KR20170009767A - 리튬 이온 이차 전지의 제조 방법 - Google Patents

리튬 이온 이차 전지의 제조 방법 Download PDF

Info

Publication number
KR20170009767A
KR20170009767A KR1020160088660A KR20160088660A KR20170009767A KR 20170009767 A KR20170009767 A KR 20170009767A KR 1020160088660 A KR1020160088660 A KR 1020160088660A KR 20160088660 A KR20160088660 A KR 20160088660A KR 20170009767 A KR20170009767 A KR 20170009767A
Authority
KR
South Korea
Prior art keywords
battery
voltage
positive electrode
charging
active material
Prior art date
Application number
KR1020160088660A
Other languages
English (en)
Other versions
KR101900146B1 (ko
Inventor
다카시 미우라
마사노리 기타요시
Original Assignee
도요타지도샤가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타지도샤가부시키가이샤 filed Critical 도요타지도샤가부시키가이샤
Publication of KR20170009767A publication Critical patent/KR20170009767A/ko
Application granted granted Critical
Publication of KR101900146B1 publication Critical patent/KR101900146B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/54

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 이온 이차 전지(1)의 제조 방법이 제공된다. 그 제조 방법은, 전지(1)에 처음으로 충전하는 공정을 포함하고, 그 공정은, 전지(1)를 충전하여, 전지(1)의 전압 Vt를 하부 분해 영역 Ad 내의 제1 전압 Vh까지 상승시키는 제1 공정(S1, SA1)과, 전지(1)의 전압 Vt를 제1 전압 Vh로 유지하는 제2 공정(S2, SA2, SA2a)과, 제2 공정(S2, SA2, SA2a) 후에, 제1 전압 Vh보다도 높은 제2 전압 Ve까지 충전을 행하는 제3 공정(S3, SA3)을 구비한다.

Description

리튬 이온 이차 전지의 제조 방법{METHOD OF MANUFACTURING LITHIUM ION SECONDARY BATTERY}
본 발명은 정극 활물질 입자를 포함하는 정극 활물질층을 갖는 정극과, 부극과, 불소를 포함하는 화합물을 갖는 비수 전해액을 구비하는 리튬 이온 이차 전지의 제조 방법에 관한 것이다.
리튬 이온 이차 전지(이하, 간단히 전지라고도 함)에서는, 정극 전위가 고전위로 되기 때문에, 정극 활물질 입자의 입자 표면에서 비수 전해액의 비수용매가 산화 분해되기 쉬운 것이 알려져 있다. 비수용매가 산화 분해되어 수소 이온이 발생하면, 비수 전해액이 불소를 포함하는 화합물을 갖는 경우에는, 수소 이온이 불소와 반응하여 불산(HF)을 생성하는 경우가 있다. 그러면, 이 불산의 작용에 의해, 정극 활물질 입자 중의 전이 금속 등의 금속 원소가 용출되어, 전지 용량이 적어진다. 이로 인해, 이러한 전지에서는, 충방전 사이클 시험을 행했을 때 전지 용량이 크게 저하된다는 문제가 있다.
이 문제에 대하여, 정극 활물질층에 인산리튬 등의 금속 인산염 입자나 금속 피로인산염 입자를 포함시켜 두는 기술이 알려져 있다. 정극 활물질층에 금속 인산염 입자를 포함시켜 두면, 전지를 첫 충전할 때에 상술한 불산이 금속 인산염과 반응하여, 정극 활물질 입자의 입자 표면에 불소 및 인을 포함하는 피막이 형성된다. 이 피막은, 비수 전해액이 정극 활물질에 직접 접촉하는 것을 억제하므로, 피막이 형성된 후에는 정극 전위가 비수용매의 산화 분해 전위를 초과해도, 비수용매가 산화 분해되는 것을 억제할 수 있다. 따라서, 전지에 충방전 사이클 시험을 행한 후에, 전지 용량이 저하되는 것을 억제할 수 있다. 예를 들어, 일본 특허 공개 제2014-103098에는, 정극 합제층(정극 활물질층)에 인산리튬이나 인산나트륨 등의 금속 인산염 입자를 함유시키는 기술이 개시되어 있다.
그러나, 전지의 첫 충전에 있어서 충전 전류를 크게 하면, 전지 저항이 높아지는 경향이 있는 것을 알았다. 불소 및 인을 포함하는 피막은 저항체이다. 그런데 이 피막이 형성될 때 충전 전류가 크면, 비수 전해액의 산화 분해가 과잉으로 일어나, 피막이 두껍게 형성되기 때문에 전기 저항이 높아진다고 추측된다.
본 발명은 전지에 처음으로 충전을 행하는 공정(첫 충전 공정)에 있어서, 정극 활물질 입자의 입자 표면에 불소 및 인을 포함하는 피막을 형성하면서도, 전지 저항을 낮출 수 있는 리튬 이온 이차 전지의 제조 방법을 제공한다.
본 발명의 제1 형태는, 정극 활물질 입자를 포함하는 정극 활물질층을 갖는 정극과, 부극과, 불소를 함유하는 화합물을 포함하는 비수 전해액을 구비하고, 상기 정극 활물질 입자는, 그 입자 표면에 불소 및 인을 포함하는 피막을 갖는 리튬 이온 이차 전지의 제조 방법이며, 상기 정극 활물질층은, 금속 인산염 및 금속 피로인산염의 적어도 어느 하나의 입자를 포함하고, 상기 리튬 이온 이차 전지에 처음으로 충전하는 공정은, 상기 리튬 이온 이차 전지를 충전하여, 상기 리튬 이온 이차 전지의 전압을 상기 비수 전해액의 하부 분해 영역 내의 제1 전압까지 상승시키는 제1 공정과, 상기 리튬 이온 이차 전지의 전압을 상기 제1 전압으로 유지하는 제2 공정과, 상기 제2 공정 후에, 상기 제1 전압보다도 높은 제2 전압까지 충전을 행하는 제3 공정을 구비하는 리튬 이온 이차 전지의 제조 방법에 관한 것이다.
본 발명의 제1 형태에 의하면, 첫 충전 공정에 있어서, 제1 공정 후, 제2 공정에서 일단 전지 전압(단자간 전압)을 하부 분해 영역 내의 제1 전압으로 유지하고, 즉, 제1 전압의 정전압 충전(이하, CV 충전이라고도 함)을 행하고, 그 후, 제3 공정에서 제2 전압까지 충전을 행한다. 이로 인해, 이 제2 공정에 있어서는, 전지 전압을 제1 전압으로 유지하고 있는 동안에 비수 전해액의 산화 분해가 발생한다. 그러나, 제1 전압을, 비수 전해액이 산화 분해를 일으키는 범위 중에서도, 하부 분해 영역이라는 낮은 전압 범위 내의 전압으로 하고 있다. 이로 인해, 비수 전해액의 산화 분해가 서서히밖에 일어나지 않아, 정극 활물질 입자의 입자 표면에 불소 및 인을 포함하는 피막을 얇게 형성할 수 있어, 전지 저항을 낮게 억제할 수 있다.
또한, 이 피막이 각 정극 활물질 입자의 표면 위에 적절하게 형성된 이후는, 전지의 전압이, 비수 전해액이 산화 분해를 일으키는 범위의 크기라도, 비수 전해액의 산화 분해가 억제된다. 생성된 피막이, 정극 활물질 입자에 비수 전해액이 접촉하는 것을 방해하기 때문으로 생각되어진다.
비수 전해액의 「하부 분해 영역」이란, 전지에 있어서, 비수 전해액이 산화 분해되는 하한의 전압인 분해 하한 전압부터, 이것보다 0.4V 높은 전압까지의 전압 범위를 의미한다. 예를 들어, 분해 하한 전압이 4.0V인 경우, 「하부 분해 영역」은 4.0 내지 4.4V이다. 이 범위 내의 전압으로 유지한 경우에는, 비수 전해액의 산화 분해가 과잉이 되지 않기 때문이다. 또한, 비수 전해액의 「분해 하한 전압」은, 비수 전해액의 「분해 하한 전위(vs.Li/Li+)」로부터 부극의 전위(예를 들어, 흑연 입자를 사용한 부극에서는, 0.2V(vs.Li/Li+))를 차감한 값을 가리킨다. 또한, 비수 전해액의 「분해 하한 전위(vs.Li/Li+)」는, 이하의 방법으로 검지한 값이다. Pt판을 포함하는 작용극, 금속 리튬을 포함하는 대향 전극 및 참조극을 갖고, 전해액으로서 전지에 사용하는 비수 전해액을 사용한 측정용 셀을 준비한다. 전기 화학 측정 시스템(예를 들어, 솔라트론사제)을 사용하여, 이 측정용 셀에 대하여, 작용극의 전위를 3.0 내지 5.4V(vs.Li/Li+)의 범위에 걸쳐, 1mV/sec의 비율로 상승 및 하강시키는 CV 측정을 2사이클 행한다. 또한 3사이클째에 작용극의 전위를 상승시킬 때의, 정극 전위 Ep(V(vs.Li/Li+))와 그때에 흐르는 전류 I(㎂/㎠)의 관계를 취득한다. 이 관계로부터, 정극 전위 Ep(V(vs.Li/Li+))와 미분값 dI/dEp의 관계(그래프)를 얻는다. 미분값 dI/dEp가 직선적으로 상승하는 부분에 겹치는 근사 직선을 긋고, 이 근사 직선이 미분값 dI/dEp=0이 되는, 정극 전위 Ep의 값을, 당해 비수 전해액의 「분해 하한 전위(vs.Li/Li+)」Epd로 한다(도 6, 도 7 참조).
또한, 정극 활물질층에 포함되는 금속 인산염의 입자의 조성으로서는, 예를 들어 M3PO4(M: 알칼리 금속)로 표시되는 알칼리 금속의 인산염이나, M3(PO4)2(M: 제2족 원소)로 표시되는 제2족 원소의 인산염, 혹은 알칼리 금속 및 제2족 금속의 양쪽 금속을 포함하는 인산염을 들 수 있다. 또한, 알칼리 금속의 인산염으로서는, 예를 들어 인산리튬(Li3PO4), 인산나트륨(Na3PO4), 인산칼륨(K3PO4), 인산디리튬나트륨(Li2NaPO4) 등을 들 수 있다. 또한, 제2족 원소의 인산염으로서는, 예를 들어 인산마그네슘(Mg3(PO4)2), 인산칼슘(Ca3(PO4)2) 등을 들 수 있다. 또한, 알칼리 금속 및 제2족 금속의 양쪽 금속을 포함하는 인산염으로서는, 예를 들어 인산나트륨마그네슘(MgNaPO4)을 들 수 있다. 또한 그 밖에 금속 인산염으로서, 예를 들어 리튬알미늄게르마늄인산염(LAGP: Li1 . 5Al0 . 5Ge1 . 5(PO4)3)과 같이, 알칼리 금속 및 제2족 원소 이외의 원소를 포함하는 금속 인산염도 들 수 있다.
금속 피로인산염의 입자의 조성으로서는, 예를 들어 M4P2O7(M: 알칼리 금속)로 표시되는 알칼리 금속의 피로인산염이나, M2P2O7(M: 제2족 원소)로 표시되는 제2족 원소의 피로인산염을 들 수 있다. 또한, 알칼리 금속의 피로인산염으로서, 예를 들어 피로인산리튬(Li4P2O7), 피로인산나트륨(Na4P2O7), 피로인산칼륨(K4P2O7)을 들 수 있다. 또한, 제2족 원소의 피로인산염으로서는, 예를 들어 피로인산마그네슘(Mg2P2O7), 피로인산칼슘(Ca2P2O7)을 들 수 있다.
「정극 활물질 입자」를 이루는 정극 활물질로서는, 예를 들어 리튬 전이 금속 복합 산화물을 들 수 있다. 리튬 전이 금속 복합 산화물로서는, 예를 들어 전이 금속으로서 니켈(Ni)과 코발트(Co)와 망간(Mn)을 포함하는 리튬니켈코발트망간계 복합 산화물이나, 전이 금속으로서 니켈과 망간을 포함하는 리튬니켈망간계 복합 산화물, 니켈산리튬(LiNiO2), 코발트산리튬(LiCoO2), 망간산리튬(LiMn2O4)을 들 수 있다.
더욱 구체적으로는, 정극 활물질로서, 이하가 일반식 (1)로 표시되는, 스피넬형의 결정 구조를 갖는 리튬니켈망간계 복합 산화물을 사용할 수 있다.
Li(NixMyMn2-x-y)O4…(1)
단, x는 x>0, 바람직하게는 0.2≤x≤1.0이다.
또한, y는 y≥0, 바람직하게는 0≤y<1.0이다.
또한, x+y<2.0이다.
또한, 「M」은 Ni, Mn 이외의 임의의 전이 금속 원소(예를 들어, Fe, Co, Cu, Cr로부터 선택되는 1종 또는 2종 이상) 또는 전형 금속 원소(예를 들어, Zn, Al로부터 선택되는 1종 또는 2종 이상)이다.
또한, 정극 활물질의 결정 구조가 스피넬 구조를 갖고 있는지 여부에 대해서는, 예를 들어 X선 구조 해석(바람직하게는 단결정 X선 구조 해석)에 의해 판별할 수 있다. 구체적으로는, CuKα선을 사용한 X선 회절 측정에 의해 판별할 수 있다.
「불소 및 인을 포함하는 피막」에는 불소 및 인 이외에, 비수 전해액의 성분(전해질이나 비수용매, 첨가제 등)의 분해물 등이 포함되어 있어도 된다. 「정극 활물질층」에는 정극 활물질 입자 및 금속 인산염 및 금속 피로인산염의 적어도 어느 하나의 입자 이외에, 예를 들어 흑연, 카본 블랙, 아세틸렌 블랙 등의 도전재나, 폴리불화비닐리덴(PVDF), 폴리테트라플루오로에틸렌(PTFE), 스티렌부타디엔 고무(SBR) 등의 결착제를 포함할 수 있다. 「부극」에는 부극 활물질 입자를 포함하는 부극 활물질층을 부극 집전박 위에 형성한 형태의 것을 들 수 있다. 부극 활물질 입자로서는, 예를 들어 흑연 등 리튬을 삽입·탈리 가능한 탄소 재료를 포함하는 입자를 들 수 있다.
「비수 전해액」의 비수용매로서는, 예를 들어 디메틸카르보네이트, 디에틸카르보네이트, 에틸메틸카르보네이트, 메틸프로필카르보네이트, 에틸렌카르보네이트, 프로필렌카르보네이트, 부틸렌카르보네이트, 비닐렌카르보네이트 등의 유기 용매를 들 수 있고, 이들을 단독으로 혹은 2종 이상을 혼합하여 사용할 수 있다. 불소를 포함하는 비수용매인, 플루오로에틸렌카르보네이트, 2,2,2-트리플루오로에틸메틸카르보네이트 등을 사용할 수도 있다. 또한, 「비수 전해액」에 첨가하는 전해질(지지 전해질)로서는, 예를 들어 불소를 포함하는 지지 전해질인 LiPF6, LiBF4, LiAsF6, LiSbF6, LiCF3SO3 등을 들 수 있고, 이들을 단독으로 혹은 2종 이상을 조합하여 사용할 수 있다.
또한, 「비수 전해액」에는, 상기한 전해질 이외의 첨가물을 포함시킬 수도 있다. 첨가물로서는, 예를 들어 불화물이나 리튬비스옥살레이트보레이트(LiBOB)를 들 수 있다. 불화물로서는, 예를 들어 AgF, CoF2, CoF3, CuF, CuF2, FeF2, FeF3, LiF, MnF2, MnF3, SnF2, SnF4, TiF3, TiF4, ZrF4 등을 들 수 있고, 이들을 단독으로 혹은 2종 이상을 조합하여 사용할 수 있다. 또한, 비수 전해액에 포함되는 「불소를 포함하는 화합물」은, LiPF6 등의 불소를 포함하는 전해질이어도 되고, LiF 등의 불소를 포함하는 첨가물이어도 되고, 플루오로에틸렌카르보네이트 등의 불소를 포함하는 비수용매이어도 된다. 또한, 비수 전해액에 포함되는 불소를 포함하는 화합물은 1종뿐이어도 되고, 2종 이상 포함되어 있어도 된다. 또한, 1C의 충전 전류란, 전지의 정격 용량을 1시간에 충전할 수 있는 충전 전류의 크기를 가리킨다.
제1 공정에서의 전지의 충전으로서는, 정전류 충전(이하, CC 충전이라고도 함)이나 정전력 충전에 의한 충전을 채용할 수 있다. 혹은, 설정 전압을 제1 전압 이상으로 한 정전압 충전(CV 충전)에 의해, 전지 전압이 제1 전압이 될 때까지 충전할 수도 있다. 제2 공정에서의 전지의 충전은, 제1 전압을 유지하면서 충전을 행하는, 정전압 충전이다. 또한, 제3 공정에서의 전지의 충전으로서는, 정전류 충전이나 정전력 충전에 의한 충전을 채용할 수 있다. 혹은, 설정 전압을 제2 전압보다도 높은 값으로 한 정전압 충전에 의해, 전지 전압이 제2 전압이 될 때까지 충전할 수도 있다.
상술한 리튬 이온 이차 전지의 제조 방법이며, 상기 제3 공정은, 1C보다도 큰 충전 전류로 충전을 행해도 된다. 제3 공정에서의 전지의 충전으로서는, 충전 전류를 1C보다도 큰 값으로 설정한 정전류 충전이나, 충전 전류를 1C보다도 큰 값에 한정한 정전력 충전에 의한 충전을 채용할 수 있다.
상술한 리튬 이온 이차 전지의 제조 방법이며, 상기 제2 공정은, 미리 정한 유지 기간에 걸쳐, 상기 리튬 이온 이차 전지의 전압을 상기 제1 전압으로 유지해도 된다.
이 제조 방법에서는, 제2 공정에서, 미리 정한 유지 기간에 걸쳐, 전지의 전압을 제1 전압으로 유지한다. 이로 인해, 정극 활물질 입자 표면에, 유지 기간에 따른 피막을 확실하게 형성할 수 있다.
또한 상술한 리튬 이온 이차 전지의 제조 방법이며, 상기 유지 기간은, 상기 유지 기간을 연장시키지 않고 상기 제2 공정을 행하고, 그 후, 상기 제3 공정을 행하여 제조한 전지의 전지 저항 Rn과, 상기 유지 기간 대신에, 상기 유지 기간을 1.5배로 연장한 연장 유지 기간에 걸쳐 상기 제1 전압을 유지하고, 그 후, 상기 제3 공정을 행하여 제조한 유지 기간 연장 전지의 전지 저항 Re를 비교했을 때, Rn=0.98Re 내지 1.02Re가 되는 기간으로 해도 된다.
첫 충전 후의 전지 저항은, 유지 기간이 길수록, 즉 정극 활물질 입자의 입자 표면으로의, 불소 및 인을 포함하는 피막의 형성이 진행됨에 따라 저하되지만, 결국엔 저항의 저하는 정지되어, 유지 기간을 길게 해도 전지 저항은 변화하지 않는 상태가 된다. 이 경우에 있어서, 전지 저항 Rn이 Rn=0.98Re 내지 1.02Re가 된다는 것은, 유지 기간(예를 들어 40분)에 걸쳐 제1 전압을 유지함으로써, 정극 활물질 입자의 입자 표면에, 대략 불소 및 인을 포함하는 피막이 형성되었기 때문에, 재차 유지 기간을 1.5배(예를 들어 60분)로 연장해도, 더 형성되는 피막이 거의 없는 것을 나타내고 있다. 즉, 유지 기간에 걸쳐 제1 전압을 유지하면, 유지 기간 연장 전지의 전지 저항 Re에 비하여, 전지 저항 Rn이 기껏 2% 이내밖에 상이하지 않을 정도로 피막이 충분히 형성된다. 따라서, 이러한 유지 기간에 걸쳐 제1 전압을 유지하면, 불소 및 인을 포함하는 피막의 형성은 대략 완료된 상태에서, 신속하게 이어지는 제3 공정으로 이행할 수 있다. 즉, 정극 활물질 입자의 입자 표면에, 비수용매의 산화 분해를 방지할 수 있는 얇은 피막이 적절하게 형성되면서, 또한 전지 저항이 낮은 전지를 제조할 수 있다.
혹은 상술한 리튬 이온 이차 전지의 제조 방법이며, 상기 유지 기간은, 상기 유지 기간을 연장시키지 않고 상기 제2 공정을 행하고, 그 후, 상기 제3 공정을 행하여 제조한 전지의 전지 저항 Rn과, 상기 유지 기간 대신에, 상기 유지 기간을 1.5배로 연장한 연장 유지 기간에 걸쳐 상기 제1 전압을 유지하고, 그 후, 상기 제3 공정을 행하여 제조한 유지 기간 연장 전지의 전지 저항 Re를 비교했을 때, Rn=0.99Re 내지 1.01Re가 되는 기간으로 해도 된다.
이 제조 방법에서는, 유지 기간에 걸쳐 제1 전압을 유지하면, 유지 기간 연장 전지의 전지 저항 Re에 비하여, 전지 저항 Rn이 기껏 1% 이내밖에 상이하지 않을 정도로 피막이 충분히 형성된다. 따라서, 이러한 유지 기간에 걸쳐 제1 전압을 유지하면, 불소 및 인을 포함하는 피막의 형성은 대략 완료된 상태에서, 신속하게 이어지는 제3 공정으로 이행할 수 있다. 즉, 정극 활물질 입자의 입자 표면에, 피막이 적절하게 더 형성된 전지를 제조할 수 있다.
상술한 리튬 이온 이차 전지의 제조 방법이며, 상기 제2 공정은, 상기 리튬 이온 이차 전지의 충전 전류의 크기가, 미리 정한 컷오프 전류값 이하로 될 때까지, 상기 제1 전압으로 유지해도 된다.
제2 공정에서는, 전지의 전압을 제1 전압으로 유지한다. 그런데, 전지의 변동에 의해 정극 활물질 입자 표면에 형성되는 피막 생성의 속도에 차이가 발생하기 때문에, 제1 전압으로 유지하는 기간을 동일하게 한 경우에는 정극 활물질 입자 표면에 형성되는 피막의 두께 등의 상태가 상이한 것이 되어, 전지 저항의 크기에 변동이 발생하는 등의 차이가 발생한다. 이로 인해, 어느 전지에서든 적절한 두께의 피막이 얻어지도록 하기 위해서는, 속도가 느린 전지에 맞게, 유지 기간을 약간 길게 정할 필요가 있어, 개개의 전지에 대하여 보면, 유지 기간이 지나치게 긴 경우도 발생한다. 이에 대하여, 상술한 제조 방법에서는, 제2 공정에 있어서, 소정의 유지 기간이 아니라, 충전 전류가 컷오프 전류값 이하로 될 때까지 제1 전압을 유지하므로, 전지의 변동이 존재해도 각각의 전지에 대하여 짧은 시간에 정극 활물질 입자 표면에 마찬가지의 두께의 피막을 형성할 수 있다.
또한, 상술한 리튬 이온 이차 전지의 제조 방법이며, 상기 컷오프 전류값은, 상기 제1 공정의 종기에 있어서의 종기 전류값의 2/5의 크기로 해도 된다.
제1 공정에 있어서(소정 전류로 충전하는 CC 충전 등에 의해) 전지의 전압을 제1 전압으로 한 후, 제2 공정에서 이 제1 전압으로 유지하면, 즉 CV 충전하면, 전지에 흐르는 충전 전류는, 당초, 제1 공정의 종기에 있어서의 종기 전류값으로부터 급격하게 감소하고, 그 후, 서서히 감소하게 되고, 또한 그 후 0에 점근하는(y=1-ex의 그래프를 닮은 형상의) 커브를 그린다. 제2 공정의 당초에는 전지 전압을 제1 전압으로 한 것에 의해, 전해액의 산화 분해가 차례대로 일어나, 그 분해 전류로서 큰 전류가 흐른다. 그러나 시간의 경과와 함께, 정극 활물질층에 포함되는 금속 인산염 등이 소비되어, 피막이 형성됨과 함께, 전해액의 산화 분해가 억제됨으로써 충전 전류가 서서히 감소된다고 생각되어진다.
이것을 근거로 하여, 전술한 바와 같이, 제2 공정에서의 컷오프 전류값을, 종기 전류값의 2/5의 크기로 하면, 정극 활물질 입자의 입자 표면에 형성하는 불소 및 인을 포함하는 피막의 대부분을 제2 공정에서 형성할 수 있어, 제2 공정을 매우 짧은 시간으로 하면서, 정극 활물질 입자의 입자 표면에 양호한 피막을 형성할 수 있다. 또한, 제2 공정을 마련하지 않은 경우에 비하여, 전지 저항을 낮게(구체적으로는, 예를 들어 7% 정도 작게) 할 수 있다.
또한, 상술한 리튬 이온 이차 전지의 제조 방법이며, 상기 컷오프 전류값은, 상기 제1 공정의 종기에 있어서의 종기 전류값의 1/5의 크기로 해도 된다.
상술한 바와 같이 제2 공정에서의 컷오프 전류값을, 종기 전류값의 1/5의 크기로 하면, 정극 활물질 입자의 입자 표면에 형성하는 불소 및 인을 포함하는 피막의 대부분을 제2 공정에서 형성할 수 있어, 제2 공정을 짧은 시간으로 하면서, 정극 활물질 입자의 입자 표면에 양호한 피막을 형성할 수 있다. 또한, 제2 공정을 마련하지 않은 경우에 비하여, 전지 저항을 낮게(구체적으로는, 예를 들어 10% 정도 작게) 할 수 있다.
혹은, 전술한 리튬 이온 이차 전지의 제조 방법이며, 상기 제1 공정의 종기에 있어서의 종기 전류값이 1C 이상이며, 상기 컷오프 전류값은 0.05C로 해도 된다.
상술한 제조 방법에서는, 제1 공정의 종기 전류값이 1C 이상인 것에 대해, 컷오프 전류값이, 종기 전류값에 비하여 충분히 작은 0.05C가 될 때까지 제2 공정을 행한다. 이와 같이, 컷오프 전류값이 0.05C가 될 때까지 제2 공정을 행하면, 이것보다도 더욱 컷오프 전류값을 작게 한 경우(예를 들어, 컷오프 전류값을 0.02C로 한 경우)와, 전지 저항은 거의 동일해진다. 즉, 컷오프 전류값을 0.05C보다 작게 해도, 제2 공정의 시간이 연장되는 한편, 전지 저항의 저하를 예상할 수 없다. 피막의 형성에 대해서는, 충전 전류가 0.05C가 된 단계에서, 정극 활물질층에 포함되는 거의 전량의 금속 인산염(혹은 금속 피로인산염)이 소비되고 있기 때문이라고 생각되어진다. 이와 같이, 컷오프 전류값을 0.05C로 하면, 짧은 시간에, 정극 활물질 입자의 입자 표면에 형성하는 불소 및 인을 포함하는 피막의 거의 전량을, 제2 공정에서 형성할 수 있다. 게다가, 양호한 피막을 형성할 수 있어, 제2 공정을 마련하지 않은 경우에 비하여, 전지 저항을 낮게(구체적으로는, 15% 정도 작게) 할 수 있다.
또한, 상기의 어느 하나에 기재된 리튬 이온 이차 전지의 제조 방법이며, 상기 정극 활물질층에 포함되는 상기 금속 인산염 및 금속 피로인산염의 적어도 어느 하나의 입자는, 평균 입경이 1.5㎛ 이하인 입자로 해도 된다.
이 제조 방법에서는, 정극 활물질층에 포함되는, 예를 들어 인산리튬 등 금속 인산염 등의 입자의 입경을, 평균 입경으로 1.5㎛ 이하로 하고 있다. 이로 인해, 첨가량이 동일하면 입자수나 표면적의 총량이 증대하기 때문에, 발생한 불화 수소(불산)와의 반응이 발생하기 쉬워져, 단시간에 피막을 형성할 수 있어, 제2 공정에 걸리는 시간, 나아가서는 첫 충전 공정에 걸리는 시간을 단축할 수 있다.
또한, 상기 중 어느 한 항에 기재된 리튬 이온 이차 전지의 제조 방법이며, 상기 리튬 이온 이차 전지의 작동 범위(SOC=0 내지 100%) 내의 적어도 일부에서, 상기 정극의 전위를 4.5V(vs.Li/Li+) 이상으로 해도 된다.
이 제조 방법에 관한 리튬 이온 이차 전지는, SOC=0 내지 100%의 범위 내의 적어도 일부에서, 정극의 전위가 4.5V(vs.Li/Li+) 이상인 전위가 된다. 이로 인해, 비수 전해액(비수용매)은 정극 활물질 입자의 입자 표면에서 산화 분해되어 수소 이온을 발생시키기 쉽다. 게다가 비수 전해액은 전술한 바와 같이 불소를 함유하는 화합물을 포함한다. 이로 인해, 수소 이온과 불소로부터 불산을 발생시키기 쉽다. 그런데, 이 전지의 제조 방법에서는, 전술한 바와 같이 첫 충전 공정(제2 공정)에 있어서, 정극 활물질 입자의 입자 표면에 불소 및 인을 포함하는 피막을 형성하고 있으므로, 첫 충전 공정을 거친 후에는 비수 전해액(비수용매)이 산화 분해되는 것을 억제할 수 있다.
또한, 전술한 어느 하나에 기재된 리튬 이온 이차 전지의 제조 방법이며, 상기 제1 공정 및 제3 공정은, 3C 이상의 미리 정한 전류값으로 정전류 충전해도 된다.
이 제조 방법에서는, 제1 공정 및 제3 공정을 3C 이상의 전류값으로 CC 충전한다. 이에 의해, 제1 공정에 걸리는 시간도 짧게 할 수 있어, 전지에 처음으로 충전하는 공정(첫 충전 공정)을 더욱 단시간에 할 수 있다.
본 발명의 예시적 실시예의 기술적 및 산업적 중요성, 특징, 이점에 대하여 첨부 도면을 참조하여 이하에 설명한다.  상기 도면에서 유사한 부호는 유사한 구성 요소를 지칭한다.
도 1은 제1, 제2 실시 형태 및 변형 형태에 관한 리튬 이온 이차 전지의 사시도이다.
도 2는 제1, 제2 실시 형태 및 변형 형태에 관한 리튬 이온 이차 전지를 전지 가로 방향 및 전지 세로 방향을 따르는 평면으로 절단한 종단면도이다.
도 3은 제1, 제2 실시 형태 및 변형 형태에 관한 것으로, 정극판 및 부극판을 세퍼레이터를 개재하여 서로 겹쳐진 상태를 나타내는, 전극체의 전개도이다.
도 4는 제1, 제2 실시 형태 및 변형 형태에 관한 것으로, 정극 활물질 입자의 단면 중 입자 표면 근방의 모습을 모식적으로 도시하는 설명도이다.
도 5는 제1 실시 형태에 관한 것으로, 첫 충전 공정에 포함되는 각 공정의 수순을 나타내는 흐름도이다.
도 6은 제1, 제2 실시 형태 및 변형 형태에 관한 전지에 사용하는 비수 전해액에 대하여, 측정용 셀을 사용하여 측정한, 정극 전위 Ep와 그때 흐르는 전류 I의 관계를 나타내는 그래프이다.
도 7은 정극 전위 Ep와, 도 6에 나타내는 그래프로부터 얻은 미분값 dI/dEp의 관계를 나타내는 그래프이다.
도 8은 실시예 1, 2 및 비교예 1, 2에 관한 각 전지 있어서의 제1 전압과 전지 저항비의 관계를 나타내는 그래프이다.
도 9는 실시예 1, 2 및 비교예 1 내지 3에 관한 각 전지의 정극 활물질 입자에 생성된 피막의 두께를 나타내는 그래프이다.
도 10은 실시예 4 내지 13 및 비교예 4 내지 7에 관한 각 전지에 대하여, 유지 기간과 전지 저항비의 관계를 나타내는 그래프이다.
도 11은 금속 인산염의 평균 입경과, 전지 저항비가 1.00이 되는 유지 기간의 관계를 나타내는 그래프이다.
도 12는 제2 실시 형태 및 변형 형태에 관한 것으로, 첫 충전 공정에 포함되는 각 공정의 수순을 나타내는 흐름도이다.
도 13은 제2 실시 형태에 관한 것으로, 첫 충전 공정 중 제2 공정의 수순을 나타내는 흐름도이다.
도 14는 제2 실시 형태 및 변형 형태에 관한 것으로, 첫 충전 공정에서의 충전 시간 t와 전지의 단자간 전압 Vt 및 충전 전류 Ib의 관계를 나타내는 그래프이다.
도 15는 제2 실시 형태 및 변형 형태에 관한 것으로, 첫 충전 공정 중 제2 공정의 컷오프 전류값 Ibc와 전지 저항비의 관계를 나타내는 그래프이다.
도 16은 변형 형태에 관한 것으로, 첫 충전 공정 중 제2 공정의 수순을 나타내는 흐름도이다.
이하, 본 발명의 제1 실시 형태를, 도면을 참조하면서 설명한다. 도 1 및 도 2에, 본 실시 형태에 관한 리튬 이온 이차 전지(이하, 간단히 「전지」라고도 함)(1)를 도시한다. 또한, 도 3에 이 전지(1)를 구성하는 전극체(20)의 전개도를 도시한다. 또한, 이하에서는 전지(1)의 전지 두께 방향 BH, 전지 가로 방향 CH 및 전지 세로 방향 DH를, 도 1 및 도 2에 도시하는 방향으로 정하고 설명한다. 이 전지(1)는 하이브리드 자동차나 전기 자동차 등의 차량 등에 탑재되는 각형이고 밀폐형인 리튬 이온 이차 전지이다. 전지(1)는 전지 케이스(10)와, 이 내부에 수용된 전극체(20) 및 비수 전해액(40)과, 전지 케이스(10)에 지지된 정극 단자(50) 및 부극 단자(51) 등으로 구성된다. 이 전지(1)는 정극 단자(50)와 부극 단자(51)의 단자간 전압 Vt가 3.5 내지 4.9V(SOC=0 내지 100%)의 사이에서 작동하는 전지이다. 또한, SOC가 0 내지 100%의 범위에서는 정극 전위 Ep는 3.7 내지 5.0V(vs.Li/Li+)의 범위 내를 변동하고, 부극 전위 En은 0.2 내지 0.1V(vs.Li/Li+)의 범위 내를 변동한다.
이 중 전지 케이스(10)는 직육면체 형상이며 금속(본 실시 형태에서는 알루미늄)을 포함한다. 이 전지 케이스(10)는 상측만이 개구된 직육면체 상자 형상의 케이스 본체 부재(11)와, 이 케이스 본체 부재(11)의 개구(11h)를 폐색하는 형태로 용접된 직사각형 판상의 케이스 덮개 부재(13)로 구성된다. 케이스 덮개 부재(13)에는 전지 케이스(10)의 내압이 소정 압력에 도달했을 때에 파단 밸브 개방하는 안전 밸브(14)가 설치되어 있다. 또한, 이 케이스 덮개 부재(13)에는 전지 케이스(10)의 내외를 연통하는 주액 구멍(13h)이 형성되고, 밀봉 부재(15)로 기밀하게 밀봉되어 있다.
또한, 케이스 덮개 부재(13)에는 각각 내부 단자 부재(53), 외부 단자 부재(54) 및 볼트(55)에 의해 구성되는 정극 단자(50) 및 부극 단자(51)가, 수지를 포함하는 내부 절연 부재(57) 및 외부 절연 부재(58)를 개재하여 고정 설치되어 있다. 또한, 정극 단자(50)는 알루미늄을 포함하고, 부극 단자(51)는 구리를 포함한다. 전지 케이스(10) 내에서 정극 단자(50)는, 후술하는 전극체(20) 중 정극판(21)의 정극 집전부(21m)에 접속하여 도통하고 있다. 또한, 부극 단자(51)는 전극체(20) 중 부극판(31)의 부극 집전부(31m)에 접속하여 도통하고 있다.
이어서, 전극체(20)에 대하여 설명한다(도 2 및 도 3 참조). 이 전극체(20)는 편평 형상을 이루고, 전지 케이스(10) 내에 수용되어 있다. 전극체(20)는 띠 형상의 정극판(21)과 띠 형상의 부극판(31)을, 띠 형상의 한 쌍의 세퍼레이터(39)를 개재하여 서로 겹쳐 권회하여, 편평 형상으로 압축한 것이다.
정극판(21)은 띠 형상의 알루미늄박을 포함하는 정극 집전박(22)의 양쪽의 주면 중 폭 방향의 일부이면서 또한 긴 방향으로 연장되는 영역 위에 정극 활물질층(23)을 띠 형상으로 설치하여 이루어진다. 정극 활물질층(23)에는, 후술하는 정극 활물질 입자(24), 도전재(도전 보조제)(26), 결착제(27) 및 인산리튬 입자(금속 인산염 입자)(28)가 포함된다. 본 실시 형태에서는, 도전재(26)로서 아세틸렌 블랙(AB)을, 결착제(27)로서 폴리불화비닐리덴(PVDF)을, 금속 인산염 입자(28)로서 인산리튬(Li3PO4) 입자(분말)를 사용하고 있다.
또한, 정극 활물질 입자(24)와 도전재(26)와 결착제(27)의 배합비는, 중량비로 89:8:3이다. 금속 인산염 입자(28)의 배합비는, 정극 활물질 입자(24)를 기준(100중량부)으로 했을 때 3중량부이다. 또한, 정극 집전박(22) 중 폭 방향의 한쪽의 단부는, 자신의 두께 방향으로 정극 활물질층(23)이 존재하지 않아, 정극 집전박(22)이 노출된 정극 집전부(21m)로 되어 있다. 전술한 정극 단자(50)는 이 정극 집전부(21m)에 용접되어 있다.
정극 활물질 입자(24)는 본 실시 형태에서는, 리튬 전이 금속 복합 산화물, 구체적으로는 스피넬형의 결정 구조를 갖는 리튬니켈망간계 복합 산화물의 하나인 LiNi0.5Mn1.5O4를 포함하는 입자이다. 또한, 이 정극 활물질 입자(24)의 입자 표면(24n)에는 불소 및 인을 포함하는 피막(25)이 형성되어 있다(도 4 참조). 또한, 이 피막(25)에는 불소 및 인 이외에, 비수 전해액(40)의 다른 성분(전해질 및 비수용매)의 분해물도 포함되어 있다.
이어서, 부극판(31)에 대하여 설명한다. 이 부극판(31)은, 띠 형상의 구리박을 포함하는 부극 집전박(32)의 양쪽의 주면 중 폭 방향의 일부이면서 또한 긴 방향으로 연장되는 영역 위에, 부극 활물질층(33)을 띠 형상으로 형성하여 이루어진다. 이 부극 활물질층(33)에는 부극 활물질 입자, 결착제 및 증점제가 포함된다. 본 실시 형태에서는, 부극 활물질 입자로서 흑연 입자를, 결착제로서 스티렌부타디엔 고무(SBR)를, 증점제로서 카르복시메틸셀룰로오스(CMC)를 사용하고 있다. 또한, 부극 집전박(32) 중 폭 방향의 한쪽의 단부는, 자신의 두께 방향으로 부극 활물질층(33)이 존재하지 않아, 부극 집전박(32)이 노출된 부극 집전부(31m)로 되어 있다. 전술한 부극 단자(51)는 이 부극 집전부(31m)에 용접되어 있다. 또한, 세퍼레이터(39)는 수지를 포함하는 다공질막이며, 띠 형상을 이룬다.
이어서, 비수 전해액(40)에 대하여 설명한다. 이 비수 전해액(40)은, 전지 케이스(10) 내에 수용되어 있고, 비수 전해액(40)의 일부는 전극체(20) 내에 함침되고, 나머지는 잉여액으로서 전지 케이스(10)의 저부에 저류되어 있다. 이 비수 전해액(40)의 전해질은 헥사플루오로인산리튬(LiPF6)이며, 그 농도는 1.0M이다. 또한, 비수 전해액(40)의 비수용매는 플루오로에틸렌카르보네이트(FEC)와 2,2,2-트리플루오로에틸메틸카르보네이트를 1:1의 체적비로 혼합한 혼합 유기 용매이다. 상술한 바와 같이, 이 비수 전해액(40)은, 불소를 포함하는 화합물(41)로서, 지지 전해질인 LiPF6 이외에, 비수용매인 플루오로에틸렌카르보네이트(FEC) 및 2,2,2-트리플루오로에틸메틸카르보네이트를 갖고 있다.
계속해서, 상기 전지(1)의 제조 방법에 대하여 설명한다. 먼저, 정극판(21)을 형성한다. 구체적으로는, 스피넬 구조를 갖는 리튬니켈망간계 복합 산화물인 LiNi0.5Mn1.5O4를 포함하는 정극 활물질 입자(24)를 준비한다. 그리고, 이 정극 활물질 입자(24)와, 도전재(26)(아세틸렌 블랙)와, 결착제(27)(폴리불화비닐리덴)와, 금속 인산염 입자(28)(인산리튬 입자, 평균 입경 D50=3.0㎛)를, 용매(본 실시 형태에서는, NMP)와 함께 혼련하여, 정극 페이스트를 제작한다. 또한, 정극 활물질 입자(24)와 도전재(26)와 결착제(27)의 배합비는, 전술한 바와 같이 중량비로 89:8:3이며, 정극 활물질 입자(24)를 100중량부로 했을 때 금속 인산염 입자(28)를 3중량부의 비율로 더 첨가한다. 또한, 후술하는 바와 같이 금속 인산염 입자(28)에 평균 입경 D50이 1.5㎛ 혹은 0.8㎛인 것을 사용하는 경우에는 습식 비즈 밀을 사용하여, 입경을 원하는 크기로 조절하여 사용한다.
그 후, 이 정극 페이스트를, 띠 형상의 알루미늄박을 포함하는 정극 집전박(22)의 한쪽의 주면에 도포하고 건조시켜, 정극 활물질층(23)을 형성한다. 또한, 정극 집전박(22)의 다른 쪽의 주면에도 정극 페이스트를 도포하고 건조시켜, 정극 활물질층(23)을 형성한다. 그 후, 이것을 프레스하여 정극판(21)을 얻는다. 또한 별도로 공지의 방법에 의해 부극판(31)을 형성해 둔다.
이어서, 정극판(21) 및 부극판(31)을 한 쌍의 세퍼레이터(39)를 개재하여 서로 겹쳐, 권심을 사용하여 권회한다. 또한, 이것을 편평 형상으로 압축하여 전극체(20)를 형성한다. 또한 별도로, 케이스 덮개 부재(13), 내부 단자 부재(53), 외부 단자 부재(54), 볼트(55), 내부 절연 부재(57) 및 외부 절연 부재(58)를 준비한다. 그리고, 케이스 덮개 부재(13)에, 내부 절연 부재(57) 및 외부 절연 부재(58)를 개재하여, 각각 내부 단자 부재(53), 외부 단자 부재(54) 및 볼트(55)를 포함하는 정극 단자(50) 및 부극 단자(51)를 고정 설치한다. 그 후, 전극체(20)의 정극 집전부(21m) 및 부극 집전부(31m)에, 케이스 덮개 부재(13)와 일체화된 정극 단자(50) 및 부극 단자(51)를 각각 용접한다. 이어서, 케이스 본체 부재(11) 내에 전극체(20)를 수용한 후, 케이스 본체 부재(11)의 개구 부분에 케이스 덮개 부재(13)를 용접하여 전지 케이스(10)를 형성한다.
또한 비수 전해액(40)을 별도로 준비한다. 구체적으로는, 플루오로에틸렌카르보네이트와 2,2,2-트리플루오로에틸메틸카르보네이트를 1:1의 체적비로 혼합한 혼합 유기 용매에 LiPF6을 농도 1.0M이 되도록 용해시킨다. 그리고, 이 비수 전해액(40)을 주액 구멍(13h)으로부터 전지 케이스(10) 내에 주액하고, 비수 전해액(40)을 전극체(20) 내에 함침시킨다. 그 후, 주액 구멍(13h)을 가밀봉하여, 전지(1)로 한다.
이어서, 이 전지(1)에 첫 충전을 행한다(첫 충전 공정). 이 첫 충전 공정에서는, 첫 충전과 함께, 정극 활물질 입자(24)의 입자 표면(24n)에 불소 및 인을 포함하는 피막(25)을 형성한다. 구체적으로는, 첫 충전 공정으로서 먼저, 도시하지 않은 CC-CV 충방전 장치에 전지(1)를 접속하고, 도 5에 도시한 바와 같이, 이 전지(1)를 3.0C의 전류로 CC 충전하여, 단자간 전압 Vt를 4.1V(제1 전압 Vh)까지 상승시킨다(제1 공정 S1). 계속해서, 단자간 전압 Vt=4.1V의 CV 충전으로 전환한다. 즉, 유지 기간 Tk=60분에 걸쳐, 단자간 전압 Vt를 제1 전압 Vh=4.1V로 유지한다(제2 공정 S2). 또한 그 후, 3.0C의 정전류로 단자간 전압 Vt가 제2 전압 Ve에 도달할 때까지, 구체적으로는 단자간 전압 Vt가 4.9V에 도달할 때까지 정전류 충전(CC 충전)을 행한다(제3 공정 S3).
전술한 첫 충전 시에, 구체적으로는 주로 제2 공정에 있어서 단자간 전압 Vt를 제1 전압 Vh(Vh=4.1V, 정극판(21)의 정극 전위 Ep=4.3V(vs.Li/Li+), 부극판(31)의 부극 전위 En=0.2V(vs.Li/Li+))로 유지하고 있는 동안에, 정극 활물질 입자(24)의 입자 표면(24n)에 불소 및 인을 포함하는 피막(25)이 형성된다. 또한, 이 시점에서의 정극 전위 Ep=4.3V(vs.Li/Li+)는, 후술하는 바와 같이 분해 하한 전위 Epd=4.2V(vs.Li/Li+)보다도 0.1V만큼 높은 값으로 되어 있다. 또한, 유지되는 단자간 전압인 제1 전압 Vh=Vt=4.1V는 분해 하한 전압 Vtd=4.0V보다도 0.1V 높은 값으로 되어 있다.
피막(25)이 형성되는 메커니즘은 명확하지 않지만, 이하를 생각할 수 있다. 즉, 정극판(21)(정극 활물질 입자(24))의 정극 전위(산화 환원 전위) Ep가, 후술하는 분해 하한 전위 Epd 이상이 된 경우, 정극 활물질 입자(24)의 입자 표면(24n)에서는, 표면(24n)에 접촉하는 비수 전해액(40)의 비수용매(본 실시 형태에서는, 플루오로에틸렌카르보네이트(FEC) 및 2,2,2-트리플루오로에틸메틸카르보네이트)가 산화 분해되어 수소 이온이 발생한다. 이 수소 이온은, 비수 전해액(40) 중의 불소를 포함하는 화합물(41)(본 실시 형태에서는, 지지 전해질의 LiPF6, 용매의 플루오로에틸렌카르보네이트(FEC), 2,2,2-트리플루오로에틸메틸카르보네이트) 내의 불소와 반응하여 불산(HF)을 생성한다. 이 불산은 정극 활물질층(23)에 포함되는 금속 인산염(인산리튬) 입자(28)와 반응하여, 정극 활물질 입자(24)의 입자 표면(24n)에 불소 및 인을 포함하는 피막(25)이 형성된다고 생각되어진다. 그 후는 이 전지에 대하여, 가밀봉을 해제하고, 재차 감압 하에서 본밀봉을 행한다. 또한 각종 검사를 행한다. 이렇게 하여, 전지(1)가 완성된다.
(분해 하한 전압, 분해 하한 전위의 측정)
이어서, 상술한 구성을 갖는 전지(1)에 있어서, 정극판(21)(정극 활물질 입자(24))의 정극 전위 Ep 중 비수 전해액(비수용매)(40)의 산화 분해가 발생하는 가장 낮은 정극 전위 Ep인 분해 하한 전위 Epd를, 이하와 같이 하여 검지한다. 먼저, Pt판을 포함하는 작용극, 금속 리튬을 포함하는 대향 전극 및 참조극을 갖고, 전지(1)에 사용한 비수 전해액(40)을 사용한 측정용 셀을 준비한다. AMTEK사제의 전기 화학 측정 시스템을 사용하여, 이 측정용 셀에 대하여, 작용극의 전위를 3.0 내지 5.4V(vs.Li/Li+)의 범위에 걸쳐, 1mV/sec의 비율로 상승 및 하강시키는 CV 측정을 2사이클 행한다. 또한, 3사이클째에 작용극의 전위를 상승시킬 때의, 정극 전위 Ep(V(vs.Li/Li+))와 그때에 흐르는 전류 I(㎂/㎠)의 관계를 취득한다(도 6 참조). 또한, 충전측의 전류를 +의 값으로 한다. 이 관계로부터, 또한 정극 전위 Ep(V(vs.Li/Li+))와 미분값 dI/dEp의 관계를 얻는다(도 7). 정극 전위 Ep의 상승과 함께 미분값 dI/dEp가 직선적으로 상승하는 부분에 있어서, 이 변화에 겹치는 근사 직선 L을 긋고, 이 근사 직선 L이 미분값 dI/dEp가 0이 되는 정극 전위 Ep의 값을, 당해 비수 전해액(40)의 「분해 하한 전위(vs.Li/Li+)」Epd로 한다.
상술한 바와 같이 하여 전지(1)에 사용하는 비수 전해액(40)(플루오로에틸렌카르보네이트(FEC)+2,2,2-트리플루오로에틸메틸카르보네이트(1:1) 및 LiPF6: 1.0M)에 대하여 측정한, 정극 전위 Ep(V(vs.Li/Li+))와 그때 흐르는 전류 I(㎂/㎠)의 관계를 도 6에 정극 전위 Ep(V(vs.Li/Li+))와 미분값 dI/dEp의 관계를 도 7에 도시한다.
도 6에 도시하는 정극 전위 Ep 대 전류 I의 그래프에 의하면, 정극 전위 Ep가 3.3 내지 4.1V(vs.Li/Li+)가 되는 범위에서는, 정극 전위 Ep의 증가와 함께, 직선적으로 전류 I가 증가하고 있는 것처럼 보인다. 그러나, 정극 전위 Ep가 4.2V(vs.Li/Li+) 이상으로 되는 범위에서는, 정극 전위 Ep의 증가와 함께, 가속도적으로 전류 I가 증가하고 있는 것처럼 보인다.
따라서, 미분값 dI/dEp를 산출하여, 정극 전위 Ep 대 미분값 dI/dEp의 그래프를 얻었다(도 7 참조). 그러면, 정극 전위 Ep가 4.4 내지 5.0V(vs.Li/Li+)가 되는 범위에서, 정극 전위 Ep의 증가와 함께, 미분값 dI/dEp가 직선적으로 증가하고 있는(즉, 가속도적으로(이차함수적으로, 전위의 제곱에 비례하여) 전류 I가 증가하고 있는) 것을 알 수 있다. 따라서, 이 미분값 dI/dEp가 직선적으로 증가하고 있는 범위에 딱 맞는 근사 직선 L을 긋는다. 이 근사 직선 L이 미분값 dI/dEp가 0이 되는 정극 전위 Ep(즉, 도 7의 그래프에 있어서의 X 절편)의 값은 4.2V(vs.Li/Li+)이다. 따라서 이 정극 전위 Ep(=4.2V(vs.Li/Li+))를, 본 실시 형태에 관한 비수 전해액(40)의 분해 하한 전위 Epd로 한다. 비수용매의 산화 분해는, 정극 전위 Ep가 분해 하한 전위 Epd를 초과하면, 정극 전위 Ep의 증가에 따라 가속도적(2차 함수적)으로 증가한다고 생각되어지기 때문이다.
전지(1)에서는, 전술한 바와 같이 부극 활물질에 흑연을 사용하고 있으며, 부극 전위 En은 0.2V(vs.Li/Li+) 일정하다. 따라서, 정극판(21)이 분해 하한 전위 Epd(=4.2V(vs.Li/Li+))로 되어 있는 상태에서의, 전지(1)의 단자간 전압 Vt는 4.0V가 된다(Vt=Ep-En=4.2-0.2=4.0V). 따라서 이 값을, 전지(1)에 있어서의 「분해 하한 전압」Vtd(=4.0V)로 한다.
또한, 전지(1)에 있어서는, 분해 하한 전압 Vtd를 사용하여, 비수 전해액의 「하부 분해 영역」 Ad를, Ad=Vtd 내지 Vtd+0.4의 범위로 정한다. 구체적으로는, 하부 분해 영역 Ad는 4.0 내지 4.4V의 범위 내의 값이다(도 8 참조).
(실시예 1, 2 및 비교예 1 내지 3)
이어서, 본 발명의 효과를 검증하기 위하여 행한 시험 및 그의 결과에 대하여 설명한다. 다음의 표 1에 나타낸 바와 같이, 전지(1)와 동일한 정극판(21), 부극판(31), 세퍼레이터(39) 및 비수 전해액(40)을 사용한 전지를 준비하고, 실시예 1, 2 및 비교예 1 내지 3의 5종류의 시험 조건에서 시험을 행했다. 따라서, 각 예의 전지의 정극 활물질층(23)에는, 이 정극 활물질층(23)에 포함되는 정극 활물질 입자(24)를 100중량부로 했을 때, 평균 입경 D50이 3.0㎛인 인산리튬 입자(LPO)가 3중량부 포함되어 있다(표 1 참조).
그리고, 비교예 1의 전지에서는, 첫 충전에 있어서, 하부 분해 영역 Ad는 4.0 내지 4.4V의 범위의 하한값을 하회하는 3.8V까지 단자간 전압 Vt를 상승시킨(제1 공정) 후, 이 단자간 전압 Vt(제1 전압 Vh)=3.8V를 유지 기간 Tk=60분에 걸쳐 유지했다(제2 공정). 그 후, CC 충전 레이트 3.0C의 정전류 충전을, 단자간 전압 Vt가 제2 전압 Ve=4.9V에 도달할 때까지 행하고(제3 공정), 첫 충전을 종료했다. 비교예 1의 전지에 대하여 첫 충전에 걸린 총 충전 시간은 80분이다.
또한, 실시예 1의 전지에서는, 첫 충전에 있어서, 하부 분해 영역 Ad 내의, 단자간 전압 Vt=4.1V까지 단자간 전압 Vt를 상승시킨(제1 공정) 후, 이 단자간 전압 Vt(제1 전압 Vh)=4.1V를 유지 기간 Tk=60분에 걸쳐 유지했다(제2 공정). 그 후, CC 충전 레이트 3.0C의 정전류 충전을, 단자간 전압 Vt가 제2 전압 Ve=4.9V에 도달할 때까지 행하고(제3 공정), 첫 충전을 종료했다. 첫 충전에 걸린 총 충전 시간은 80분이다.
실시예 2에서는, 실시예 1과는, 유지하는 단자간 전압 Vt만 상이하게 했다. 즉, 단자간 전압 Vt를, 하부 분해 영역 Ad 내의 Vt=4.4V로 상승시키고, 이 단자간 전압 Vt(제1 전압 Vh)=4.4V를 유지 기간 Tk=60분에 걸쳐 유지하고, 그 후, CC 충전 레이트 3.0C로 CC 충전했다. 첫 충전에 걸린 총 충전 시간은 80분이다.
비교예 2에서도, 실시예 1과는, 유지하는 단자간 전압 Vt만 상이하게 했다. 단, 단자간 전압 Vt를, 하부 분해 영역 Ad를 상회하는 4.7V로 상승시키고, 이 단자간 전압 Vt(제1 전압 Vh)=4.7V를 유지 기간 Tk=60분에 걸쳐 유지하고, 그 후 CC 충전 레이트 3.0C로 CC 충전했다. 첫 충전에 걸린 총 충전 시간은 80분이다.
비교예 3에서는, 비교예 1, 2 및 실시예 1, 2와 달리, 전압을 유지하는 제2 공정을 마련하지 않는다. 즉, 첫 충전의 당초부터, CC 충전 레이트 3.0C의 정전류 충전을, 단자간 전압 Vt가 제2 전압 Ve=4.9V에 도달할 때까지 행하고, 첫 충전을 종료했다. 첫 충전에 걸린 총 충전 시간은, 다른 것보다도 짧은 20분이다.
이들 비교예 1 내지 3 및 실시예 1, 2의 전지에 대하여, 첫 충전의 완료 후, 전지 저항(IV 저항)을 측정했다. 구체적으로는, 25℃의 온도 환경 하에서, 각 전지를 SOC60%로 조정하여, 0.3C의 정전류로 10초간 방전을 행하고, 방전 전후의 전압 변화를 측정했다. 또한, 방전 전류값만을 1C, 3C, 5C의 순서대로 증가시키는 한편, 그 이외는 상기와 마찬가지의 조건에서 방전을 행하여, 10초간 방전 전후의 전압 변화를 각각 측정했다. 그 후, 이들 데이터를, 횡축을 방전 전류값, 종축을 방전 전후의 전압 변화로 한 좌표 평면으로 플롯하고, 최소 제곱법에 의해 근사 직선(1차식)을 산출하고, 그 기울기를 IV 저항값으로서 얻었다. 그리고, 실시예 2의 전지 전지 저항(IV 저항)을 기준(=1.00)으로 하여, 그 밖의 전지의 「전지 저항비」를 각각 산출했다. 그 결과를 표 1 및 도 8에 도시한다. 도 8은 각 전지에 있어서의 제1 전압 Vh와 전지 저항비의 관계를 나타내는 그래프이다. 단, 도 8에 비교예 3의 결과는 기재하고 있지 않다.
또한, 비교예 1 내지 3 및 실시예 1, 2의 전지를 분해하여 정극 활물질 입자(24)를 취출하고, TEM(투과형 전자 현미경)을 사용하여, 정극 활물질 입자(24)의 입자 표면(24n)에 형성되어 있는, 불소 및 인을 포함하는 피막(25)의 두께를 계측했다(n=3). 그 결과를 표 1 및 도 9에 도시한다. 도 9는 각 전지의 정극 활물질 입자에 생성된 피막의 두께를 나타내는 그래프이다.
Figure pat00001
표 1 및 도 8로부터, 유지 기간 Tk를 모두 60분으로 한 경우, 제1 전압 Vh를 4.1V로 하면(실시예 1), 전지 저항비가 가장 낮아지는 것을 알 수 있다. 또한, 제1 전압 Vh를 4.4V(실시예 2)로 한 경우에도 전지 저항비는 1.05이며, 저항이 5% 정도 상승할 뿐임을 알 수 있다. 이들 실시예 1, 2에서는, 제2 공정에서의 제1 전압 Vh를, 전술한 분해 하한 전압 Vtd=4.0V보다도 약간 큰 Vh=4.1V, 혹은 약간 큰 Vh=4.4V로 하고 있기 때문에, 이 제2 공정 사이에 비수 전해액(40)의 산화 분해는 발생한다. 그러나, 제1 전압 Vh를, 비수 전해액이 산화 분해를 일으키는 범위 중에서도 하부 분해 영역 Ad(=4.0 내지 4.4V)라는 낮은 전압 범위 내의 전압으로 하고 있다. 이로 인해, 비수 전해액(40)의 산화 분해가 서서히밖에 일어나지 않아, 정극 활물질 입자(24)의 입자 표면(24n)에, 지나치게 두꺼운 불소 및 인을 포함하는 피막(25)이 형성되는 것을 방지하여, 전지 저항을 낮게 억제할 수 있었다고 생각되어진다. 지나치게 두꺼운 불소 및 인을 포함하는 피막(25)이 형성되는 것을 방지할 수 있었던 것은, 표 1 및 도 9에 나타내는 피막(25)의 두께 tt가, 실시예 1에서는 10㎚, 실시예 2에서는 13㎚이며, 비교예 1 내지 3에 비하여 작은 점에서도 뒷받침된다.
한편, 비교예 2에서는, 제2 공정에서의 제1 전압 Vh를, 분해 하한 전압 Vtd=4.0V보다도 훨씬 큰(하부 분해 영역 Ad를 상회함) 4.7V로 했다. 이 때문에 제2 공정 사이에, 큰 전류가 흘러 비수 전해액(40)의 산화 분해가 일시에 다량으로 발생하여, 정극 활물질 입자(24)의 입자 표면(24n)에, 지나치게 두꺼운 불소 및 인을 포함하는 피막(25)이 형성됨으로써, 실시예 1, 2에 비하여, 전지 저항이 높아졌다고 생각되어진다. 지나치게 두꺼운 불소 및 인을 포함하는 피막(25)이 형성된 것은, 표 1 및 도 9에 도시하는 피막(25)의 두께 tt가, 비교예 2에서는 18㎚이며, 실시예 1, 2에 비하여 두껍게 되어 있는 점에서도 뒷받침된다.
또한, 비교예 3에서는, 제2 공정을 마련하지 않고, 당초부터 충전 레이트 3.0C의 대전류로의 CC 충전을 행했기 때문에, 비수 전해액(40)의 산화 분해가 일시에 다량으로 발생했기 때문에, 두꺼운 피막(25)이 형성되었다고 생각되어진다. 두꺼운 피막(25)이 형성된 것은, 표 1 및 도 9에 나타내는 피막(25)의 두께 tt가, 비교예 3에서는 20㎚로 가장 두껍게 되어 있는 점에서도 뒷받침된다.
또한, 비교예 1에서는, 제2 공정에서의 제1 전압 Vh를, 분해 하한 전압 Vtd=4.0V보다도 낮은(하부 분해 영역 Ad를 하회함) 3.8V로 했다. 이 때문에 제2 공정 사이에, 비수 전해액(40)의 산화 분해는 거의 발생하지 않아, 제2 공정에서는 피막은 거의 생성되지 않았다고 생각되어진다. 단, 그 후의 제3 공정에서의, 충전 레이트 3.0C라고 하는 대전류로의 CC 충전으로 두꺼운 피막(25)이 형성되었다고 생각되어진다. 따라서, 비교예 1은, 피막의 생성에 대하여 보면, 비교예 3을 닮은 생성 패턴으로 되어 있다. 이 피막의 생성 패턴은, 표 1 및 도 9에 도시하는 피막(25)의 두께 tt가, 비교예 1에서는 18㎚이며, 실시예 1, 2에 비하여 두껍게 되어 있는 점에서도 뒷받침된다. 또한, 전지 저항이 실시예 1, 2에 비하여 높게 되어 있는 점도 뒷받침된다.
이상으로부터, 제2 공정에서의 제1 전압 Vh를, 아래는 분해 하한 전압 Vtd=4.0V, 위는 분해 하한 전압 Vtd+0.4V(=4.4V)의 범위 내, 즉, 전술한 하부 분해 영역 Ad(Vt=4.0 내지 4.4V) 내의 전압으로 함으로써, 두께가 얇은 피막(25)을 형성할 수 있어, 전지 저항도 낮출 수 있음을 이해할 수 있다.
(비교예 3 내지 6, 실시예 1, 3 내지 13)
이어서, 정극 활물질층에 첨가한 금속 인산염(LPO)의 평균 입경을 상이하게 한 비교예 3 내지 6, 실시예 1, 3 내지 13의 각 전지에 대하여, 유지 기간 Tk를 상이하게 한 시험을 행하여, 전지 저항비를 구했다(표 2 참조). 구체적으로는, 상술한 실시예 1과 동일한, 정극 활물질층(23)에 평균 입경 D50이 3.0㎛인 인산리튬 입자(LPO)를 3.00질량% 첨가한 전지를 준비하고, 첫 충전에 있어서, 전지의 단자간 전압 Vt를 4.1V로 될 때까지 충전한다(제1 공정). 그 후, 제1 전압 Vh=4.1V로 하고, 유지 기간 Tk를 0분, 20분, 40분, 60분, 90분으로 한(제2 공정) 후, CC 충전 레이트 3.0C의 정전류 충전을, 단자간 전압 Vt가 제2 전압 Ve=4.9V에 도달할 때까지 행했다(제3 공정). 이들을 비교예 3, 실시예 1, 3 내지 5로 한다. 또한, 유지 기간 Tk가 0분인 예는, 전술한 비교예 3에 대응하고, 유지 기간 Tk가 60분의 예는, 전술한 실시예 1에 대응하고 있다.
또한, 실시예 1 등과는 달리, 정극 활물질층(23)에 평균 입경 D50이 1.5㎛인 인산리튬 입자(LPO)를, 정극 활물질 입자(24)를 기준(100중량부)으로 하여, 3중량부 첨가한 전지를 준비하고, 첫 충전에 있어서, 전지의 단자간 전압 Vt가 4.1V로 될 때까지 충전한다(제1 공정). 그 후, 단자간 전압 Vt를 제1 전압 Vh=4.1V로 하고, 유지 기간 Tk를 0분, 10분, 20분, 30분, 60분으로 한(제2 공정) 후, CC 충전 레이트 3.0C의 정전류 충전을, 단자간 전압 Vt가 제2 전압 Ve=4.9V에 도달할 때까지 행했다(제3 공정). 이들을, 비교예 4, 실시예 6 내지 9로 한다.
또한, 실시예 1 등과는 달리, 정극 활물질층(23)에 평균 입경 D50이 0.8㎛인 인산리튬 입자(LPO)를, 정극 활물질 입자(24)를 기준(100중량부)으로 하여, 3중량부 첨가한 전지를 준비하고, 첫 충전에 있어서, 전지의 단자간 전압 Vt가 4.1V로 될 때까지 충전한다(제1 공정). 그 후, 단자간 전압 Vt를 제1 전압 Vh=4.1V로 하고, 유지 기간 Tk를 0분, 10분, 20분, 30분, 60분으로 한(제2 공정) 후, CC 충전 레이트 3.0C의 정전류 충전을, 단자간 전압 Vt가 제2 전압 Ve=4.9V에 도달할 때까지 행했다(제3 공정). 이들을, 비교예 5, 실시예 10 내지 13으로 한다.
또한, 비교예 6으로서, 실시예 1과 동일한 전지에 대하여, 첫 충전으로서, 당초부터 CC 충전 레이트 0.33C로, 단자간 전압 Vt가 제2 전압 Ve=4.9V에 도달할 때까지, 180분에 걸쳐 정전류 충전을 행했다. 이 비교예 6의 전지는, 0.33C의 낮은 충전 레이트(충전 전류)로 충전을 행하고 있으므로, 첫 충전 도중에 비수 전해액(40)(비수용매)의 산화 분해가 발생해도, 일시에 다량으로 분해가 발생하지 않는다. 따라서, 정극 활물질 입자(24)의 입자 표면(24n)에 불소 및 인을 포함하는 피막(25)이 서서히 형성되어 있어, 두께가 얇은 피막(25)으로 되어 있다고 생각되며, 전지 저항(IV 저항)도 낮다.
이들 비교예 3 내지 6, 실시예 1, 3 내지 13의 전지에 대하여, 첫 충전의 완료 후, 전술한 실시예 1 등의 전지와 마찬가지의 방법으로, 전지 저항(IV 저항)을 측정했다. 그리고, 비교예 6의 전지 전지 저항(IV 저항)을 기준(=1.00)으로 하여, 그 밖의 전지의 「전지 저항비」를 각각 산출했다. 그 결과를 표 2 및 도 10에 도시한다. 도 10은 각 전지에 있어서의 유지 기간 Tk와 전지 저항비의 관계를 나타내는 그래프이다. 단, 도 10에 비교예 6의 결과는 기재하고 있지 않다.
Figure pat00002
표 2 및 도 10에 있어서, 먼저, 평균 입경 D50이 3.0㎛인 인산리튬 입자(LPO)를 사용하고 있는 비교예 3, 실시예 1, 3 내지 5의 전지에 대하여 검토한다. 표 2 및 도 10으로부터 이해할 수 있듯이, 유지 기간 Tk가 0분에 상당하는 비교예 3에서는 전지 저항비는 1.18이며, 전지 저항이 높았다. 그러나, 실시예 3, 4, 1(유지 기간 Tk가 각각 20, 40, 60분)의 전지는 모두 비교예 3에 비하여, 전지 저항비(전지 저항)가 낮아졌다. 게다가, 실시예 3, 4, 1(유지 기간 Tk가 각각 20, 40, 60분)의 전지에 대하여 비교하면, 유지 기간 Tk가 긴 전지일수록 전지 저항비(전지 저항)가 낮아졌다. 그 이유는, 이하라고 생각되어진다. 유지 기간 Tk가 짧으면 피막(25)은 생성되지만, 그 두께가 불충분하여, 그 후도 비수 전해액(40)(비수용매)이 산화 분해될 수 있는 상태에서 피막의 생성이 멈춘다. 이로 인해, 제2 공정 후, 제3 공정으로 이행하여, 충전 레이트 3.0C의 CC 충전으로 전환되면, 큰 전류에 의해 일시에 다량으로 비수용매의 산화 분해가 발생하므로, 유지 기간에 생성되어 있던 피막에 추가되어, 피막이 두껍게 형성된다. 이로 인해, 유지 기간 Tk가 실시예 1보다 짧은 전지(실시예 3, 4)는 유지 기간 Tk를 충분히 확보한 전지(실시예 1의 전지)에 비하여 저항이 높아진다. 단, 실시예 3, 4는 제2 공정에 미리 피막(25)을 형성한 만큼은, 제2 공정이 없는 비교예 3의 전지에 비하여, CC 충전 시에 비수용매의 산화 분해가 억제된다. 이로 인해, 실시예 3, 4는 유지 기간 Tk가 없는 전지(비교예 3)에 비교하면 전지 저항이 작아진다고 생각되어진다. 또한, 실시예 4는 실시예 3에 비교하면 전지 저항이 작아진다고 생각되어진다. 그리고, 유지 기간 Tk를 적절하게 확보할 수 있던 실시예 1(유지 기간 Tk=60분)의 전지에서는, 비교예 6과 동일한 수준까지 전지 저항비(전지 저항)를 낮출 수 있었다.
한편, 실시예 5의 전지(유지 기간 Tk=90분)와 실시예 1의 전지(유지 기간 Tk=60분)에 양자를 비교하면, 유지 기간 Tk를 길게 해도 전지 저항비는 변화하지 않는다(저하되지 않음). 피막(25)이 형성되면, 그와 더불어 비수용매의 산화 분해가 발생하기 어려워져, 결국에는 산화 분해되지 않게 된다. 그러면 피막(25)이 생성되지 않게 되기 때문에, 피막(25)의 두께의 증가가 멈추어, 전지 저항의 증가도 없어지기 때문이라고 생각되어진다. 따라서, 유지 기간 Tk를 불필요하게 길게 해도, 전지 저항을 저하시키는 효과는 없어, 알맞은 유지 기간 Tk에서 제2 공정을 종료하고, 제3 공정으로 이행하는 것이 바람직한 것을 알 수 있다.
계속해서, 평균 입경 D50이 1.5㎛인 인산리튬 입자(LPO)를 사용하고 있는 비교예 4, 실시예 6 내지 9의 전지에 대하여 검토한다. 이들 전지에 대해서도, 상술한 비교예 3, 실시예 1, 3 내지 5의 전지와 마찬가지로 생각할 수 있다. 즉, 유지 기간 Tk가 0분에 상당하는 비교예 4에서는, 전지 저항비가 1.12이며, 전지 저항이 높았다. 그러나, 실시예 6 내지 8(유지 기간 Tk가 각각 10, 20, 30분)의 전지는 모두, 비교예 4에 비하여, 전지 저항비(전지 저항)가 낮아졌다. 게다가, 실시예 6 내지 8(유지 기간 Tk가 각각 10, 20, 30분)의 전지에 대하여 비교하면, 유지 기간 Tk가 긴 전지일수록 전지 저항비(전지 저항)가 낮아졌다. 그리고, 실시예 8(유지 기간 Tk=30분)의 전지에서는, 비교예 6과 동일한 수준까지 전지 저항비(전지 저항)를 낮출 수 있었다. 한편, 실시예 9(유지 기간 Tk=60분)의 전지에서는, 실시예 8(유지 기간 Tk=30분)과 비교하면, 유지 기간 Tk를 길게 해도 전지 저항비는 변화하지 않는다(저하되지 않음).
또한, 평균 입경 D50이 0.8㎛인 인산리튬 입자(LPO)를 사용하고 있는 비교예 5, 실시예 10 내지 13의 전지에 대하여 검토한다. 이들 전지에 대해서도, 상술한 비교예 3, 실시예 1, 3 내지 5 및 비교예 4, 실시예 6 내지 9의 전지와 마찬가지로 생각할 수 있다. 즉, 유지 기간 Tk가 0분에 상당하는 비교예 5에서는, 전지 저항비가 1.09이며, 전지 저항이 높았다. 그러나, 실시예 10 내지 12(유지 기간 Tk가 각각 10, 20, 30분)의 전지는 모두, 비교예 5에 비하여, 전지 저항비(전지 저항)가 낮아졌다. 게다가, 실시예 10 내지 12(유지 기간 Tk가 각각 10, 20, 30분)의 전지를 비교하면, 유지 기간 Tk가 긴 전지일수록 전지 저항비(전지 저항)가 낮아졌다. 그리고, 실시예 11(유지 기간 Tk=20분)의 전지에서는, 비교예 6과 동일한 수준까지 전지 저항비(전지 저항)를 낮출 수 있었다. 또한, 실시예 12(유지 기간 Tk=30분)의 전지에서는, 비교예 6보다도 전지 저항비(전지 저항)를 낮출 수 있었다(전지 저항비=0.99). 단, 실시예 13(유지 기간 Tk=60분)의 전지에서는, 실시예 12(유지 기간 Tk=30분)와 비교하면, 유지 기간 Tk를 길게 해도 전지 저항비는 변화하지 않는다(저하되지 않음).
이들 결과로부터, 제1 전압 Vh를 유지 기간 Tk에 걸쳐 유지하는 제2 공정을 마련함으로써, 제2 공정을 마련하지 않은 경우에 비하여, 전지 저항을 낮출 수 있음을 이해할 수 있다. 게다가, 유지 기간 Tk를 길게 하면, 전지 저항을 낮출 수 있다. 단, 유지 기간 Tk에는 적절한 길이가 있어, 유지 기간 Tk를 불필요하게 길게 해도, 전지 저항은 저하되지 않으므로, 적절한 길이의 유지 기간 Tk에서 제2 공정을 종료하고, 제3 공정으로 이행하는 것이 바람직한 것을 알 수 있다.
이상으로부터, 이 유지 기간 Tk로서는, 유지 기간 Tk를 연장시키지 않고 제2 공정을 행하고, 그 후, 제3 공정을 행하여 제조한 전지의 전지 저항 Rn과, 유지 기간 Tk 대신에, 유지 기간을 1.5배로 연장한 연장 유지 기간에 걸쳐 제1 전압 Vh를 유지하고, 그 후, 제3 공정을 행하여 제조한 유지 기간 연장 전지의 전지 저항 Re를 비교했을 때, Rn이 0.98Re 내지 1.02Re의 범위에 포함되는 기간을 선택하면 된다. 이와 같이 하여 선택한 유지 기간 Tk에 걸쳐 제1 전압 Vh를 유지하면, 유지 기간을 1.5배로 연장시킨 유지 기간 연장 전지의 전지 저항 Re와 비교하여, 차이가 기껏 2% 이내의 전지 저항 Rn이 되는 피막(25)을 형성할 수 있게 된다. 따라서, 이러한 유지 기간 Tk에 걸쳐 제1 전압 Vh를 유지하면, 피막(25)의 형성은 대략 완료된 상태에서, 신속하게 이어지는 제3 공정으로 이행할 수 있다. 즉, 정극 활물질 입자(24)의 입자 표면(24n)에 비수용매의 산화 분해를 방지할 수 있는 얇은 피막(25)이 적절하게 형성되면서, 또한 전지 저항이 낮은 전지를 단시간에 제조할 수 있다.
구체적으로는, 표 2 및 도 10에 따라, 제조하려고 하는 특정 형태의 전지에 대하여, 미리 유지 기간과 전지 저항의 관계를 취득하고, 유지 기간 Tk를 어떤 값으로 한 경우의 전지 저항 Rn과, 1.5배로 연장한 경우의 전지 저항 Re를 비교하여, 전지 저항 Rn이 0.98Re 내지 1.02Re의 범위에 포함되는 유지 기간 Tk의 범위를 찾으면 된다. 예를 들어, 평균 입경 D50이 3.0㎛인 인산리튬 입자(LPO)를 사용하고 있는 비교예 3, 실시예 1, 3 내지 5의 전지(도 10에 있어서, ■로 나타내는 전지)에 대하여 예시한다. 유지 기간 Tk를 40분으로 한 전지(실시예 4)의 전지 저항 Rn은, 전지 저항비로 1.02이다. 한편, 유지 기간을 1.5배로 연장한 유지 기간 Tk가 60분인 전지(실시예 1)의 전지 저항 Re는, 전지 저항비로 1.00이다. 따라서, 실시예 4의 전지의 전지 저항 Rn은, Rn이 0.98Re 내지 1.02Re의 범위에 포함된다. 이러한 점에서, 평균 입경 D50이 3.0㎛인 인산리튬 입자(LPO)를 사용하고 있는 전지(비교예 3, 실시예 1, 3 내지 5)에 대하여 말하면, 유지 기간 Tk를 40분 이상으로 하면 되는 것을 알 수 있다.
또한 유지 기간 Tk로서는, 유지 기간 Tk를 연장시키지 않고 제2 공정을 행하고, 그 후, 제3 공정을 행하여 제조한 전지의 전지 저항 Rn과, 유지 기간 Tk 대신에, 유지 기간을 1.5배로 연장한 연장 유지 기간에 걸쳐 제1 전압 Vh를 유지하고, 그 후, 제3 공정을 행하여 제조한 유지 기간 연장 전지의 전지 저항 Re를 비교했을 때, Rn이 0.99Re 내지 1.01Re의 범위에 포함되는 기간을 선택하면 더욱 바람직하다. 이와 같이 하여 선택한 유지 기간 Tk에 걸쳐 제1 전압 Vh를 유지하면, 유지 기간을 1.5배로 연장시킨 유지 기간 연장 전지의 전지 저항 Re와 비교하여, 기껏 1% 이내밖에 상이하지 않은 전지 저항 Rn이 되는 피막(25)을 형성할 수 있게 된다. 따라서, 이러한 유지 기간 Tk에 걸쳐 제1 전압 Vh를 유지하면, 피막(25)의 형성은 대략 완료된 상태에서, 계속되는 제3 공정으로 이행할 수 있다. 즉, 정극 활물질 입자(24)의 입자 표면(24n)에 비수용매의 산화 분해를 방지할 수 있는 얇은 피막(25)이 더 적절하게 형성되면서, 또한 전지 저항이 낮은 전지를 단시간에 제조할 수 있다.
이 경우에는, 예를 들어 평균 입경 D50이 3.0㎛인 인산리튬 입자(LPO)를 사용하고 있는 전지(비교예 3, 실시예 1, 3 내지 5)에 대하여 말하면, 유지 기간 Tk를 50분 이상으로 하면 되는 것을 알 수 있다.
계속해서, 정극 활물질층(23)에 첨가한 인산리튬 입자(28)의 평균 입경 D50의 크기와, 유지 기간 Tk의 관계에 대하여 검토한다(표 2, 도 11 참조). 먼저, 평균 입경 D50이 3.0㎛인 인산리튬 입자(28)를 사용한 전지(비교예 3, 실시예 1, 3 내지 5) 중에서 전지 저항비가 1.00(비교예 6의 전지와 동등한 전지 저항)이 되는 전지의 유지 기간 Tk는, 실시예 1의 유지 기간 Tk는 60분이다. 또한, 평균 입경 D50이 1.5㎛인 입자(28)를 사용한 전지(비교예 4, 실시예 6 내지 9)에서는, 실시예 8의 유지 기간 Tk는 30분이다. 또한, 평균 입경 D50이 0.8㎛인 입자(28)를 사용한 전지(비교예 5, 실시예 10 내지 13)에서는, 실시예 11의 유지 기간 Tk는 20분이다. 이들 전지에 있어서의, 입자(28)의 평균 입경 D50과, 전지 저항비가 1.00이 되는 유지 기간 Tk의 관계를 그래프화하면, 도 11에 도시한 바와 같이 된다. 즉, 첫 충전을 작은 충전 레이트 0.33C로 CC 충전을 행한 비교예 6의 전지와, 동등한 전지 저항(전지 저항비 1.00)이 되는 데 필요로 하는 유지 기간 Tk의 크기는, 인산리튬 입자(28)의 평균 입경 D50으로 높은 상관, 구체적으로는 선형 관계를 갖고 있으며, 입자(28)의 평균 입경 D50이 작을수록, 유지 기간 Tk를 짧게 할 수 있다. 특히, 인산리튬 입자(28)의 평균 입경 D50을 1.5㎛ 이하로 한 경우에는, 유지 기간 Tk를 30분 이하로 할 수 있는 등, 첫 충전에 걸리는 시간의 단축에 기여할 수 있다. 첨가량이 동일하면, 평균 입경 D50이 작을수록, 인산리튬 입자(28)의 입자수 및 표면적이 증대하므로, 발생한 불화 수소(HF)와의 반응이 발생하기 쉬워져, 상대적으로 단시간에 피막(25)을 형성할 수 있었기 때문이라고 생각되어진다.
이와 같이, 전지(1)의 제조 방법에서는, 첫 충전 공정에 있어서, 제1 공정 후, 제2 공정에서 일단 미리 정한 유지 기간 Tk에 걸쳐, 단자간 전압 Vt를 하부 분해 영역 Ad 내의 제1 전압 Vh로 유지하고, 그 후, 제3 공정에서 제2 전압 Ve에 도달할 때까지 충전을 행한다. 이로 인해, 이 제2 공정에 있어서는, 단자간 전압 Vt를 제1 전압 Vh로 유지하고 있는 동안(Vt=Vh)에 비수 전해액(40)의 산화 분해가 발생한다. 그러나, 제1 전압 Vh를, 비수 전해액(40)이 산화 분해를 일으키는 범위 중에서도, 하부 분해 영역 Ad라고 하는 낮은 전압 범위 내의 전압으로 하고 있다. 이로 인해, 비수 전해액(40)의 산화 분해가 서서히밖에 일어나지 않아, 정극 활물질 입자(24)의 입자 표면(24n)에, 불소 및 인을 포함하는 피막(25)을 얇게 형성할 수 있어, 전지 저항을 낮게 억제할 수 있다.
(제2 실시 형태)
이어서, 본 발명의 제2 실시 형태에 대하여 설명한다. 상술한 제1 실시 형태에서는, 전지(1)의 첫 충전 공정 중 제1 공정 S1에 있어서 충전 레이트 3.0C의 CC 충전을 단자간 전압 Vt가 제1 전압 Vh에 도달할 때까지(Vt=Vh=4.1V) 행했다. 그 후, 제2 공정 S2에 있어서, 미리 정한 유지 기간 Tk에 걸쳐 CV 충전을 행하고, 그 후, 제3 공정 S3에서 충전 레이트 3.0C의 CC 충전을 단자간 전압 Vt가 제2 전압 Ve에 도달할 때까지(Vt=Ve=4.9V) 행했다.
이에 대하여, 본 제2 실시 형태(변형 형태도 마찬가지)에서는, 전지(1)의 첫 충전 공정의 제1 공정 SA1에 있어서, 제1 실시 형태와 마찬가지로, CC 충전을 단자간 전압 Vt가 제1 전압 Vh에 도달할 때까지(Vt=Vh=4.1V) 행했다(도 12 참조). 단, 제2 실시 형태는 충전 레이트를 5.0C(충전 전류 Ib=5.0C)로 한 점에서 제1 실시 형태와 상이하다. 또한, 제3 공정 SA3도 제1 실시 형태와 마찬가지로, CC 충전을 단자간 전압 Vt가 제2 전압 Ve에 도달할 때까지(Vt=Ve=4.75V) 행했다. 단, 제2 실시 형태는 충전 레이트를 5.0C(충전 전류 Ib=5.0C)로 한 점에서 제1 실시 형태와 상이하다. 또한, 제2 전압 Ve=4.75V로 한, 즉, 제2 실시 형태는 단자간 전압 Vt가 제2 전압 Ve=4.75V에 도달할 때까지 CC 충전을 행한 점에서 제1 실시 형태와 상이하다. 또한, 제2 실시 형태는, 제2 공정 SA2에 있어서, 유지 기간 Tk를 정하는 제1 실시 형태와는 달리, 단자간 전압 Vt를 제1 전압 Vh(=4.1V)로 유지하는 CV 충전을, 전지(1)를 흐르는 충전 전류 Ib가, 미리 정한 컷오프 전류값 Ibc가 될 때까지 행했다. 또한, 본 제2 실시 형태에서는, 컷오프 전류값 Ibc를 0.05C로 했다. 따라서 이하에서는, 제1 실시 형태와 상이한 부분을 중심으로 설명하고, 마찬가지의 부분은 생략 혹은 간략화한다.
본 제2 실시 형태에 있어서도, 제1 실시 형태와 마찬가지의 전지(1)를 사용했다. 또한, 전지(1)의 제조 방법에 대해서도, 다음에 설명하는 첫 충전 공정을 제외하고, 제1 실시 형태와 마찬가지이다. 단, 정극 활물질층(23)에 첨가한 인산리튬 입자(28)로서, 제1 실시 형태에서는 평균 입경 D50 3.0㎛(혹은 1.5㎛ 또는 0.8㎛)의 입자를 사용했지만, 본 제2 실시 형태에서는, 평균 입경 D50이 1.0㎛인 입자를 사용한 점에서 제1 실시 형태와 상이하다.
계속해서, 본 제2 실시 형태에 관한 전지(1)의 제조 방법 중 첫 충전 공정에 대하여, 도 12, 내지 도 15를 참조하여 설명한다. 첫 충전 공정에서는, 먼저, 도시하지 않은 CC-CV 충방전 장치에 전지(1)를 접속하고, 도 12, 도 14에 도시한 바와 같이, 개시 시각 t0 이후, 이 전지(1)를 충전 레이트 5.0C(충전 전류 Ib1=5.0C)의 전류로 CC 충전하여, 단자간 전압 Vt를 4.1V(제1 전압 Vh)까지 상승시킨다(제1 공정 SA1). 또한, 제1 공정의 종기(단자간 전압 Vt=Vh(=4.1V)이 된 타이밍인 1-2 전환 시각 t12)에 있어서의 충전 전류 Ib1(=5.0C)을 종기 전류값으로 한다. 단, 제2 실시 형태에 있어서의 제1 공정은, 정전류 충전이므로, 상술한 바와 같이 종기 전류값은 제1 공정에서의 충전 전류 Ib1과 동등하다. 도 14에 도시한 바와 같이, 본 제2 실시 형태에서는, 제1 공정 SA1의 기간(t0 내지 t12)은 약 1분의 길이이며, 제1 공정 SA1에 있어서의 CC 충전의 개시 시각 t0 직후에 급격하게 단자간 전압 Vt가 3V 정도까지 상승하고, 그 후, 약 1분에 단자간 전압 Vt가 제1 전압 Vh(=4.1V)에 도달한다.
계속해서, 제2 공정(SA2)에서는, 단자간 전압 Vt(=Vh=4.1V)를 유지한 채, 충전하는 CV 충전을 행한다. 구체적으로는, 도 13에 도시한 바와 같이 1-2 전환 시각 t12 이후, 스텝 SA21에 있어서 충전 전류 Ib2를 검지하고, 스텝 SA22에서, 충전 전류 Ib2가 컷오프 전류값 Ibc가 0.05C 이하가 되었는지 여부를 판정한다. 여기서 "아니오", 즉, 충전 전류 Ib2가 0.05C보다도 큰(Ib2>0.05C) 경우에는, 스텝 SA21로 되돌아간다. 한편, 스텝 SA22에서 "예", 즉, 충전 전류 Ib2가 0.05C 이하(Ib2≤0.05C)가 된 경우(이 타이밍을 2-3 전환 시각 t23으로 함)에는, 도 12의 제3 공정 SA3으로 진행한다.
본 제2 실시 형태에서는, 제2 공정 SA2의 기간(t12 내지 t23)은, 약 21분의 길이이다. 제2 공정 SA2에 있어서의 CV 충전의 개시 직후에, 충전 전류 Ib2는 종기 전류값 Ib1로부터 급격하게 감소하고, 그 후, 서서히 감소하게 되고, 또한 그 후, 0에 점근한다. 이 커브의 형상은, 도 14에 도시한 바와 같이 y=1-ex의 그래프를 닮은 형상이다. 이와 같이 되는 것은, 이하의 이유에 의한다고 생각되어진다. 제2 공정 SA2의 당초는, 단자간 전압 Vt를 하부 분해 영역 Ad(4.0 내지 4.4V) 내의 제1 전압 Vh(=4.1V)로 한 것에 의해, 비수 전해액(40)의 산화 분해가 차례대로 일어나, 그 분해 전류로서 큰 전류가 흐른다. 그러나 시간의 경과와 함께, 정극 활물질층(23)에 포함되는 인산리튬 입자(28)가 소비되어, 피막(25)이 형성됨과 함께, 비수 전해액(40)의 산화 분해가 억제됨으로써, 충전 전류 Ib2가 서서히 감소된다고 생각되어진다.
계속되는 제3 공정 SA3에서는, 도 12에 도시한 바와 같이 이 전지(1)를 충전 레이트 5.0C(충전 전류 Ib3=5.0C)의 전류로 CC 충전하여, 단자간 전압 Vt가 4.75V(제2 전압 Ve)가 될 때까지 상승하면, 첫 충전 공정을 종료한다. 이 타이밍을 종료 시각 t3e로 한다. 본 제2 실시 형태에서는, 제3 공정 SA3의 기간(t23 내지 t3e)은, 약 10분의 길이이다. 따라서, 본 제2 실시 형태에 있어서의 첫 충전 공정은, 제1 공정부터 제3 공정까지의 합계 약 32분(제1 공정이 1분, 제2 공정이 21분, 제3 공정이 10분)에 종료할 수 있다.
본 제2 실시 형태의 제2 공정 SA2에서는, 전지(1)의 단자간 전압 Vt를 제1 전압 Vh(=4.1V)로 유지했다. 그런데, 개개의 전지(1)의 변동에 의해, 정극 활물질 입자(24)의 표면(24n)에 형성되는 피막 생성의 속도에 차이가 발생한다(도 4 참조). 따라서, 제1 전압 Vh로 유지하는 기간(t12 내지 t23)을 동일하게 한 경우에는, 즉, 제1 실시 형태와 같이 유지 기간 Tk를 정한 경우에는 정극 활물질 입자(24)의 표면(24n)에 형성되는 피막(25)의 두께 등의 상태가 상이한 것이 되어, 전지 저항의 크기에 변동이 발생하는 등의 차이가 발생한다. 이로 인해, 어느 전지(1)라도 적절한 두께의 피막(25)이 얻어지도록 하기 위해서는, 피막 생성 속도가 느린 전지에 맞게, 유지 기간 Tk를 약간 길게 정할 필요가 있다. 피막 생성 속도가 느린 전지에 맞게, 유지 기간 Tk를 약간 길게 정하는 경우, 개개의 전지(1)에 대하여 보면, 유지 기간 Tk가 지나치게 긴 경우도 발생한다. 이에 대하여, 본 제2 실시 형태의 제조 방법에서는, 제2 공정 SA2에 있어서, 충전 전류 Ib2가 컷오프 전류값 Ibc 이하가 될 때(Ib2≤Ibc)까지 제1 전압 Vh를 유지하므로, 전지(1)의 변동이 존재해도, 각각의 전지(1)에 대하여 보면, 최단 시간에, 정극 활물질 입자(24)의 표면(24n)에 피막 생성 속도가 느린 전지에 맞게, 유지 기간 Tk를 정한 경우와 마찬가지의 두께의 피막(25)을 형성할 수 있다. 이로 인해, 다수의 전지(1)에 대하여, 순서대로 첫 충전 공정을 행하는 경우에는 전체적으로 공정의 단축을 도모하면서, 각 전지에 있어서의 피막(25)의 두께의 변동, 나아가서는 전지 저항의 변동을 억제할 수 있다.
계속해서, 각 전지(1)에 대하여, 첫 충전 공정에서의 컷오프 전류값 Ibc를 2.0C, 0.5C, 0.1C, 0.05C, 0.02C의 5수준으로 변화시키고, 첫 충전 공정을 종료한 전지(1)에 대하여, 제1 실시 형태와 마찬가지로 하여, 전지 저항(IV 저항)을 측정했다. 또한, 제2 공정 SA2를 마련하지 않은 경우(요컨대, 충전 레이트 5.0C의 CC 충전으로 전지(1)를 충전한 경우)의 전지에 있어서의 전지 저항을 기준(=1.00)으로 하여, 각 전지에 대하여 전지 저항비 Rr을 얻었다(도 15 참조).
이 도 15의 그래프에 의하면, 충전 레이트 5.0C의 CC 충전으로 첫 충전 공정을 행한 기준의 전지(Rr=1.00)에 비하여, 제2 공정을 마련하고, 컷오프 전류값 Ibc를 작게 할수록, 전지 저항비 Rr이 작아지는 것을 알 수 있다. 예를 들어, Ibc를 2.0C로 하면, 전지 저항비 Rr은 93%이며, 전지 저항을 7% 정도 낮출 수 있는 것을 알 수 있다. 또한, Ibc를 1.0C로 하면, 전지 저항비 Rr은 90%이며, 전지 저항을 10% 정도 낮출 수 있는 것을 알 수 있다. 또한, Ibc를 0.5C로 하면, 전지 저항비 Rr은 88%이며, 전지 저항을 12% 정도 낮출 수 있는 것을 알 수 있다. 또한, Ibc를 0.05C로 하면, 전지 저항비 Rr은 84.5%이며, 전지 저항을 15% 정도 더 낮출 수 있는 것을 알 수 있다.
단, 컷오프 전류값 Ibc를 0.05C보다도 작게 해도(예를 들어 Ibc=0.02C), Ibc를 0.05C로 한 경우에 비하여, 전지 저항비 Rr은 저하되지 않는다. 즉, 컷오프 전류값 Ibc를 0.05C보다도 작게 해도, 전지 저항을 더욱 작게 할 수 없는 것을 알 수 있다. 이것은, 피막(25)의 형성에 대해서는, 충전 전류 Ib가 0.05C가 된 단계에서, 정극 활물질층(23)에 포함되는 거의 전량의 인산리튬 입자(28)가 소비되고 있기 때문이라고 생각되어진다.
이와 같이, 본 제2 실시 형태의 제조 방법에서는, 제1 공정 SA1의 종기 전류값 Ib1이 1C 이상인 5.0C인 것에 대하여, 컷오프 전류값 Ibc가, 이 종기 전류값 Ib1에 비하여 충분히 작은(1/100의) 0.05C가 될 때까지 제2 공정 SA2를 행한다. 컷오프 전류값이 0.05C가 될 때까지 제2 공정을 행하면, 이것보다도 컷오프 전류값을 작게 한 경우(예를 들어, 컷오프 전류값을 0.02C 한 경우)와, 전지 저항은 거의 동일해진다. 따라서, 컷오프 전류값 Ibc를 0.05C로 하면, 가장 짧은 시간에, 정극 활물질 입자(24)의 입자 표면(24n)에 형성하는 불소 및 인을 포함하는 피막(25)의 거의 전량을, 제2 공정 SA2에서 형성할 수 있다. 게다가, 제2 실시 형태에서는 양호한 피막(25)을 형성할 수 있고, 제2 공정 SA2를 마련하지 않은 경우에 비하여, 전지 저항을 낮게(구체적으로는, 15% 정도 작게) 할 수 있다.
(변형 형태)
상술한 제2 실시 형태에서는, 제2 공정 SA2(스텝 SA22)에 있어서의 컷오프 전류값 Ibc를 0.05C로 했다. 그러나, 전지 저항 저하의 효과는 억제되기는 하지만, 제2 공정 SA2의 기간을 단축하기 위해, 컷오프 전류값 Ibc의 값을 0.05C보다도 크게 할 수도 있다. 즉, 본 변형 형태는, 컷오프 전류값 Ibc를 2.0C로 하는 점에서만, 제2 실시 형태와 상이하고, 다른 것은 마찬가지이다.
본 변형 형태에 관한 전지(1)의 제조 방법 중 첫 충전 공정에 대하여, 도 12, 도 14 내지 도 16을 참조하여 설명한다. 먼저 제1 공정(SA1)은, 제1 실시 형태와 동일하게, 개시 시각 t0 이후, 1-2 전환 시각 t12까지, 이 전지(1)를 충전 레이트 5.0C(충전 전류 Ib1=5.0C)의 전류로 CC 충전하여, 단자간 전압 Vt를 4.1V(제1 전압 Vh)까지 상승시킨다. 종기 전류값은 충전 전류 Ib1=5.0C와 동등하다.
계속되는 제2 공정(SA2a)에서는, 제1, 제2 실시 형태와 동일하게, 단자간 전압 Vt=Vh(=4.1V)를 유지한 채, 충전하는 CV 충전을 행한다. 구체적으로는, 도 16에 도시한 바와 같이, 1-2 전환 시각 t12 이후, 스텝 SA21에 있어서 충전 전류 Ib2를 검지한다. 계속해서, 스텝 SA22a에서는, 제2 실시 형태(Ibc=0.05C)보다도 큰 컷오프 전류값 Ibc=2.0C를 사용하여, 충전 전류 Ib2가 Ibc=2.0C 이하가 되었는지 여부를 판정한다. 여기서 "아니오", 즉 충전 전류 Ib2가 2.0C보다도 큰(Ib2>2.0C) 경우에는 스텝 SA21로 되돌아간다. 한편, 스텝 SA22a에서 "예", 즉, 충전 전류 Ib2가 2.0C 이하(Ib2≤2.0C)가 된 경우(이 타이밍을 2-3 전환 시각 t23a로 한다. 도 14 참조)에는, 도 12의 제3 공정 SA3으로 진행한다. 본 변형 형태에 있어서의 제2 공정 SA2a의 기간(t12 내지 t23a)은, 약 1분의 길이이다. 또한, 본 변형 형태의 경우에는, 도 14에 있어서 t23a 내지 t23의 기간은 존재하지 않는다.
그 후의 제3 공정 SA3에서는, 제2 실시 형태와 동일하게, 도 12에 도시한 바와 같이, 이 전지(1)를 충전 레이트 5.0C의 전류로 CC 충전하여, 단자간 전압 Vt가 Vt=Ve=4.75V(제2 전압 Ve)가 될 때까지 상승하면, 첫 충전 공정을 종료한다. 본 변형 형태에서는, 제3 공정 SA3의 기간(t23a 내지 t3e)도 약 10분의 길이이다.
결국, 본 변형 형태의 첫 충전 공정은, 제2 실시 형태보다도 대폭 짧은, 제1 공정부터 제3 공정까지의 합계 약 12분(제1 공정이 1분, 제2 공정이 1분, 제3 공정이 10분)에 종료할 수 있다. 또한 도 15에 도시한 바와 같이, 컷오프 전류값 Ibc를 2.0C로 한 본 변형 형태의 전지(1)에서는, 제2 공정을 마련하지 않은 경우에 비하여, 7% 정도, 전지 저항을 낮출 수 있다.
또한, 본 변형 형태에서는, 스텝 SA22a에서, 컷오프 전류값 Ibc를 2.0C로 했지만, 예를 들어 컷오프 전류값으로서 Ibc를 1.0C로 하여, 제2 공정을 행할 수도 있다. 이 경우에는 제2 공정의 기간(t12 내지 t23b)은, 약 2분의 길이이다. 또한, 2-3 전환 시각 t23b는 충전 전류 Ib2가 1.0C 이하(Ib2≤1.0C)가 된 타이밍이다(도 14 참조). 이 경우도, 도 14에 있어서의 t23b 내지 t23의 기간은 존재하지 않는다. 이와 같이 컷오프 전류값 Ibc를 1.0C로 한 경우에는 첫 충전 공정(제1 공정 내지 제3 공정)을, 약 13분(제1 공정이 1분, 제2 공정이 2분, 제3 공정이 10분)에 종료할 수 있다. 한편, 컷오프 전류값 Ibc를 1.0C로 함으로써, 제2 공정을 마련하지 않은 경우에 비하여, 10% 정도 전지 저항을 낮출 수 있다.
상술한 제2 실시 형태 및 변형 형태에 기재한 전지(1)의 제조 방법에서도, 정극 활물질층(23)에 포함되는 인산리튬 입자(28)는, 평균 입경 D50이 1.5㎛ 이하인 입자를 사용했다. 이로 인해, 평균 입경 D50이 1.5㎛보다 큰 입자를 사용한 경우에 비하여, 평균 입경 D50이 1.5㎛ 이하인 입자를 사용한 경우는, 첨가량이 동일하면 입자수나 표면적의 총량이 증대하기 때문에, 발생한 불산과의 반응이 발생하기 쉬워져, 단시간에 피막(25)을 형성할 수 있어, 제2 공정 SA2, SA2a에 걸리는 시간, 나아가서는 첫 충전 공정에 걸리는 시간의 단축에 기여할 수 있다.
상술한 제1, 제2 실시 형태 및 변형 형태에 기재한 제조 방법에 관한 전지(1)는 모두 SOC가 0 내지 100%의 범위 내의 적어도 일부에서, 정극 전위 Ep가 4.5V(vs.Li/Li+) 이상의 전위가 된다. 이로 인해, 전지(1)의 SOC가 높은 경우에는, 비수 전해액(40)은 정극 활물질 입자(24)의 입자 표면(24n)에서 산화 분해되어 수소 이온을 발생시키기 쉽다. 게다가 비수 전해액(40)은 불소를 함유하는 화합물(41)을 포함하기 때문에, 수소 이온과 불소로부터 불산을 발생시키기 쉽다. 그런데, 제1, 제2 실시 형태 및 변형 형태에 관한 전지(1)의 제조 방법에서는, 첫 충전 공정 중 제2 공정 S2, SA2, SA2a에 있어서, 정극 활물질 입자(24)의 입자 표면(24n)에 불소 및 인을 포함하는 피막(25)을 형성하고 있으므로, 첫 충전 공정을 거친 후에는 적절하게 비수 전해액(40)이 산화 분해되는 것을 억제할 수 있다.
또한, 제1, 제2 실시 형태 및 변형 형태에 관한 제조 방법에서는, 제1 공정 S1, SA1 및 제3 공정 S3, SA3을, 3.0C 혹은 5.0C의 전류값 Ib1, Ib3으로 CC 충전했다. 이에 의해, 제1 공정 및 제3 공정에 걸리는 시간도 짧게 할 수 있어, 첫 충전 공정을 더욱 단시간에 할 수 있다. 또한, 제1, 제2 실시 형태 및 변형 형태의 어떤 경우든, 제1 공정에서의 충전 전류 Ib1과 제3 공정에서의 충전 전류 Ib3을 동일한 크기로 했다. 그러나, 예를 들어 Ib1을 3.0C 및 Ib3을 5.0C로 하는 등, 충전 전류 Ib1과 Ib3을 상이한 크기로 해도 된다. 특히, Ib1은 Ib3 이하로 하는 것이 바람직하다. 도 14를 참조하면 용이하게 이해할 수 있듯이, 충전 전류를 크게 하는 것에 의한 충전 시간 t의 단축에의 기여는, Ib1보다도 Ib3이 더 크기 때문이다. 또한, Ib1을 작게 하면, 제1 공정의 시간이 증가하지만, 제2 공정으로 이행하기 전에 제1 공정에서 형성되는 피막(25)의 양을 억제할 수 있는 이점도 있다.
이상에 있어서, 본 발명을 제1, 제2 실시 형태 및 변형 형태에 입각하여 설명했지만, 본 발명은 상술한 실시 형태 등에 한정되는 것은 아니고, 그 요지를 일탈하지 않는 범위에서, 적절히 변경하여 적용할 수 있는 것은 물론이다. 예를 들어, 전술한 전지(1) 등에서는, 금속 인산염 입자로서 인산리튬 입자(28)를 사용했지만, 이것에 한정되지 않는다. 예를 들어, 인산나트륨, 인산칼륨, 인산마그네슘, 인산칼슘 등의 다른 금속 인산염 입자를 정극 활물질층에 첨가해도 된다. 또한, 인산리튬 입자(28) 등의 금속 인산염 입자 대신에 또는 금속 인산염 입자와 함께, 피로인산리튬 입자, 피로인산나트륨 입자, 피로인산마그네슘 입자, 피로인산칼슘 입자 등의 금속 피로인산염 입자를 정극 활물질층에 첨가해도 된다.

Claims (11)

  1. 정극 활물질 입자(24)를 포함하는 정극 활물질층(23)을 갖는 정극(21)과, 부극(31)과, 불소를 함유하는 화합물(41)을 포함하는 비수 전해액(40)을 구비하고, 상기 정극 활물질 입자(24)는, 그 입자 표면에 불소 및 인을 포함하는 피막(25)을 갖는 리튬 이온 이차 전지(1)의 제조 방법에 있어서,
    상기 정극 활물질층(23)은, 금속 인산염 및 금속 피로인산염의 적어도 어느 하나의 입자(28)를 포함하고, 상기 리튬 이온 이차 전지에 처음으로 충전하는 공정은, 상기 리튬 이온 이차 전지를 충전하여, 상기 리튬 이온 이차 전지의 전압을 상기 비수 전해액의 하부 분해 영역 내의 제1 전압까지 상승시키는 제1 공정(S1)과,
    상기 리튬 이온 이차 전지의 전압을 상기 제1 전압으로 유지하는 제2 공정(S2)과,
    상기 제2 공정 후에, 상기 제1 전압보다도 높은 제2 전압까지 충전을 행하는 제3 공정(S3)을 포함하는, 리튬 이온 이차 전지의 제조 방법.
  2. 제1항에 있어서, 상기 제3 공정(S3)은, 1C보다도 큰 충전 전류로 충전을 행하는, 리튬 이온 이차 전지의 제조 방법.
  3. 제1항 또는 제2항에 있어서, 상기 제2 공정(S2)은, 미리 정한 유지 기간에 걸쳐, 상기 리튬 이온 이차 전지의 전압을 상기 제1 전압으로 유지하는, 리튬 이온 이차 전지의 제조 방법.
  4. 제3항에 있어서, 상기 유지 기간은, 상기 미리 정한 유지 기간에서 상기 제2 공정(S2)을 행하고, 그 후, 상기 제3 공정(S3)을 행하여 제조한 전지의 전지 저항 Rn과, 상기 미리 정한 유지 기간 대신에, 상기 미리 정한 유지 기간을 1.5배로 연장한 연장 유지 기간에 걸쳐 상기 제1 전압을 유지하고, 그 후, 상기 제3 공정(S3)을 행하여 제조한 유지 기간 연장 전지의 전지 저항 Re를 비교했을 때, Rn=0.98Re 내지 1.02Re가 되는 기간인, 리튬 이온 이차 전지의 제조 방법.
  5. 제3항에 있어서, 상기 유지 기간은, 상기 미리 정한 유지 기간에서 상기 제2 공정(S2)을 행하고, 그 후, 상기 제3 공정(S3)을 행하여 제조한 전지의 전지 저항 Rn과, 상기 미리 정한 유지 기간 대신에, 상기 미리 정한 유지 기간을 1.5배로 연장한 연장 유지 기간에 걸쳐 상기 제1 전압을 유지하고, 그 후, 상기 제3 공정(S3)을 행하여 제조한 유지 기간 연장 전지의 전지 저항 Re를 비교했을 때, Rn=0.99Re 내지 1.01Re가 되는 기간인, 리튬 이온 이차 전지의 제조 방법.
  6. 제1항 또는 제2항에 있어서, 상기 제2 공정(S2)은, 상기 리튬 이온 이차 전지(1)의 충전 전류의 크기가, 미리 정한 컷오프 전류값 이하로 될 때까지, 상기 제1 전압으로 유지하는, 리튬 이온 이차 전지의 제조 방법.
  7. 제6항에 있어서, 상기 컷오프 전류값은, 상기 제1 공정(S1)의 종기에 있어서의 종기 전류값의 2/5의 크기인, 리튬 이온 이차 전지의 제조 방법.
  8. 제6항에 있어서, 상기 제1 공정(S1)의 종기에 있어서의 종기 전류값이 1C 이상이며, 상기 컷오프 전류값은 0.05C인, 리튬 이온 이차 전지의 제조 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 정극 활물질층(23)에 포함되는 상기 금속 인산염 및 상기 금속 피로인산염의 적어도 어느 하나의 입자는, 평균 입경이 1.5㎛ 이하인 입자인, 리튬 이온 이차 전지의 제조 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 제1 공정(S1) 및 상기 제3 공정(S3)은, 3C 이상의 미리 정한 전류값으로 정전류 충전하는, 리튬 이온 이차 전지의 제조 방법.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 제1 공정(S1)은 미리 정한 제1 전류값으로 정전류 충전하는 것을 포함하고,
    상기 제3 공정(S3)은 미리 정한 제2 전류값으로 정전류 충전하는 것을 포함하고,
    상기 제1 전류값은 상기 제2 전류값 이하인, 리튬 이온 이차 전지의 제조 방법.
KR1020160088660A 2015-07-17 2016-07-13 리튬 이온 이차 전지의 제조 방법 KR101900146B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2015-142906 2015-07-17
JP2015142906 2015-07-17
JPJP-P-2016-055918 2016-03-18
JP2016055918A JP6365573B2 (ja) 2015-07-17 2016-03-18 リチウムイオン二次電池の製造方法

Publications (2)

Publication Number Publication Date
KR20170009767A true KR20170009767A (ko) 2017-01-25
KR101900146B1 KR101900146B1 (ko) 2018-09-18

Family

ID=57946794

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160088660A KR101900146B1 (ko) 2015-07-17 2016-07-13 리튬 이온 이차 전지의 제조 방법

Country Status (2)

Country Link
JP (1) JP6365573B2 (ko)
KR (1) KR101900146B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200018308A (ko) * 2018-08-09 2020-02-19 주식회사 엘지화학 셀 내 전극의 전해액 함침 정도 정밀 분석법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680238B2 (ja) 2017-02-17 2020-04-15 トヨタ自動車株式会社 電極体の製造方法
JP6836717B2 (ja) * 2017-04-12 2021-03-03 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP6770689B2 (ja) * 2017-04-25 2020-10-21 トヨタ自動車株式会社 非水系二次電池
JP2019121556A (ja) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 リチウムイオン二次電池の初期充電方法
JP6996470B2 (ja) * 2018-10-11 2022-01-17 トヨタ自動車株式会社 電池の製造方法
CN112744872A (zh) * 2019-10-30 2021-05-04 北京大学 一种高镍正极材料的液相法磷元素掺杂改性制备方法
JP7320019B2 (ja) * 2021-04-13 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池およびその製造方法
JP7320020B2 (ja) * 2021-04-13 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池およびその製造方法
CN113247969A (zh) * 2021-06-08 2021-08-13 浙江帕瓦新能源股份有限公司 一种金属焦磷酸盐包覆改性镍钴锰三元前驱体的制备方法
CN114784246B (zh) * 2022-04-25 2023-07-28 北京卫蓝新能源科技有限公司 一种正极材料、其制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608735B2 (ja) * 2000-05-16 2011-01-12 ソニー株式会社 非水電解質二次電池の充電方法
JP5205424B2 (ja) * 2010-08-06 2013-06-05 株式会社日立製作所 リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
JP2012227035A (ja) * 2011-04-21 2012-11-15 Toyota Motor Corp 非水電解液型二次電池の製造方法
JP5858295B2 (ja) * 2013-08-29 2016-02-10 トヨタ自動車株式会社 非水電解質二次電池
JP2015122264A (ja) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 非水電解液二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200018308A (ko) * 2018-08-09 2020-02-19 주식회사 엘지화학 셀 내 전극의 전해액 함침 정도 정밀 분석법
US11456493B2 (en) 2018-08-09 2022-09-27 Lg Energy Solution, Ltd. Method for precisely analyzing degree of impregnation of electrolyte of electrode in cell

Also Published As

Publication number Publication date
JP6365573B2 (ja) 2018-08-01
JP2017027928A (ja) 2017-02-02
KR101900146B1 (ko) 2018-09-18

Similar Documents

Publication Publication Date Title
KR101900146B1 (ko) 리튬 이온 이차 전지의 제조 방법
JP5429631B2 (ja) 非水電解質電池
JP6382641B2 (ja) 非水電解質電池及び非水電解質電池の製造方法
JP7096973B2 (ja) 非水電解液二次電池の製造方法および製造システム
JP6380269B2 (ja) リチウムイオン二次電池の製造方法
CN106537654B (zh) 制造非水二次电池的方法
JP7151714B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
US10770759B2 (en) Method of manufacturing lithium ion secondary battery
JP6250941B2 (ja) 非水電解質二次電池
WO2013018181A1 (ja) リチウムイオン二次電池
JP7137757B2 (ja) 非水電解質蓄電素子
JP5311123B2 (ja) 非水電解質電池
JP6323723B2 (ja) 非水電解液二次電池の製造方法および電池組立体
KR101930178B1 (ko) 비수계 이차 전지의 제조 방법
JP2014120367A (ja) 非水電解質二次電池
JP6110287B2 (ja) 非水電解液二次電池およびその製造方法
KR20220020208A (ko) 비수전해질 이차 전지
JP2017021959A (ja) リチウムイオン二次電池の製造方法
JP2015149308A (ja) リチウムイオン二次電池
JPWO2013018181A1 (ja) リチウムイオン二次電池
JP2013073756A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant