물질을 함유하는 제3의 반응 개스실(27)과, 선구물질을 전술한 다른 반응 개스와 혼합시키는 도관(34)로 이 개스실(27)로부터 도입되는 도핑제 선구물질의 양을 제어하는 대응하는 제어 밸브 또는 유량계(31)을 포함한다.
반응 개스는 도관(34)를 통하여 30℃, 10-3토르(torr)의 증기 압력에서 상부에 수은증기를 가진 수은조(pool)를 함유하는 반응 개스실(36)에 유입된다. 그러므로 반응 개스는 반응 개스실(36)내에서 수은 증기와 혼합되고, 그 다음 이 반응 개스 혼합물(38)은 도관을 통하여 화학 증착 반응이 일어나게 되는 반응실(10)으로 도입된다. 제1도에 도시한 장치의 구성 부품은 별도로 나타내지 않는 한 스테인레스강 또는 알루미늄으로 구성된다. 제1도에 도시한 장치는 광화학 반응 공정 중에 반응 개스가 연속적으로 유입되고 반응부산물이 제거되는 저압 연속 유동식 광화학 반응기 시스템 용이나, 지정된 반응물의 양이 반응실내에 도입되고 반응 개스 유입이 정지된 다음 광화학 반응 공정이 일어나게 되는 정지식 광화학 반응기 시스템용으로 사용될 수 있다.
원자상 산소의 광화학적 발생에 좌우되며 단지 2개의 반응 개스실(26 및 28)만을 가진 제1도 장치를 사용하는 본 발명의 제1실시예에 따라 본 발명을 실시할 때, 화학 증착 공정은 일반적으로 저압식 화학 증착법에 관하여 논술한 진공화학 기술지(Journal of Vacuum Science Technology), 제14권, 제5호(1977년 9-10월호), 제 1082-1099페이지에 “개량된 부동 박막 증착방법(Advances in Depos ition Processes of Passivation Film)”이라는 명칭으로 워어너 커언 및 리차드 에스. 로즐러(Werner Kern and Richard S. Rolser)가 기재한 방법대로 실시된다. 반응실(10)은 진공 발생 장치에 의해 선정된 압력, 예를 들어 내지 4토트의 압력으로 진공화된다. 선택된 증기상 반응 물질, 예를들어 SiH4는 반응 개스실(28)과 같은 개스실내에 배치되고, 화학적으로 반응성이 없는 산소 함유 선구 물질, 예를들어 NO2는 반응 개스실(26)과 같은 반응 개스실내에 있게된다. 밸브(30) 및 (32)는 각각 반응 개스실(26) 및 (28)로부터의 반응 물질이 선정된 비율 및 선정된 유량으로 도관(34)를 통과한 다음, 수은조를 함유한, 반응 개스실(36)내에 유입되도록 셋트된다. 이 반응 개스들은 반응 개스실(36)내에서 수은 증기와 혼합되어 이 반응 개스실(36)으로부터 도관(38)을 통하여 거의 실온(예를들어, 30℃) 또는 200℃ 이상으로 유지되는 반응실(10)에 도입된다. 방사선 발생 장치(16)은 작동되어 바람직한 광화학 반응을 일으키는데 필요한 선택된 파장(예를 들어, 여기 상태에서 수은을 발생하기 위한 2537Å)의 방사선)(14)를 발생시킨다. 방사선(14)는 석영창(12)를 통하여 반응기(10)내로 유입되어, 하기 반응식(1)에 나타낸 바와같이, 여기 상태의 수은 원자(Hg*)를 형성하도록 반응개스 혼합물 중의 수은(Hg) 원자를 여기시킨다(이온화되지 않은 통상의 접지 상태에서 약 5eV 이상임). 그다음 Hg*는 N2O 등의 산소 함유 선구 물질과 충돌하여, 선구물질을 해리시킴으로써 하기 반응식(2a)에서와 같이 원자상 산소(O)를 발생시킨다.
또한, Hg*는 하기 반응식(2a)에 나타낸 바와 같이 반응기, 예를 들어 SiH3를 생성하도록 SiH4와 같은 선택된 증기상 반응물질과 반응한다. 최종적으로, 원자상 산소는 하기 반응식(3a) 및 (3b)에서와 같이 SiO 와 SiO2와 같은 바람직한 산화물을 생성하도록 반응물질 SiH4또는 반응기 ·SiH3와 반응한다. SiO 또는 SiO2는 SiH4와 N2O의 반응 개스 비율(즉, SiH4를 산화시키는 원자상 산소의 정상 상태의 농도)에 따라 생성될 수 있다.
Figure kpo00001
Figure kpo00002
반응기 ·SiH3를 형성하기 위한 Hg*와 SiH4와의 반응은 본 발명의 방법에는 불필요한 부반응이지만 주반응 경로와 동일한 목적 생성물을 생성시킨다. 상기 반응식(2a)에서 얻은 원자상 산소는 상기 방정식(3a)에 기재한 바와 같이, 처음에 중간기를 생성하는 일이 없이 선택된 증기 상반응 물질과직 접반응한다.
선택적으로, 본 발명의 제1방법 실시예에 필요한 원자상 산소는 원자상 산소와 NO를 생성하도록 이산화질소(NO2)의 수은 감응 해리에 의하여 형성될 수 있다. 또한 원자상 산소는 다음 반응식(4) 및 (5)에 따른 분자상 산소의 수은 감응해리에 의해서, 또는 광화학법에 의하여 원자상 산소를 생성하는 공지된 다른 수단에 의해서 생성될 수도 있다.
Figure kpo00003
분자상 산소는 종전 기술의 열산화 공정과 관련하여 설명한 바와 같이, SiH4와 자발적으로 반응하므로, 본 발명 방법에 따라 원자상 산소를 생성하고 SiH4와 반응시키기 위해 이러한 산열화 공정을 예방시켜야 한다. 이러한 예방은, 후술하는 실시예 3에서 더욱 상세하게 설명하는 바와 같이, 조작압력과 반응 개스의 비율을 조심스럽게 조정함으로써 달성될 수 있다. 이러한 공정 매개 변수를 조정함으로써 열산화 공정은 완전히 억제되며, 어떠한 방해 공정도 생기는 일이 없이 본 발명의 산화공정이 일어나게 된다.
