KR20180105083A - 진단 시스템, 진단 방법, 진단 프로그램 및 유량 제어 장치 - Google Patents

진단 시스템, 진단 방법, 진단 프로그램 및 유량 제어 장치 Download PDF

Info

Publication number
KR20180105083A
KR20180105083A KR1020180029164A KR20180029164A KR20180105083A KR 20180105083 A KR20180105083 A KR 20180105083A KR 1020180029164 A KR1020180029164 A KR 1020180029164A KR 20180029164 A KR20180029164 A KR 20180029164A KR 20180105083 A KR20180105083 A KR 20180105083A
Authority
KR
South Korea
Prior art keywords
value
output
flow rate
sensor
fluid
Prior art date
Application number
KR1020180029164A
Other languages
English (en)
Other versions
KR102498547B1 (ko
Inventor
가즈야 샤쿠도
겐타로 나가이
가즈히로 마츠우라
Original Assignee
가부시키가이샤 호리바 에스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 호리바 에스텍 filed Critical 가부시키가이샤 호리바 에스텍
Publication of KR20180105083A publication Critical patent/KR20180105083A/ko
Application granted granted Critical
Publication of KR102498547B1 publication Critical patent/KR102498547B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G01F25/0007
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

측정 주위 조건의 변동에 관계없이, 유량 센서의 기능을 보다 정확하게 진단한다. 유체의 유량을 측정하는 유량 센서와, 상기 유량 센서의 출력값 또는 이것과 관련되는 값(이하, 이것들을 총칭해서 「출력 관련값」이라고 함)을 측정하여, 측정된 출력 관련값과 그 측정 주위 조건을 관련지어, 상기 출력 관련값 또는 그 출력 관련값이 정상인지 판단하기 위해서 미리 정해진 기준값을 상기 측정 데이터의 측정 주위 조건에 따라서 보정하는 보정부와, 상기 보정부의 보정 결과에 기초하여 상기 출력 관련값과 상기 기준값을 비교하여, 상기 유량 센서의 기능을 진단하는 진단부를 구비한다.

