JP6996470B2 - 電池の製造方法 - Google Patents

電池の製造方法 Download PDF

Info

Publication number
JP6996470B2
JP6996470B2 JP2018192705A JP2018192705A JP6996470B2 JP 6996470 B2 JP6996470 B2 JP 6996470B2 JP 2018192705 A JP2018192705 A JP 2018192705A JP 2018192705 A JP2018192705 A JP 2018192705A JP 6996470 B2 JP6996470 B2 JP 6996470B2
Authority
JP
Japan
Prior art keywords
charging
battery
charge
voltage
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018192705A
Other languages
English (en)
Other versions
JP2020061301A (ja
Inventor
康明 大槻
雅則 北吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018192705A priority Critical patent/JP6996470B2/ja
Publication of JP2020061301A publication Critical patent/JP2020061301A/ja
Application granted granted Critical
Publication of JP6996470B2 publication Critical patent/JP6996470B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電池を初充電する初充電工程を備える電池の製造方法に関する。
電池は、電池の製造に用いた材料(正極活物質、負極活物質等)のロットの違いや、正極板及び負極板における正極活物質及び負極活物質の目付け量の違いなどにより、電池容量や内部抵抗にバラツキが生じる。このため、電池の製造過程で電池を初充電するにあたり、例えば定電流(CC)充電のみで各電池を充電する場合、初充電後の電池の端子開放電圧(OCV)Vaが所定の端子開放電圧(以下、「初充電端子開放電圧Vag」ともいう)になるように、充電装置を接続して充電中に計測される各電池の端子間電圧Vbが、所定の端子間電圧(以下、「第1端子間電圧Vbg」ともいう)になるまで各電池を充電しても、電池毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧Vagから大きくバラついてしまう。
これを防止するべく、従来は、定電流定電圧(CCCV)充電により初充電を行っていた。即ち、定電流Iagで端子間電圧Vbが第1端子間電圧Vbgになるまで電池を充電(CC充電)した後、充電電流値Iaが所定の終止電流値(例えば、CC充電における定電流Iagの値の1/20)に下がるまでこの第1端子間電圧Vbgを維持する(CV充電)。これにより、電池毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧Vagから大きくバラつくのを抑制していた。例えば特許文献1に、このようにCCCV充電により電池を初充電することが記載されている(特許文献1の段落(0020)を参照)。
特開2018-92790号公報
しかしながら、CCCV充電を行うと、後半のCV充電において、充電電流値Iaが終止電流値に下がるまで待たなければならないため、充電時間が長く掛かっていた。
本発明は、かかる現状に鑑みてなされたものであって、電池毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧から大きくバラつくことを防止しながらも、初充電工程における充電時間を、CCCV充電を行う場合よりも短縮できる電池の製造方法を提供するものである。
上記課題を解決するための本発明の一態様は、電池の製造方法であって、電池の端子開放電圧(OCV)Vaが所定の初充電端子開放電圧Vaeになるように、上記電池を初充電する初充電工程を備え、上記初充電工程は、上記電池の端子間電圧Vbが、上記初充電端子開放電圧Vaeに等しい第1端子間電圧Vb1になるまで、一定の第1充電電流値Ia1での定電流(CC)充電により上記電池を充電する第1CC充電工程と、上記第1CC充電工程で当該電池に充電した第1充電電気量Q1を求めるQ1取得工程と、上記第1充電電気量Q1に基づいて、当該電池の上記端子開放電圧Vaを上記初充電端子開放電圧Vaeとするのに更に必要な第2充電電気量Q2を求めるQ2取得工程と、一定の第2充電電流値Ia2(但し、0.5×Ia1≦Ia2≦Ia1)での定電流(CC)充電を行って、または、第3充電電流値Ia3(但し、0.5×Ia1≦Ia3≦Ia1)を順に小さい値に変更した複数回の定電流(CC)充電を行って、上記第2充電電気量Q2を当該電池に充電する第2CC充電工程と、を有する電池の製造方法である。