본 발명의 전술한 공정에 의하면, 산소원자는 중성 입자만을 생성하는 광화학 공정에 의하여 생성된다. 따라서, 기판에 충격을 주는 전하 입자와 고에너지 방사선의 발생에 관련된 공지 기술의 문제점들이 방지된다. 화물/반도체 기판 경제면에서의 표면 상태 밀도(Nss)와 산화층 또는 절연층 내의 전하 트랩은 본 발명의 방법에 의하여 최소화된다. 부수적으로, 저밀도의 발생 재결합 중심들 [즉, 댕글링 결합 또는 트랩]이 생기므로 본 발명의 방법으로 형성된 장치 내에서의 소수 캐리어의 수명이 양호하게 된다. 또한, 본 발명의 방법은 산화막 또는 절연층을 증착하는 동안의 댕글링 결합 및 트랩의 생성을 최소화시킴으로써 방사선(즉, 코발트-60 발생원으로부터 생성된 것)에 기인하는 장치 손상을 더욱 보호한다. 이 트랩과 댕글링결합은 통상적으로 장치에 대한 방사선 손상의 가능성을 증가시키므로, 이것들을 최소화시키면 방사선 손상의 가능성을 감소시키게 된다. 더우기, 본 발명의 방법은 비교적 저온, 즉 실온 정도의 저온에서 수행되므로 경계변동의 문제를 제거시키고, 초대형 집적회로와 초고속 집적회로 등과 같은 고밀도 장치의 고온 제조시에 생기는 장치 생산량 감소의 문제점을 제거시킨다. 그밖에도, 본 명세서에 기재한 방법에서는 기판에 의한 방사선의 선택적인 흡수가 생기지 않으므로, 플라즈마 유도 가열의 종전 기술의 문제점이 방지된다. 또한, 본 발명의 방법은 전술한 종래 기술에서 가끔 당하게 되는 문제점인 반응실 벽면 상에 입자 형성이 없게 된다. 결국, 본 발명의 방법에 의하여 형성된 산화막은 조직이 치밀하며 비과립 상으로서 스크래치(긁기) 내성과 반사성이 있고 무공성이며, 반도체, 금속 및 무기물 표면 등의 각종 표면에 대한 접착력이 대단히 크다. 이러한 산화막은 집적회로 장치내에 부동층으로서 뿐만 아니라 게이트 절연층으로서 사용될 수 있다. 더우기, 이 산화막들은 집적회로와 하이브리드 마이크로 회로상의 공형(conformal)피막으로서도 사용될 수 있다. 또한 이 산화막들은 HgCdTe 광전도 및 광전지 장치의 구성시에 사용될 수 있다. 본 발명의 이 제1방법 실시예 및 후술할 관련된 제3방법 실시예는, 본 발명자가 아는 한, 기판상에 유전층을 증착시키기 위한 광화학법을 사용하는 최초의 예이다.
전술한 방법을 사용하면 본 발명은 트리메틸 알르미늄(CH3)3Al을 Al2O3으로, 트리메틸갈륨 (CH3)3Ga을 Ca2O3으로, 게르만 GeH4를 GeO2로, 디보란 B2H6을 B2O3로, 트리메틸인듐 (CH3)3In을 In2O3으로, 삼염화티타늄 TiCl4을 TiO2로, 육불화텅그스텐 WF6을 W2O3로, 수소하프늄 HfH4을 HfO2로 산화시키는 데에도 사용될 수 있다. 본 발명의 이 제1방법 실시예는 후술하는 예 1에 기재되어 있다.
더우기, 본 발명의 제2 실시예에 따라 수행되는 방법은 산화막의 물성, 전기 특성 또는 광학특성을 변경시키기 위해 선택된 도핑제를 결합시킨 산화막을 선택된 기판의 표면상에 증착시키도록 3개의 반응 개스실(반응 개스실 26,27 및 28)을 가진 제1도 장치를 사용하여, 상술한 본 발명을 실시함으로써 실시될 수 있다. 본 발명 방법의 제2 방법 실시 예를 수행하기 위해서, SiH4등의 선정된 증기상 반응 물질은, 동시에 형성되고 광화학적으로 생성된 중성 산소 원자 및 인함유 포스피닐기와 같은 선택된 도핑제의 중성원자 또는 단편에 노출된다. 중성 원자 입자는 아산화질소(N2O) 등의 화학적으로 비반응성인 산소함유 선구 물질 및 포스핀(PH3) 등의 화학적으로 비반응성인 도핑제 함유 선구물질을 수은 감광 해리시킴으로써 생성되며 이에 따라 반응식(6) 내지 (8)에 나타낸 바와 같이 원자상 산소와 중성 포스피닐기가 각각 생성된다. 이어서, 이들 원자상 산소와 포스피닐기는 다음 반응식(9)에 나타낸 바와 같이, SiH4를 인으로 도핑시킨 이산화실리콘[Si(P)O2]으로 산화시킨다.
Figure kpo00004
Figure kpo00005
전술한 반응순에 대한 메카니즘상의 별법에서는 다음의 반응식(10) 내지 (12)에 나타낸 바와 같이 원자상 산소에 의하여 SiH4, PH3양자를 동시에 산화시킨다. 그러므로, 원자상 산소만이 하기 반응식(12)에 나타낸 바와같이 바람직한 반응물을 생성하게 된다. 결국, 상기 반응식(8)에서 나타낸 바와 같은 선정된 도핑제의 중성 입자는 본 발명의 제2 방법 실시예의 실시중에 생성시킬 필요가 없을지 모르나 생성되어도 좋다.
Figure kpo00006
본 발명의 이 제2 방법 실시예를 달성하는데 후속되는 공정은 본 발명의 제1방법 실시예와 관련하여 이미 설명한 바와 같이 필수적이다. 다만, 추가적으로, 선택된 도핑제 함유 선구물질의 제어량은 반응 개스실(27)로부터 제어밸브(31)을 통하여 도관(34)에 도입되어 반응 개스실(26) 및 (28)로부터의 반응 개스와 혼합된다.
따라서→본 발명의 이 제2방법 실시예에 의하면, 전하 입자와 고에너지 방사선의 발생 및 그에 따른 기판에 대한 이들의 충격 손상을 방지하는 저온 공정에 따라 도핑된 유전 박막이 증착될 수 있다. 또한 이 실시예는 발명 방법에 의한 비도핑 유전막의 형성파 관련하여 전술한 바 있는 장점을 가지고 있다. 본 발명의 이 제2방법실 시예와 후술하는 관련된 제4방법 실시예는 본 발명자가 아는 한, 도핑 유전막을 증착하기 위해 광화학적 방법을 사용하는 최초의 예라고 할 수 있다.
본 발명의 이 제2 실시예에 따른 방법에 의하면, 대응하는 도핑제 함유 선구물질을 반응 개스 혼합물에 첨가함으로써 증착된 유전막내에 인 이외의 다른 도핑제가 혼합될 수 있다. 예를들어, 디보란(B2H6)은 붕소 도핑용으로, 아르신(AsH3)은 비소 도핑용으로, 스티빈(SbH3)은 안티몬 도핑용으로 셀렌화수소 (H2Se)는 셀렌 도핑용으로, 황화수소(H2S)는 황도핑용으로, 또는 텔루르화수소(H2Te) 텔루륨 도핑용으로 사용될 수 있다. 본 명세서에서 기재한 형식의 감광해리 반응을 일으킬 수 있는 그외의 다른 도핑제 함유 선구물질도 사용될 수 있다. SiO2이외의 다른 유전박막도 전술한 바와 같이 형성될 수 있다. 본 발명의 이 제2 방법실시예는 후술하는 실시예 2에 더욱 상세히 기술되어 있다.
제2도를 참조하면, 산소 함유선구 물질의 직접적인 광화학적 반응에 의하여 중성 산소 원자가 형성되어 수은 감광의 필요성을 제거시킨, 본 발명의 제3 및 제4 방법 실시예를 실시하기에 적합한 장치가 도시되어 있다. 광화학적 증착 반응이 일어나는 응반실(40)에는 이 반응실(40)의 상부 표면과 일체로 구성된 투광창가 제공되어 있다. 형성된 투광창(42)의 재질은 광화학 반응에 사용되는 방사선의 정된 파장을 투과시키는 것으로 선택된다. 선택된 파장을 가진 방사선(42)는 저압 수은 증기 아아크 램프 배열과 같은 방사선 발생기에 의하여 발생되며, 투광창(44)를 통하여 반응실(42)으로 가게된다. 반응실(40)의 내부에는 바람직한 산화막이 상부에 증착되는 기판(50)을 지지하는 기판 홀더(49)이 있다. 반응실(40)외 부의 저부에는 니크롬선으로 구성되고 제어된 전압의 인가에 의하여 작동되는 가열 소자(51)이 있다. 이 가열 소자(51)은 바람직한 특성을 가진 증착막을 형성하기 위하여 기판(50)을 소정의 온도로 예열하도록 광학적으로 사용될 수 있다.
본발명을 실시할 때, 반응실 내의 온도는 실온 정도의 저온 또는 200℃의 고온으로 유지될 수 있다. 제1도와 관련하여 이미 설명한 바와 같이 방사선 발생기(46)을 필요한 만큼 냉각시키기 위해서, 방사선 발생기(46)은 알루미늄제 덮개(53)내에 완전히 밀폐되고, 제2도에 나타낸 바와 같이 물 또는 질소 개스를 유출시키는 파이프와 같은 외부 냉각장치(55)는 덮개(53)을 냉각시키도록 작동된다. 덮개(53)은 방사선(44, 예를 들어, 1849Å방사선)이 개방된 대기 중에서 분자상 산소와 접촉하고, 그 분자상 산소가 대기중에서 다시 추가의 분자상 산소와 반응하여 오존을 생성하는 경우의 오존 생성 제거 기능도 추가로 수행한다. 덮개(53)은 석영창(42)를 둘러싸고 있는 반응실(40)의 외면에 착탈 가능하게 부착되어 있다.
반응실(40)으로부터는 도관(52)가 도출되는데, 이 도관은 밸브(54)를 통하여 진공 발생기, 예를 들어 진공 펌프(도시하지 않음)에 접속된다. 이 진공 펌프는 증착반응이 생기도록 저압(예를들어, 1-4토르)으로 반응실(40)을 충분히 진공화시키는데 사용된다.
반응실(40)의 외부에는 바람직한 광화학 반응을 발생시키기 위해 실란(SiH4)와 아산화질소(N2O)등의 각개의 선택된 반응 개스를 함유하는 반응 개스실(56) 및 (58)이 각각 마련되어 있다. 반응 개스실(56) 및 (58)은 도관(64)에 도입되는 반응 물질의 양을 제어하기 위해 사용되는 제어 밸브 또는 유량계(6) 및(62)에 각각 접속된다. 선택적으로, 본 발명의 제4 방법 실시예 (후술함)에 의하면, 포스핀 등의 선택된 도핑제의 선구물질을 함유하는 제3의 반응, 개스실(57)과 그 선구물질파 전술한 다른 반응 개스가 혼합되는 도관(64)로 반응 개스실(57)로부터 도입되는 도핑제 선구물질의 양을 제어하는 대응하는 제어 밸브 또는 유량계(61)을 포함한다. 반응 개스는 도관(64)를 통하여 광화학 반응이 일어나는 반응실(40)으로 도입된다. 제2도에 도시한 장치의 구성 성분은 달리 규정되지 않는 한, 스테인레스강 또는 알루미늄으로 구성될 수 있다. 제1도 장치와 관련하여 설명한 바와 같이, 제2도 장치는 연속 유동식 광화학 반응 시스템 용으로 사용될 수 있다.
제2도 장치를 사용하여 본 발명의 제3 실시예에 따라 본 발명을 실시할 때, 제1도 장치의 제1 방법 실시예에서 설명한 일반적인 방법이 뒤따른다. 다만, 감광 반응에 수은은 사용되지 않는다. 밸브(60) 및 (62)는 반응 개스실(56) 및 (58)로부터의 SiH4및 N2O 등의 반응 개스가 각각 선정된 비율과 유속으로 도관를 통하여 반응실(64)에 도입되도록 셋트된다. 방사선 발생기(40)은 작동되어 선택된 산소 함유 선구물질을 직접 해리시키는데 적결한, 선택된 파장(예를 들어, N2O의 경우에는(1750-1950Å)을 가진 방사선(44)를 생성한다. 방사선(44)는 이 방사선(44)의 파장을 투과시키료 재료는 구성된 투광창(42)를 통과한다. 방사선(44)는 N2O 등의 산소 함유 선구 물질을 원자상 산소로 해리시키는 반응실(40)으로 통과된다. 이때 원자상 산소는 SiH4등의 선택된 증기상 반응물질파 반응하여 다음 반응식(13)과 (14)에서와 같이 SiO2및 SiO 등의 바람직한 산화물을 생성시킨다.
Figure kpo00007
선택적으로, 본 발명의 제3 방법 실시예에 필요한 원자상 산소는 다음 반응식(15)에 나타낸 바와 같은 분자상 산소의 직접적인 광화학적 해리 또는 반응식(16)에 나타낸 바와 같은 이산화 질소의 직접적인 광화학적 해리 또는 직접적인 광화학적 공정에 의하여 산소로 해리될 수 있는 유사한 공지된 물질의 직접적인 광화학적 해리에 의하여 생성될 수 있다.
Figure kpo00008
분자상 산소가 원자상 산소의 공급원으로 사용될 경우, 동작압력과 반응개스 비율은 본 발명의 선택적인 방법 실시예에 관련하여 이미 설명하고 하기 실시예 3에 기술한 바와 같이 O2에 의한 SiH4의 자발적인 열산화를 억제시키기 위해 조심스럽게 제어되어야 한다.
본 발명의 이러한 제3 실시예에 따라 상술한 방법에 의하면, 산소 원자는 중성 입자만을 생성하는 광화학 공정에 의하여 발생한다. 그러므로, 전하 입자의 발생에 기인하는 전술한 공지기술의 문제점과 고에너지 방사선 및 이들의 기판에 대한 충격이 회피될 수 있다. 본 발명의 이 제3 방법 실시예의 장점은 제1도와 관련하여 설명한 제1 방법 실시예와 동일하다. 또한, 이 제3 실시에는 수은 감광이 불필요하다는 장점이 있으므로 증착 산화물에 대한 수은 오염의 가능성이 방지될 수 있다. 더우기, 이 제3 실시예에 따른 방법을 수행하기 위한 장치는 수은을 사용하여야 하는 장치보다 덜 복잡하다.
전술한 방법을 사용하면, 본 발명은 제도와 관련하여 설명한기 상반응 물질을 사용하여, 갈륨, 게르마늄 붕소 및 인듐의 유전성 산화물과 알루미늄, 텅스텐, 티탄 및 하프늄의 금속산화물을 피착시키는 데 이용될 수도 있다. 본 발명의 이 제3 방법 실시예는 하기 실시예 3에 기술되어 있다.
또한, 본 발명의 제4 실시예에 따른 방법은 기판 표면상에 선택된 도핑제와 혼합된 산화막을 증착시키도록 3개의 반응 개스실(반응 개스실 56,57 및 58)을 가진 제2도 장치를 사용하여 상술한 바와 같이 본 발명을 실시함으로써 수행될 수 있다. 본 발명의 이 제4 방법 실시예를 실시하기 위해서, SiH4등의 선택된 증기상 반응물질은 포스핀(PH3(등의 도핑제 함유 선구물질의 존재하에 광화학적으로 발생된 중성 산소 원자에 노출된다. 중성의 원자상 산소는 하기 반응식(17)에서 나타낸 바와 같이 선택된 파장의 방사선에 의하여 N2O 등의 산소함유 선구물질을 직접 해리함으로써 발생된다. 이때, 원자상 산소는 동시에 SiH4와 PH3를 산화시켜서 다음 반응식(18)에서와 같이 바람직하게 인으로 도핑된 SiO2를 생성한다.
Figure kpo00009
상기 반응예의 별법에서는 다음 반응식(19)에 나타낸 바와 같이, 포스핀 등의 도핑제 함유 선구물질을 직접 해리시켜서 중성 포스피닐기를 생성시킨다. 이와 같이 생성된 포스피닐기와 상기반응식(17)의 직접 해리 반응으로 생성된 원자상 산소는 실란 반응물질파 반응하여 다음 반응식(20)에서와 같이 바람직하게 인으로 도핑된 SiO2를 생성한다.
Figure kpo00010
Figure kpo00011
본 발명의 제3 실시예에 따른 방법을 실시하기 위한 후속공정은 본 발명의 제 방법 실시 예에서 설명한 바와 같이 필수적인 것이다. 다만, 부수적으로 포스핀 개스등의 선정된 도핑제 함유 선구물질의 제어된 양이 반응 개스실(57)로 부터 밸브(61)을 통하여, 이 선구물질이 반응 개스실(56) 및 (58)로부터 나오는 반응 개스와 혼합되는 도관(64)로 도입된다.
그러므로, 본 발명의 제4 방법 실시예에 의하면, 전하 입자와 고에너지 방사선의 발생 및 이들의 기판에 대한 충격 손상을 방지하고 또한 수은감광이 불필요한 저온공정에 의하여 도핑된 유전성 박막이 증착될 수 있다. 이들 장점의 중요성은 본 발명의 제3 방법 실시예에서 이미 설명되었다. 포스핀 이외의 각종 도핑제가 사용될 수 있는 바, 예를들어 디보란, 아르신, 스티빈, 셀렌화수소, 황화수소, 텔루트화수소 또는 원자상 산소와 선택된 기상 반응 물질과의 동시 산화로 바란직한 도핑된 산화막을 생성할 수 있는 그 외의 다른 도핑제함유 선구 물질이 사용될 수 있다. 본 발명의 제4 방법 실시예는 하기 실시예 4에 기술되어 있다.
[실시예 1]
이 실시예는 앞에서 이미 설명한 바와 같은 본 발명의 제1 방법 실시예에 따른 방법의 사용법을 설명하는 것이다.
반응 개스실이 2개 있는 제1도 장치를 사용하여, SiO 및 SiO2를 직경 2인치(5.08cm)의 실리콘 웨이퍼 표면에 각각 증착시켰다. 산소 함유선구물질로서는 아산화질소를 사용하고, 증기상 반응물질로서는 실란을 사용하였다. 반응실(10)은 진공발생기를 사용하여 10-3토르의 압력으로 진공화시킨 다음, 질소로 충전시키고 다시 10-3토르의 압력으로 진공화시켰다. 유량계 (30) 및 (32)를 작동시켜서 반응개스(SiH4N2O)를 선정된 비율로 도관(34)를 통하여 반응 개스실(36)과 반응실(10)에 도입시키고, 반응 개스 유속을 안정화시켰다. 반응실 내의 동작 압력을 밸브(24)에 의하여 약 1토르로 조정하였다. 가열 소자(21)과 냉각 장치(25)를 작동시켰다. 끝으로, 저압식 수은 아아크 공명 램프를 작동시켜서 2537Å으로 방사선을 방출시켰다. 이 방사선은 반응실 내에서 수은 증기에 의하여 흡수되어 광여기 수은 원자를 생성하는데 이 수은 원자는 아산화 질소와 충돌하여 원자상 산소를 생성한다. 이때 원자상 산소는 실란을 산화시켜서 SiO2또는 SiO로 변화시킨다. SiH4대 N2O의 반응 개스 유출비를 매분 표준 입방 센티미터(sccm)로 2sccm 내지 50sccm으로 한 동작 압력 2로르의 연속 유동식 광화학 반응기 시스템을 사용하였을 때, SiO2박막이 생성되었다 연속 유동 시스템에서, SiH4대 N2O의 반응 개스 유출비를 2sccm대 10sccm으로 하였을 때에는, SiO 박막이 생성되었다. 연속 유동 시스템에서는 기판의 온도가 100℃일 때 산화실리콘 박막이 매분 200Å의 비율로 증착되었다. 정지식 광화학 반응 시스템을 사용하여 SiH4대 N2O의 반응 개스비를 3mm 대 12mm로 하였을 때에는 실리콘 웨이퍼 표면에 일산화실리콘(SiO) 박막이 생성되었다. 정지식 반응시스템에서 SiH4대 N2O의 반응 개스비가 3.0mm대 30mm일 경우에는 이산화실리콘 (SiO2) 박막이 실리콘 웨이퍼 표면에 생성되었다.
본 발명의 이 실시예 방법에 의하여 생성된 광증착 산화 실리콘층의 굴절률은 반응 개스 혼합물비 N2O/SiH4의 함수로서 타원도법에 의하여 결정되었다. N2O 비가 많은 혼합물(즉 원자상 산소)은 SiO2의 굴절특성, 즉 굴절률이 1.45인 박막을 생성하였다. N2O가 적은 N2O/SiH4혼합물은 점차적으로 산소 함량이 보다 적은 산화실리콘박막을 생성하며, 궁극적으로 굴절률이 1.88인 SiO를 생성하였다. 완충시킨 HF중에서의 광중착 SiO2물질의 식각비 특성은 저온 플라즈마 기술로 증착시킨 SiO2박막의 식각비 특성에 견줄만하다. 이 박막의 화학량론적 조성은 오오제 전자 분광법(Auger electron spectroscopy)에 의하여 결정하였다. SiO2박막은 우수한 조성/심도 곡선을 나타내고 화학량론적으로 SiO2순품과 등가량이었다. SiO 박막은 SiO 박막의 감감손된 산소 함량 때문에 SiO2박막 보다도 느린 식각률을 나타내었계. 이것은 오오제 전자 분광법에 의하여 확인되었다. 본 발명의 방법에 의하여 생성된 SiO2박막의 항복전압은 3.0×106볼트/cm인 것으로 측정되었고, 유전상수는 약 5.5, 그리고 소실률은 1.5×10-2이었는데, 이들 측정값들은 앞에서 설명한 바 있는 공지의 열처리 법으로 생성시킨 유사한 박막에 대한 측정값들에 비교할만 하였다. 본 발명의 방법으로 생성시킨 SiO2박막의 밀도는 2.3gr/cm3이었다.
본 발명의 전술한 방법으로 생성시킨 SiO2의 광화학적 착막증은 반도체 장치의 부동태, 특히 하감 응식 마이크로 엘렉트론 장치, 예컨대 실리콘 MOS 장치, HgCdTe 관전도 및 광전지 장치 및 GaAs 전계 효과 트랜지스터용의 유전막으로 서응용된다. 이 막들은 이러한 목적에 대하여 1200-1500Å의 일반적인 두께로 증착될 수 있다. 그밖에, 본 발명의 방법은 플라스틱 렌즈 또는 태양 전지를 비롯한 렌즈면에 반사 방지 산화막을 증착시키거나, 거울면에 보호 산화막을 증착시키는데 이용될 수 있다.
전술한 방법을 사용하여, 그와 유사하게 Ge,InSb, 및 A 기판 상에 SiO2박막을 증착시켰다.
[실시예 2]
이 실시예는 앞에서 이미 설명된 본 발명의 제2 실시예에 따른 방법의 사용법에 관한 것이다.
반응 개스실이 3개인 제1도 장치를 사용하여 직경 2인치(5.08cm)의 실리콘 웨이퍼의 표면에 인으로 도핑시킨 SiO2박막을 증착시켰다. 제3의 반응 개스를 추가하여, 술한 실시예 1의 일반적인 공정을 반복하였다. 산소 함유 선구물질로서는 아산화질소를, 선정된 증기상 반응물질로서는 실란을 그리고 인도핑제 함유 선구물질로서는 포스핀을 사용하였다. 석영 반응실 내에서 10-3로르하에 수은 증기의 광화학적 여기를 시발점으로 하여 공정을 개시하였다. 저압식 수은 아아크 공진 램프는 2537Å의 방사선을 방출하였는데, 이 방사선은 수은 증기에 의해 반응 실내로 흡수되어, 전술한 반응식(7) 및 (8)에 나타낸 바와 같이 N2O와 PH3와 반응된 광여기 수은 원자를 생성시켰다. 이와 같이 생성된 원자상 산소와산중성 포스피닐기(·PH2)는 SiH4와 반응하여, 실리콘 웨이퍼 위에 층으로서 증착된 전술한 반응식(9)에 나타낸 바와 같이 인으로 도핑된 이산화실리콘 [Si(P)O2]을 생성하였다. 연속 유동식 광화학 반응기 시스템을 사용하고, SiH4/N2O/PH3의 반응 개스의 유량비를 2/60/1 sccm으로 하였을 때, 인으로 도핑된 SiO2박막은 기판에 200Å/분의 비율로 증착되었으며, 증착막의 인함량은 약 5%이었다. 또한, 저압 정지식 광화학 반응기 시스템에서는 SiH4/N2O/PH3의 반응 개스비를 3/30/1mm로 하였다. 인으로 도핑된 SiO2박막의 최초의 증착비는 200Å/분이었고 증착막중의 인함량은 약 5%이었다. 정지식 반응기 시스템에서 SiH4/N2O/PH3의 반응개 스비를 2/30/12로 하였을 때에는 증착막 내의 인, 도피량을 17%까지 달성할 수 있었다.
광측막으로 인을 도핑시킨 SiO 박막의 굴결률은 N2O/PH3의 비율에 좌우되며, 1.55내지 1.65임이 측정되었다. 높은 굴결률을 나타내는 박막은 SiO2유전체의 인 도피량이 그만큼 높다는 것을 나타낸다. 인으로 도핑된 SiO2박막의 화학조성은 오오제 전자 분광법으로 측정되었으며 인함량은 에너지 분배 X선 분석법(EDAX)으로 확인하있다. 인으로 도핑된 SiO2박막의 “p-식각”에 있어서의 식각비(즉, 물 60ml,49%HF 3ml 및 70% HNO32ml의 혼합물)는 SiO2순품의 식각비보다 상당히 빨라서 200Å/초나 되는데 이 식각은 이미 앞에서 언급한 바 있는 기지의 화학 증착법으로 형성한 인 도핑 박막의 식각비와 일치하는 것이다. 전술한 방법으로 증착된 유전막 중에 함유된 도핑제의 함량은 반응 개스 혼합물에 첨가되는 도핑제 함유 선구물질의 양을 조정함으로써 조정될 수 있다.
인으로 도핑시킨 SiO2박막은 전술한 방법으로 생성되었지만, 실시예 1에 기재한 것과 유사한 방법으로 SiH4대 N2OSiO의 비율을 증대시킴으로써 본 발명의 이 방법 실시예에 의하여 인 도핑 SiO2막을 형성할 수도 있다.
본 발명의 전술한 방법에 따라 광화학적으로 증착된 인 도핑 MOS 박막은 전하 감응식 마이크로일렉트론 장치, 예컨대 100℃ 장치의 부동태용 유전막으로서 응용된다. 그밖에 이들 인 도핑 박막은 이상의 온도에서 칼륨(Ga) 및 비소(As)의 외부 확산을 극소화시키기 위해 GaAs 장치상의 확산막으로서도 이용될 수 있다.
[실시예 3]
이 실시예는 앞에서 이미 설명한 본 발명의 제3 실시예에 따른 방법의 사용법에 관한 것이다.
2개의 반응 개스실을 가진 제2도 장치를 사용하여 지경 2인치(5.08cm)의 실리콘 웨이퍼 표면에 SiO2박막을 증착시켰다. 수은 감광을 이용하지 않는다는 것을 제외하고는 실시예 1의 일반적인 공정을 반복하였다. 연속 유동식 광화학 반응기 시스템을 사용하였다. 산소 함유 선구물질로서는 N2O를, 그리고 일정의 증기상 반응물질로서는 SiH4를 사용하였다. N2O를 해리시키는 데에는 파장이 1849인 방사선을 사용하고 반응실의 창은 1849Å에 대하여 투과성인 “스펙트라실(spectrasil)”(뉴저지주 몬트빌시에 소재하는 Thermal American Fused Quartz로부터 얻은 것)로 구성하였다. “스펙트라실”외피를 갖도록 설계된 저압식 수은 아아크 램프에 의하여 파장 1849Å, 방사선이 방출되고, 이 방사선은 “스펙트라실” 투과창을 통하여 반응실 내에 투과되었다. 방사선은 N2O)에 의해 흡수되어 해리를 일으켜 원자상 산소를 생성하였다. 이어서, 원자상 산소는 SiH4와 반응하여 실리콘 웨이퍼에 막으로서 증착되는 바람직한 SiO2를 생성시켰다.
SiH4대 N2O의 반응개스비는 2sccm대 60sccm이었고, 사용된 동작 압력은 3.7토트이었다. SiO2박막은 30분 내에 700A의 양으로 증착되었으며, 그보다 높은 비율에서도 공정의 최적 조건이 달성되었다.
본 발명의 전술한 방법에 따라 생성시킨 광증착 SiO2박막의 굴결률은 타원도법에 의하여 측정되었고, 박막은 SiO2의 굴결률 특성, 즉 1.45를 가진 것으로 판명되었다. 완층 HF 내에서의 광증착 SiO2재료의 식각비 특성은 저온 플라즈마법에 의하여 증착된 SiO2박막의 그것에 비교할 수 있었다.
전술한 바와 같이 하여 SiO2박막을 생성하였으나, 실시예 1에 기술한 것과 유사한 방법으로 SiH4대N2O의 비율을 증대시킴으로써 본 발명의 실시예에 따라 SiO 박막을 형성할 수도 있다.
이 실시예에 의하여 생성된 SiO2의 광화학적 증착막은 반도체 장치의 부동태, 특히 MOS 장치와 GaAs, HgCdTe 광전도 및 광전 장치, 전계 효과 트랜지스터 등의 전하 감응 마이크로 일렉트론 장치를 위한 유전막으로서 응용된다. 그밖에 이 실시예에 의해 형성된 산화막은 실시예 1에서 언급한 바와 같이 렌즈와 거울 등의 전자광학 대료 또는 태양 전지에도 이용될 수 있다.
상기 방법을 사용하면, SiO2박막이 Ge,InSb 및 Al 기판에 유사한 방법으로 증착되었다.
더우기, 전술한 일반적인 공정을 사용하여 분자상 산소(O2)를 산소 함유 선구물질로 사용할 경우에는 실리콘 웨이퍼 표면에 SiO2박막이 증착되었다. O2와 SiH4의 자발적인 열산화서 질소 희석 개스를 사용하고 반응 개스들의 압력 및 유속 조건을 조심스럽게 조정하였다. 동작압력 0-5을 토르, SiH4/O2/N2의 반응 가스 유속을 1/20/80sccm으로 하면, 30분내에 3000내지 4000A비로 SiO2박막이 증착되었다. 따라서 본 발명을 실시함에 있어서 산소함유 선구물질로서 분자상 산소를 사용하면 산화물 증착비가 크게 증대된다는 사실을 알 수 있다.
[실시예 4]
이 실시예는 앞에서 이미 설명한 본 발명의 제4 실시예에 따른 방법의 사용법에 관한 것이다.
3개의 반응 개스실을 가진 제2도 장치를 사용하여 직경 2인치(5.08cm)의 실리콘 웨이퍼 표면에 인이 도핑된 SiO2박막을 증착시켰다. 제3의 반응 개스를 추가하면서, 실시예 3의 일반적인 공정을 반복하였다. 연속 유동식 광화학 반응기 시스템을 사용하였다. 산소함유 선구물질로서는 N2O를, 일정의 증기상 반응물질로서는 SiH4를, 그리고 도핑제 함유 선구물질로서는 포스핀을 사용하였다. N2O를 해리시키는 데에는 파장이 1849A인 방사선을 사용하고 반응실의 창은 실시예 3에서 언급한 “스펙트라실”로 구성하였다. 파장 1489A의 방사선 N2O에 의해 흡수되어 해리를 일으켜 원자상 산소를 생성하였다. 이어서, 원자상 산소는 전술한 반응식(18)과 같이 SiH4및 PH3와 반응하여 실리콘 웨이퍼에 막으로서 증착되는 바람직한 SiO2를 생성시켰다. 저압 정지식 광화학 반응기 시스템에서는, SiH4/N2O/PH2의 반응개스비를 2/60/4sccm으로하였다. SiO2의 증착량은 30분에 330A이었으며, 공정의 최적화로 보다 높은 증착량을 얻을 수 있다. 증착막의 인함량은 약5%이었다.
전술한 방법에 따라 광증착된 인을 도핑시킨 SiO2박막의 굴결률은 1.75이었다. 증착막의 화학 조성은 오오제 전자 분광법으로 측정하여 전술한 값으로 되는 것으로 판명되었다. 인으로 도핑한 SiO2박막의 “p-식각”에 있어서의 식각 속도(즉, 물 60m1,49% HF30ml 및 70% HNO32ml의 혼합물)은 SiO2순품의 식각 속도보다 대단히 신속하다는 것이 판명되었는데, 이것은 이미 앞에서 언급한 바 있는 기지의 화학 증착법으로 형성한 인 도핑 박막의 식각 속도에 비교할만 하다.
본 발명의 이 실시예에 의해 형성된 광화학 증착된 인도핑 SiO2박막은 실시예 2에서 언급한 용도를 갖는다.
본 발명을 바람직한 실시예들에 관련하여 상세히 설명하였으나, 본 분야에 숙련된 기술자들은 본 발명의 원리와 범위를 벗어나지 않고도 다수의 변형을 할 수 있다. 특히, 본 발명의 범위는 실리콘 산화물의 광화학적 증착에만 한정되는 것이 아니라, 계르마늄, 붕소, 인듐, 알루미늄, 티탄, 텅스텐 및 하프늄을 함유하는 반응물질과 같이 원자상 산소와 반응을 일으키는 기상반응 물질의 산화물의 광화학 증착도 포함한다. 또한, 화학적으로 비반응성인 산소 함유선구 물질은 아산화질소, 분자상 산소 또는 이산화질소에만 국한되는 것이 아니라, 수은 감광반응의 유무에 관계없이 관화학적으로 원자상 산소로 해리시키는 물질이면 모두 사용될 수 있다. 더우기, 본 발명 방법에 의하여 산화물을 증착시키는 기판은 단순히 하나의 본보기로 사용된 실리콘에만 국한되는 것은 아니고, 예컨대 GaAs, HgCdTe 또는 InSb 등의 그 외의 다른 반도체나 또는 예컨대 렌즈류 또는 거울류 등의 전기 광학 재료, 또는 GaAs 또는 Si 태양 전지를 포함한다. 끝으로 본 발명의 범위는 인도핑을 얻기 위하여 포스핀을 사용하는데 국한되지 않고, 중성 입자를 형성하도록 수은 감광 해리될 수 있거나, 또는 선정된 개스 반응물질과 함께 원자상 산소에 의해 동시에 산화될 수 있는 도핑제 함유선구 물질도 포함한다. 이러한 선구물질로서는 디보란, 아르신, 스티빈, 셀렌화수소, 황화수소 또는 텔루트화수소가 있는데, 이들로부터 붕소, 비소 안티몬, 셀렌, 황 또는 텔루륨 도핑을 각각 얻을 수 있다.

Claims (1)

  1. 선택된 기판의 표면에 선택된 물질의 산화막을 형성하는 방법에 있어서, 선택된 온도, 압력 및 유속 조건하에 선택된 물질의 산화막을 형성하기 위해 증기상 반응물질과 반응하는 중성 산소 원자를 광화학적으로 발생시키도록 선정된 파장의 방사선 존재하에 선택된 기판을 증기상 반응물질과 산소 함유선구 물질에 노출시키는 수단을 포함하는 것을 특징으로 하는 산화막의 광화학적 증착법.
KR1019800004820A 1979-12-17 1980-12-17 산화막의 광화적 저온 증착법 KR840001545B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10432379A 1979-12-17 1979-12-17
US104.323 1979-12-17
US104,323 1987-10-02

Publications (2)

Publication Number Publication Date
KR830004445A KR830004445A (ko) 1983-07-13
KR840001545B1 true KR840001545B1 (ko) 1984-10-04

Family

ID=22299878

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019800004820A KR840001545B1 (ko) 1979-12-17 1980-12-17 산화막의 광화적 저온 증착법

Country Status (11)

Country Link
EP (1) EP0030798B1 (ko)
JP (1) JPS5696704A (ko)
KR (1) KR840001545B1 (ko)
CA (1) CA1183102A (ko)
CH (1) CH648691A5 (ko)
DE (1) DE3066027D1 (ko)
GB (1) GB2094280A (ko)
HK (1) HK65284A (ko)
IL (1) IL61538A (ko)
SE (1) SE442409B (ko)
SG (1) SG33584G (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028386A (ko) * 2008-07-02 2011-03-17 어플라이드 머티어리얼스, 인코포레이티드 금속 산질화물 tft들을 위한 캡핑 층들

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875828A (ja) * 1981-10-30 1983-05-07 Ushio Inc 被膜形成方法
GB2111037B (en) * 1981-11-23 1984-10-17 Hughes Aircraft Co Preparing substrates for semi-conductors
US4447469A (en) * 1982-06-10 1984-05-08 Hughes Aircraft Company Process for forming sulfide layers by photochemical vapor deposition
DE3375590D1 (en) * 1982-06-22 1988-03-10 Hughes Aircraft Co Low temperature process for depositing epitaxial layers
GB2131611B (en) * 1982-11-17 1986-11-12 Standard Telephones Cables Ltd Dielectric materials
JPH0614552B2 (ja) * 1983-02-02 1994-02-23 富士ゼロックス株式会社 光電変換素子の製造方法
JPS59164653A (ja) * 1983-03-08 1984-09-17 Sumitomo Electric Ind Ltd 金属被覆光フアイバ−の製造方法
JPH0685389B2 (ja) * 1983-12-23 1994-10-26 日本電信電話株式会社 半導体装置の保護膜
JPS60162775A (ja) * 1984-01-31 1985-08-24 Nec Corp シリコン酸化膜の製造方法
JPS60216539A (ja) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd 半導体装置の製造方法
JPS60216538A (ja) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd 半導体基板への不純物拡散方法
US4595601A (en) * 1984-05-25 1986-06-17 Kabushiki Kaisha Toshiba Method of selectively forming an insulation layer
GB2162207B (en) * 1984-07-26 1989-05-10 Japan Res Dev Corp Semiconductor crystal growth apparatus
US4590091A (en) * 1984-12-17 1986-05-20 Hughes Aircraft Company Photochemical process for substrate surface preparation
US4632057A (en) * 1985-08-05 1986-12-30 Spectrum Cvd, Inc. CVD plasma reactor
US4640224A (en) * 1985-08-05 1987-02-03 Spectrum Cvd, Inc. CVD heat source
US4632056A (en) * 1985-08-05 1986-12-30 Stitz Robert W CVD temperature control
US4800105A (en) * 1986-07-22 1989-01-24 Nihon Shinku Gijutsu Kabushiki Kaisha Method of forming a thin film by chemical vapor deposition
KR910003742B1 (ko) * 1986-09-09 1991-06-10 세미콘덕터 에너지 라보라터리 캄파니 리미티드 Cvd장치
EP0289963A1 (en) * 1987-05-04 1988-11-09 General Signal Corporation Apparatus for, and methods of, obtaining the movement of a substance to a substrate
EP0306069A3 (en) * 1987-08-31 1990-12-27 Koninklijke Philips Electronics N.V. A method of forming an oxide layer on a substrate
JPH01242496A (ja) * 1988-03-24 1989-09-27 Mitsubishi Metal Corp 酸化物系超伝導薄膜の製造方法
US5064517A (en) * 1989-01-18 1991-11-12 Idemitsu Kosan Company Limited Method for the preparation of fine particulate-metal-containing compound
US5262358A (en) * 1989-11-13 1993-11-16 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for producing a silicate layer in an integrated circuit
DE3937723A1 (de) * 1989-11-13 1991-05-16 Fraunhofer Ges Forschung Verfahren und vorrichtung zum herstellen einer silikatschicht in einer integrierten schaltung
JPH04120732A (ja) * 1990-09-12 1992-04-21 Hitachi Ltd 固体素子及びその製造方法
US5670018A (en) * 1995-04-27 1997-09-23 Siemens Aktiengesellschaft Isotropic silicon etch process that is highly selective to tungsten
US5979666A (en) * 1996-06-28 1999-11-09 Douglas; Patrick J. Apparatus for screening particulate material
US6461982B2 (en) * 1997-02-27 2002-10-08 Micron Technology, Inc. Methods for forming a dielectric film
US6943392B2 (en) 1999-08-30 2005-09-13 Micron Technology, Inc. Capacitors having a capacitor dielectric layer comprising a metal oxide having multiple different metals bonded with oxygen
US6558517B2 (en) 2000-05-26 2003-05-06 Micron Technology, Inc. Physical vapor deposition methods
US6566147B2 (en) 2001-02-02 2003-05-20 Micron Technology, Inc. Method for controlling deposition of dielectric films
US6838122B2 (en) 2001-07-13 2005-01-04 Micron Technology, Inc. Chemical vapor deposition methods of forming barium strontium titanate comprising dielectric layers
US20030017266A1 (en) 2001-07-13 2003-01-23 Cem Basceri Chemical vapor deposition methods of forming barium strontium titanate comprising dielectric layers, including such layers having a varied concentration of barium and strontium within the layer
US7011978B2 (en) 2001-08-17 2006-03-14 Micron Technology, Inc. Methods of forming capacitor constructions comprising perovskite-type dielectric materials with different amount of crystallinity regions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE627302A (ko) * 1962-01-19
GB1165575A (en) * 1966-01-03 1969-10-01 Texas Instruments Inc Semiconductor Device Stabilization.
NL6707515A (ko) * 1967-05-31 1968-12-02
JPS4929099B1 (ko) * 1970-03-27 1974-08-01
JPS4926747B1 (ko) * 1970-10-09 1974-07-11
US3907616A (en) * 1972-11-15 1975-09-23 Texas Instruments Inc Method of forming doped dielectric layers utilizing reactive plasma deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028386A (ko) * 2008-07-02 2011-03-17 어플라이드 머티어리얼스, 인코포레이티드 금속 산질화물 tft들을 위한 캡핑 층들

Also Published As

Publication number Publication date
CA1183102A (en) 1985-02-26
SE442409B (sv) 1985-12-23
IL61538A (en) 1984-03-30
JPS5696704A (en) 1981-08-05
EP0030798B1 (en) 1983-12-28
SG33584G (en) 1985-02-08
KR830004445A (ko) 1983-07-13
SE8103604L (sv) 1982-12-10
IL61538A0 (en) 1980-12-31
GB2094280A (en) 1982-09-15
DE3066027D1 (en) 1984-02-02
HK65284A (en) 1984-08-31
CH648691A5 (en) 1985-03-29
EP0030798A1 (en) 1981-06-24
JPS6324923B2 (ko) 1988-05-23

Similar Documents

Publication Publication Date Title
KR840001545B1 (ko) 산화막의 광화적 저온 증착법
US4371587A (en) Low temperature process for depositing oxide layers by photochemical vapor deposition
EP0111501B1 (en) Process for forming sulfide layers
US4908330A (en) Process for the formation of a functional deposited film containing group IV atoms or silicon atoms and group IV atoms by microwave plasma chemical vapor deposition process
KR930010400B1 (ko) 산화물층을 증착시키기 위한 개량된 광화학적 증착 방법
AU559363B2 (en) Low temperature process for depositing epitaxial layers
DE3371543D1 (en) Method of making amorphous semiconductor alloys and devices using microwave energy
US5214002A (en) Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step
US5232749A (en) Formation of self-limiting films by photoemission induced vapor deposition
JP2566914B2 (ja) 薄膜半導体素子及びその形成法
Bergonzo et al. Low pressure photodeposition of silicon nitride films using a xenon excimer lamp
KR910000509B1 (ko) 증진된 증착 속도로의 산화물 층의 광화학적 증착 방법
US4914052A (en) Process for the formation of a functional deposited film containing groups III and V atoms by microwave plasma chemical vapor deposition process
US5037514A (en) Silicon oxide depositing method
US4513057A (en) Process for forming sulfide layers
US4910044A (en) Ultraviolet light emitting device and application thereof
Aston Downstream etching of indium phosphide and indium with hydrogen atoms and methyl radicals
JPS59501032A (ja) スルフイド層の形成方法
JPH0351292B2 (ko)
JPH02228024A (ja) アモルファスシリコン膜の形成方法
JPS61151092A (ja) 薄膜形成方法及び薄膜形成装置
JPS62227090A (ja) 非晶質薄膜の形成方法
JPH0372628A (ja) 半導体デバイスの表面パッシベーション方法および装置