Description

진단 시스템, 진단 방법, 진단 프로그램 및 유량 제어 장치{DIAGNOSTIC SYSTEM, DIAGNOSTIC METHOD, DIAGNOSTIC PROGRAM, AND FLOW RATE CONTROLLER}
본 발명은 진단 시스템, 진단 방법, 진단 프로그램 및 유량 제어 장치에 관한 것이다.
유량 제어 장치(매스 플로 컨트롤러; Mass Flow Controller)에 이용되는 진단 기구로서는, 특허문헌 1에 개시되는 바와 같이, 유체(流體)가 흐르는 유로에 차압(差壓)을 발생시키는 저항체, 및, 그 저항체의 상류 측 및 하류 측에 각각 마련된 압력 센서를 구비하는 유량 센서와, 유량 센서의 상류 측의 유로를 개폐하는 밸브를 구비하고, 밸브로 유로를 닫은 상태로 유로를 감압시키고, 이때에 유량 센서로부터 얻어지는 출력값 또는 이것과 관련되는 값인 출력 관련값(진단용 파라미터)가 미리 정해진 기준값과 차이가 있는지 여부에 의해서 유량 센서의 기능을 진단하는 것이 개시되어 있다.
여기서, 출력 관련값을 보다 구체적으로 설명하면, 출력 관련값은 밸브로 유로를 닫은 상태로 유로를 감압시키고, 그 후, 양 압력 센서로 측정되는 압력(P1, P2)의 차압으로부터 식(1)을 이용하여 질량 유량(Q)을 산출한다.
Figure pat00001
또한, P1은 상류 측 압력 센서의 압력값이고, P2는 하류 측 압력 센서의 압력값이며, X는 가스 종류에 의해서 변화하는 계수이다.
다음으로, 질량 유량(Q)을 상류 측 압력 센서로 측정되는 압력이 경시변화하는 소정 시간으로 시간 적분하는 식(2)를 이용하여 질량 유량 적분값(n)을 산출한다. 또한, 도 5에 있어서, a-b 사이에서의 사선으로 나타내진 부분의 질량 유량(Q)의 총합이, 질량 유량 적분값(n)을 나타내고 있다.
Figure pat00002
또한, 질량 유량 적분값(n)은 기체의 상태 방정식으로부터 식(3)과 같이도 나타낼 수 있다.
Figure pat00003
또한, V는 진단용의 체적값이고, P1START는 소정 시간의 시점에 있어서 상류 측 압력 센서로 측정된 압력이며, P1END는 소정 시간의 종점에 있어서 상류 측 압력 센서로 측정된 압력이다.
그리고, 식(2)와 식(3)으로부터 도출되는 식(4)로 나타내지는 체적값(V)이 출력 관련값이 된다.
Figure pat00004
또한, n은 몰(mol)수(식(1)을 이용하여 산출한 단위 시간당 질량(질량 유량(Q))을 시간으로 적분한 것, 즉, 질량 유량 적분값(n)이다.)이고, R은 가스 종류에 의해서 정해지는 기체 상수이며, T는 온도 센서로 측정되는 온도로서, 여기에서는, 일정한 것으로 간주하고 있고, ΔP1은 소정 시간의 시점 및 종점에 있어서 상류 측 압력 센서로 측정되는 압력의 압력차이다.
여기서, 식(3)~식(4)에서는, 소정 시간의 시점 및 종점의 사이에 있어서의 온도차와 압력차가 포함되지만, 이들 값은, 소정 시간 동안의 압력 및 온도의 변화를 고려한 압력의 변화량과 온도의 변화량이어도 된다.
그런데, 식(4)로 나타내지는 출력 관련값에는, 온도 및 압력이 포함되어 있고, 이들 값이 체적값(V)에 오차를 발생시키는 요인이 된다. 즉, 압력 센서에 의해서 경시변화하는 압력을 소정 시간 연속적으로 측정하려고 하면, 유량 센서의 하류 측에 접속된 배관이나 각종 기기 등의 요소에 기인하여 발생하는 2차 압력이 시간 경과에 따라 변화해서, 이 2차 압력 변화가 압력 센서에 의한 압력의 측정에 영향을 주어, 같은 측정 주위 조건하에서 측정할 수 없고, 이 2차 압력 변화에 기초하여 체적값(V)에 오차가 발생한다. 또한, 마찬가지로, 온도도 시간 경과에 따라 변화해서, 이 온도의 변화가 압력 센서에 의한 압력의 측정에 영향을 주어, 같은 측정 주위 조건하에서 측정할 수 없고, 이 온도 변화에 기초하여 체적값(V)에 오차가 발생한다.
따라서, 식(4)로 나타내지는 출력 관련값에 기초하여 유량 센서의 진단을 하려고 하면, 그 출력 관련값에 오차가 발생하여, 정확한 진단을 행할 수 없다고 하는 문제가 있었다.
일본 특허 제4881391호 공보
그래서, 본 발명은 측정 주위 조건의 변화에 관계없이, 유량 센서의 기능을 보다 정확하게 진단하여, 오진을 줄이는 것을 주된 과제로 하는 것이다.
즉, 본 발명에 따른 진단 시스템은, 상기 유체 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하는 출력 관련값 측정부와, 상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값을 기억하는 기준값 기억부와, 상기 출력 관련값 또는 상기 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하는 보정부와, 상기 보정부의 보정 결과에 기초하는 상기 출력 관련값과 상기 기준값에 기초하여 상기 유체 센서를 진단하는 진단부를 구비하는 것을 특징으로 하는 것이다.
이와 같은 것이면, 출력 관련값의 오차의 원인이 되는 유체의 압력이나 온도 등의 측정 주위 조건에 따라 출력 관련값 또는 기준값을 보정하고, 그 보정 결과에 기초하여 출력 관련값과 기준값에 기초하여, 유체 센서의 기능을 진단하기 때문에, 이것에 의해, 보다 정확하게 유체 센서의 기능을 진단할 수 있어, 진단 정밀도가 향상되고, 이것에 수반하여 오진을 줄일 수 있다. 또한, 출력 관련값에는, 유체 센서의 출력값 또는 이것과 관련되는 값이 포함된다. 유체 센서가 유량 센서인 경우에는, 유량 센서의 출력값인 유량값이나, 이 유량값에 관련되는 값인 체적값 등이 있다. 또한, 상기 진단부는, 구체적으로는, 상기 보정부로 상기 출력 관련값만을 보정했을 경우에, 보정된 출력 관련값과 보정되어 있지 않은 기준값에 기초하여 상기 유체 센서를 진단하여, 상기 보정부로 상기 기준값만을 보정했을 경우에, 보정되어 있지 않은 출력 관련값과 보정된 기준값에 기초하여 상기 유량 센서를 진단하여, 상기 보정부로 상기 출력 관련값 및 상기 기준값을 보정했을 경우에, 보정된 출력 관련값과 보정된 기준값에 기초하여 상기 유체 센서의 진단을 실행한다.
또한, 상기 진단 시스템에 있어서, 미리 기준이 되는 측정 주위 조건하에서 측정된 기준 출력 관련값과 그 측정 주위 조건을 관련지어 기억하는 기준 출력 관련값 기억부를 더 구비하고, 상기 보정부가 상기 출력 관련값 또는 상기 기준값을, 상기 출력 관련값에 관련지어진 측정 주위 조건과 상기 기준 출력 관련값에 관련지어진 측정 주위 조건의 편차에 기초하여 보정하는 것이어도 된다.
이와 같은 것이면, 기준값의 기준이 되는 기준 출력 관련값을 출력 관련값과 마찬가지로 측정할 수 있고, 기준값을 정함에 있어서 새로운 센서 등을 추가할 필요가 없어, 시스템을 간략화할 수 있는 것과 함께 저비용화가 가능하게 된다.
또한, 상기 어느 진단 시스템에 있어서, 상기 측정 주위 조건이 유체의 압력 또는 온도 중 어느 것을 포함하는 것이어도 된다. 또한, 상기 유체의 압력은, 상기 유체 센서에 접속되는 배관이나 외부 기기의 영향에 기인하여 발생하는 1차 압력이나 2차 압력을 들 수 있다. 또한, 상기 유체의 온도로서는, 압력 센서 등의 각 센서의 측정에 영향을 주는 온도를 들 수 있다.
또한, 상기 출력 관련값은 상기 유체의 경시변화하는 압력의 시간 적분값에 기초하는 값이어도 된다. 구체적으로는, 상기 출력 관련값은 상기 유체의 흐름의 상류와 하류의 사이에 발생하는 차압에 기초하여 산출되는 질량 유량을 소정 시간 적분한 질량 유량 적분값에 기초하는 값이어도 된다. 보다 구체적으로는, 상기 출력 관련값은 상기 유체의 흐름의 상류 또는 하류에 있어서의 상기 소정 시간 동안의 압력 변화량 및 온도와, 상기 질량 유량 적분값으로부터 산출되는 유체의 체적값이어도 된다.
이와 같은 출력 관련값이면, 경시변화하는 압력을 연속적으로 측정했을 경우에, 그 압력값의 일부에 국소적인 피크 딥 노이즈(peak dip noise)가 있었다고 해도, 그 노이즈의 시간 적분값은 미소하기 때문에, 출력 관련값에 대한 노이즈의 영향을 저감시킬 수 있고, 이것에 의해, 진단 정밀도를 향상시킬 수 있다. 또한, 차압식 매스 플로 컨트롤러이면, 출력 관련값을 산출하기 위한 값을 원래 구비하는 각 센서로 측정할 수 있기 때문에, 별도 센서 등을 추가하는 일 없이, 유량 센서를 정밀도 좋게 진단할 수 있다.