上述の電池の製造方法では、まず初充電工程のうち第1CC充電工程で、CC充電により、端子間電圧Vbが、初充電端子開放電圧Vaeに等しい第1端子間電圧Vb1になるまで電池を充電した後、CV充電は行わずに、第2のCC充電を行う。即ち、上述のQ1取得工程及びQ2取得工程を行って、当該電池に更に必要な第2充電電気量Q2を求め、上述の第2CC充電工程で、第2のCC充電により、この第2充電電気量Q2を当該電池に充電する。
第2CC充電工程では、電池毎にそれぞれ求めた第2充電電気量Q2を各電池に充電するので、電池毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できる。また、第2CC充電工程では、第2充電電流値Ia2(0.5Ia1≦Ia2≦Ia1)または第3充電電流値Ia3(0.5Ia1≦Ia3≦Ia1)というCV充電における終止電流値(例えばIa1の1/20)よりも十分大きな電流値でCC充電する。このため、従来のCV充電よりも第2CC充電工程における充電時間を短縮できる。これにより、初充電工程における全体の充電時間を、CCCV充電を行う場合よりも短縮できる。
実施形態1,2に係る電池の斜視図である。 実施形態1,2に係る電池の製造方法のフローチャートである。 実施形態1に係る第2CC充電工程サブルーチンのフローチャートである。 実施形態2に係る第2CC充電工程サブルーチンのフローチャートである。 比較例に係る電池の製造方法のフローチャートである。 参考形態に係る電池の製造方法のフローチャートである。
(実施形態1)
以下、本発明の第1の実施形態を、図面を参照しつつ説明する。図1に本実施形態1に係る電池1の斜視図を示す。なお、以下では、電池1の縦方向BH、横方向CH及び厚み方向DHを、図1に示す方向と定めて説明する。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、角型の電池ケース10と、この内部に収容された扁平状捲回型の電極体20及び電解液17と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成されている。
このうち電池ケース10は、直方体箱状で金属(本実施形態1ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成されている。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち、正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち、負極板23に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。
電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。この電極体20は、帯状の正極板21及び帯状の負極板23を、一対の帯状で樹脂製の多孔質膜からなるセパレータ25を介して重ねて、軸線周りに扁平状に捲回した扁平状捲回型の電極体である。
このうち正極板21は、帯状のアルミニウム箔からなる正極集電箔(不図示)と、この正極集電箔の両主面上にそれぞれ形成された、正極活物質粒子、導電粒子及び結着剤からなる正極活物質層(不図示)とを有する。本実施形態1では、正極活物質粒子としてリチウム遷移金属複合酸化物粒子、具体的にはリチウムニッケルコバルトマンガン酸化物粒子を、導電粒子としてアセチレンブラック(AB)粒子を、結着剤としてポリフッ化ビニリデン(PVDF)を用いている。
また、負極板23は、帯状の銅箔からなる負極集電箔(不図示)と、この負極集電箔の両主面上にそれぞれ形成された、負極活物質粒子、結着剤及び増粘剤からなる負極活物質層(不図示)とを有する。本実施形態1では、負極活物質粒子として黒鉛粒子を、結着剤としてスチレンブタジエンゴム(SBR)を、増粘剤としてカルボキシメチルセルロース(CMC)を用いている。
次いで、上記電池1の製造方法について説明する(図2及び図3参照)。まず「組立工程S1」(図2参照)において、電池1を組み立てる。具体的には、正極板21及び負極板23を、一対のセパレータ25を介して互いに重ねて軸線周りに捲回し、扁平状に圧縮して、扁平状捲回型の電極体20(図1参照)を形成する。次に、ケース蓋部材13に正極端子部材50及び負極端子部材60を固設する。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板23にそれぞれ溶接する。その後、この電極体20をケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。次に、ケース蓋部材13に設けられた注液孔13hを通じて電池ケース10内に電解液17を注液し、電解液17を電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。かくして、電池1が組み立てられる。
次に、「初充電工程S2」を行うのに先立ち、この電池1を拘束する。具体的には、電池ケース10のうち、最も面積が大きい2つの側面10cを一対の板状の押圧治具(不図示)で厚み方向DHに挟んで、電池1を厚み方向DHに押圧した状態で拘束する。なお、本実施形態1では、以下に説明する「初充電工程S2」から「短絡検査工程S6」までを、このように電池1を拘束した状態で行う。
次に、「初充電工程S2」(図2及び図3参照)において、この電池1に初充電を行う。具体的には、電池1に充放電装置を接続して、室温(25±5℃)下において、電池1の端子開放電圧(OCV)Vaが所定の初充電端子開放電圧(OCV)Vae(本実施形態1ではVae=3.97V)になるように、電池1を初充電する。
まず初充電工程S2のうち「第1CC充電工程S21」において、充電中の電池1の端子間電圧Vbが、初充電端子開放電圧Vaeに等しい第1端子間電圧Vb1(本実施形態1ではVb1=Vae=3.97V)になるまで、一定の第1充電電流値Ia1(本実施形態1ではIa1=10A)での定電流(CC)充電により、電池1を充電する。この第1CC充電工程S21における第1充電時間t1(s)は、電池1毎に異なる。例えば第1充電時間t1=1664sである(後述する表2の実施例1も参照)。
その後、「Q1取得工程S22」において、上述の第1CC充電工程S21で当該電池1に充電した第1充電電気量Q1(Ah)を求める。この第1充電電気量Q1は、第1CC充電工程S21でのCC充電の第1充電電流値Ia1(本実施形態1ではIa1=10A)に第1充電時間t1(s)を乗じて得る(Q1=Ia1×t1/3600)。例えば第1充電時間t1=1664sであった場合は、第1充電電気量Q1=10×1664/3600=4.622Ahと求まる(後述する表2の実施例1も参照)。
その後、「Q2取得工程S23」において、上述の第1充電電気量Q1(Ah)に基づいて、当該電池1の端子開放電圧Vaを初充電端子開放電圧Vaeとするのに更に必要な第2充電電気量Q2(Ah)を求める。具体的には、まず、取得した第1充電電気量Q1を用いて、端子開放電圧Vaが初充電端子開放電圧Vaeになるまで当該電池1を初充電したときに、当該電池1に充電される全体充電電気量Qe(Ah)を推定する。
ここで、全体充電電気量Qeは、第1充電電気量Q1と、第1充電電流値Ia1の大きさに応じて異なる電流補正係数Ki(表1参照)とを用いて、全体充電電気量Qe=第1充電電気量Q1/電流補正係数Kiによって算出できることが、予め行った調査から判ってきた。本実施形態1で用いた第1充電電流値Ia1はIa1=10Aであるため、電流補正係数KiはKi=0.981である。従って、例えば第1充電電気量Q1=4.622Ahであった場合は、全体充電電気量Qe=4.622/0.981=4.712Ahと求まる(表2の実施例1も参照)。
Figure 0006996470000001
なお、本実施形態1では、上述のように、電流補正係数Kiのみを用いて、第1充電電気量Q1から全体充電電気量Qeを算出したが、全体充電電気量Qeの算出方法はこれに限られない。例えば、第1CC充電工程S21終了時の電池温度をも考慮すると、全体充電電気量Qeを更に精度良く推定できる。また、第1CC充電工程S21終了直後に、電池1を例えば10秒放置してこの10秒間における電圧低下量(V)を測定する。そして、この電圧低下量の大きさをも考慮して、全体充電電気量Qeを算出すると、全体充電電気量Qeを更に精度良く推定できる。
その後、全体充電電気量Qeから第1充電電気量Q1を差し引いて、第2充電電気量Q2を得る(Q2=Qe-Q1)。例えば第1充電電気量Q1=4.622Ah、全体充電電気量Qe=4.712Ahであった場合には、第2充電電気量Q2=4.712-4.622=0.090Ahと求まる(表2の実施例1も参照)。
次に、「第2CC充電工程S24」(図2及び図3参照)において、0.5×Ia1≦Ia2≦Ia1の範囲から選択した一定の第2充電電流値Ia2での定電流(CC)充電を行って、上述の第2充電電気量Q2を当該電池1に充電する。本実施形態1では、第2充電電流値Ia2を、第1充電電流値Ia1と同じ大きさにした(Ia2=Ia1=10A)。この第2CC充電工程S24におけるCC充電の第2充電時間t2(s)は、第2充電時間t2=第2充電電気量Q2/第2充電電流値Ia2×3600により算出できる。例えば第2充電電気量Q2=0.090Ahであった場合、第2充電時間t2=0.090/10×3600=32sと求まる(表2の実施例1も参照)。従って、この第2CC充電工程S24では、一定の第2充電電流値Ia2=10Aで、第2充電時間t2=32sにわたり、当該電池1にCC充電を行う。
具体的には、図3に第2CC充電工程サブルーチンを示すように、まずステップS25で、第2充電電流値Ia2=10Aでの第2CC充電を開始する。次に、ステップS26で、上述の第2充電時間t2=32sを経過したか否かを判断する。ここでNO、即ち第2充電時間t2=32sをまだ経過していない場合は、このステップS26を繰り返す。一方、YES、即ち第2充電時間t2=32sを経過した場合は、ステップS27に進み、この第2CC充電を終了して、メインルーチンに戻る。
このように第2CC充電工程S24を行うことにより、電池1毎にそれぞれ求めた第2充電電気量Q2を各電池1に充電できるので、電池1毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧Vae=3.97Vから大きくバラつくことを防止できる。また、後述するように、この第2CC充電工程S24におけるCC充電の第2充電時間t2は、この第2CC充電工程S24をCV充電により行う場合よりも充電時間が短い。
次に、「エージング工程S5」において、40~85℃(本実施形態1では60℃)の環境温度下で、電池1を端子開放した状態で20hrにわたり放置してエージングする。
次に、「短絡検査工程S6」において、20℃の環境温度下で、電池1を端子開放した状態で放置して放電させて(自己放電させて)、放置中の端子開放電圧Vaの電圧低下量ΔVhを測定し、当該電池1の内部短絡の有無を検知する。具体的には、エージング工程S5の終了時(短絡検知工程S6の開始時)から2.0日経過後に測定した端子開放電圧Vh1と、エージング工程S5の終了時(短絡検知工程S6の開始時)から7.0日経過後に測定した端子開放電圧Vh2とから、電圧低下量ΔVh=Vh1-Vh2を算出する。そして、取得した当該電池1の電圧低下量ΔVhを、予め定めた基準低下量ΔVrと比較し、電圧低下量ΔVhが基準低下量ΔVrよりも大きい場合(ΔVh>ΔVr)に、当該電池1に内部短絡が生じている不良品と判定し、その電池1を除去する。一方、当該電池1の電圧低下量ΔVhが基準低下量ΔVr以下の場合(ΔVh≦ΔVr)には、当該電池1を内部短絡の無い良品と判定する。かくして、電池1が完成する。
(実施形態2)
次いで、第2の実施形態について説明する。実施形態1では、初充電工程S2のうち第2CC充電工程S24において、一定の第2充電電流値Ia2での第2CC充電を行って、第2充電電気量Q2を電池1に充電した(図2及び図3参照)。これに対し、本実施形態2では、初充電工程S3のうち第2CC充電工程S34において、第3充電電流値Ia3(但し、0.5×Ia1≦Ia3≦Ia1)を順に小さい値に変更した複数回の第2CC充電を行って、第2充電電気量Q2を電池1に充電する(図2及び図4参照)点が異なる。
本実施形態2の第2CC充電工程S34では、まずステップS35において、第3充電電流値Ia3での第2CC充電を開始する。最初の第3充電電流値Ia3は、第1CC充電工程S21における第1CC充電の第1充電電流値Ia1と同じ大きさにした(Ia3=Ia1=10A)。
その後、ステップS36で、充電中の電池1の端子間電圧Vbが、上限電圧Vbf>初充電端子開放電圧Vae=第1端子間電圧Vb1=3.97Vを満たす所定の上限電圧Vbf(本実施形態2では、例えばVbf=4.20V)を越えているか否かを判断する。この上限電圧Vbf=4.20Vは、電池1が過充電状態となって、正極活物質粒子が不可逆的に壊れたり、負極板23上にLi析出が生じるのを防止するために設定している。ステップS36でNO、即ち電池1の端子間電圧Vbが上限電圧Vbfを越えていない場合は、ステップS37に進む。
ステップS37では、この第2CC充電工程S34で当該電池1に第2充電電気量Q2を充電したか否かを判断する。具体的には、この時点での充電電気量Qa(Ah)を、充電電気量Qa=第3充電電流値Ia3×充電時間ta/3600により算出する。例えば、ステップS35で第2CC充電を開始してから充電時間ta=10s経過した時点での充電電気量Qaは、Qa=10×10/3600=0.027Ahである。そして、この充電電気量Qaを第2充電電気量Q2(例えば、Q2=0.090Ah)と比較して、当該電池1に第2充電電気量Q2を充電したか否かを判断する。ここでNO、即ち第2CC充電工程S34で当該電池1に第2充電電気量Q2をまだ充電していない場合は、前述のステップS36に戻る。
前述のステップS36でYES、即ち電池1の端子間電圧Vbが上限電圧Vbfを越えている場合は、ステップS38に進む。このステップS38では、端子間電圧Vbを下げるために、第3充電電流値Ia3を現在よりも低い値に再設定する。本実施形態2では、第3充電電流値Ia3をIa3=10AからIa3=5A(=0.5×Ia1)に小さくする。その後、前述のステップS37に進む。
前述のステップS37でYES、即ち第2CC充電工程S34で当該電池1に第2充電電気量Q2を充電した場合は、ステップS39に進み、この第2CC充電を終了して、メインルーチンに戻る。本実施形態2の第2CC充電工程S34でも、電池1毎にそれぞれ求めた第2充電電気量Q2を電池1に充電できるので、電池1毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できる。また、第2CC充電工程S34におけるCC充電の第2充電時間t2は、この第2CC充電工程S34をCV充電により行う場合よりも充電時間が短い。第2CC充電工程S34の後は、実施形態1と同様に、エージング工程S5及び短絡検査工程S6を行う。
(実施例1)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例1として、同じロットの材料(正極活物質粒子、負極活物質粒子等)を用いて、実施形態1と同様に、組立工程S1及び初充電工程S2を行って、30個の電池1を得た。なお、後述する実施例2~5及び比較例1~4についても、それぞれ、実施例1と同じロットの材料を用いて30個の電池1を得た。
実施例1では、前述のように、第1CC充電工程S21において、端子間電圧Vbが、初充電端子開放電圧Vaeに等しい第1端子間電圧Vb1=Vae=3.97Vになるまで、第1充電電流値Ia1=10AでのCC充電により各電池1を充電した。その後、電池1毎に求めた第2充電時間t2にわたり、第2充電電流値Ia2=10AでのCC充電を行って、電池1毎に求めた第2充電電気量Q2を各電池1に充電した(表2参照)。なお、表2に示す各充電電気量及び各充電時間は、30個の電池1の平均値である。
Figure 0006996470000002
実施例1の第1CC充電工程S21における第1充電時間t1(平均値)は、t1=1664sであり、第1CC充電工程S21で充電した第1充電電気量Q1(平均値)は、Q1=4.622Ahであった。また、全体充電電気量Qe(平均値)はQe=4.712Ah、第2CC充電工程S24で充電すべき第2充電電気量Q2(平均値)はQ2=0.090Ahであった。更に、第2CC充電工程S24における第2充電時間t2(平均値)は、t2=32sであった。また、第1充電時間t1と第2充電時間t2を足し合わせた全体充電時間te(平均値)は、te=1696sであった。また、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
(実施例2)
実施例2は、実施例1(実施形態1)に比して、第2充電電流値Ia2をIa2=5Aに小さくした例である。この実施例2において、第1充電時間t1(=1664s)、第1充電電気量Q1(=4.622Ah)、第2充電電気量Q2(=0.090Ah)、全体充電電気量Qe(=4.712Ah)は、それぞれ実施例1と同じである。一方、第2充電時間t2はt2=65s、全体充電時間teはte=1729sであり、実施例1よりも第2充電電流値Ia2を小さくしたため、実施例1よりもそれぞれ時間が長く掛かった。なお、この実施例2でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
(比較例1)
これら実施例1,2に対して比較例1では、実施例1(実施形態1)と同様に組立工程S1を行った後、CCCV充電により初充電工程S9を行った(図5参照)。即ち、まずCC充電工程S91において、実施例1(実施形態1)の第1CC充電工程S21と同様に、各電池1の端子間電圧Vbが、初充電端子開放電圧Vaeに等しい第1端子間電圧Vb1=Vae=3.97Vになるまで、第1充電電流値Ia1=10AでのCC充電を各電池1に行った。続いて、CV充電工程S92において、充電電流値Iaが第1充電電流値Ia1の1/20であるIa=0.5Aに下がるまでCV充電を各電池1に行った。
この比較例1では、CC充電工程S91における第1充電時間t1がt1=1662s、CV充電工程S92における第2充電時間t2がt2=100s、これらを足し合わせた全体充電時間teがte=1762sであった。また、CC充電工程S91で充電した第1充電電気量Q1がQ1=4.617Ah、CV充電工程S92で充電した第2充電電気量Q2がQ2=0.090Ah、これらを足し合わせた全体充電電気量QeがQe=4.707Ahであった。なお、比較例1でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
実施例1,2と比較例1とを比べると、第1充電時間t1(平均値)は、実施例1,2と比較例1との間で殆ど差がないが、第2充電時間t2(平均値)は、比較例1に比べて実施例1,2でそれぞれ短いため、全体充電時間te(平均値)についても、比較例1に比べて実施例1,2でそれぞれ短くできた(実施例1では平均差Δt=-66s、実施例2では平均差Δt=-33s)ことが判る。全体の充電時間の削減率(平均値)は、比較例1の全体充電時間te=1762sを基準として、実施例1では3.7%、実施例2では1.9%であった。
なお、実施例1,2では、全体充電電気量Qeを第1充電電気量Q1から推定したにも拘わらず、比較例1で実測した全体充電電気量Qeと殆ど差がなかったことから(平均差ΔQ=-0.005Ah)、実施例1,2における全体充電電気量Qeの推定が妥当であることが判る。
(実施例3)
実施例3は、実施例1(実施形態1)に比して、第1CC充電工程S21におけるCC充電の第1充電電流値Ia1をIa1=12Aに大きくした例である。この実施例3では、第1充電時間t1=1381s、第2充電時間t2=39s、全体充電時間te=1420s、第1充電電気量Q1=4.603Ah、第2充電電気量Q2=0.108Ah、全体充電電気量Qe=4.712Ahであった。また、実施例3でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
(比較例2)
実施例3に対して比較例2では、比較例1に比して、CC充電工程S91におけるCC充電の第1充電電流値Ia1を、実施例3と同様にIa1=12Aに大きくしてCCCV充電した例である。この比較例2では、第1充電時間t1=1383s、第2充電時間t2=113s、全体充電時間te=1496s、第1充電電気量Q1=4.610Ah、第2充電電気量Q2=0.101Ah、全体充電電気量Qe=4.710Ahであった。また、比較例2でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
実施例3と比較例2とを比べると、第1充電時間t1(平均値)は、実施例3と比較例2との間で殆ど差がないが、第2充電時間t2(平均値)は、比較例2に比べて実施例3の方が短いため、全体充電時間te(平均値)についても、比較例2に比べて実施例3で短くできた(平均差Δt=-76s)ことが判る。実施例3における充電時間の削減率(平均値)は、比較例2の全体充電時間te=1496sを基準として、5.1%であった。
なお、実施例3では、全体充電電気量Qeを第1充電電気量Q1から推定したにも拘わらず、比較例2で実測した全体充電電気量Qeと殆ど差がなかったことから(平均差ΔQ=-0.002Ah)、実施例3における全体充電電気量Qeの推定が妥当であることが判る。
(実施例4)
実施例4は、実施例1(実施形態1)に比して、第1CC充電工程S21におけるCC充電の第1充電電流値Ia1をIa1=15Aに大きくした例である。この実施例4では、第1充電時間t1=1099s、第2充電時間t2=48s、全体充電時間te=1147s、第1充電電気量Q1=4.579Ah、第2充電電気量Q2=0.132Ah、全体充電電気量Qe=4.711Ahであった。また、実施例4でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
(比較例3)
実施例4に対して比較例3では、比較例1に比して、CC充電工程S91におけるCC充電の第1充電電流値Ia1を、実施例4と同様にIa1=15Aに大きくしてCCCV充電した例である。この比較例3では、第1充電時間t1=1099s、第2充電時間t2=128s、全体充電時間te=1227s、第1充電電気量Q1=4.579Ah、第2充電電気量Q2=0.137Ah、全体充電電気量Qe=4.716Ahであった。また、比較例3でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
実施例4と比較例3とを比べると、第1充電時間t1(平均値)は、実施例4と比較例3との間で殆ど差がないが、第2充電時間t2(平均値)は、比較例3に比べて実施例4の方が短いため、全体充電時間te(平均値)についても、比較例3に比べて実施例4で短くできた(平均差Δt=-80s)ことが判る。実施例4における充電時間の削減率(平均値)は、比較例3の全体充電時間te=1227sを基準として、6.5%であった。
なお、実施例4では、全体充電電気量Qeを第1充電電気量Q1から推定したにも拘わらず、比較例3で実測した全体充電電気量Qeと殆ど差がなかったことから(平均差ΔQ=0.005Ah)、実施例4における全体充電電気量Qeの推定が妥当であることが判る。
(実施例5)
実施例5は、実施例1(実施形態1)に比して、第1CC充電工程S21におけるCC充電の第1充電電流値Ia1をIa1=20Aに大きくした例である。この実施例5では、第1充電時間t1=819s、第2充電時間t2=61s、全体充電時間te=880s、第1充電電気量Q1=4.550Ah、第2充電電気量Q2=0.170Ah、全体充電電気量Qe=4.720Ahであった。また、実施例5でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
(比較例4)
実施例5に対して比較例4では、比較例1に比して、CC充電工程S91におけるCC充電の第1充電電流値Ia1を、実施例5と同様にIa1=20Aに大きくしてCCCV充電した例である。この比較例4では、第1充電時間t1=819s、第2充電時間t2=143s、全体充電時間te=962s、第1充電電気量Q1=4.550Ah、第2充電電気量Q2=0.174Ah、全体充電電気量Qe=4.724Ahであった。また、比較例4でも、初充電工程S2後の各電池1において、端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できた。
実施例5と比較例4とを比べると、第1充電時間t1(平均値)は、実施例5と比較例4との間で殆ど差がないが、第2充電時間t2(平均値)は、比較例4に比べて実施例5の方が短いため、全体充電時間te(平均値)についても、比較例4に比べて実施例5で短くできた(平均差Δt=-82s)ことが判る。実施例5における充電時間の削減率(平均値)は、比較例4の全体充電時間te=962sを基準として、8.5%であった。
なお、実施例5では、全体充電電気量Qeを第1充電電気量Q1から推定したにも拘わらず、比較例4で実測した全体充電電気量Qeと殆ど差がなかったことから(平均差ΔQ=0.004Ah)、実施例5における全体充電電気量Qeの推定が妥当であることが判る。
以上で説明したように、実施形態1,2に係る電池1の製造方法では、まず初充電工程S2,S3のうち第1CC充電工程S21で、CC充電により、端子間電圧Vbが、初充電端子開放電圧Vaeに等しい第1端子間電圧Vb1になるまで電池1を充電した後、CV充電は行わずに、第2のCC充電を行う。即ち、Q1取得工程S22及びQ2取得工程S23を行って、当該電池1に更に必要な第2充電電気量Q2(Ah)を求め、第2CC充電工程S24,S34で、第2のCC充電により、この第2充電電気量Q2を当該電池1に充電する。
第2CC充電工程S24,S34では、電池1毎にそれぞれ求めた第2充電電気量Q2を各電池1に充電するので、電池1毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できる。
また、第2CC充電工程S24,S34では、第2充電電流値Ia2(0.5Ia1≦Ia2≦Ia1)または第3充電電流値Ia3(0.5Ia1≦Ia3≦Ia1)というCV充電における終止電流値(例えばIa1の1/20)よりも十分大きな電流値でCC充電するので、従来のCV充電よりも第2CC充電工程S24,S34における充電時間を短縮できる。これにより、初充電工程S2,S3における全体の充電時間を、CCCV充電を行う場合よりも短縮できる。
(参考形態)
次いで、参考形態について説明する(図6参照)。本参考形態では、実施形態1と同様の組立工程S1で電池1を組み立てた後、「初充電工程S8」を行うのに先立ち、「Qe推定工程S7」において、端子開放電圧Vaが初充電端子開放電圧Vaeになるまで当該電池1を初充電したときに、当該電池1に充電される全体充電電気量Qe(Ah)を電池1毎にそれぞれ推定する。
実施形態1では、当該電池1の全体充電電気量Qeは、第1CC充電工程S21で充電した第1充電電気量Q1に基づいて電池1毎にそれぞれ算出した。これに対し、本参考形態では、当該電池1の製造に用いた正極活物質粒子のロットや、正極板21における正極活物質粒子の目付け量、負極活物質粒子のロット、負極板23における負極活物質粒子の目付け量など、当該電池1を組み立てるまでに得られた情報に基づいて、Qe推定工程S7で当該電池1の全体充電電気量Qeを電池1毎にそれぞれ推定する。
次に、初充電工程(CC充電工程)S8において、一定の充電電流値Ie(本参考形態ではIe=10A)での定電流(CC)充電を行って、上述の電池1毎に求めた全体充電電気量Qe(Ah)を当該電池1に充電する。なお、この初充電工程S8におけるCC充電の全体充電時間te(s)は、全体充電時間te=全体充電電気量Qe/充電電流値Ie×3600により算出できる。
本参考形態では、電池1毎にそれぞれ推定した全体充電電気量Qeを各電池1に充電するので、電池1毎に初充電後の端子開放電圧Vaが狙いの初充電端子開放電圧Vaeから大きくバラつくことを防止できる。また、初充電工程S8における全体充電時間teは、この初充電工程S8をCCCV充電により行う場合よりも短くなる。
以上において、本発明を実施形態1,2及び実施例1~5に即して説明したが、本発明は実施形態1,2及び実施例1~5に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1,2では、初充電工程S2から短絡検査工程S6までを、電池1を拘束した状態で行ったが、これらの工程S2~S6を電池1を拘束することなく行うこともできる。
1 電池
S1 組立工程
S2,S3 初充電工程
S21 第1CC充電工程
S22 Q1取得工程
S23 Q2取得工程
S24,S34 第2CC充電工程
S5 エージング工程
S6 短絡検知工程
Va 端子開放電圧
Vae 初充電端子開放電圧
Vb 端子間電圧
Vb1 第1端子間電圧
Vbf 上限電圧
Ia 充電電流値
Ia1 第1充電電流値
Ia2 第2充電電流値
Ia3 第3充電電流値
Q1 第1充電電気量
Q2 第2充電電気量
Qe 全体充電電気量
t1 第1充電時間
t2 第2充電時間
te 全体充電時間

Claims (1)

  1. 電池の製造方法であって、
    電池の端子開放電圧(OCV)Vaが所定の初充電端子開放電圧Vaeになるように、上記電池を初充電する初充電工程を備え、
    上記初充電工程は、
    上記電池の端子間電圧Vbが、上記初充電端子開放電圧Vaeに等しい第1端子間電圧Vb1になるまで、一定の第1充電電流値Ia1での定電流(CC)充電により上記電池を充電する第1CC充電工程と、
    上記第1CC充電工程で当該電池に充電した第1充電電気量Q1を求めるQ1取得工程と、
    上記第1充電電気量Q1に基づいて、当該電池の上記端子開放電圧Vaを上記初充電端子開放電圧Vaeとするのに更に必要な第2充電電気量Q2を求めるQ2取得工程と、
    一定の第2充電電流値Ia2(但し、0.5×Ia1≦Ia2≦Ia1)での定電流(CC)充電を行って、または、
    第3充電電流値Ia3(但し、0.5×Ia1≦Ia3≦Ia1)を順に小さい値に変更した複数回の定電流(CC)充電を行って、
    上記第2充電電気量Q2を当該電池に充電する第2CC充電工程と、を有する
    電池の製造方法。
JP2018192705A 2018-10-11 2018-10-11 電池の製造方法 Active JP6996470B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192705A JP6996470B2 (ja) 2018-10-11 2018-10-11 電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192705A JP6996470B2 (ja) 2018-10-11 2018-10-11 電池の製造方法

Publications (2)

Publication Number Publication Date
JP2020061301A JP2020061301A (ja) 2020-04-16
JP6996470B2 true JP6996470B2 (ja) 2022-01-17

Family

ID=70220861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192705A Active JP6996470B2 (ja) 2018-10-11 2018-10-11 電池の製造方法

Country Status (1)

Country Link
JP (1) JP6996470B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119075A1 (ja) 2008-03-25 2009-10-01 パナソニック株式会社 充電方法、充電装置及び電池パック
JP2014232704A (ja) 2013-05-30 2014-12-11 トヨタ自動車株式会社 非水電解液二次電池
WO2015064735A1 (ja) 2013-11-01 2015-05-07 日本電気株式会社 充電装置、蓄電システム、充電方法及びプログラム
JP2017027928A (ja) 2015-07-17 2017-02-02 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
JP2017050170A (ja) 2015-09-02 2017-03-09 トヨタ自動車株式会社 リチウムイオン二次電池の初充電方法及び製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119075A1 (ja) 2008-03-25 2009-10-01 パナソニック株式会社 充電方法、充電装置及び電池パック
JP2014232704A (ja) 2013-05-30 2014-12-11 トヨタ自動車株式会社 非水電解液二次電池
WO2015064735A1 (ja) 2013-11-01 2015-05-07 日本電気株式会社 充電装置、蓄電システム、充電方法及びプログラム
JP2017027928A (ja) 2015-07-17 2017-02-02 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
JP2017050170A (ja) 2015-09-02 2017-03-09 トヨタ自動車株式会社 リチウムイオン二次電池の初充電方法及び製造方法

Also Published As

Publication number Publication date
JP2020061301A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
US10656212B2 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP5464116B2 (ja) リチウムイオン二次電池の製造方法
US10317477B2 (en) Inspection method and manufacturing method of secondary battery
CN107799837B (zh) 二次电池的恢复方法和再利用方法
JP5464118B2 (ja) リチウムイオン二次電池の製造方法
Kirchev Battery management and battery diagnostics
JP2009145137A (ja) 二次電池の検査方法
JP5464117B2 (ja) リチウムイオン二次電池の製造方法
TW201411162A (zh) 鋰離子電池的測試方法及安全性的判斷方法
JP2015122169A (ja) 全固体電池の検査方法
JP4179528B2 (ja) 二次電池の検査方法
US20150194679A1 (en) Method for producing battery and battery
Beltran et al. Equivalent circuit definition and calendar aging analysis of commercial Li (NixMnyCoz) O2/graphite pouch cells
JP2012252839A (ja) 非水電解質二次電池の製造方法
JP6996470B2 (ja) 電池の製造方法
JP2012221648A (ja) 非水電解質二次電池の製造方法
CA3147031A1 (en) A method for reducing internal resistance of a battery and a battery with reduced internal resistance
JP2015025751A (ja) 蓄電素子の劣化状態検出装置、劣化状態検出方法、蓄電システム及び電動車両
JP2018067498A (ja) 電池の製造方法
Malysz et al. Fundamentals of electric energy storage systems
JP2018092790A (ja) リチウムイオン二次電池の製造方法
JP7052697B2 (ja) リチウムイオン二次電池の製造方法
JP2012221782A (ja) 非水電解質二次電池の製造方法
JP7011782B2 (ja) 二次電池の検査方法
JP7131568B2 (ja) 推定装置、推定方法及びコンピュータプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R151 Written notification of patent or utility model registration

Ref document number: 6996470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151