또한, 상기 어느 진단 시스템에 있어서, 상기 유체의 흐름을 차단하는 유량 조정 기구를 더 구비하여, 상기 유량 조정 기구가 상기 유체의 흐름을 차단함으로써 상류 측 또는 하류 측의 유체의 압력이 경시변화하는 것이어도 되고, 또한, 상기 유체 센서가 상기 유체의 상류와 하류의 사이에 차압을 발생시키는 저항체를 구비하는 것이어도 된다.
또한, 여기서, 「유량 조정 기구」는 차압식 매스 플로 컨트롤러나 열식 매스 플로 컨트롤러 등의 유량 제어 장치를 구성하고 있는 유량 제어 기구만이 아니라, 예를 들면, 매스 플로 컨트롤러와는 별개로 그 매스 플로 컨트롤러의 도입 포트나 도출 포트로부터 연장되는 배관에 마련되도록 하는 개폐 밸브와 같은 것도 포함된다. 즉, 유체의 유로를 개폐할 수 있는 것이면 된다.
이와 같은 것이면, 유량 조정 기구와 저항체 사이의 매우 작은 유로 체적에 대한 압력의 경시변화를 이용하여 유체 센서의 기능을 진단하기 때문에, 감압 시간이 짧아져, 진단에 필요하게 되는 시간을 단축시킬 수 있다. 또한, 차압식 매스 플로 컨트롤러이면, 원래 구비하는 기구를 이용하여 유량 센서를 진단할 수 있다.
또한, 본 발명에 따른 유체 센서의 진단 방법은, 상기 유체 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하고, 상기 출력 관련값 또는 상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하며, 상기 보정 결과에 기초하는 상기 출력 관련값과 상기 기준값에 기초하여 상기 유체 센서를 진단하는 것을 특징으로 하는 것이다.
또한, 본 발명에 따른 프로그램은, 유체를 측정하는 유체 센서의 기능을 진단하는 진단 시스템에 이용되는 프로그램으로서, 상기 유체 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하고, 상기 출력 관련값 또는 상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하며, 상기 보정 결과에 기초하는 상기 출력 관련값과 상기 기준값에 기초하여 상기 유체 센서를 진단하는 기능을 컴퓨터에 발휘시키는 것을 특징으로 하는 것이다.
또한, 본 발명에 따른 유량 제어 장치는, 유체의 유량을 측정하는 유량 센서와, 상기 유량 센서의 상류 측에 마련되고, 그 유량 센서의 출력값에 기초하여 상기 유체의 유량을 제어하는 유량 제어 기구와, 상기 유체 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하는 출력 관련값 측정부와, 상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값을 기억하는 기준값 기억부와, 상기 출력 관련값 또는 상기 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하는 보정부와, 상기 보정부의 보정 결과에 기초하는 상기 출력 관련값과 상기 기준값에 기초하여 상기 유체 센서를 진단하는 진단부를 구비하는 것을 특징으로 하는 것이다.
이와 같이 구성한 본 발명에 의하면, 출력 관련값의 오차의 원인이 되는 측정 주위 조건을 고려한 다음에, 그 출력 관련값을 진단하기 때문에, 보다 정확하게 유체 센서의 기능을 진단할 수 있어서, 오진을 줄일 수 있다.
도 1은 실시 형태 1에 따른 유량 제어 장치를 나타내는 모식도이다.
도 2는 실시 형태 1에 따른 유량 제어 장치의 제어부를 나타내는 기능 구성도이다.
도 3은 실시 형태 1에 따른 유량 제어 장치의 저항체를 나타내는 단면도이다.
도 4는 실시 형태 1에 따른 유량 제어 장치에 있어서의 상류 측 압력 센서로 측정되는 압력의 경시변화를 나타내는 그래프이다.
도 5는 실시 형태 1에 따른 유량 제어 장치에 있어서의 질량 유량 적분값을 설명하기 위한 그래프이다.
도 6은 실시 형태 1에 따른 유량 제어 장치의 유량 센서 진단 공정을 나타내는 플로차트이다.
도 7은 실시 형태 1에 따른 유량 제어 장치의 압력 센서 진단 공정을 나타내는 플로차트이다.
도 8은 실시 형태 1에 따른 유량 제어 장치의 유량 제어 기구 진단 공정을 나타내는 플로차트이다.
도 9는 실시 형태 2에 따른 유량 제어 장치를 나타내는 모식도이다.
이하에, 본 발명에 따른 진단 시스템에 대해서 도면을 참조하여 설명한다.
본 발명에 따른 진단 시스템은, 유체 센서의 기능을 진단하는 것으로, 예를 들면, 유량 센서를 구비하는 유량 측정 장치나 유량 제어 장치(매스 플로 컨트롤러)에 내장되는 것이다. 유량 제어 장치의 구체적인 예로서는, 예를 들면, 차압식 매스 플로 컨트롤러나 열식 매스 플로 컨트롤러 등을 들 수 있다.
<실시 형태 1>
본 실시 형태에 따른 진단 시스템(DS)은, 도 1에 나타내는 바와 같이, 유량 제어 장치(MF1)와, 유량 제어 장치(MF1)의 상류 측 및 하류 측에 마련된 개폐 밸브(UV, DV)를 구비하는 것으로, 예를 들면, 반도체의 성막 장치에 있어서의 성막실(챔버)에 재료 가스나 냉각 가스를 공급하기 위한 가스 제어 시스템에 이용된다.
유량 제어 장치(MF1)는 차압식 매스 플로 컨트롤러이다. 구체적으로는, 유체가 흐르는 유로(10)와, 유로(10)를 흐르는 유체의 유량을 측정하는 유량 센서(20)와, 유량 센서(20)의 상류 측에 마련되는 유량 제어 기구(30)와, 유량 제어 기구(30)의 상류 측에 마련되는 공급압을 측정하기 위한 압력 센서(40)를 구비하고 있다.
유로(10)는, 도시하지 않지만, 상류단에 도입 포트가 마련되어 있고, 하류단에 도출 포트가 마련되어 있다. 그리고, 예를 들면, 도입 포트는 배관을 통해서 유량 제어 장치(MF1)에 도입되는 가스를 공급하는 가스 공급 기구에 접속되어 있고, 도출 포트는 배관을 통해서 유량 제어 장치에 의해서 유량이 제어된 가스의 공급처가 되는 성막실에 접속되어 있다.
유량 센서(20)는 유로(10)에 차압을 발생시키는 저항체(50)와, 저항체(50)의 상류 측의 압력을 측정하는 상류 측 압력 센서(60)와, 저항체(50)의 하류 측의 압력을 측정하는 하류 측 압력 센서(70)와, 유량 제어 기구(30)와 저항체(50) 사이의 온도를 측정하는 온도 센서(80)를 구비하고 있다. 또한, 양 압력 센서(60, 70)는 절대압(絶對壓)형의 압력 센서이다.
저항체(50)는, 도 3에 나타내는 바와 같이, 상류 측의 도입구(50a)와 하류 측의 도출구(50b)의 사이에 차압을 발생시키는 것이다. 또한, 구체적인 구성으로서는, 주로 2종의 링체(51, 52)로 되어 있으며, 제1 링체(51)는 제2 링체(52)에 비해 외경이 작고 내경이 크게 되어 있고, 제2 링체(52)는 제1 링체(51)에 비해 외경이 크고 내경이 작게 되어 있다. 그리고, 양 링체(51, 52)를 제1 링체(51)부터 번갈아 적층시킨 구조로 되어 있고, 마지막에 원반체(53)가 적층되며, 이것에 의해, 각 링체(51, 52)를 적층시킨 적층체의 중앙에 형성되는 공간의 일단이 막혀서 도입구(50a)가 형성된다. 또한, 제1 링체(51)의 사이에 적층되는 제2 링체(52)에는, 그 일부에 내벽 및 외벽을 남기고 관통되는 유로 공간(54)이 마련되어 있다. 이것에 의해, 제1 링체(51)의 내면과 제2 링체(52)의 내벽의 사이에 형성되는 틈새가 유로 공간(54)으로 통하는 도입로(54a)가 되고, 제1 링체(51)의 외면과 제2 링체(52)의 외벽의 사이에 형성되는 틈새가 바깥쪽으로 통하는 도출로(54b)가 된다. 그리고, 이 도출로(54b)에 의해서 도출구(50b)가 형성된다. 이와 같이 구성함으로써, 링체(51, 52)의 적층 매수나 유로 공간(54)의 범위를 조정하는 것에 의해, 도입구(50a) 측과 도출구(50b) 측의 사이에 발생하는 차압량을 자유롭게 설정할 수 있게 되어 있다.
유량 제어 기구(30)는 밸브 개도(開度)를 피에조 소자 등의 액추에이터에 의해서 조정할 수 있도록 하는 구성으로 되어 있다.
또한, 유량 제어 장치(MF1)는 유량 제어 기능, 유량 센서 진단 기능, 압력 센서 진단 기능, 유량 제어 기구 진단 기능 등을 발휘시키기 위한 제어부(90)를 구비하고 있다. 제어부(90)는 CPU, 메모리, A/D·D/A 컨버터, 입출력 수단 등을 구비한 이른바 컴퓨터를 가지고, 상기 메모리에 격납되어 있는 프로그램이 실행됨으로써, 각 기기를 협동시켜 각 기능을 발휘시킨다. 또한, 제어부(90)에는 도시되지 않는 입출력 수단이 접속되어 있다.
제어부(90)는, 도 2에 나타내는 바와 같이, 구체적으로는, 유량 측정부(90a), 제어값 산출부(90b), 밸브 제어부(90c), 출력 관련값 측정부(90d), 기준 출력 관련값 기억부(90e), 기준값 기억부(90f), 보정부(90g), 편차 산출부(90h), 유량 센서 진단부(90i), 압력 센서 진단부(90j), 압력 센서 교정부(90k), 유량 제어 기구 진단부(90l), 초기화 실행부(90m), 진단 결과 출력부(90n)를 구비하고 있다.
유량 측정부(90a)는 유량 센서(20)에 마련된 양 압력 센서(60, 70)로 검출된 검출값(압력값)에 기초하여 유체의 유량값을 산출하는 것이다. 또한, 유량 측정부(90a)는 양 압력 센서(60, 70)로 검출된 검출값을 소정 타이밍으로 접수하도록 구성되어 있다.
제어값 산출부(90b)는 유량 측정부(90a)로 산출된 유량값과 미리 설정된 기준 유량값의 편차에 기초하여 유량 제어 기구(30)를 피드백 제어하는 제어값을 산출하는 것이다.
밸브 제어부(90c)는 유량 제어 기구(30)의 밸브, 개폐 밸브(UV, DV)의 개도를 제어하는 것이다. 구체적으로는, 통상 운전시에는, 제어값 산출부(90b)로 산출된 제어값에 기초하여 유량 제어 기구(30)의 밸브의 개도를 변경하는 피드백 제어를 실시하는 것이다. 또한, 밸브 제어부(90c)는 입출력 수단으로부터 입력된 유량 센서 진단 지시에 기초하여, 유량 제어 기구(30)의 밸브를 완전하게 닫는 것과 함께, 개폐 밸브(UV, DV)를 열게 되어 있다. 또한, 밸브 제어부(90c)는, 입출력 수단으로부터 입력된 압력 센서 진단 지시에 기초하여, 개폐 밸브(UV)를 완전하게 닫는 것과 함께, 유량 제어 기구(30)의 밸브 및 개폐 밸브(DV)를 열게 되어 있다. 또한, 밸브 제어부(90c)는 입출력 수단으로부터 입력된 유량 제어 기구 진단 지시에 기초하여, 유량 제어 기구(30)의 밸브를 완전하게 닫는 것과 함께, 개폐 밸브(UV, DV)를 열게 되어 있다.
출력 관련값 측정부(90d)는 유량 센서(20)에 마련된 양 압력 센서(60, 70) 및 온도 센서(80)로 검출된 검출값(압력값, 온도값)에 기초하여 유체의 체적값(출력 관련값)을 산출하는 것이다. 또한, 출력 관련값 측정부(90d)는 입출력 수단으로부터 유량 센서 진단 지시가 입력된 것에 기초하여 출력 관련값의 측정을 개시한다. 구체적으로는, 입출력 수단으로부터 유량 센서 진단 지시가 입력되면, 밸브 제어부(90c)에 의해서 유량 제어 기구(30)의 밸브를 완전하게 닫는 것과 함께, 개폐 밸브(UV, DV)를 연다. 그러면, 유량 제어 기구(30)의 하류 측은, 그 하류 측에 마련된 도시되지 않은 배출 기구, 예를 들면, 성막실에 접속된 배기 펌프에 의해서 감압되기 시작한다. 그리고, 각 압력 센서(60, 70)로 측정된 압력값(P1, P2)으로부터 상기 식(1)을 이용하여 산출한 유체의 질량 유량(Q)을 소정 시간에 걸쳐서 적분함으로써, 질량 유량 적분값(n)을 산출한다. 계속해서, 소정 시간의 개시시 및 종료시에 있어서, 상류 측 압력 센서(60)로 측정되는 압력의 압력차(ΔP) 및 온도 센서(80)로 측정되는 온도값(T)으로부터 식(4)를 이용하여 측정 체적값(V)을 산출한다. 또한, 측정 체적값(V)은 유량 제어 기구(30)로부터 저항체(50)의 도입구(50a)까지 유로 용적을 나타내고 있다. 또한, 출력 관련값 측정부(90d)는 양 압력 센서(60, 70) 및 온도 센서(80)로 검출된 검출값을 소정 타이밍으로 접수하도록 구성되어 있다.
기준 출력 관련값 기억부(90e)는 유량 제어 장치(MF1)를 제조 공장으로부터 출하하기 전이나, 유량 제어 장치(MF1)를 실제로 반도체 제조 장치 등에 접속한 후 등에, 미리 소정의 측정 주위 조건하에서 측정한 기준 체적값(VS)과 그 측정 주위 조건을 관련지은 기준 데이터를 기억한 것이다.
기준값 기억부(90f)는 측정 체적값(V)이 정상인지 판단하기 위한 기준값을 기억한 것이다. 또한, 기준값은 기준 체적값(VS)에 기초하여 정해진다. 본 실시 형태에 있어서는, 기준 체적값(VS)에 대한 측정 체적값(V)의 차이의 비율에 임계값을 설정하여, 차이의 비율이 그 임계값을 초과하고 있는지 여부를 판단함으로써, 측정 체적값(V)이 정상인지 판단하고 있다. 따라서, 차이의 비율의 임계값이 기준값이 된다.
보정부(90g)는 측정 체적값(V)과, 그 측정 체적값(V)의 측정시에 있어서의 측정 주위 조건을 관련지어 측정 데이터를 생성하고, 그 측정 데이터에 포함되는 측정 주위 조건과 기준 데이터에 포함되는 측정 주위 조건의 편차에 기초하여, 측정 체적값(V) 또는 기준값을 보정하는 것이다. 본 실시 형태에 있어서는, 기준 체적값(VS)에 대한 측정 체적값(V)의 차이의 비율의 상한값이 되는 임계값을 보정하고 있다.
편차 산출부(90h)는 기준 체적값(VS)에 대한 측정 체적값(V)의 차이의 비율을 산출하는 것이다.
유량 센서 진단부(90i)는, 보정부(90g)의 보정 결과에 기초하는 측정 체적값(V)과 기준값에 기초하여, 그 측정 체적값(V)이 정상인지 여부를 판단하여 유량 센서(20)의 기능을 진단하는 것이다.
압력 센서 진단부(90j)는 유량 센서(20)에 마련된 양 압력 센서(60, 70)로 검출된 압력값이 미리 정해진 규정 압력 범위에 있는지 진단하는 것이다. 구체적으로는, 입출력 수단으로부터 압력 센서 진단 지시가 입력되면, 밸브 제어부(90c)에 의해서 개폐 밸브(UV)가 완전하게 닫히는 것과 함께, 유량 제어 기구(30)의 밸브 및 개폐 밸브(DV)가 열린다. 그러면, 유량 제어 기구(30)의 하류 측은, 그 하류 측에 마련된 배출 기구에 의해서 감압되기 시작한다. 이 압력 센서 진단 상태에 있어서, 양 압력 센서(60, 70)가 규정 압력 범위에 있는지 진단한다.
압력 센서 교정부(90k)는 유량 센서(20)에 마련된 양 압력 센서(60, 70)의 0점 보정을 실시하는 것이다. 구체적으로는, 상기 압력 센서 진단 상태에 있어서, 입출력 수단으로부터 압력 센서 교정 지시가 입력되면, 양 압력 센서(60, 70)의 0점을 보정한다.
유량 제어 기구 진단부(90l)는 유량 제어 기구(30)를 진단하는 것이다. 구체적으로는, 입출력 수단으로부터 유량 제어 기구 진단 지시가 입력되면, 밸브 제어부(90c)에 의해서 유량 제어 기구(30)의 밸브가 완전하게 닫히는 것과 함께, 개폐 밸브(UV, DV)가 열린다. 그러면, 유량 제어 기구(30)의 상류 측은, 그 상류 측에 마련된 공급 기구에 의해서 승압되기 시작하는 것과 함께, 유량 제어 기구(30)의 하류 측은, 그 하류 측에 마련된 배출 기구에 의해서 감압되기 시작한다. 그리고, 유량 측정부(90a)로 측정되는 유량값의 증가율이 규정 증가율 범위에 있는지 진단한다.
초기화 실행부(90m)는 기준 출력 관련값 기억부(90e)에 기억된 기준 데이터를 다시 설정하는 것이다. 구체적으로는, 입출력 수단으로부터 초기화 지시가 입력되면, 기준 출력 관련값 기억부(90e)에 기억된 기준 데이터를, 재차 다른 측정 주위 조건하에서 다시 측정한 기준 체적값(VS')과 그 측정 주위 조건을 관련지은 새로운 기준 데이터로 오버라이트하고, 추가로, 그 기준 데이터에 기초하여 기준값 기억부(90f)에 기억된 기준값을 다시 설정하는 것이다.
진단 결과 출력부(90n)는 각 진단부의 진단 결과를 입출력 수단으로부터 화상이나 음성 등에 의해서 출력하는 것이다.
다음으로, 본 실시 형태에 따른 유량 제어 장치에 있어서의 유량 센서(20)의 진단 공정을 도 6에 기초하여 설명한다.
먼저, 입출력 수단으로부터 유량 센서 진단 지시가 입력되면, 진단을 개시하기 전에, 상류 측 압력 센서(60)로 측정되는 압력이 개시 압력(P1START시)보다 낮은 경우에는, 개시 압력보다도 높게 되도록 압력을 끌어올린다.
다음으로, 밸브 제어부(90c)가, 유량 센서 진단 지시에 기초하여, 유량 제어 기능을 발휘하고 있는 유량 제어 기구(30)에 대해, 밸브를 완전하게 닫는 것과 함께, 개폐 밸브(UV, DV)를 연다(스텝 S101).
그리고, 유량 제어 기구(30)의 밸브가 완전하게 닫힌 상태가 되면, 유량 제어 장치(MF1)의 하류 측은, 배기 펌프에 의해 흡인되어 감압되어, 유로 내의 압력이 경시변화한다.
다음으로, 출력 관련값 측정부(90d)가 각 압력 센서(60, 70)로 검출된 압력값으로부터 상기 식(1)을 이용하여 질량 유량(Q)을 산출하고(스텝 S102), 계속해서, 그 질량 유량(Q)을 소정 시간에 걸쳐 시간 적분함으로써, 질량 유량 적분값(n)을 산출한다(스텝 S103). 또한, 소정 시간의 개시시 및 종료시에 있어서, 상류 측 압력 센서(60)로 검출된 압력값에 기초하여 압력 변화량(ΔP1)을 산출하고, 온도 센서(80)로 검출된 온도값(T)을 취득한다(스텝 S104). 그리고, 질량 유량 적분값(n), 압력 변화량(ΔP1) 및 온도값(T)으로부터 식(4)를 이용하여 측정 체적값(V)을 산출한다(스텝 S105). 또한, 이 일련의 연산으로부터, 질량 유량 적분값(n)은 압력의 적분값에 기초하는 값이라고 할 수 있다.
다음으로, 보정부(90g)가 측정 체적값(V)과, 그 측정 체적값(V)의 측정시에 있어서의 측정 주위 조건을 관련지은 측정 데이터를 생성한다(스텝 S106). 그리고, 기준 데이터와 측정 데이터를 참조하여, 기준 데이터의 측정 주위 조건과 측정 데이터의 측정 주위 조건의 편차를 산출하고, 그 측정 주위 조건의 편차를 가미하여, 기준 체적값(VS)에 대한 측정 체적값(V)의 차이의 비율의 상한을 정하는 임계값을 보정한다(스텝 S107). 이것에 의해, 기준값이 보정된다.
마지막으로, 편차 산출부(90h)가 기준 체적값(VS)에 대한 측정 체적값(V)의 차이의 비율을 산출하고(스텝 S108), 유량 센서 진단부(90i)가 그 차이의 비율이 보정 후의 임계값을 초과하고 있는지 여부를 판단한다(스텝 S109). 그리고, 진단 결과 출력부(90n)가, 임계값을 초과하고 있지 않은 경우에는, 유량 센서(20)의 기능이 정상이어서 계속 사용 가능하다는 취지를 통지하고(스텝 S110), 임계값을 초과하고 있는 경우에는, 유량 센서(20)의 기능에 이상이 있다는 취지를 통지한다(스텝 S111).
또한, 유량 센서(20)의 진단을 실시한 결과, 유량 센서(20)가 정상이라고 판단되었을 경우에는, 유량 제어 기능으로 복귀하고, 한편, 유량 센서(20)에 이상이 있다고 판단되었을 경우에는, 계속해서, 압력 센서(60, 70)의 진단 공정을 실시한다.
여기서, 상기 유량 센서의 진단 행정에 있어서는, 상태 방정식을 이용하여 도출된 식(4)에 각 파라미터(구체적으로는, 압력 변화량(ΔP1), 온도값(T), 질량 유량 적분값(n) 등)를 대입함으로써 체적값(V)(내부 용적)을 산출하고, 그 체적값(V)을 이용하여 유량 센서의 기능에 이상이 있는지 여부를 진단하고 있지만, 발명자가 연구를 거듭한 결과, 상기 상태 방정식에는 나타나지 않는 파라미터도 체적값(V)의 산출에 영향을 주고 있는 것을 찾아냈다.
구체적으로는, 상기 스텝 S101을 실행했을 때에, 저항체(50)의 하류 측의 압력, 바꿔 말하면, 유량 제어 장치(MF)의 2차 압력이 높아지면, 이것이 원인으로 저항체(50)의 상류 측과 하류 측의 차압이 작아진다. 이것에 수반하여 압력 강하 시간이 짧아지고, 그 결과, 질량 유량 적분값(n)의 적산(積算) 시간(소정 시간)이 짧아져, 질량 유량 적분값(n)을 산출하기 위한 질량 유량(Q)의 샘플링수가 감소하며, 이것에 의해, 체적값(V)에 오차가 발생되기 쉬워진다. 그리고, 이 체적값(V)의 오차가, 유량 센서의 진단의 정밀도에 영향을 주고 있는 것을 알았다.
그래서, 유체의 상류와 하류의 사이에 발생하는 차압이 소정값 이하가 되었을 경우에, 측정된 출력 관련값을 크게 하는(증가시키는) 보정을 행하거나, 혹은, 기준값을 작게 하는(감소시키는) 보정을 행하는 보정부(진단 기준 보정부)를 마련하는 것에 의해서, 유량 센서(20)의 진단 기준을 엄격히 함으로써, 유량 제어 장치(MF)의 오진에 의해 그 장치가 내장된 시스템 전체가 손상을 받는 것을 방지할 수 있다. 또한, 이 보정은 상기 보정부(90g)에 의해서 실행해도 되고, 또한, 상기 보정부(90g)와는 다른 보정부(진단 기준 보정부)를 마련하여, 거기서 실행되도록 해도 된다.
다음으로, 본 실시 형태에 따른 유량 제어 장치에 있어서의 압력 센서의 진단 공정을 도 7에 기초하여 설명한다.
유량 센서(20)의 진단으로 이상이 있다고 진단되었을 경우에, 입출력 수단으로부터 압력 센서 진단 지시가 입력되면, 밸브 제어부(90c)가, 그 지시에 기초하여, 개폐 밸브(UV)를 완전하게 닫는 것과 함께, 유량 제어 기구(30)의 밸브 및 개폐 밸브(DV)를 연다(스텝 S201). 다음으로, 압력 센서 진단부(90j)가 양 압력 센서(60, 70)로 측정되는 압력값이 규정 압력 범위에 있는지 진단한다(스텝 S202). 그리고, 진단 결과 출력부(90n)가, 규정 압력 범위에 있는 경우에는, 압력 센서(60, 70)가 정상이라는 취지를 통지하고(스텝 S203), 규정 압력 범위에 없는 경우에는, 압력 센서(60, 70)가 이상이라는 취지를 통지한다(스텝 S204).
또한, 압력 센서(60, 70)의 진단으로 정상이라고 진단되었을 경우에는, 계속해서, 후술하는 유량 제어 기구(30)의 진단 공정을 실시한다. 한편, 압력 센서(60, 70)의 진단으로 이상이 있다고 진단되었을 경우에, 입출력 수단으로부터 압력 센서 교정 지시가 입력되면, 압력 센서 교정부(90k)가, 양 압력 센서(60, 70)로 측정되는 압력값이 소정 압력값 이하로 된 상태에서, 양 압력 센서(60, 70)의 0점 보정을 실시한다(스텝 S205). 계속해서, 재차 유량 센서(20)의 진단을 실시한다(스텝 S206). 그리고, 진단 결과 출력부(90n)가, 유량 센서(20)가 정상이라고 진단되었을 경우에는, 그 취지를 통지하고, 그 후, 유량 제어 기능으로 복귀한다(스텝 S207). 한편, 유량 센서(20)에 이상이 있다고 진단되었을 경우에는, 압력 센서(60, 70)에 수리가 필요한 이상이 있다는 취지를 통지한다(스텝 S208).
다음으로, 본 실시 형태에 따른 유량 제어 장치(MF1)에 있어서의 유량 제어 기구(30)의 진단 공정을 도 8에 기초하여 설명한다.
먼저, 유량 센서(20)의 진단으로 이상이 있다고 진단된 후에 압력 센서(60, 70)의 진단으로 정상이라고 진단되었을 경우에, 입출력 수단으로부터 유량 제어 기구 진단 지시가 입력되면, 밸브 제어부(90c)가, 그 지시에 기초하여, 유량 제어 기구(30)의 밸브를 완전하게 닫는 것과 함께, 개폐 밸브(UV, DV)를 연다(스텝 S301). 다음으로, 유량 제어 기구 진단부(90l)가 유량 측정부(90a)로 측정된 유량값의 증가율이 규정 증가율 범위에 있는지 진단한다(스텝 S302). 그리고, 진단 결과 출력부(90n)가, 규정 증가율 범위에 있는 경우에는, 유량 제어 기구(30)가 정상이라는 취지를 통지하고(스텝 S303), 한편, 규정 증가율 범위에 없는 경우에는, 유량 제어 기구(30)에 수리가 필요한 이상이 있다는 취지를 통지한다(스텝 S304). 이 유량 제어 기구(30)의 이상은 밸브 시트 리크(valve seat leak)일 가능성이 높다.
또한, 유량 제어 기구(30)의 진단으로 정상이라고 진단되었을 경우에는, 계속해서, 초기화를 실시한다(스텝 S305). 초기화는, 입출력 수단으로부터 초기화 지시가 입력되면, 초기화 실행부(90m)는 기준 출력 관련값 기억부(90e)에 기억된 기준 데이터를, 재차 다른 측정 주위 조건하에서 다시 측정한 기준 체적값(VS')과 그 측정 주위 조건을 관련지은 새로운 기준 데이터로 오버라이트하고, 추가로, 그 새로운 기준 데이터에 기초하여 기준값 기억부(90f)에 기억된 임계값을 다시 설정한다. 이것에 의해, 유량 제어 기구(30)의 밸브에서 발생하고 있는 리크량이 유량 제어 장치(MF)의 기능에 지장이 생기지 않는 정도의 것인 경우에, 유량 제어 장치(MF)를 교환하는 일 없이 계속 사용할 수 있다. 그리고, 그 후, 유량 제어 기능으로 복귀한다.
또한, 유량 제어 장치(MF1)의 초기화를 실행한 후, 재차 유량 센서(20)의 진단을 실시하여, 유량 센서(20)에 이상이 있다고 진단되었을 경우에는, 압력 센서(60, 70) 및 유량 제어 기구(30) 이외의 요인에 의해서 유량 센서(20)의 기능에 이상이 발생해 있다고 판단할 수 있다. 또한, 그 요인으로서는, 저항체(50)의 막힘, 유로(10)의 리크, 유량 제어 장치(MF1)의 가스 사양과 실제 가스의 불일치 등을 생각할 수 있다.
또한, 상기 초기화를 실시하면, 기준값이 순서대로, 초기화 후의 기준값으로 치환되기 때문에, 기준값 기억부(90f)에 최초로 기억된(설정된) 기준값에 대한 초기화 후의 기준값의 변화량을 산출하는 기준값 변화량 산출부와, 상기 변화량이 미리 정해진 소정 변화량을 초과했는지 판단하는 기준값 변화량 판단부와, 상기 변화량이 미리 정해진 소정 변화량을 초과한 경우에 통지하는 경고부를 구비하도록 하는 것이 바람직하다. 또한, 소정 변화량은 최초로 설정된 기준값에 대한 초기화 후의 기준값의 변화량의 상한값이며, 이 상한값은 유량 제어 기구(30)에 대해서 미리 보장하고 있는 밸브 시트 리크량의 최대값으로부터 산출되는, 기준 출력 관련값에 대한 출력 관련값의 차이의 비율에 기초하여 도출하는 것이 가능하다. 또한, 초기화가 복수 회 실행된 경우에는, 최초로 기억된 기준값으로부터 변화된 총량이 초기화 후의 변화량이 된다.
이와 같은 구성으로 하면, 유량 센서(20)의 진단만으로는 판단할 수 없는 유량 제어 장치(MF1)의 각 요소의 진단을 순서대로 실시할 수 있어서, 유량 센서(20)의 이상의 요인이 되고 있는 요소의 범위를 좁힐 수 있다. 이것에 의해, 교정·수리·교환 등에 의해서 대응 가능한 이상을 놓칠 가능성이 낮아져, 오진을 줄일 수 있다.
또한, 본 실시 형태에 있어서는, 각 지시를 사용자가 입출력 수단으로부터 입력하여 수동으로 행하고 있지만, 각 지시 타이밍을 기억한 프로그램을 메모리에 기억시켜 놓고, 그 프로그램에 의해서 각 지시를 자동으로 행해도 된다.
또한, 본 실시 형태에 있어서는, 압력 센서(60, 70)를 교정하고 나서 유량 센서(20)를 진단하여, 그 유량 센서(20)의 기능을 진단하고 있지만, 압력 센서(60, 70)로 한정되지 않으며, 온도 센서(80)나 다른 센서 등도 마찬가지로 진단하여 교정하도록 해도 된다. 즉, 유체를 측정하는 유체 센서와, 상기 유체 센서의 출력값 또는 이것과 관련되는 값인 출력 관련값을 측정하여, 측정된 출력 관련값을 미리 정해진 기준값과 비교하여 유체 센서의 기능을 진단하는 진단부를 구비하고, 상기 진단부가 상기 유체 센서의 일부 또는 전부의 요소를 보정하고 나서 측정된 출력 관련값과 기준값을 비교하도록 하는 구성의 것으로 하면 된다. 또한, 상기 유체 센서가 유량 센서이고, 상기 유량 센서의 요소에 압력 센서 또는 온도 센서 중 어느 것이 포함된다. 또한, 이 경우, 상기 유체 센서가 유량 센서이고, 상기 유량 센서로 측정되는 유량값에 기초하여 유체의 유량을 밸브에 의해서 제어하는 유량 제어 기구를 더 구비하고, 유량 제어 기구의 밸브를 닫은 상태로 감압시켜, 유량 센서로 측정되는 유량값의 증가율이 규정 증가율 범위에 있는지 여부에 기초하여 유량 제어 기구의 밸브의 상태를 진단하도록 하는 구성으로 해도 된다.
또한, 본 실시 형태에 있어서는, 유량 제어 장치(MF)가 구비하는 밸브 제어부(90c)에 의해서, 입출력 수단으로부터 입력된 각 지시에 기초하여 각 밸브를 제어하고 있지만, 이것으로 한정되지 않고, 각 밸브는 유량 제어 장치(MF)의 외부에 마련된 제어 장치에 마련한 밸브 제어부에 의해서 제어하도록 해도 된다.
<그 밖의 실시 형태>
그 밖의 실시 형태로서, 도 9에 나타내는 유량 제어 장치(MF2)는, 실시 형태 1의 유량 제어 장치(MF1)의 변형예로서, 유량 센서(20)의 하류 측에 개폐 밸브(31)가 마련되어 있고, 온도 센서(80)가 저항체(50)와 개폐 밸브(31)의 사이에 마련되어 있다. 이와 같은 유량 제어 장치(MF2)에 있어서, ROR형의 진단이 가능하게 된다. 구체적으로는, 유량 센서(20)의 기능을 진단하는 경우에는, 개폐 밸브(31)를 닫은 상태로 가스의 공급이 계속 되면, 개폐 밸브(31)의 상류 측이 승압된다. 그리고, 이 경우에도 저항체(50)의 상류 측과 하류 측에서 차압이 발생하기 때문에, 각 센서(60, 70, 80)의 측정값에 기초하여 저항체(50)와 개폐 밸브(31) 사이의 체적값(V)을 산출할 수 있어, 이 체적값(V)을 이용하여 유량 센서(20)의 기능을 진단할 수 있다. 또한, 본 실시 형태에 있어서는, 측정 주위 조건으로서, 유량 센서(20)의 상류 측에 접속된 배관이나 외부 기기로부터 발생하는 1차 압력 변화나 온도 변화를 가미하여 기준값을 변화시킬 필요가 있다.
또한, 그 밖의 실시 형태로서, 특히 실시 형태 1의 유량 제어 장치(MF1)에 있어서, 양 압력 센서(60, 70) 대신에, 저항체(50)의 상류 측 및 하류 측의 차압을 측정하는 차압 센서를 마련하는 양태를 생각할 수 있다. 이와 같은 것이면, 압력 센서의 노즐의 영향의 저감과 코스트 다운이 가능하게 되고, 압력 변동하는 것과 같은 유체에 대해서도 더 적합하게 사용하는 것이 가능하게 된다. 또한, 실시 형태 1의 유량 제어 장치(MF1)인 경우, 2차 측에는 성막실 등의 챔버(진공)가 접속되어 있으므로, 이 2차 측을 기준(제로)으로 하여 차압 센서의 측정값으로부터 1차 측의 유량을 구할 수 있다.
또한, 상기 실시 형태에 있어서는, 기준 체적값(VS)에 대한 산출된 체적값(V)의 차이 비율이 임계값을 초과했는지 여부에 기초하여 진단하고 있지만, 이것으로 한정되는 것이 아니라, 기준 체적값(VS)에 대한 체적값(V)의 차이에 기초하여 진단해도 된다. 이 경우, 기준 출력 관련값을 기준으로 하여 상한값 또는/및 하한값을 설정하고, 그 상한값 또는/및 하한값을 기준값으로 하면 된다. 또한, 상기 실시 형태에 있어서는, 측정 데이터의 측정 주위 조건과 기준 데이터의 측정 주위 조건의 편차에 기초하여 기준값을 보정하고 있지만, 측정 데이터의 출력 관련값을 보정해도 된다. 또한, 상기 실시 형태에 있어서는, 체적값(V)을 산출하는 경우에, 소정 시간의 개시시 및 종료시에 있어서의 압력 변화량이나 온도값을 이용하고 있지만, 유량 변화량을 이용해도 된다.
또한, 상기 실시 형태에 있어서는, 측정 주위 조건으로서 유체의 압력이나 온도를 예시하고 있지만, 이 조건은 이것으로 한정되지 않으며, 예를 들면, 상기 실시 형태와 같은 진단에 있어서, 체적값(V)의 오차의 요인이 되는 측정 주위 조건으로서는, 상기한 2차 압력이나 온도 외에, 각 압력 센서의 기준점의 시프트나, 저항체의 막힘, 유량 제어 기구의 시트 리크 등도 생각할 수 있다. 따라서, 이들 측정 주위 조건에 따라서 기준값을 보정하도록 해도 된다.
또한, 상기 실시 형태에 있어서는, 유량 센서에 온도 센서가 포함되어 있지만, 유량 센서는 유량을 측정하기 위해 필요한 구성을 구비한 것이면 되고, 온도 센서와 같이 유량의 측정에 직접적으로 관여하지 않는 센서는, 반드시 유량 센서에 포함시킬 필요는 없다. 또한, 온도 센서는 측정 주위 조건을 측정하기 위해 필요한 센서로서, 유량 센서와는 별개로 마련하면 된다.
또한, 본 발명에 따른 진단 시스템은, 상기 실시 형태와 같이 유량 제어 장치나 압력 제어 장치에 적용할 수 있는 것 외에, 유량 측정 장치에도 적용할 수 있다. 또한, 본 발명에 따른 유체 센서는 상기 실시 형태에서 이용되는 유량 센서로 한정되지 않으며, 압력 센서, 온도 센서 등을 이용할 수도 있다.
MF1 유량 제어 장치
UV, DV 개폐 밸브
10 유로
20 유량 센서
30 유량 제어 기구
40 압력 센서
50 저항체
60 상류 측 압력 센서
70 하류 측 압력 센서
80 온도 센서
90 제어부
90e 기준 출력 관련값 기억부
90g 보정부
90i 유량 센서 진단부

Claims (11)

  1. 유체를 측정하는 유체 센서와,
    상기 유체 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하는 출력 관련값 측정부와,
    상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값을 기억하는 기준값 기억부와,
    상기 출력 관련값 또는 상기 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하는 보정부와,
    상기 보정부의 보정 결과에 기초한 상기 출력 관련값과 상기 기준값에 기초하여 상기 유체 센서를 진단하는 진단부를 구비하는 것을 특징으로 하는 진단 시스템.
  2. 청구항 1에 있어서,
    미리 기준이 되는 측정 주위 조건하에서 측정된 기준 출력 관련값과 그 측정 주위 조건을 관련지어 기억하는 기준 출력 관련값 기억부를 더 구비하고,
    상기 보정부가 상기 출력 관련값 또는 상기 기준값 중 적어도 한쪽을, 상기 출력 관련값에 관련지어진 측정 주위 조건과 상기 기준 출력 관련값에 관련지어진 측정 주위 조건의 편차에 기초하여 보정하는 진단 시스템.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 측정 주위 조건이 상기 유체의 압력 또는 온도 중 어느 한쪽 또는 양쪽을 포함하는 진단 시스템.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 출력 관련값이 상기 유체의 경시변화하는 압력의 시간 적분값에 기초한 값인 진단 시스템.
  5. 청구항 1 또는 청구항 2에 있어서,
    상기 출력 관련값이 상기 유체의 흐름의 상류와 하류의 사이에 발생하는 차압에 기초하여 산출되는 질량 유량을 소정 시간 적분한 질량 유량 적분값에 기초한 값인 진단 시스템.
  6. 청구항 5에 있어서,
    상기 출력 관련값이 상기 상류 또는 하류에 있어서의 상기 소정 시간 동안의 압력 변화량 및 온도 변화량과, 상기 질량 유량 적분값으로부터 산출되는 유체의 체적값인 진단 시스템.
  7. 청구항 6에 있어서,
    상기 유체의 흐름을 차단하는 유량 조정 기구를 더 구비하고,
    상기 유량 조정 기구가 상기 유체의 흐름을 차단함으로써 상류 측 또는 하류 측의 유체의 압력이 경시변화하는 진단 시스템.
  8. 청구항 7에 있어서,
    상기 유체 센서가 상기 유체의 상류와 하류의 사이에 차압을 발생시키는 저항체를 구비하는 진단 시스템.
  9. 유체를 측정하는 유체 센서의 기능을 진단하는 진단 방법으로서,
    상기 유체 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하고,
    상기 출력 관련값 또는 상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하며,
    상기 보정 결과에 기초한 상기 출력 관련값과 상기 기준값에 기초하여 상기 유체 센서를 진단하는 것을 특징으로 하는 유체 센서의 진단 방법.
  10. 유체를 측정하는 유체 센서의 기능을 진단하는 진단 시스템에 이용되는 프로그램을 기억한 기억 매체로서,
    상기 유체 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하고,
    상기 출력 관련값 또는 상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하며,
    상기 보정 결과에 기초한 상기 출력 관련값과 상기 기준값에 기초하여 상기 유체 센서를 진단하는 기능을 컴퓨터에 발휘시키는 것을 특징으로 하는 프로그램을 기억한 기억 매체.
  11. 유체의 유량을 측정하는 유량 센서와,
    상기 유량 센서의 상류 측에 마련되고, 그 유량 센서의 출력값에 기초하여 상기 유체의 유량을 제어하는 유량 제어 기구와,
    상기 유량 센서의 출력값 또는 이것과 관련되는 값 중 어느 값인 출력 관련값을 측정하는 출력 관련값 측정부와,
    상기 출력 관련값이 정상인지 여부를 판단하기 위해서 미리 정해진 기준값을 기억하는 기준값 기억부와,
    상기 출력 관련값 또는 상기 기준값 중 적어도 한쪽을, 상기 출력 관련값의 측정 주위 조건에 따라서 보정하는 보정부와,
    상기 보정부의 보정 결과에 기초한 상기 출력 관련값과 상기 기준값에 기초하여 상기 유량 센서를 진단하는 진단부를 구비하는 것을 특징으로 하는 유량 제어 장치.
KR1020180029164A 2017-03-14 2018-03-13 진단 시스템, 진단 방법, 진단 프로그램 및 유량 제어 장치 KR102498547B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017049248 2017-03-14
JPJP-P-2017-049248 2017-03-14
JP2018006632A JP7384551B2 (ja) 2017-03-14 2018-01-18 診断システム、診断方法、診断プログラム及び流量制御装置。
JPJP-P-2018-006632 2018-01-18

Publications (2)

Publication Number Publication Date
KR20180105083A true KR20180105083A (ko) 2018-09-27
KR102498547B1 KR102498547B1 (ko) 2023-02-10

Family

ID=63679507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180029164A KR102498547B1 (ko) 2017-03-14 2018-03-13 진단 시스템, 진단 방법, 진단 프로그램 및 유량 제어 장치

Country Status (3)

Country Link
JP (1) JP7384551B2 (ko)
KR (1) KR102498547B1 (ko)
TW (1) TWI766961B (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437980B2 (ja) * 2019-03-12 2024-02-26 株式会社堀場エステック 流体制御装置、流体制御システム、診断方法、及び、流体制御装置用プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214916A (ja) * 1999-01-25 2000-08-04 Stec Inc 圧力式流量コントロ―ラのノズル診断機構および圧力式流量コントロ―ラのノズル診断方法
JP2003151602A (ja) * 2001-11-08 2003-05-23 Matsushita Electric Ind Co Ltd 原料供給制御装置及び燃料電池システム
KR20090075816A (ko) * 2006-11-02 2009-07-09 가부시키가이샤 호리바 에스텍 차압식 매스 플로우 컨트롤러에 있어서 진단 기구
KR20120033999A (ko) * 2010-09-30 2012-04-09 가부시키가이샤 호리바 에스텍 진단기구

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062446A (en) * 1991-01-07 1991-11-05 Sematech, Inc. Intelligent mass flow controller
US6502602B1 (en) * 2000-09-22 2003-01-07 Airometrix Mfg., Inc. Methods and apparatus for testing fluid compressors
US6999853B2 (en) * 2002-05-03 2006-02-14 Fisher Controls International Llc. Methods and apparatus for operating and performing diagnostics in a control loop of a control valve
GB2419422B8 (en) 2002-06-24 2008-09-03 Mks Instr Inc Mass flow controller
CN100582978C (zh) * 2004-03-03 2010-01-20 费舍-柔斯芒特系统股份有限公司 用于预防加工厂中异常状况的配置系统和方法
JP5031689B2 (ja) * 2008-07-10 2012-09-19 東京瓦斯株式会社 ガスメーター計量方法及びガスメーター計量装置
JP5078027B2 (ja) * 2008-08-22 2012-11-21 住友化学株式会社 プロセス解析プログラムならびにプロセス解析装置およびそれを用いた運転シミュレータ装置
US8104334B2 (en) * 2009-04-30 2012-01-31 GM Global Technology Operations LLC Fuel pressure sensor performance diagnostic systems and methods based on hydrodynamics of injecton
WO2011108981A1 (en) * 2010-03-01 2011-09-09 Provtagaren Ab Flow regulating system and monitoring device comprising said flow regulating system for the detection of air borne analytes
CN103518165B (zh) * 2011-05-10 2016-06-08 株式会社富士金 带有流量监测器的压力式流量控制装置
CN102393236B (zh) * 2011-11-01 2012-11-21 浙江大学 一种气体涡轮流量计的仪表系数自校正方法
CN103234605B (zh) * 2013-04-10 2015-06-24 温州百岸汽车零部件有限公司 汽车流量计双向气流及反应速度的对比测试方法和测试仪
CN103364055B (zh) * 2013-07-15 2015-07-15 河南理工大学 一种流量计脉冲自动校正方法及装置
JP6107697B2 (ja) * 2014-02-12 2017-04-05 株式会社デンソー 流量計の校正方法
US9551259B1 (en) * 2015-08-26 2017-01-24 Ford Global Technologies, Llc Method and system for diesel particulate filter diagnostics
CN105716674B (zh) * 2016-04-20 2020-06-23 成都千嘉科技有限公司 超声波流量计的超声发送时间校正方法、系统及流量计

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214916A (ja) * 1999-01-25 2000-08-04 Stec Inc 圧力式流量コントロ―ラのノズル診断機構および圧力式流量コントロ―ラのノズル診断方法
JP2003151602A (ja) * 2001-11-08 2003-05-23 Matsushita Electric Ind Co Ltd 原料供給制御装置及び燃料電池システム
KR20090075816A (ko) * 2006-11-02 2009-07-09 가부시키가이샤 호리바 에스텍 차압식 매스 플로우 컨트롤러에 있어서 진단 기구
JP4881391B2 (ja) 2006-11-02 2012-02-22 株式会社堀場エステック 差圧式マスフローコントローラにおける診断機構
KR20120033999A (ko) * 2010-09-30 2012-04-09 가부시키가이샤 호리바 에스텍 진단기구

Also Published As

Publication number Publication date
JP2018152051A (ja) 2018-09-27
KR102498547B1 (ko) 2023-02-10
JP7384551B2 (ja) 2023-11-21
TWI766961B (zh) 2022-06-11
TW201841088A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
KR102121260B1 (ko) 유량 제어 장치 및 유량 제어 장치를 사용하는 이상 검지 방법
KR101840047B1 (ko) 가스 유동 제어기의 인 시투 시험을 위한 방법 및 장치
CN108885471B (zh) 压力式流量控制装置和流量自诊断方法
TWI541626B (zh) Gas flow test system and gas flow test unit
US10883866B2 (en) Pressure-based flow rate control device and malfunction detection method therefor
TWI642910B (zh) 流量控制機器、流量控制機器的流量校正方法、流量測定機器及使用流量測定機器的流量測定方法
US10684159B2 (en) Methods, systems, and apparatus for mass flow verification based on choked flow
US11216016B2 (en) Flow rate control method and flow rate control device
CN108572023B (zh) 诊断系统、诊断方法和存储介质
KR20190005850A (ko) 진공압 제어 밸브를 사용하는 예측 진단 시스템 및 방법
JP5011195B2 (ja) 流体分流供給ユニット
JP7197897B2 (ja) コントロール弁のシートリーク検知方法
US11326921B2 (en) Flow rate measuring method and flow rate measuring device
KR20180105083A (ko) 진단 시스템, 진단 방법, 진단 프로그램 및 유량 제어 장치
JPWO2020026784A1 (ja) 流量制御システム及び流量測定方法
TWI832863B (zh) 流量測定方法及流量測定裝置
TW202033935A (zh) 流量計算系統、流量計算系統用程式、流量計算方法及流量計算裝置
TW202206780A (zh) 流量診斷裝置、流量診斷方法和程式儲存媒體
KR20200109258A (ko) 유체 제어 장치, 진단 방법, 및 유체 제어 장치용 프로그램을 기록한 프로그램 기록 매체
JP7249030B2 (ja) 流量測定装置内の容積測定方法および流量測定装置
CN116449879A (zh) 流体控制装置、流体控制方法及记录介质
TW202138763A (zh) 流量測定方法及流量測定裝置
JP2021085813A (ja) 流量測定器
KR20210138495A (ko) 유량 비율 제어 시스템, 성막 시스템, 이상 진단 방법, 및 이상 진단 프로그램 매체

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant