KR20170004866A - 액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체 - Google Patents

액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체 Download PDF

Info

Publication number
KR20170004866A
KR20170004866A KR1020160080142A KR20160080142A KR20170004866A KR 20170004866 A KR20170004866 A KR 20170004866A KR 1020160080142 A KR1020160080142 A KR 1020160080142A KR 20160080142 A KR20160080142 A KR 20160080142A KR 20170004866 A KR20170004866 A KR 20170004866A
Authority
KR
South Korea
Prior art keywords
work
droplet ejection
droplet
workpiece
reference mark
Prior art date
Application number
KR1020160080142A
Other languages
English (en)
Other versions
KR102492390B1 (ko
Inventor
와타루 요시토미
고우타로우 오노우에
겐야 시노자키
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20170004866A publication Critical patent/KR20170004866A/ko
Application granted granted Critical
Publication of KR102492390B1 publication Critical patent/KR102492390B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • B05C5/0258Coating heads with slot-shaped outlet flow controlled, e.g. by a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0278Arrangement or mounting of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • H01L51/0005
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Coating Apparatus (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

액적 토출 장치의 기능 액적 토출 헤드와 워크 상의 뱅크를 고정밀도로 위치 맞춤한다.
액적 토출 장치(1)는, 액적 토출 헤드(34)와, 워크 스테이지(20)와, 제1 촬상 장치(41)를 가지고, 워크(W)가 주주사 방향(X축 방향)을 따라 미리 정해진 거리를 이동하였을 때에 제1 촬상 장치(41)에서 취득되는 촬상 화상에 기초하여 워크(W) 상에 형성된 기준 마크의 위치를 검출하며, 이동량 검출 기구(23)에서 검출되는 워크 스테이지(20)의 이동량에 기초하여 기준 마크의 위치를 추정한다. 그리고, 촬상 화상에 기초하여 검출되는 기준 마크의 위치와, 워크 스테이지(20)의 이동량에 기초하여 추정되는 기준 마크의 위치의 상관 관계에 기초하여, 워크(W)와 액적 토출 헤드(34)의 상대적인 위치를 보정한다.

Description

액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체{LIQUID DROP DISCHARGING APPARATUS, LIQUID DROP DISCHARGING METHOD AND COMPUTER STORAGE MEDIUM}
본 발명은 워크에 기능액의 액적을 토출하여 묘화하는 액적 토출 장치, 상기 액적 토출 장치를 이용한 액적 토출 방법, 프로그램 및 컴퓨터 기억 매체에 관한 것이다.
종래, 기능액을 사용하여 워크에 묘화를 행하는 장치로서, 상기 기능액을 액적으로 하여 토출하는 잉크젯 방식의 액적 토출 장치가 알려져 있다. 액적 토출 장치는, 예컨대 유기 EL 장치, 컬러 필터, 액정 표시 장치, 플라즈마 디스플레이(PDP 장치), 전자 방출 장치(FED 장치, SED 장치) 등의 전기 광학 장치(플랫 패널 디스플레이: FPD)를 제조할 때 등, 널리 이용되고 있다.
액적 토출 장치는, 예컨대 기능액의 액적을 토출하는 기능 액적 토출 헤드와, 워크를 탑재하는 워크 스테이지와, 안내용의 한쌍의 지지 베이스가 연신하는 방향(주주사 방향)을 따라 워크 스테이지를 이동시키는 이동 기구를 구비하고 있다. 그리고, 워크 스테이지에 의해 기능 액적 토출 헤드에 대하여 워크를 상대적으로 이동시키면서, 기능 액적 토출 헤드로부터 워크 상에 미리 형성된 뱅크에 대하여 기능액을 토출함으로써, 워크에 대한 묘화가 행해진다(특허문헌 1).
이러한 액적 토출 장치에 있어서는, 워크 상의 원하는 위치에 대하여 정확하게 기능액을 토출하기 위해, 미리 워크의 얼라이먼트가 행해진다. 워크 스테이지는 회전 동작을 포함하여 수평 방향으로 이동 가능하게 구성되어 있고, 워크 스테이지 상방에 마련된 얼라이먼트용의 카메라에 의해 워크의 얼라이먼트 마크를 촬상한다. 그리고, 촬상된 화상에 기초하여 워크 스테이지의 수평 방향의 위치를 보정함으로써, 워크의 얼라이먼트가 행해진다. 그 후, 얼라이먼트된 워크를 미리 정해진 위치로 이동시켜, 기능 액적 토출 헤드로부터 워크의 뱅크 내에 기능액이 토출된다.
특허문헌 1: 일본 특허 공개 제2010-198028호 공보
그러나, 워크의 얼라이먼트를 행한 후에 워크 스테이지를 기능 액적 토출 헤드를 향하여 이동시키는 과정에서 워크의 자세 어긋남이나, 워크 스테이지의 이동 기구의 기계적인 정밀도나 온도 변화, 경시 변화라고 하는 요인에 의해, 기능 액적 토출 헤드와 워크 상의 뱅크의 위치 관계가 변화하여 버리는 경우가 있다고 하는 문제가 있었다.
본 발명은, 이러한 점을 감안하여 이루어진 것으로, 액적 토출 장치의 기능 액적 토출 헤드와 워크 상의 뱅크를 고정밀도로 위치 맞춤하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은, 워크에 기능액의 액적을 토출하여 묘화하는 액적 토출 장치로서, 액적 토출 위치에 배치된 상기 워크에 대하여, 액적을 토출하는 액적 토출 헤드와, 상기 워크를 배치하는 워크 스테이지와, 상기 액적 토출 헤드와 상기 워크를, 주주사 방향, 상기 주주사 방향에 직교하는 방향 및 회전 방향으로 상대적으로 이동시키는 워크 이동 기구와, 상기 워크 이동 기구에 의한, 상기 워크 스테이지의 주주사 방향으로의 이동량을 검출하는 이동량 검출 기구와, 상기 워크의 주주사 방향에 있어서의 상기 액적 토출 헤드의 상류측에 있어서의, 이동 중의 상기 워크의 상면에 미리 형성된 기준 마크를 검출하는 마크 검출 유닛과, 상기 워크가 상기 주주사 방향을 따라 미리 정해진 거리를 이동하였을 때에 상기 이동량 검출 기구에서 검출되는 이동량에 기초하여, 상기 기준 마크의 위치를 추정하는 마크 위치 추정부와, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 마크 검출 유닛에 의해 검출된 상기 기준 마크의 위치와, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 마크 위치 추정부에서 추정되는 상기 기준 마크의 위치의 상관 관계에 기초하여, 상기 액적 토출 위치에 있어서의 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 보정하도록 상기 워크 이동 기구를 제어하는 워크 이동 제어부를 갖는 것을 특징으로 한다.
별도의 관점에 따른 본 발명은, 워크를 주주사 방향으로 이동시키는 워크 이동 기구를 구비한 액적 토출 장치를 이용하여, 워크에 기능액의 액적을 토출하여 묘화하는 액적 토출 방법으로서, 상기 워크 이동 기구에 의해 주주사 방향을 따라 상기 워크를 액적 토출 헤드를 향하여 이동시킬 때의, 상기 워크의 이동량을 이동량 검출 기구에 의해 검출하고, 상기 워크의 주주사 방향에 있어서의 상기 액적 토출 헤드의 상류측에 있어서의, 이동 중의 상기 워크의 상면에 미리 형성된 기준 마크를 검출하며, 상기 워크가 상기 주주사 방향을 따라 미리 정해진 거리를 이동하였을 때에 상기 이동량 검출 기구에 의해 검출되는 이동량에 기초하여, 상기 기준 마크의 위치를 추정하고, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 검출된 상기 기준 마크의 위치와, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 이동량 검출 기구에 의해 검출되는 이동량에 기초하여 추정되는 상기 기준 마크의 위치의 상관 관계에 기초하여, 상기 액적 토출 헤드로부터 상기 워크에 액적을 토출하는 액적 토출 위치에 있어서의, 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 보정하는 것을 특징으로 한다.
또한 별도의 관점에 따른 본 발명에 따르면, 상기 액적 토출 방법을 액적 토출 장치에 의해 실행시키도록, 상기 액적 토출 장치의 컴퓨터 상에서 동작하는 프로그램을 저장한 컴퓨터 판독 가능한 기억 매체가 제공된다.
본 발명에 따르면, 액적 토출 장치의 기능 액적 토출 헤드와 워크 상의 뱅크를 고정밀도로 위치 맞춤할 수 있다.
도 1은 제1 실시형태에 따른 액적 토출 장치의 구성의 개략을 나타내는 모식 측면도이다.
도 2는 제1 실시형태에 따른 액적 토출 장치의 구성의 개략을 나타내는 모식 평면도이다.
도 3은 워크 상에 뱅크와 기준 마크가 형성된 상태를 나타내는 모식 평면도이다.
도 4는 촬상 화상의 모식도이다.
도 5는 제어부의 구성의 개략을 모식적으로 나타내는 블록도이다.
도 6은 워크의 위치 및 어긋남량을 나타내는 보정 테이블이다.
도 7은 워크를 액적 토출 헤드를 향하여 이동시키는 모습을 나타내는 설명도이다.
도 8은 제1 실시형태에 따른 액적 토출 장치에서의 처리 동작의 설명도이다.
도 9는 워크와 액적 토출 헤드의 상대적인 위치 관계를 시계열로 나타낸 설명도이다.
도 10은 다른 실시형태에 따른 액적 토출 장치의 구성의 개략을 나타내는 모식 평면도이다.
도 11은 다른 실시형태에 따른 워크의 표면의 상태를 나타내는 모식 평면도이다.
도 12는 워크의 위치 및 어긋남량을 나타내는 표이다.
도 13은 워크의 위치 및 어긋남량을 나타내는 표이다.
도 14는 워크에 형성된 기준 마크 상에 액적을 착탄시킨 상태를 나타내는 모식 평면도이다.
도 15는 액적 검사 장치를 구비한 기판 처리 시스템의 구성의 개략을 나타내는 평면도이다.
도 16은 유기 발광 다이오드의 구성의 개략을 나타내는 측면도이다.
도 17은 유기 발광 다이오드의 격벽의 구성의 개략을 나타내는 평면도이다.
이하, 첨부 도면을 참조하여, 본 발명의 실시형태에 대해서 설명한다. 또한, 이하에 나타내는 실시형태에 의해 본 발명이 한정되는 것이 아니다.
<1. 제1 실시형태>
먼저, 본 발명의 제1 실시형태에 따른 액적 토출 장치의 구성에 대해서, 도 1 및 도 2를 참조하여 설명한다. 도 1은 액적 토출 장치(1)의 구성의 개략을 나타내는 모식 측면도이다. 도 2는 액적 토출 장치(1)의 구성의 개략을 나타내는 모식 평면도이다. 또한, 이하에 있어서는, 워크(W)의 주주사 방향을 X축 방향, 주주사 방향에 직교하는 부주사 방향을 Y축 방향, X축 방향 및 Y축 방향에 직교하는 연직 방향을 Z축 방향, Z축 방향 둘레의 회전 방향을 θ 방향으로 한다.
또한, 본 발명에서 이용되는 워크(W)에는, 도 3에 나타내는 바와 같이 구획벽인 뱅크(100)가 형성된다. 뱅크(100)는, 예컨대 포토 리소그래피처리나 에칭 처리 등을 행함으로써 미리 정해진 패턴으로 패터닝된다. 뱅크(100)에는, 대략 직사각 형상의 개구부(101)가 행방향(X축 방향)과 열방향(Y축 방향)으로 미리 정해진 피치로 복수 개 배열되어 형성되어 있다. 이 개구부(101)의 내부는, 액적 토출 장치(1)에 의해 토출된 액적이 착탄하는 착탄 영역이 된다. 또한, 뱅크(100)에는, 예컨대 감광성 폴리이미드 수지가 이용된다.
워크(W)의 단부에는, 기준 마크(102)가 X축 방향을 따라 복수 개 형성되어 있다. 기준 마크(102)는, 예컨대 잉크젯 방식의 드로잉 방법 등을 이용하여 워크(W)의 상면에 드로잉되어 있다. 또한, 도 3에서는, 기준 마크(102)로서 대략 십자형의 마크를 드로잉하고 있지만, 기준 마크(102)의 형상은 본 실시형태의 내용에 한정되는 것이 아니며, 예컨대 원형이나 삼각형이어도 좋고, 식별 가능한 것이면 임의로 설정할 수 있다. 또한, 도 3에서는 워크(W)의 Y 방향 부방향측의 단부에 기준 마크(102)가 형성된 상태를 드로잉하고 있지만, 기준 마크(102)는 워크(W)의 Y 방향 정방향측의 단부에 형성되어 있어도 좋다.
액적 토출 장치(1)는, 주주사 방향(X축 방향)으로 연장되어, 워크(W)를 주주사 방향으로 이동시키는 X축 테이블(10)과, X축 테이블(10)을 걸치도록 가설되며, 부주사 방향(Y축 방향)으로 연장되는 한쌍의 Y축 테이블(11, 11)을 가지고 있다. X축 테이블(10)의 상면에는, 한쌍의 X축 가이드 레일(12, 12)이 X축 방향으로 연신하여 마련되고, 각 X축 가이드 레일(12)에는, X축 리니어 모터(도시하지 않음)가 마련되어 있다. 각 Y축 테이블(11)의 상면에는, Y축 가이드 레일(13)이 Y축 방향으로 연신하여 마련되고, 상기 Y축 가이드 레일(13)에는, Y축 리니어 모터(도시하지 않음)가 마련되어 있다. 또한, 이하의 설명에서는, X축 테이블(10) 상에 있어서, Y축 테이블(11)보다 X축 부방향측의 영역을 반입출 영역(A1)이라고 하고, 한쌍의 Y축 테이블(11, 11) 사이의 영역을 처리 영역(A2)이라고 하며, Y축 테이블(11)보다 X축 정방향측의 영역을 대기 영역(A3)이라고 한다.
X축 테이블(10) 상에는, 워크 스테이지(20)가 마련되어 있다. 한쌍의 Y축 테이블(11, 11)에는, 캐리지 유닛(30)과 촬상 유닛(40)이 마련되어 있다.
워크 스테이지(20)는, 예컨대 진공 흡착 스테이지이며, 워크(W)를 흡착하여 배치한다. 워크 스테이지(20)는, 그 워크 스테이지(20)의 하면측에 마련된 스테이지 회전 기구(21)에 의해, θ 방향으로 회전 가능하게 지지되어 있다. 워크 스테이지(20)와 스테이지 회전 기구(21)는, 스테이지 회전 기구(21)의 하면측에 마련된 X축 슬라이더(22)에 지지되어 있다. X축 슬라이더(22)는, X축 가이드 레일(12)에 부착되고, 그 X축 가이드 레일(12)에 마련된 X축 리니어 모터에 의해 X축 방향으로 예컨대 미리 정해진 속도(V)로 이동시키도록 구성되어 있다. 따라서, 워크(W)를 배치한 상태로 워크 스테이지(20)를 X축 슬라이더(22)에 의해 X축 가이드 레일(12)을 따라 X축 방향으로 이동시킴으로써, 워크(W)를 X축 방향(주주사 방향)으로 속도(V)로 이동시킬 수 있다.
또한, 반입출 영역(A1)에 있어서의 워크 스테이지(20)의 상방에는, 워크 스테이지(20) 상의 워크(W)의 기준 마크(102)를 촬상하는 워크 얼라이먼트 카메라(도시하지 않음)가 마련되어 있다. 그리고, 워크 얼라이먼트 카메라로 촬상된 화상에 기초하여, X축 슬라이더(22) 및 스테이지 회전 기구(21)에 의해, 워크 스테이지(20)에 배치된 워크(W)의 X축 방향 및 θ 방향의 위치가 필요에 따라 보정된다. 이에 의해, 워크(W)가 얼라이먼트되어 미리 정해진 초기 위치로 설정된다.
X축 슬라이더(22)는, X축 슬라이더(22)의 이동량, 즉 워크 스테이지(20)에 배치된 워크(W)의 이동량을 검출하는 이동량 검출 기구(23)를 가지고 있다. 이동량 검출 기구(23)로서는, 예컨대 미리 정해진 거리를 이동할 때마다 펄스 신호를 발하는 리니어 인코더가 이용된다. 이동량 검출 기구(23)에서 검출된 이동량에 관한 정보(펄스 신호)는, 후술하는 제어부(150)에 입력된다.
캐리지 유닛(30)은, Y축 테이블(11)에 있어서, 복수 개, 예컨대 10개 마련되어 있다. 각 캐리지 유닛(30)은, 캐리지 플레이트(31)와, 캐리지 유지 기구(32)와, 캐리지(33)와, 액적 토출 헤드(34)를 가지고 있다. 캐리지 유지 기구(32)는, 캐리지 플레이트(31)의 하면의 중앙부에 마련되며, 그 캐리지 유지 기구(32)의 하단부에 캐리지(33)가 착탈 가능하게 부착되어 있다.
캐리지 플레이트(31)는, Y축 가이드 레일(13)에 부착되며, 그 Y축 가이드 레일(13)에 마련된 도시하지 않는 Y축 리니어 모터에 의해 Y축 방향으로 이동 가능하게 되어 있다. 따라서, 캐리지 플레이트(31)를 Y축 방향으로 이동시킴으로써, Y축 방향을 따라, 액적 토출 헤드(34)와 워크(W)를 상대적으로 이동시킬 수 있다. 또한, 복수의 캐리지 플레이트(31)를 일체로 하여 Y축 방향으로 이동시키는 것도 가능하다. 또한, X축 슬라이더(22)와 X축 가이드 레일(12)(X축 리니어 모터), 스테이지 회전 기구(21) 및 캐리지 플레이트(31)와 Y축 가이드 레일(13)(Y축 리니어 모터)이, 본 발명에 있어서 워크(W)와 액적 토출 헤드(34)를 X축 방향(주주사 방향), Y축 방향(주주사 방향에 직교하는 방향) 및 회전 방향(θ 방향)으로 상대적으로 이동시키는 워크 이동 기구로서 기능한다.
캐리지(33)의 하면에는, 복수의 액적 토출 헤드(34)가 X축 방향 및 Y축 방향으로 배열되어 마련되어 있다. 본 실시형태에서는, 예컨대 X축 방향으로 3개, Y축 방향으로 2개, 즉 합계 6개의 액적 토출 헤드(34)가 마련되어 있다. 액적 토출 헤드(34)의 하면, 즉 노즐면에는 복수의 토출 노즐(도시하지 않음)이 형성되어 있다. 그리고, 상기 토출 노즐로부터는, 액적 토출 헤드(34) 바로 아래의 액적 토출 위치에 대하여 기능액의 액적이 토출되도록 되어 있다.
촬상 유닛(40)은, X축 리니어 모터에 의해 워크 스테이지(20)를 X 방향으로 이동시켰을 때의, 워크(W) 상의 기준 마크(102)의 궤적과, 평면에서 보아 대략 중첩되는 위치에 배치된다. 구체적으로는, 예컨대 도 2에 나타내는 바와 같이, Y 방향의 부방향측의 밑에서부터 2번째의 캐리지 플레이트(31a)의 배치가, 워크(W)를 W축 방향으로 이동시켰을 때의 기준 마크(102)의 궤적과 대략 중첩되어 있는 경우, 촬상 유닛(40)은 캐리지 플레이트(31a)에 마련된다. 촬상 유닛(40)은, 캐리지(33)[액적 토출 헤드(24)]를 사이에 두고 X축 방향으로 대향하여 마련된 제1 촬상부(41)와, 제2 촬상부(42)를 가지고 있다. 제1 촬상부(41) 및 제2 촬상부(42)로서는, 예컨대 CCD 카메라가 이용된다. 제1 촬상부(41)는, 캐리지(33)에 대하여 X 방향 부방향측에 배치되어 있고, 예컨대 캐리지(33)와 X축 방향으로 미리 정해진 거리(L)만큼 떨어져 배치되어 있다. 제2 촬상부(42)는, 캐리지(33)에 대하여 X 방향 정방향측에 배치되어 있다. 또한, 거리(L)의 설정에 대해서는 후술한다.
제1 촬상부(41)는, 워크(W)에 형성된 기준 마크(102)를 촬상한다. 제1 촬상부(41)는, 한쌍의 Y축 테이블(11, 11) 중, X축 부방향측의 Y축 테이블(11)의 측면에 마련된 베이스(43)에 지지되어 있다. 그리고, 워크(W)가 반입출 영역(A1)으로부터 처리 영역(A2)을 향하여 이동하여, 제1 촬상부(41)의 바로 아래에 워크 스테이지(20)가 안내되었을 때에, 제1 촬상부(41)는, 미리 정해진 주기(T)로 워크 스테이지(20) 상에 배치된 워크(W)를 촬상한다. 이에 의해, 예컨대 도 4에 나타내는 바와 같은, 워크(W)의 촬상 화상(F)을 취득한다. 취득된 촬상 화상(F)은, 후술하는 제어부(150)에 입력된다. 또한, 제1 촬상부(41)에 의한 촬상의 타이밍은 예컨대 이동량 검출 기구(23)에서 검출되는 펄스 신호에 기초하여 결정되고, 촬상의 주기(T)는, 제어부(150)에 있어서 촬상 화상(F)의 처리에 요하는 시간(Ts)보다 길게 설정되어 있다. 또한, 도 4에 나타내는 촬상 화상(F)은, 워크(W)의 X 방향 정방향측의 단부 근방을 촬상한 상태를 드로잉하고 있다.
제2 촬상부(42)는, 한쌍의 Y축 테이블(11, 11) 중, X축 정방향측의 Y축 테이블(11)의 측면에 마련된 베이스(44)에 지지되어 있다. 그리고, 제2 촬상부(42)의 바로 아래에 워크 스테이지(20)가 안내되었을 때, 제2 촬상부(42)는, 워크 스테이지(20) 상에 배치된 워크(W)를 촬상함으로써, 워크(W)의 상면에 착탄한 액적을 촬상할 수 있다.
이상의 액적 토출 장치(1)에는, 제어부(150)가 마련되어 있다. 제어부(150)는, 예컨대 컴퓨터이며, 데이터 저장부(도시하지 않음)를 가지고 있다. 데이터 저장부에는, 예컨대 워크(W)에 토출되는 액적을 제어하고, 그 워크(W)에 미리 정해진 패턴을 묘화하기 위한 묘화 데이터(비트 도표 데이터) 등이 저장되어 있다. 또한, 제어부(150)는, 프로그램 저장부(도시하지 않음)를 가지고 있다. 프로그램 저장부에는, 액적 토출 장치(1)에 있어서의 각종 처리를 제어하는 프로그램 등이 저장되어 있다.
또한, 상기 데이터나 상기 프로그램은, 예컨대 컴퓨터 판독 가능한 하드 디스크(HD), 플렉시블 디스크(FD), 컴팩트 디스크(CD), 마그넷 옵티컬 디스크(MO), 메모리 카드 등의 컴퓨터로 판독 가능한 기억 매체에 기록되어 있던 것으로, 그 기억 매체로부터 제어부(150)에 인스톨된 것이어도 좋다.
또한, 제어부(150)는, 도 5에 나타내는 바와 같이, 제1 촬상부(41)에서 촬상된 촬상 화상(F)을 처리하여 그 촬상 화상으로부터 기준 마크(102)의 위치를 검출하는 화상 처리부(160)와, 워크 스테이지(20) 상의 워크(W)가 X축 방향을 따라 미리 정해진 거리를 이동하였을 때에, 이동량 검출 기구(23)에서 검출된 이동량에 기초하여 기준 마크(102)의 위치를 추정하는 마크 위치 추정부(161)와, X축 리니어 모터, 스테이지 회전 기구(21) 및 Y축 리니어 모터라고 하는, 워크 이동 기구로서 기능하는 각 구동계의 동작을 제어하는 워크 이동 제어부(162)를 가지고 있다.
화상 처리부(160)에 있어서 촬상 화상(F)에 기초하여 기준 마크(102)의 위치를 검출할 때에는, 먼저, 촬상 화상(F)을 취득하였을 때의 제1 촬상부(41)의 X축 방향 및 Y축 방향의 위치 정보에 기초하여, 촬상 화상(F)의 미리 정해진 위치, 예컨대 중심 위치의 X축 방향 및 Y축 방향의 좌표를 산출한다. 이어서, 촬상 화상(F)의 중심 위치와 기준 마크(102)의 중심 위치(CT)의 거리를 촬상 화상(F)에 기초하여 산출하고, 이에 의해 기준 마크(102)의 중심 위치(CT)의 X 좌표 및 Y 좌표를 구한다. 또한, 화상 처리부(160)에서는, 촬상 화상(F)이 촬상되었을 때의 시각, 또는 워크(W)가 반입출 영역(A1)의 초기 위치로부터 처리 영역(A2)을 향하여 이동을 개시하고 나서 촬상 화상(F)이 촬상되기까지의 시간이라고 하는, 시간 정보(M)를 더불어 기억해 둔다. 이에 의해 화상 처리부(160)에서는, 시간 정보(M)를 포함하는, 기준 마크(102)의 위치 정보[M(X, Y)]가 검출된다. 이러한 경우, 제1 촬상부(41)와 화상 처리부(160)는, 본 발명에 있어서의 워크 검출 유닛으로서 기능한다.
마크 위치 추정부(161)에는, 워크(W)를 배치하는 워크 스테이지(20)가 반입출 영역(A1)의 초기 위치로부터 처리 영역(A2)을 향하여 이동할 때에 이동량 검출 기구(23)에서 검출되는 이동량의 정보가, 제어부(150)를 통해 입력되어 있다. 또한 마크 위치 추정부(161)에는, 워크(W) 상에 형성된 기준 마크(102)의 워크(W) 내에 있어서의 위치 정보(좌표 정보)가 미리 입력되어 있다. 그리고 마크 위치 추정부(161)에서는, 화상 처리부(160)에 기억된 시간 정보(M)와 이동량 검출 기구(23)의 정보에 기초하여, 촬상 화상(F)이 촬상되었을 때의 워크 스테이지(20)의 X축 방향의 위치(좌표)를 산출한다. 계속해서, 워크(W)를 얼라이먼트하였을 때의 워크(W)와 워크 스테이지(20)의 위치 관계에 기초하여 촬상 화상(F)이 촬상되었을 때의 워크(W)의 위치를 산출한다. 이어서, 산출된 워크(W)의 위치와, 기준 마크(102)의 워크(W) 내에서의 위치 정보[M(X, Y)]에 기초하여, 촬상 화상(F)이 촬상되었을 때의 기준 마크(102)의 X축 방향의 위치를 추정한다.
워크 이동 제어부(162)는, 제어부(150)의 데이터 저장부에 저장된 묘화데이터에 기초하여 워크(W) 상의 미리 정해진 패턴을 묘화하도록 워크 이동 기구로서 기능하는 각 구동계의 동작을 제어한다. 예컨대 워크 스테이지(20)를 이동시킬 때에는, 이동량 검출 기구(23)로부터 얻어진 위치 정보(펄스 신호)에 기초하여 X축 리니어 모터에 대하여 지령 신호(펄스열)를 출력하여, 워크 스테이지(20)의 위치나 속도를 제어한다. 또한, 워크 이동 제어부(162)는, 화상 처리부(160)에 있어서 검출된 기준 마크(102)의 위치 정보[M(X, Y)]와, 마크 위치 추정부(161)에서 추정된 기준 마크(102)의 X축 방향의 위치 상관 관계에 기초하여, 액적 토출 헤드(34) 바로 아래의 액적 토출 위치에 있어서의, 그 액적 토출 헤드(34)와 워크(W)의 상대적인 위치를 보정하도록 상기 각 구동계의 동작을 제어한다.
상기 상관 관계에 기초한, 액적 토출 헤드(34)와 워크(W)의 상대적인 위치의 보정에 대해서 구체적으로 설명한다. 이미 서술한 바와 같이, 반입출 영역(A1)에 있어서 워크(W)의 얼라이먼트를 행하여도, 워크 스테이지(20)를 처리 영역(A2)의 액적 토출 헤드(34)를 향하여 이동시키는 과정에서, 워크 스테이지(20)를 이동시키는 각 구동계의 기계적인 정밀도나 온도 변화 등의 요인에 의해, 액적 토출 헤드(34)와 워크(W) 상의 뱅크(100)의 상대적인 위치 관계가, 원하는 상태로부터 어긋나 버리는 경우가 있다. 이러한 경우, 워크(W)에 대하여 정밀도 좋게 묘화를 행할 수 없기 때문에 문제가 된다.
그래서, 워크 이동 제어부(162)에서는, 먼저 화상 처리부(160)에 있어서 검출된 기준 마크(102)의 X축 방향의 위치와, 마크 위치 추정부(161)에서 추정된 기준 마크(102)의 X축 방향의 위치의 차분을 구한다. 그리고, 구한 차분이 제로, 또는 미리 정해진 임계값 이내이면, 워크 스테이지(20) 상의 워크(W)가 원하는 위치에 있는 것으로 판단된다. 즉, 마크 위치 추정부(161)에서 추정되는 기준 마크(102)의 위치는, 워크(W)에 어긋남이 생기는 일없이 반송된 경우의 이론적인 위치이기 때문에, 이 이론적인 위치와 화상 처리부(160)에 있어서 검출된 기준 마크(102)의 위치가 일치하면, 워크 스테이지(20) 상의 워크(W)와 액적 토출 헤드(34)의 상대적인 위치 관계가 원하는 상태에 있다고 말할 수 있다.
그 한편, 화상 처리부(160)에 의한 검출 위치와 마크 위치 추정부(161)에 의해 추정되는 위치의 차분이 미리 정해진 임계값을 넘으면, 워크(W)와 액적 토출 헤드(34)의 상대적인 위치 관계에 어긋남이 생긴 것으로 판단된다. 이러한 경우, 제1 촬상부(41)에서 촬상 화상(F)을 취득한 위치로부터 워크(W)를 거리(L) 이동시켜 액적 토출 위치로 이동시키면, 워크(W)는 미리 정해진 위치로부터 상기 차분의 분만큼 어긋난 위치로 이동하게 된다. 따라서 워크 이동 제어부(162)는, 이 차분이 제로 또는 미리 정해진 임계값 이내가 되는 것 같은 보정 위치를 산출하고, 이 보정 위치로 워크 스테이지(20)가 이동하도록 제어함으로써, 워크(W)와 액적 토출 헤드(34)의 상대적인 위치 관계를 보정한다. 또한, 상기한, 촬상 화상(F)의 처리에 요하는 시간(Ts)이란, 예컨대 제1 촬상부(41)에서 촬상 화상(F)을 생성하는 시간, 제1 촬상부(41)로부터 제어부(150)에 촬상 화상(F)을 전송하는 시간, 화상 처리부(160)에서 기준 마크(102)의 위치 정보[M(X, Y)]를 검출하는 시간, 워크 이동 제어부(162)에서 보정 위치를 산출하는 시간이라고 하는, 촬상 화상(F)의 취득으로부터 보정 위치의 산출에 이르기까지의 시간을 의미하고 있다.
보정 위치가 산출되면, 워크 이동 제어부(162)에 의해, 상기 위치 어긋남이 검출된 기준 마크(102)가 액적 토출 헤드(34) 바로 아래의 액적 토출 위치에 있어서 보정 위치에 위치하도록, 워크 스테이지(20)(X축 리니어 모터)를 제어한다. 또한, 전술한 바와 같이, 제1 촬상부(41)에서의 촬상 화상(F)의 취득으로부터 워크 이동 제어부(162)에서의 보정 위치의 산출까지는 미리 정해진 시간(Ts)을 요한다. 따라서, 제1 촬상부(41)와 캐리지(33) 사이의 거리(L)는, 속도(V)로 X축을 따라 이동하는 워크 스테이지(20)가 제1 촬상부(41)의 바로 아래부터 캐리지(33)에 마련된 액적 토출 헤드(34) 바로 아래의 액적 토출 위치까지 이동하는 데 요하는 시간이, 촬상 화상(F)의 처리에 요하는 시간(Ts)보다 길어지도록 설정된다. 즉, 거리(L)는, 시간(Ts) 동안에 워크(W)가 이동하는 거리보다 길게 설정되어 있다. 또한 거리(L)는, 촬상 주기(T)와 동기할 필요가 있기 때문에, 촬상 주기(T) 동안에 워크(W)가 이동하는 거리의 정수배로 설정된다. 즉, 거리(L)는, L=n×T×V(n은 양의 정수)를 만족시키도록 설정된다.
이 위치의 보정에 대해서, 도 6에 나타내는 보정 테이블(AM)을 이용하여 구체적으로 설명한다. 또한, 이하에서는, 「n」을 「2」로 한 경우, 즉, 거리(L)가 촬상 주기(T) 동안에 진행하는 거리의 2배인 것으로 하여 설명한다. 도 6의 「검출 횟수」는, 미리 정해진 주기(T)로 워크(W)의 촬상 화상(F)을 취득한 횟수이며, 예컨대 「DATA1」은 1회째의 촬상을, 「DATA2」는 2회째의 촬상을 의미하고 있다. 도 6의 「어긋남량」은, 워크 이동 제어부(162)에서 검출된 어긋남량을 의미하고 있다. 도 6에서는, 예컨대 DATA3에 있어서 어긋남량(L1)이 검출되고, DATA4 이후에 어긋남량(2L1)이 검출되어 있다.
도 6의 「현재 위치」는, 각 DATA를 취득한 시점에 있어서, 마크 위치 추정부(161)에 의해 인식되어 있는 워크(W)의 위치이며, 예컨대 워크 스테이지(20)가 미리 설정된 미리 정해진 위치에 있는 경우를 제로로서 표기하고 있다. 예컨대 DATA5에 있어서는, -L1 어긋난 위치에 워크(W)가 위치하고 있는 것을 의미하고 있다. 「현재 위치」가 제로 이외가 되는 경우가 있는 이유에 대해서는 후술한다.
도 6의 「보정 위치」는, 워크 이동 제어부(162)에서 산출된 보정 위치의 좌표를 의미하고 있고, 「현재 위치」부터 「어긋남량」을 뺀 값으로서 구한다. 예컨대 보정 테이블(AM)의 DATA1 및 DATA2에서 「어긋남량」이 검출되지 않기 때문에 보정 위치는 제로이다. 또한, DATA3에서는, 「현재 위치」가 제로이며, 「어긋남량」이 L1이기 때문에, 「보정 위치」는 -L1이 된다.
그리고, 거리(L)의 설정에 있어서 「n」을 「2」로 하고 있기 때문에, 액적 토출 위치에 있어서의 워크(W)의 위치의 보정에 있어서는, 「어긋남량」이 검출된 촬상(DATA3)으로부터 2주기 지연되 워크(W)가 보정 위치로 이동하도록 워크 스테이지(20)(X축 리니어 모터)를 제어한다. 즉, 어긋남량(L1)을 캔슬하도록, 보정 위치인 좌표(-L1)의 위치로 이동시킨다. 이와 같이, 선행적으로 워크(W)의 위치를 보정함으로써, 어떠한 원인으로 생긴 워크(W)와 액적 토출 헤드(34)의 상대적인 위치의 어긋남을, 액적 토출 헤드(34)에 의해 액적의 토출을 행하기 전에 해소할 수 있다.
또한, 워크(W)를 보정 위치로 이동시키면, 예컨대 보정 테이블(AM)의 DATA5를 취득하는 시점에서는, 워크(W)는 제1 촬상부(41)와의 상대적인 위치 관계에 있어서, -L1만큼 어긋난 좌표에 위치하게 된다. 따라서, 워크 이동 제어부(162)에서는, 도 6의 DATA5에 나타내는 바와 같이 「현재 위치」가 -L1 어긋나 있는 것을 기억해 둔다. 그리고, DATA5에 있어서 「어긋남량」이 2L1인 것이 검출되었다고 하면, 이 「어긋남량」은 실제로는 -L1만큼 어긋난 위치에서 검출된 것이기 때문에, 「현재 위치」로부터 「어긋남량」을 뺀 「보정 위치」는 -3L1이 된다. 따라서, DATA5로부터 촬상 주기(T)가 2주기 지연된 DATA7에 있어서는, 보정 위치인 좌표(-3L1)의 위치로 워크 스테이지(20)를 이동시킨다. 또한, 보정 위치로 이동시킬 때에도 촬상 주기(T)는 일정하게 유지되기 때문에, 예컨대 X축 리니어 모터에 의한 워크 스테이지(20)의 이동 속도를 제어함으로써, 동일한 촬상 주기(T) 내에 보정 위치로 이동시킨다.
또한, 본 실시형태와 같이, 「n」을 「2」로 설정한 경우, 즉 거리(L)가, 촬상 주기(T) 동안에 워크(W)가 진행하는 거리의 2배인 경우에는, 예컨대 도 7에 실선으로 나타내는 워크(W)의 위치에 있어서, 제1 촬상부(41)에 의해 촬상 화상(F)이 취득되었다고 하면, 제1 촬상부(41)에서의 워크(W)의 촬상 후, 거리(1/2L)만큼 진행하는 동안(촬상 주기 1주기), 또는 거리(1/2L)의 위치로부터 거리(L)의 위치까지 진행하는 동안(촬상 주기 2주기) 중 어느 하나에 있어서, 워크 스테이지(20)의 위치를 어긋남량의 분만큼 어긋나게 함으로써, 액적 토출 위치에 있어서 워크(W)가 보정 위치에 배치되지만, 예컨대 도 6의 DATA3에 대한 보정을 1주기 지연된 DATA4의 시점에서 행하면, DATA4의 현재 위치가 「0」이 아니라 「-L1」이 된다. 따라서, 보정에 의한 영향을 최소한으로 하기 위해, 보정 동작은, 어긋남량이 검출된 기준 마크(102)가 액적 토출 위치에 도달하는 촬상 주기(T) 동안에 있어서 행하는 것이 바람직하다. 즉 보정 테이블(AM)에 나타내는 DATA3의 정보에 기초한 보정 동작은, DATA4 취득 후로서 DATA5 취득 시에 완료되어 있는 것이 바람직하다.
그렇게 하면, 예컨대 DATA4에서는 「현재 위치」가 「0」인 상태에서 촬상 화상(F)이 취득되고, 2주기 지연된 DATA6에 있어서 어긋남량(2L1)에 대한 보정이 행해진다. 이에 의해, DATA6에 있어서는 「현재 위치」가 -2L1이 되어, DATA3에 기초한 보정의 영향을 받는 일없이 보정 동작이 완료한다.
다음에, 이상과 같이 구성된 액적 토출 장치(1)를 이용하여 행해지는 워크 처리에 대해서 설명한다.
먼저, 반입출 영역(A1)에 워크 스테이지(20)를 배치하고, 반송 기구(도시하지 않음)에 의해 액적 토출 장치(1)에 반입된 워크(W)가 상기 워크 스테이지(20)에 배치된다. 이어서, 워크 얼라이먼트 카메라에 의해 워크 스테이지(20) 상의 워크(W)의 얼라이먼트 마크가 촬상된다. 그리고, 상기 촬상된 화상에 기초하여, 스테이지 회전 기구(21)에 의해, 워크 스테이지(20)에 배치된 워크(W)의 θ 방향의 위치가 보정되어, 워크(W)의 얼라이먼트가 행해진다(단계 S1). 또한, 예컨대 Y축 방향으로의 보정이 필요하다면, 적절하게 Y축 리니어 모터를 이동시킴으로써, 워크 스테이지(20)와 캐리지 유닛(30)의 Y축 방향을 따른 상대적인 위치 관계가 보정된다.
그 후, X축 슬라이더(22)에 의해, 워크 스테이지(20)를 반입출 영역(A1)로부터 처리 영역(A2)으로 이동시킨다. 처리 영역(A2)에서는, 액적 토출 헤드(24)의 하방으로 이동한 워크(W)에 대하여, 상기 액적 토출 헤드(24)로부터 액적을 토출한다. 또한, 도 8에 나타내는 바와 같이 워크(W)의 전체면이 액적 토출 헤드(24)의 하방을 통과하도록, 워크 스테이지(20)를 더욱 대기 영역(A3)측으로 이동시킨다. 그리고, 워크를 X축 방향으로 왕복 운동시키며, 캐리지 유닛(30)을 적절하게, Y축 방향으로 이동시켜, 워크(W)에 미리 정해진 패턴이 묘화된다(단계 S2).
여기서, 보정 테이블(AM)에 기초하는 워크(W) 위치의 보정 작업에 대해서, 도 9를 이용하여 설명한다. 도 9의 좌우 방향은 X축 방향을 나타내고 있으며, 세로 방향은, 시간의 경과와 함께 DATA1을 취득하는 위치로부터 DATA7을 취득하는 위치로 이동하는 워크(W)의 모습을 시계열로 드로잉하고 있다. 또한, 세로 방향으로 연신하는 일점 쇄선 사이의 거리는, 제1 촬상부(41)에 의한 촬상 주기(T) 동안에 워크(W)가 이동하는 거리이며, 본 실시형태와 같이 「n」이 「2」로 설정되어 있는 경우, 인접하는 일점 쇄선 사이의 거리는 1/2L이다. 또한, 도 9에 나타내는 「촬상 위치」는, 제1 촬상부(41)의 바로 아래에서 워크(W)를 촬상하는 위치를, 「액적 토출 위치」는 액적 토출 헤드(34)의 바로 아래의 위치를 각각 나타내고 있고, 「촬상 위치」와 「액적 토출 위치」 사이의 거리는, 전술한 대로 L이다. 또한, 도 9의 「이상 상태」에 나타내는 워크(W)는, 기준 마크(102)가 예컨대 1/2L의 피치로 형성되어 있는 상태를 설명용으로 드로잉하고 있다.
도 9의 「이상 상태」에 나타내는 워크(W)와 같이, 예컨대 기준 마크(102)가 1/2L의 피치로 등간격으로 형성되고, 이 상태를 유지한 채로 워크(W)가 반송되면, 액적 토출 헤드(34)와 워크(W) 상의 뱅크(100)의 상대적인 위치 관계는 어긋나는 일이 없기 때문에, 액적 토출 위치에 있어서 양호한 묘화가 행해진다. 그러나 실제로는, 예컨대 도 9의 DATA1∼DATA7에 대응하는 위치에 나타내는 바와 같이, 현실의 워크(Wa)에서는, 워크(Wa) 그자체의 주름이나, 워크 스테이지(20) 등의 기계적인 정밀도나 온도 변화 등의 요인에 의해, 워크(Wa) 상의 뱅크(100)와 액적 토출 헤드(34)의 상대적인 위치 관계는, 워크(Wa)의 면 내에 있어서 일정하지 않고, 도 9에서는, 이에 의해 기준 마크(102)가 등간격에 위치하지 않는 상태의 워크(Wa)를 사선의 해치로 드로잉하고 있다. 또한, 도 9에 있어서는, 액적 토출 위치와 기준 마크(102)의 중심 위치가 일치하고 있으면, 워크(W) 상의 뱅크(100)와 액적 토출 헤드(34)의 상대적인 위치 관계가 원하는 상태인 것으로 한다.
그리고, 도 6에 나타내는 바와 같이, DATA1부터 DATA4에 있어서는, 특히 워크(Wa)의 위치의 보정은 행해지지 않기 때문에, 워크(Wa)는 예컨대 촬상 주기(T) 마다 1/2L의 위치만큼 어긋난 위치로 이동해 간다. 그리고, DATA3에 있어서 기준 마크(102)가 촬상 위치로부터 예컨대 X 방향의 정방향측으로 거리(L1)만큼 어긋나 있는 것이 검출되기 때문에, DATA3부터 2주기 지연된 DATA5에 있어서는, 미리 설정된 미리 정해진 위치로부터 거리(L1)만큼 X 방향의 정방향측으로 어긋난 「보정 위치」로 워크(Wa)가 이동한다. 이에 의해, 도 9에 나타내는 바와 같이, 액적 토출 위치와 기준 마크(102)의 중심 위치를 일치시킬 수 있다. 또한, 도 9에 부호 Wref로 나타내는 사각형의 부분은, 워크(Wa)에 대하여 위치의 보정을 행하지 않았다고 한 경우에, 워크(Wa)가 존재하게 되는 위치이다.
또한, DATA5에 있어서는, 워크(Wa)의 어긋남량은 2L1로 검출되지만, DATA5는 Wref로부터 L1 어긋난 보정 위치에 있어서 촬상 화상(F)이 취득되기 때문에, 실제의 워크(Wa)의 어긋남량은, 3L1이 되어, 도 6에 나타내는 바와 같이, 보정 위치로서 -3L1이 구해진다.
그리고, DATA6에서는, DATA4에서 산출된 보정 위치(-2L1)에 있어서 워크(Wa)에의 액적의 토출과 촬상 화상(F)의 취득이 행해진다. 그리고, 워크 이동 제어부(162)에서는, 보정 위치(-2L1)와 어긋남량에 기초하여 보정 위치(-4L1)가 구해진다.
DATA7에 있어서는, DATA5에서 구한 보정 위치(-3L1)에 있어서 워크(Wa)에의 액적의 토출과 촬상 화상(F)의 취득이 행해진다. 그리고, 이 작업을 반복해서 행하여, 워크(Wa)에 미리 정해진 패턴이 묘화된다.
또한 이때, 제2 촬상부(42)에 의해 워크(W)의 상면이 촬상된다. 촬상된 화상은 제어부(150)에 출력되고, 제어부(150)에서는, 촬상된 화상에 기초하여, 묘화 상태의 불량, 예컨대 막 얼룩 등이 검사된다. 이 검사 결과에 있어서, 묘화 상태가 불량으로 판정된 경우, 예컨대 액적 토출 헤드(24)로부터의 액적의 토출 등이 피드백 제어된다(단계 S3).
워크 스테이지(20)가 반입출 영역(A1)으로 이동하면, 묘화 처리가 종료한 워크(W)가 액적 토출 장치(1)로부터 반출된다. 이어서, 다음 워크(W)가 액적 토출 장치(1)에 반입된다. 이어서, 전술한 단계 S1의 워크(W)의 얼라이먼트가 행해지고, 이어서 단계 S2, 단계 S3이 행해진다.
이상과 같이 각 워크(W)에 대하여 단계 S1∼S3이 행해지고, 일련의 워크 처리가 종료한다.
이상의 제1 실시형태에 따르면, 워크 스테이지(20)의 X축 방향(주주사 방향)으로의 이동량을 검출하는 이동량 검출 기구(23)와, 액적 토출 헤드(34)의 상류측에 있어서의, 워크(W)의 상면의 촬상 화상(F)을 취득하는 제1 촬상부(41)와, 촬상 화상(F)에 기초하여, 기준 마크(102)를 검출하는 화상 처리부(160)와, 이동량 검출 기구(23)에서 검출되는 이동량에 기초하여, 기준 마크(102)의 위치를 추정하는 마크 위치 추정부(161)를 가지고 있기 때문에, 워크 이동 제어부(162)에 있어서, 검출된 기준 마크(102)의 위치와, 마크 위치 추정부(161)에서 추정되는 기준 마크(102)의 위치에 기초하여, 양자의 차분을 구할 수 있다. 그리고, 워크 이동 제어부(162)에서는, 이 차분이 임계값 이상이면, 촬상 위치에 있어서 검출된 기준 마크(102)의 위치와 마크 위치 추정부(161)에서 추정되는 기준 마크(102)의 위치에 어긋남이 생겼다고 판정하여, 액적 토출 위치에 있어서 어긋남을 해소하는 보정 위치로 워크(W)를 이동시키도록, 예컨대 워크 스테이지(20)의 동작을 제어한다. 그 결과, 액적 토출 헤드(34)로부터의 액적의 토출을 행하기 전에, 액적 토출 헤드와 워크 상의 뱅크를 고정밀도로 위치 맞춤할 수 있다. 이에 의해, 워크(W) 상에 정밀도 좋게 미리 정해진 패턴을 묘화할 수 있다.
이상의 실시형태에서는, 워크 스테이지(20)에 의해 워크(W)와 액적 토출 헤드의 X축 방향 및 θ 방향이 상대적인 이동을, Y축 리니어 모터에 의해 Y축 방향의 상대적인 이동을 제어하고 있었지만, X축 방향, Y축 방향 및 θ 방향으로의 이동의 방법에 대해서는 본 실시의 내용에 한정되는 것이 아니다. 예컨대 캐리지 플레이트(31)의 위치를 미리 정해진 위치에 고정하고, 워크 스테이지(20)에 X축 방향, Y축 방향 및 θ 방향으로의 이동 기능을 갖추도록 하여도 좋다. 또한 반대로, 워크 스테이지(20)를 고정하여, 캐리지 플레이트(31)에 X축 방향, Y축 방향 및 θ 방향으로의 이동 기능을 갖추도록 하여도 좋다. 어느 경우라도, 전술한 본 발명의 액적 토출 방법을 실현할 수 있다.
이상의 실시형태에서는, 워크(W) 상에 미리 기준 마크(102)가 형성되어 있지만, 기준 마크(102)는 반드시 필요하지 않고, 예컨대 제1 촬상부(41)에서 촬상한 촬상 화상(F)에 의해, 뱅크(100)의 농담을 식별할 수 있으면, 이 뱅크(100)의 위치에 기초하여 워크(W)의 위치를 검출하도록 하여도 좋다. 이러한 경우, 뱅크(100)가 기준 마크(102)로서 기능한다.
또한, 이상의 실시형태에서는, X축 방향으로 워크(W)의 어긋남이 생긴 경우에 대해서 설명하였지만, Y축 방향 및 θ 축 방향으로 어긋남이 생긴 경우에 대해서도, X축 방향의 보정을 행하는 경우와 동일한 방법을 이용함으로써, 적절하게 워크(W)의 위치를 보정할 수 있다. 즉, 본 실시형태의 워크 이동 제어부(162)에 의해 어긋남량을 검출한 후, 선행 제어에 의해 워크(W)의 위치를 보정한 경우, 상기 보정 위치에 있어서의 보정량을 워크 이동 제어부(162)에 기억시켜 두고, 보정 위치에 있어서 취득된 촬상 화상(F)으로부터 검출되는 기준 마크(102)의 위치에 반영함으로써, X축 방향, Y축 방향, θ 방향에 관계없이, 정확한 어긋남량을 검출할 수 있다.
또한, θ 방향의 어긋남을 검출하는 데 있어서는, 예컨대 도 10에 나타내는 바와 같이, 워크(W)의 Y축 방향 정방향측에도 기준 마크(102)를 형성하며, 제1 촬상부(41)를 갖는 캐리지 플레이트(31a)가, 추가된 기준 마크(102)의 궤적 상에 배치된다. 그리고, 2대의 제1 촬상부(41)에 의해 각각 검출된 기준 마크(102)의 X축 방향 및 Y축 방향의 어긋남에 기초하여, θ 방향의 어긋남이 산출된다.
이상의 실시형태에서는, 제1 촬상부(41)에 의한 촬상 주기(T)를 일정하게 유지하고, 워크(W)의 이동 속도를 적절하게 제어함으로써, 워크(W)를 보정 위치로 이동시켰지만, 예컨대 워크(W)와 액적 토출 헤드(34)의 상대적인 위치의 보정에 있어서는, 워크(W)의 이동 속도를 일정하게 유지한 상태로, 액적 토출 헤드(34)의 토출 타이밍을 워크(W)의 어긋남량에 기초하여 변경하도록 하여도 좋다. 이러한 경우, 촬상 주기(T)는 액적 토출 헤드(34)의 토출의 타이밍과 동기하도록, 적절하게 조정된다.
또한, 이상의 실시형태에서는, 화상 처리부(160)에서 워크(W)의 상면의 기준 마크(102)를 검출하는 데 있어서 제1 촬상부(41)를 이용하여 촬상 화상(F)을 취득하였지만, 예컨대 기준 마크(102)를 요철형으로 형성하여, 레이저 변위계와 같이 요철을 검출하는 기구에 기초하여 기준 마크(102)를 검출하도록 하여도 좋다. 촬상부로서 CCD 카메라를 이용한 경우, 화상 흔들림을 방지하기 위해 셔터 스피드의 최적화 등의 조정 작업이 필요로 되지만, 레이저 변위계는 연속적인 요철의 검출이 가능하여, 그와 같은 조정 작업이 불필요로 된다. 그 때문에, 예컨대 X축 방향으로 고속으로 워크(W)를 이동시킨 경우에도 적절하게 기준 마크(102)를 검출할 수 있다.
또한, 기준 마크(102)를 검출하는 데 있어서는, 예컨대 도 11에 나타내는 바와 같이, 예컨대 대략 직사각 형상의 기준 마크(110)를 반사율이 높은 재료에 의해 형성하며 미리 정해진 피치로 배열시켜, 고감도의 광 센서를 이용하여 기준 마크(110)로부터의 반사광을 펄스 신호로서 검출하도록 하여도 좋다. 이러한 경우, 인코더와 같이, 광 센서를 이용하여 펄스 신호를 계수함으로써, 워크(W)의 위치를 파악할 수 있다. 광 센서를 이용한 경우도, 레이저 변위계를 이용한 경우와 마찬가지로, 고속으로 워크를 이동시킨 경우라도 적절하게 기준 마크(110)를 검출하여, 워크(W)의 현재 위치를 파악할 수 있다.
또한, 제1 촬상부(41)로서 이용하는 카메라의 형상에 대해서도, 예컨대 워크(W)의 X축 방향이 전부 시야에 들어가는 것 같은, 직사각형의 라인 스캔 카메라를 이용하여, 1도의 촬상으로 모든 기준 마크(102)를 검출함으로써, 워크(W)의 X축 방향의 신축(온도 영향)을 검출하고, 워크 이동 제어부(162)에 의해 적절하게 워크(W)의 위치를 보정하도록 하여도 좋다. 또한, 직사각형의 라인 스캔 카메라를 이용하여, 미리 정해진 주기로 복수회 워크(W)를 촬상함으로써, 워크(W)의 X축 방향의 신축의 분포를 검출할 수 있다. 또한, 워크(W)의 전체를 촬상함으로써, 워크 스테이지(20)의 X 방향의 직진성을 측정할 수 있다. 또한, 복수의 기준 마크(102)의 어긋남량에 기초하여 θ 방향의 어긋남량도 검출할 수 있기 때문에, θ 방향의 보정을 행하는 데 있어서, 1대의 라인 스캔 카메라만 마련하면 충분하다.
<2. 제2 실시형태>
다음에, 본 발명의 제2 실시형태에 대해서 설명한다. 또한, 제2 실시형태에 있어서 이용되는 액적 토출 장치(1)는, 제1 실시형태에서 이용되는 액적 토출 장치(1)와 동일하다.
제1 실시형태에서는, 워크(W)의 기준 마크(102)의 위치를 검출하고, 기준 마크(102)의 위치 정보에 기초하여 동일한 워크(W)에 대하여 소위 피드 포워드 제어를 행하였지만, 연속하여 복수의 워크(W)를 처리할 때에, 워크(W)의 어긋남의 경향이 각 워크 사이에서 공통되는 경우가 있다. 이러한 경우, 예컨대 K(K는 양의 정수)번째의 워크(W)를 처리하였을 때에 얻어진 보정용의 데이터를 K+1번째의 워크(W)의 처리에 반영하도록 하여도 좋다.
구체적으로는, 예컨대 도 12에 나타내는 바와 같이, 워크 이동 제어부(162)에서는 K번째의 워크(W)에 있어서의 보정 위치를, K+1번째의 워크(W)의 처리를 행하기 전에 미리 수집한다. 또한, 도 12에서는, K번째의 워크(W)와 K+1번째의 워크(W)의 비교용으로 K번째의 워크(W)에 있어서의 어긋남량도 표기하고 있다.
그리고, K+1번째의 워크(W)를 처리하는 데 있어서는, K+1번째의 워크(W)가 촬상 위치에 도달하였을 때의 「현재 위치」를, K번째의 워크(W)의 보정 위치와 일치하도록 워크 스테이지(20)를 제어한다. 바꾸어 말하면, K+1번째의 워크(W)에 대해서는, 촬상 위치와 액적 토출 위치 사이에서 워크(W)의 위치의 보정을 행하는 것이 아니라, 미리 K번째의 워크의 보정의 결과를 반영하여, 촬상 위치에 있어서, 촬상 화상(F)을 취득하는 단계에서 이미 보정 작업을 행해 둔다.
그렇게 하면, 예컨대 K+1번째의 워크(W)에 있어서의 어긋남량과 K번째의 워크에 있어서의 어긋남량이 일치하는 경우, 워크 이동 제어부(162)에서 검출되는 어긋남량은 제로가 된다. 그 결과, K+1번째의 워크(W)에 있어서의 「보정 위치」도 제로가 되어, 촬상 위치와 액적 토출 위치 사이에서 워크(W)의 위치의 보정을 행할 필요가 없어진다. 이러한 경우, 촬상 위치와 액적 토출 위치 사이에서 워크(W)의 위치의 보정을 행하면, 구동계가 기계적인 정밀도나 덜걱거림에 의해, 촬상 위치와 액적 토출 위치 사이에서 더욱 워크(W)의 위치에 어긋남이 발생하여 버릴 가능성이 있지만, K번째 이전의 워크(W)에 있어서, 기계적인 덜걱거림 등의 경향을 파악하여, K+1번째의 워크에 대하여 피드 포워드 제어를 행함으로써, 그와 같은 새로운 어긋남을 배제하고, 보다 고정밀도로 워크(W)와 액적 토출 헤드(34)의 위치 맞춤을 행할 수 있다.
또한, K번째 이전의 워크(W)의 위치 정보에 기초하여 K+1번째의 워크(W)의 위치를 보정한 경우라도, 종전의 경향과는 상이한 요인에 의해, 촬상 위치에 있어서 어긋남이 검출되는 경우가 있다. 이러한 경우에 대해서도, 도 6에 나타내는 보정 테이블(AM)을 이용한 경우와 동일한 방법에 의해, K+1번째의 워크(W)의 촬상 화상(F)에 기초하여, 재차 워크(W)의 위치를 보정하면 좋다.
구체적으로는, 예컨대 도 13에 나타내는 바와 같이, K번째의 워크(W)의 위치 정보에 기초하여 K+1번째의 워크(W)의 위치의 보정을, 촬상 위치에 있어서 행한 결과, DATA4에 있어서 어긋남량(L1)이 검출되었다고 한다. 이 경우 보정 테이블(AM)을 이용한 경우와 마찬가지로, 어긋남량에 기초하여 「보정 위치」를 -L1로 산출한다. 그리고, 촬상 주기(T)의 2주기 지연의 DATA6에 있어서는, K번째의 워크(W)의 보정 정보에 기초하여 이미 워크(W)의 위치가 -L1만큼 어긋나 있기 때문에, 「현재 위치」는, K+1번째의 워크(W)에 있어서 검출된 어긋남량인 -L1을 가산하여 -2L1로 구해진다. 또한, DATA6에 있어서의 보정 위치에 대해서는, DATA4에서 보정 위치가 -L1로 산출되어 있기 때문에, 이 보정 위치의 -L1에 DATA6에 있어서의 어긋남량의 -L1을 가산하여, -2L1이 구해진다. 즉, 도 6의 경우에서는, DATA4의 보정 위치와 DATA6의 어긋남량의 차분을 DATA6의 보정 위치로 하여 구해지는 점은 동일하지만, DATA6의 현재 위치에 대해서는, 촬상 위치에 있어서 이미 K번째의 워크(W)에 기초하는 보정이 행해지고 있기 때문에, DATA6에 있어서의 「현재 위치」가 도 6의 경우와는 상이하다.
또한, 이상의 실시형태에서는, K번째의 워크(W)의 처리 시에 얻어진 보정 데이터에 기초하여 K+1번째의 워크(W)의 피드 포워드 제어를 행하였지만, K+1번째의 워크(W)에 대한 피드 포워드 제어를 행하는 데 있어서는, 반드시 K번째의 워크(W)의 보정 데이터를 이용할 필요는 없고, K번째 이전의 워크(W)이면 임의로 이용할 수 있다. 또한, K+1번째의 워크의 피드 포워드 제어에 이용하는, K번째 이전의 워크(W)의 보정 데이터는, 반드시 워크(W)에 대하여 액적 토출을 행한 경우의 정보일 필요는 없다. 즉, 예컨대 액적 토출 장치(1)를 메인터넌스할 때, 예컨대 도 6에 나타내는 바와 같은 보정 테이블(AM)을 메인터넌스 시의 정보에 기초하여 미리 작성해 두고, 이 보정 테이블(AM)의 정보를 K번째의 워크(W) 정보 대신에 이용하여도 좋다.
또한, 이상의 실시형태에서는, 액적 토출 헤드(34)의 X 방향 정방향측에 배치된 제1 촬상부(41)를 이용하여 취득한 촬상 화상(F)에 기초하여, 소위 피드 포워드 제어를 행하였지만, 워크(W) 상의 뱅크(100)와 액적 토출 헤드(34)의 상대적인 위치 관계를 보정한다고 하는 관점에서는, 예컨대 액적 토출 위치에 있어서 뱅크(100) 내에 액적을 토출한 후, 더욱 뱅크(100)의 외부의 미리 정해진 위치에 액적을 토출하고, 이 토출한 액적의 위치를 제2 촬상부(42)에 의해 검출함으로써, 워크(W)의 위치를 피드백 제어에 의해 보정하도록 하여도 좋다.
구체적으로는, 예컨대 도 14에 나타내는 바와 같이, 액적 토출 위치에 있어서 뱅크(100) 내에 액적을 토출한 후, 뱅크(100) 외부의 미리 정해진 위치에 대하여 액적(120)을 토출한다. 또한, 본 실시형태에서는, 미리 정해진 위치는 예컨대 기준 마크(102)의 중심 위치이다. 이러한 경우, 촬상 위치로부터 액적 토출 위치 사이에서 행한 워크(W)의 위치의 보정에 의해, 액적 토출 위치에 있어서 워크(W)의 위치가 원하는 위치로 되어 있으면, 기준 마크(102)의 중심의 위치와 액적(120)의 중심의 위치가 일치한다. 그러나, 예컨대 촬상 위치로부터 액적 토출 위치 사이의 거리(L)를 이동시키는 동안에, 어떠한 요인에 의해 워크(W)와 액적 토출 헤드(34)의 상대적인 위치가 어긋나면, 기준 마크(102)와 액적(120)의 중심 위치에는 어긋남이 생긴다.
따라서, 예컨대 마크 위치 추정부(161)에 있어서 추정되는 기준 마크(102)의 위치와, 제2 촬상부(42)에 의해 취득된 촬상 화상(F) 중의 액적(120)의 중심 위치의 어긋남을, 워크 이동 제어부(162)에 의해 산출한다. 그리고, 제2 촬상부(42)에 의한 p회째(p는 양의 정수)의 촬상에서 얻어진 DATAp에 있어서 이 어긋남이 검출된 경우, DATA(p+1)의 타이밍의 액적 토출 위치에 있어서, 이 어긋남량을 더욱 반영한 현재 위치에 워크(W)를 이동시킴으로써, 워크(W)와 액적 토출 헤드(34)의 상대적인 위치 관계를 보다 고정밀도로 위치 맞춤할 수 있다. 또한, DATAp에 기초하여 DATA(p+1)의 타이밍에 워크(W)와 액적 토출 헤드(34)의 상대적인 위치를 보정하기 위해서는, 제2 촬상부(42)와 액적 토출 헤드(34) 사이의 거리는 극력 작게 하는 것이 바람직하고, 보다 구체적으로는, 워크(W)가 액적 토출 위치로부터 제2 촬상부(42)에 의한 촬상 위치까지 이동하는 동안의 시간과, 제2 촬상부(42)에서의 촬상 화상(F)의 취득으로부터 워크 이동 제어부(162)에서의 보정 위치의 산출까지 요하는 시간의 합이,촬상 주기(T)보다 짧아지도록 설정된다.
또한, 뱅크(100) 내에 액적을 토출한 후, 전술한 피드백 제어를 행하기 위해 토출하는 액적의 착탄 위치는, 반드시 기준 마크(102)의 중심일 필요는 없고, 촬상 화상(F)에 기초하여 착탄 위치를 특정할 수 있으면, 착탄 위치는 임의로 설정이 가능하다. 예컨대, 동일한 촬상 화상(F)의 시야 내에 착탄 위치와 기준 마크(102)가 찍혀 있으면, 예컨대 화상 처리부에서 기준 마크(102)와 액적의 착탄 위치의 상대적인 위치 관계로부터, 액적의 착탄 위치를 파악할 수 있기 때문에, 액적의 착탄 위치가 원하는 위치로부터 어긋나 있는지의 여부를 판정할 수 있다.
<3. 액적 토출 장치의 적용예>
다음에, 이상과 같이 구성된 액적 토출 장치(1)의 적용예에 대해서 설명한다. 도 15는 액적 토출 장치(1)를 구비한 기판 처리 시스템(200)의 구성의 개략을 나타내는 설명도이다. 기판 처리 시스템(200)에서는, 유기 발광 다이오드의 유기 EL층이 형성된다.
먼저, 유기 발광 다이오드의 구성의 개략 및 그 제조 방법에 대해서 설명한다. 도 16은 유기 발광 다이오드(300)의 구성의 개략을 나타내는 측면도이다. 도 16에 나타내는 바와 같이 유기 발광 다이오드(300)는, 워크(W)로서의 유리 기판(G) 상에서, 양극(애노드)(310) 및 음극(캐소드)(320) 사이에 유기 EL층(330)을 끼운 구조를 가지고 있다. 유기 EL층(330)은, 양극(310)측으로부터 순서대로, 정공 주입층(331), 정공 수송층(332), 발광층(333), 전자 수송층(334) 및 전자 주입층(335)이 적층되어 형성되어 있다.
유기 발광 다이오드(300)를 제조하는 데 있어서는, 먼저, 유리 기판(G) 상에 양극(310)이 형성된다. 양극(310)은, 예컨대 증착법을 이용하여 형성된다. 또한, 양극(310)에는, 예컨대 ITO(Indium Tin Oxide)로 이루어지는 투명 전극이 이용된다.
그 후, 양극(310) 상에, 도 17에 나타내는 바와 같이 뱅크(340)가 형성된다. 뱅크(340)는, 예컨대 포토 리소그래피 처리나 에칭 처리 등을 행함으로써 미리 정해진 패턴으로 패터닝된다. 그리고 뱅크(340)에는, 슬릿형의 개구부(341)가 행방향(X축 방향)과 열방향(Y축 방향)으로 복수 개 배열되어 형성되어 있다. 이 개구부(341)의 내부에 있어서, 후술하는 바와 같이 유기 EL층(330)과 음극(320)이 적층되어 화소가 형성된다. 또한, 뱅크(340)에는, 예컨대 감광성 폴리이미드 수지가 이용된다.
그 후, 뱅크(340)의 개구부(341) 내에 있어서, 양극(310) 상에 유기 EL층(330)이 형성된다. 구체적으로는, 양극(310) 상에 정공 주입층(331)이 형성되고, 정공 주입층(331) 상에 정공 수송층(332)이 형성되며, 정공 수송층(332) 상에 발광층(333)이 형성되고, 발광층(333) 상에 전자 수송층(334)이 형성되며, 전자 수송층(334) 상에 전자 주입층(335)이 형성된다.
본 실시형태에서는, 정공 주입층(331), 정공 수송층(332) 및 발광층(333)은, 각각 기판 처리 시스템(200)에 있어서 형성된다. 즉, 기판 처리 시스템(200)에서는, 잉크젯 방식에 의한 유기 재료의 도포 처리, 유기 재료의 감압 건조 처리, 유기 재료의 소성 처리가 순차 행해져, 이들 정공 주입층(331), 정공 수송층(332) 및 발광층(333)이 형성된다.
또한 전자 수송층(334)과 전자 주입층(335)은, 각각 예컨대 증착법을 이용하여 형성된다.
그 후, 전자 주입층(335) 상에 음극(320)이 형성된다. 음극(320)은, 예컨대 증착법을 이용하여 형성된다. 또한, 음극(320)에는, 예컨대 알루미늄이 이용된다.
이와 같이 하여 제조된 유기 발광 다이오드(300)에서는, 양극(310)과 음극(320) 사이에 전압을 인가함으로써, 정공 주입층(331)에서 주입된 미리 정해진 수량의 정공이 정공 수송층(332)을 통해 발광층(333)에 수송되고, 또한 전자 주입층(335)에서 주입된 미리 정해진 수량의 전자가 전자 수송층(334)을 통해 발광층(333)에 수송된다. 그리고, 발광층(333) 내에서 정공과 전자가 재결합하여 여기 상태의 분자를 형성하여, 상기 발광층(333)이 발광한다.
다음에, 도 15에 나타낸 기판 처리 시스템(200)에 대해서 설명한다. 또한, 기판 처리 시스템(200)으로 처리되는 유리 기판(G) 상에는 미리 양극(310)과 뱅크(340)가 형성되어 있고, 상기 기판 처리 시스템(200)에서는 정공 주입층(331), 정공 수송층(332) 및 발광층(333)이 형성된다.
기판 처리 시스템(200)은, 복수의 유리 기판(G)을 카세트 단위로 외부로부터 기판 처리 시스템(200)에 반입하고, 카세트(C)로부터 처리 전의 유리 기판(G)을 취출하는 반입 스테이션(201)과, 유리 기판(G)에 대하여 미리 정해진 처리를 실시하는 복수의 처리 장치를 구비한 처리 스테이션(202)과, 처리 후의 유리 기판(G)을 카세트(C) 내에 수납하고, 복수의 유리 기판(G)을 카세트 단위로 기판 처리 시스템(200)으로부터 외부에 반출하는 반출 스테이션(203)을 일체로 접속한 구성을 가지고 있다. 반입 스테이션(201), 처리 스테이션(202), 반출 스테이션(203)은, X축 방향으로 이 순서로 배열되어 배치되어 있다.
반입 스테이션(201)에는, 카세트 배치대(210)가 마련되어 있다. 카세트 배치대(210)는, 복수의 카세트(C)를 Y축 방향으로 일렬로 배치 가능하게 되어 있다. 즉, 반입 스테이션(201)은, 복수의 유리 기판(G)을 보유 가능하게 구성되어 있다.
반입 스테이션(201)에는, Y축 방향으로 연신하는 반송로(211) 상을 이동 가능한 기판 반송체(212)가 마련되어 있다. 기판 반송체(212)는, 연직 방향 및 연직 둘레로도 이동 가능하며, 카세트(C)와 처리 스테이션(202) 사이에서 유리 기판(G)을 반송할 수 있다. 또한, 기판 반송체(212)는, 예컨대 유리 기판(G)을 흡착 유지하여 반송한다.
처리 스테이션(202)에는, 정공 주입층(331)을 형성하는 정공 주입층 형성부(220)와, 정공 수송층(332)을 형성하는 정공 수송층 형성부(221)와, 발광층(333)을 형성하는 발광층 형성부(222)가, 반입 스테이션(201)측으로부터 X축 방향으로 이 순서로 배열되어 배치되어 있다.
정공 주입층 형성부(220)에는, 제1 기판 반송 영역(230)과, 제2 기판 반송 영역(231)과, 제3 기판 반송 영역(232)이, 반입 스테이션(201)측으로부터 X축 방향으로 이 순서로 배열되어 배치되어 있다. 각 기판 반송 영역(230, 231, 232)은 X축 방향으로 연신하여 마련되고, 상기 기판 반송 영역(230, 231, 232)에는 유리 기판(G)을 반송하는 기판 반송 장치(도시하지 않음)가 마련되어 있다. 기판 반송 장치는, 수평 방향, 연직 방향 및 연직 둘레로도 이동 가능하며, 이들 기판 반송 영역(230, 231, 232)에 인접하여 마련되는 각 장치에 유리 기판(G)을 반송할 수 있다.
반입 스테이션(201)과 제1 기판 반송 영역(230) 사이에는, 유리 기판(G)을 전달하기 위한 트랜지션 장치(233)가 마련되어 있다. 마찬가지로 제1 기판 반송 영역(230)과 제2 기판 반송 영역(231) 사이 및 제2 기판 반송 영역(231)과 제3 기판 반송 영역(232) 사이에도, 각각 트랜지션 장치(234, 235)가 마련되어 있다.
제1 기판 반송 영역(230)의 Y축 방향 정방향측에는, 유리 기판(G)[양극(310)] 상에 정공 주입층(331)을 형성하기 위한 유기 재료를 도포하는 도포 장치(240)가 마련되어 있다. 도포 장치(240)는, 액적 토출 장치(1)와 동일한 구성을 가지고, 도포 장치(240)에서는, 잉크젯 방식으로 유리 기판(G) 상의 미리 정해진 위치, 즉 뱅크(340)의 개구부(341)의 내부에 유기 재료가 도포된다. 또한, 본 실시형태의 유기 재료는, 정공 주입층(331)을 형성하기 위한 미리 정해진 재료를 유기 용매에 용해시킨 용액이다.
제1 기판 반송 영역(230)의 Y축 방향 부방향측에는, 복수의 유리 기판(G)을 일시적으로 수용하는 버퍼 장치(241)가 마련되어 있다.
제2 기판 반송 영역(231)의 Y축 방향 정방향측과 Y축 방향 부방향측에는, 도포 장치(240)로 도포된 유기 재료를 감압 건조하는 감압 건조 장치(242)가 복수 개 적층되어, 전부로 예컨대 5개 마련되어 있다. 감압 건조 장치(242)는, 예컨대 터보 분자 펌프(도시하지 않음)를 가지고, 상기 터보 분자 펌프에 의해 내부 분위기를 예컨대 1 ㎩ 이하까지 감압하여, 유기 재료를 건조하도록 구성되어 있다.
제3 기판 반송 영역(232)의 Y축 방향 정방향측에는, 감압 건조 장치(242)로 건조된 유기 재료를 열 처리하여 소성하는 열 처리 장치(243)가 복수 개, 예컨대 20단으로 적층되어 마련되어 있다. 열 처리 장치(243)는, 그 내부에 유리 기판(G)을 배치하는 열판(도시하지 않음)을 가지고, 상기 열판에 의해 유기 재료를 소성하도록 구성되어 있다.
제3 기판 반송 영역(232)의 Y축 방향 부방향측에는, 열 처리 장치(243)로 열 처리된 유리 기판(G)을 미리 정해진 온도, 예컨대 상온으로 조절하는 온도 조절 장치(244)가 복수 개 마련되어 있다.
또한, 정공 주입층 형성부(220)에 있어서, 이들 도포 장치(240), 버퍼 장치(241), 감압 건조 장치(242), 열 처리 장치(243) 및 온도 조절 장치(244)의 수나 배치는, 임의로 선택할 수 있다.
정공 수송층 형성부(221)에는, 제1 기판 반송 영역(250)과, 제2 기판 반송 영역(251)과, 제3 기판 반송 영역(252)이, 정공 주입층 형성부(220)측으로부터 X축 방향으로 이 순서로 배열되어 배치되어 있다. 각 기판 반송 영역(250, 251, 252)은 X축 방향으로 연신하여 마련되고, 상기 기판 반송 영역(250, 251, 252)에는, 유리 기판(G)을 반송하는 기판 반송 장치(도시하지 않음)가 마련되어 있다. 기판 반송 장치는, 수평 방향, 연직 방향 및 연직 둘레로도 이동 가능하며, 이들 기판 반송 영역(250, 251, 252)에 인접하여 마련되는 각 장치에 유리 기판(G)을 반송할 수 있다.
또한, 제3 기판 반송 영역(252)에는 후술하는 열 처리 장치(263) 및 온도 조절 장치(264)가 인접되어 마련되어 있고, 이들 각 장치(263, 264)의 내부는 저산소 또한 저노점 분위기로 유지된다. 이 때문에, 제3 기판 반송 영역(252)에 있어서도, 그 내부가 저산소 또한 저노점 분위기로 유지되어 있다. 이하의 설명에 있어서, 저산소 분위기란 대기보다 산소 농도가 낮은 분위기, 예컨대 산소 농도가 10 ppm 이하인 분위기를 말하며, 또한 저노점 분위기란 대기보다 노점 온도가 낮은 분위기, 예컨대 노점 온도가 -10℃ 이하인 분위기를 말한다. 그리고, 이러한 저산소 또한 저노점 분위기로서, 예컨대 질소 가스 등의 불활성 가스가 이용된다.
정공 주입층 형성부(220)와 제1 기판 반송 영역(250) 사이 및 제1 기판 반송 영역(250)과 제2 기판 반송 영역(251) 사이에는, 각각 유리 기판(G)을 전달하기 위한 트랜지션 장치(253, 254)가 마련되어 있다. 제2 기판 반송 영역(251)과 제3 기판 반송 영역(252) 사이에는, 유리 기판(G)을 일시적으로 수용 가능한 로드록 장치(255)가 마련되어 있다. 로드록 장치(255)는, 내부 분위기를 전환 가능, 즉 대기 분위기와 저산소 또한 저노점 분위기로 전환 가능하게 구성되어 있다.
제1 기판 반송 영역(250)의 Y축 방향 정방향측에는, 유리 기판(G)[정공 주입층(331)] 상에 정공 수송층(332)을 형성하기 위한 유기 재료를 도포하는, 액적 토출 장치로서의 도포 장치(260)가 마련되어 있다. 도포 장치(260)는, 액적 토출 장치(1)와 같은 구성을 가지고, 도포 장치(260)에서는, 잉크젯 방식으로 유리 기판(G) 상의 미리 정해진 위치, 즉 뱅크(340)의 개구부(341)의 내부에 유기 재료가 도포된다. 또한, 본 실시형태의 유기 재료는, 정공 수송층(332)을 형성하기 위한 미리 정해진 재료를 유기 용매에 용해시킨 용액이다.
제1 기판 반송 영역(250)의 Y축 방향 부방향측에는, 복수의 유리 기판(G)을 일시적으로 수용하는 버퍼 장치(261)가 마련되어 있다.
제2 기판 반송 영역(251)의 Y축 방향 정방향측과 Y축 방향 부방향측에는, 도포 장치(260)로 도포된 유기 재료를 감압 건조하는 감압 건조 장치(262)가 복수 개 적층되어, 전부로 예컨대 5개 마련되어 있다. 감압 건조 장치(262)는, 예컨대 터보 분자 펌프(도시하지 않음)를 가지고, 그 내부 분위기를 예컨대 1 ㎩ 이하까지 감압하여, 유기 재료를 건조하도록 구성되어 있다.
제3 기판 반송 영역(252)의 Y축 방향 정방향측에는, 감압 건조 장치(262)로 건조된 유기 재료를 열 처리하여 소성하는 열 처리 장치(263)가 복수 개, 예컨대 20단으로 적층되어 마련되어 있다. 열 처리 장치(263)는, 그 내부에 유리 기판(G)을 배치하는 열판(도시하지 않음)을 가지고, 상기 열판에 의해 유기 재료를 소성하도록 구성되어 있다. 또한, 열 처리 장치(263)의 내부는, 저산소 또한 저노점 분위기로 유지되어 있다.
제3 기판 반송 영역(252)의 Y축 방향 부방향측에는, 열 처리 장치(263)로 열 처리된 유리 기판(G)을 미리 정해진 온도, 예컨대 상온으로 조절하는 온도 조절 장치(264)가 복수 개 마련되어 있다. 온도 조절 장치(264)의 내부는, 저산소 또한 저노점 분위기로 유지되어 있다.
또한, 정공 수송층 형성부(221)에 있어서, 이들 도포 장치(260), 버퍼 장치(261), 감압 건조 장치(262), 열 처리 장치(263) 및 온도 조절 장치(264)의 수나 배치는, 임의로 선택할 수 있다.
발광층 형성부(222)에는, 제1 기판 반송 영역(270)과, 제2 기판 반송 영역(271)과, 제3 기판 반송 영역(272)이, 정공 수송층 형성부(221)측으로부터 X축 방향으로 이 순서로 배열되어 배치되어 있다. 각 기판 반송 영역(270, 271, 272)은 X축 방향으로 연신하여 마련되고, 상기 기판 반송 영역(270, 271, 272)에는, 유리 기판(G)을 반송하는 기판 반송 장치(도시하지 않음)가 마련되어 있다. 기판 반송 장치는, 수평 방향, 연직 방향 및 연직 둘레로도 이동 가능하며, 이들 기판 반송 영역(270, 271, 272)에 인접하여 마련되는 각 장치에 유리 기판(G)을 반송할 수 있다.
또한, 제3 기판 반송 영역(272)에는 후술하는 열 처리 장치(283) 및 온도 조절 장치(284)가 인접되어 마련되어 있고, 이들 각 장치(283, 284)의 내부는 저산소 또한 저노점 분위기로 유지된다. 이 때문에, 제3 기판 반송 영역(272)에 있어서도, 그 내부가 저산소 또한 저노점 분위기로 유지되어 있다.
정공 수송층 형성부(221)와 제1 기판 반송 영역(270) 사이 및 제1 기판 반송 영역(270)과 제2 기판 반송 영역(271) 사이에는, 각각 유리 기판(G)을 전달하기 위한 트랜지션 장치(273, 274)가 마련되어 있다. 제2 기판 반송 영역(271)과 제3 기판 반송 영역(272) 사이 및 제3 기판 반송 영역(272)과 반출 스테이션(203) 사이에는, 각각 유리 기판(G)을 일시적으로 수용 가능한 로드록 장치(275, 276)가 마련되어 있다. 로드록 장치(275, 276)는, 내부 분위기를 전환 가능, 즉 대기 분위기와 저산소 또한 저노점 분위기로 전환 가능하게 구성되어 있다.
제1 기판 반송 영역(270)의 Y축 방향 정방향측에는, 유리 기판(G)[정공 수송층(332)] 상에 발광층(333)을 형성하기 위한 유기 재료를 도포하는, 액적 토출 장치로서의 도포 장치(280)가 예컨대 2개 마련되어 있다. 도포 장치(280)는, 액적 토출 장치(1)와 동일한 구성을 가지고, 도포 장치(280)에서는, 잉크젯 방식으로 유리 기판(G) 상의 미리 정해진 위치, 즉 뱅크(340)의 개구부(341)의 내부에 유기 재료가 도포된다. 또한, 본 실시형태의 유기 재료는, 발광층(333)을 형성하기 위한 미리 정해진 재료를 유기 용매에 용해시킨 용액이다.
제1 기판 반송 영역(270)의 Y축 방향 부방향측에는, 복수의 유리 기판(G)을 일시적으로 수용하는 버퍼 장치(281)가 마련되어 있다.
제2 기판 반송 영역(271)의 Y축 방향 정방향측와 Y축 방향 부방향측에는, 도포 장치(280)로 도포된 유기 재료를 감압 건조하는 감압 건조 장치(282)가 복수 개 적층되어, 전부로 예컨대 5개 마련되어 있다. 감압 건조 장치(282)는, 예컨대 터보 분자 펌프(도시하지 않음)를 가지고, 그 내부 분위기를 예컨대 1 ㎩ 이하까지 감압하여, 유기 재료를 건조하도록 구성되어 있다.
제3 기판 반송 영역(272)의 Y축 방향 정방향측에는, 감압 건조 장치(282)로 건조된 유기 재료를 열 처리하여 소성하는 열 처리 장치(283)가 복수 개, 예컨대 20단으로 적층되어 마련되어 있다. 열 처리 장치(283)는, 그 내부에 유리 기판(G)을 배치하는 열판(도시하지 않음)을 가지고, 상기 열판에 의해 유기 재료를 소성하도록 구성되어 있다. 또한, 열 처리 장치(283)의 내부는, 저산소 또한 저노점 분위기로 유지되어 있다.
제3 기판 반송 영역(272)의 Y축 방향 부방향측에는, 열 처리 장치(283)로 열 처리된 유리 기판(G)을 미리 정해진 온도, 예컨대 상온으로 조절하는 온도 조절 장치(284)가 복수 개 마련되어 있다. 온도 조절 장치(284)의 내부는, 저산소 또한 저노점 분위기로 유지되어 있다.
또한, 발광층 형성부(222)에 있어서, 이들 도포 장치(280), 버퍼 장치(281), 감압 건조 장치(282), 열 처리 장치(283) 및 온도 조절 장치(284)의 수나 배치는, 임의로 선택할 수 있다.
반출 스테이션(203)에는, 카세트 배치대(290)가 마련되어 있다. 카세트 배치대(290)는, 복수의 카세트(C)를 Y축 방향으로 일렬로 배치 가능하게 되어 있다. 즉, 반출 스테이션(203)은, 복수의 유리 기판(G)을 보유 가능하게 구성되어 있다.
반출 스테이션(203)에는, Y축 방향으로 연신하는 반송로(291) 상을 이동 가능한 기판 반송체(292)가 마련되어 있다. 기판 반송체(292)는, 연직 방향 및 연직 둘레로도 이동 가능하며, 카세트(C)와 처리 스테이션(202) 사이에서 유리 기판(G)을 반송할 수 있다. 또한, 기판 반송체(292)는, 예컨대 유리 기판(G)을 흡착 유지하여 반송한다.
또한, 반출 스테이션(203)의 내부는, 저산소 또한 저노점 분위기로 유지되어 있는 것이 바람직하다.
이상의 기판 처리 시스템(200)에는, 전술한 제어부(150)가 마련되어 있다. 따라서, 도포 장치(240, 260, 280)는, 제어부(150)에 의해 제어된다. 단, 이 제어부(150)의 프로그램 저장부(도시하지 않음)에는, 도포 장치(240, 260, 280)를 제어하기 위한 프로그램에 더하여, 기판 처리 시스템(200)에 있어서의 유리 기판(G)의 처리를 제어하는 프로그램도 저장되어 있다.
다음에, 이상과 같이 구성된 기판 처리 시스템(200)을 이용하여 행해지는 유리 기판(G)의 처리 방법에 대해서 설명한다.
먼저, 복수의 유리 기판(G)을 수용한 카세트(C)가, 반입 스테이션(201)에 반입되어, 카세트 배치대(210) 상에 배치된다. 그 후, 기판 반송체(212)에 의해, 카세트 배치대(210) 상의 카세트(C)로부터 유리 기판(G)이 순차 취출된다.
카세트(C)로부터 취출된 유리 기판(G)은, 기판 반송체(212)에 의해 정공 주입층 형성부(220)의 트랜지션 장치(233)에 반송되고, 더욱 제1 기판 반송 영역(230)을 통해 도포 장치(240)에 반송된다. 그리고 도포 장치(240)에서는, 잉크젯 방식으로 유리 기판(G)[양극(310)] 위의 미리 정해진 위치, 즉 뱅크(340)의 개구부(341)의 내부에, 정공 주입층(331)용의 유기 재료가 도포된다. 이 도포 장치(240)에 있어서의 처리는, 전술한 단계 S1∼S6과 동일한 처리이다.
한편, 도포 장치(240)에서의 도포 처리가 종료한 유리 기판(G)은, 제1 기판 반송 영역(230)을 통해 트랜지션 장치(234)에 반송되고, 더욱 제2 기판 반송 영역(231)을 통해 감압 건조 장치(242)에 반송된다. 그리고 감압 건조 장치(242)에서는, 그 내부 분위기가 감압되어, 유리 기판(G) 상에 도포된 유기 재료가 건조된다.
다음에 유리 기판(G)은, 제2 기판 반송 영역(231)을 통해 트랜지션 장치(235)에 반송되고, 더욱 제3 기판 반송 영역(232)을 통해 열 처리 장치(243)에 반송된다. 그리고 열 처리 장치(243)에서는, 열판 상에 배치된 유리 기판(G)이 미리 정해진 온도, 예컨대 280℃로 가열되어, 상기 유리 기판(G)의 유기 재료가 소성된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(232)을 통해 온도 조절 장치(244)에 반송된다. 그리고 온도 조절 장치(244)에서는, 유리 기판(G)이 미리 정해진 온도, 예컨대 상온으로 온도 조절된다. 이렇게 하여, 유리 기판(G)[양극(310)] 상에 정공 주입층(331)이 형성된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(232)을 통해 정공 수송층 형성부(221)의 트랜지션 장치(253)에 반송되고, 더욱 제1 기판 반송 영역(250)을 통해 도포 장치(260)에 반송된다. 그리고 도포 장치(260)에서는, 잉크젯 방식으로 유리 기판(G)[정공 주입층(331)] 상에, 정공 수송층(332)용의 유기 재료가 도포된다. 이 도포 장치(260)에 있어서의 처리는, 전술한 단계 S1∼S6과 동일한 처리이다.
다음에 유리 기판(G)은, 제1 기판 반송 영역(250)을 통해 트랜지션 장치(254)에 반송되고, 더욱 제2 기판 반송 영역(251)을 통해 감압 건조 장치(262)에 반송된다. 그리고 감압 건조 장치(262)에서는, 그 내부 분위기가 감압되어, 유리 기판(G) 상에 도포된 유기 재료가 건조된다.
다음에 유리 기판(G)은, 제2 기판 반송 영역(251)을 통해 로드록 장치(255)에 반송된다. 로드록 장치(255)에 유리 기판(G)이 반입되면, 그 내부가 저산소 또한 저노점 분위기로 전환된다. 그 후, 로드록 장치(255)의 내부와, 동일하게 저산소 또한 저노점 분위기로 유지된 제3 기판 반송 영역(252)의 내부가 연통된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(252)을 통해 열 처리 장치(263)에 반송된다. 이 열 처리 장치(263)의 내부도 저산소 또한 저노점 분위기로 유지되어 있다. 그리고 열 처리 장치(263)에서는, 열판 상에 배치된 유리 기판(G)이 미리 정해진 온도, 예컨대 200℃로 가열되어, 상기 유리 기판(G)의 유기 재료가 소성된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(252)을 통해 온도 조절 장치(264)에 반송된다. 이 온도 조절 장치(264)의 내부도 저산소 또한 저노점 분위기로 유지되어 있다. 그리고 온도 조절 장치(264)에서는, 유리 기판(G)이 미리 정해진 온도, 예컨대 상온으로 온도 조절된다. 이렇게 하여, 유리 기판(G)[정공 주입층(331)] 상에 정공 수송층(332)이 형성된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(252)을 통해 발광층 형성부(222)의 트랜지션 장치(273)에 반송되고, 더욱 제1 기판 반송 영역(270)을 통해 도포 장치(280)에 반송된다. 그리고 도포 장치(280)에서는, 잉크젯 방식으로 유리 기판(G)[정공 수송층(332)] 상에, 발광층(333)용의 유기 재료가 도포된다. 이 도포 장치(280)에 있어서의 처리는, 전술한 단계 S1∼S6과 동일한 처리이다.
다음에 유리 기판(G)은, 제1 기판 반송 영역(270)을 통해 트랜지션 장치(274)에 반송되고, 더욱 제2 기판 반송 영역(271)을 통해 감압 건조 장치(282)에 반송된다. 그리고 감압 건조 장치(282)에서는, 그 내부 분위기가 감압되어, 유리 기판(G) 상에 도포된 유기 재료가 건조된다.
다음에 유리 기판(G)은, 제2 기판 반송 영역(271)을 통해 로드록 장치(275)에 반송된다. 로드록 장치(275)에 유리 기판(G)이 반입되면, 그 내부가 저산소 또한 저노점 분위기로 전환된다. 그 후, 로드록 장치(275)의 내부와, 동일하게 저산소 또한 저노점 분위기로 유지된 제3 기판 반송 영역(272)의 내부가 연통된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(272)을 통해 열 처리 장치(283)에 반송된다. 이 열 처리 장치(283)의 내부도 저산소 또한 저노점 분위기로 유지되어 있다. 그리고 열 처리 장치(283)에서는, 열판 상에 배치된 유리 기판(G)이 미리 정해진 온도, 예컨대 260℃로 가열되어, 상기 유리 기판(G)의 유기 재료가 소성된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(272)을 통해 온도 조절 장치(284)에 반송된다. 이 온도 조절 장치(284)의 내부도 저산소 또한 저노점 분위기로 유지되어 있다. 그리고 온도 조절 장치(284)에서는, 유리 기판(G)이 미리 정해진 온도, 예컨대 상온으로 온도 조절된다. 이렇게 하여, 유리 기판(G)[정공 수송층(332)] 상에 발광층(333)이 형성된다.
다음에 유리 기판(G)은, 제3 기판 반송 영역(272)을 통해 로드록 장치(276)에 반송된다. 이 로드록 장치(276)의 내부는, 저산소 또한 저노점 분위기로 유지되어 있다. 그리고, 로드록 장치(276)의 내부와, 동일하게 저산소 또한 저노점 분위기로 유지된 반출 스테이션(203)의 내부가 연통된다.
다음에 유리 기판(G)은, 반출 스테이션(203)의 기판 반송체(292)에 의해 카세트 배치대(290) 상의 미리 정해진 카세트(C)에 반송된다. 이렇게 하여, 기판 처리 시스템(200)에 있어서의 일련의 유리 기판(G)의 처리가 종료한다.
이상의 실시형태에 있어서도, 전술한 제1 실시형태와 제2 실시형태와 동일한 효과를 향수할 수 있다.
또한, 이상의 실시형태의 기판 처리 시스템(200)의 레이아웃은, 도 15에 나타낸 레이아웃에 한정되지 않고, 임의로 설정할 수 있다.
또한, 이상의 실시형태의 기판 처리 시스템(200)에서는, 정공 주입층(331), 정공 수송층(332) 및 발광층(333)을 형성하였지만, 마찬가지로 유기 발광 다이오드(300)의 다른 전자 수송층(334)과 전자 주입층(335)도 형성하도록 하여도 좋다. 즉, 전자 수송층(334)과 전자 주입층(335)에 이용되는 유기 재료에 따라, 상기 전자 수송층(334)과 전자 주입층(335)은, 각각 잉크젯 방식에 의한 유기 재료의 도포 처리, 유기 재료의 감압 건조 처리, 유기 재료의 소성 처리를 행하여 유리 기판(G) 상에 형성된다. 그리고, 이들 전자 수송층(334)과 전자 주입층(335)의 도포 처리에 있어서도, 액적 토출 장치(1)를 이용하여도 좋다.
또한, 액적 토출 장치(1)의 적용예로서, 유기 발광 다이오드(300)의 유기 EL층(330)을 형성하는 기판 처리 시스템(200)을 설명하였지만, 액적 토출 장치(1)의 적용예는 이것에 한정되지 않는다. 예컨대 컬러 필터, 액정 표시 장치, 플라즈마 디스플레이(PDP 장치), 전자 방출 장치(FED 장치, SED 장치) 등의 전기 광학 장치(플랫 패널 디스플레이: FPD)를 제조할 때에도 액적 토출 장치(1)를 적용하여도 좋다. 또한, 금속 배선 형성, 렌즈 형성, 레지스트 형성 및 광 확산체 형성 등을 제조할 때에도 액적 토출 장치(1)를 적용하여도 좋다.
이상, 첨부 도면을 참조하면서 본 발명의 적합한 실시형태에 대해서 설명하였지만, 본 발명은 이러한 예에 한정되지 않는다. 당업자라면, 청구범위에 기재된 사상의 범주 내에 있어서, 각종의 변경예 또는 수정예에 상도할 수 있는 것은 분명하고, 이들에 대해서도 당연히 본 발명의 기술적 범위에 속하는 것으로 양해된다.
1 액적 토출 장치
10 X축 테이블
11 Y축 테이블
12 X축 가이드 레일
13 Y축 가이드 레일
20 워크 스테이지
21 스테이지 회전 기구
22 X축 슬라이더
23 이동량 검출 기구
30 캐리지 유닛
33 캐리지
34 액적 토출 헤드
40 촬상 유닛
41 제1 촬상부
42 제2 촬상부
100 뱅크
101 개구부
102 기준 마크
150 제어부
200 기판 처리 시스템
240, 260, 280 도포 장치
300 유기 발광 다이오드
330 유기 EL층
331 정공 주입층
332 정공 수송층
333 발광층
334 전자 수송층
335 전자 주입층
G 유리 기판
W 워크

Claims (13)

  1. 워크에 기능액의 액적을 토출하여 묘화하는 액적 토출 장치로서,
    액적 토출 위치에 배치된 상기 워크에 대하여, 액적을 토출하는 액적 토출 헤드와,
    상기 워크를 배치하는 워크 스테이지와,
    상기 액적 토출 헤드와 상기 워크를, 주주사(主走査) 방향, 상기 주주사 방향에 직교하는 방향 및 회전 방향으로 상대적으로 이동시키는 워크 이동 기구와,
    상기 워크 이동 기구에 의한, 상기 워크 스테이지의 주주사 방향으로의 이동량을 검출하는 이동량 검출 기구와,
    상기 워크의 주주사 방향에 있어서의 상기 액적 토출 헤드의 상류측에 있어서의, 이동 중의 상기 워크의 상면에 미리 형성된 기준 마크를 검출하는 마크 검출 유닛과,
    상기 워크가 상기 주주사 방향을 따라 미리 정해진 거리를 이동하였을 때에 상기 이동량 검출 기구에서 검출되는 이동량에 기초하여, 상기 기준 마크의 위치를 추정하는 마크 위치 추정부와,
    상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 마크 검출 유닛에 의해 검출된 상기 기준 마크의 위치와, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 마크 위치 추정부에서 추정되는 상기 기준 마크의 위치의 상관 관계에 기초하여, 상기 액적 토출 위치에 있어서의 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 보정하도록 상기 워크 이동 기구를 제어하는 워크 이동 제어부
    를 포함하는 것을 특징으로 하는, 액적 토출 장치.
  2. 제1항에 있어서, 상기 상관 관계는, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 마크 검출 유닛에 의해 검출된 상기 기준 마크의 위치와, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 마크 위치 추정부에서 추정되는 상기 기준 마크의 위치의 차분이고,
    상기 워크 이동 제어부에 의한 상기 액적 토출 위치에 있어서의 상기 워크의 위치의 보정은, 상기 액적 토출 위치에 있어서 상기 차분이 제로가 되도록 행해지는 것을 특징으로 하는, 액적 토출 장치.
  3. 제1항 또는 제2항에 있어서, 상기 기준 마크는, 상기 액적 토출 헤드로부터 토출된 액적을 착탄(着彈)시키는 착탄 영역을 규정하도록 형성된 뱅크, 또는 상기 착탄 영역의 외부에 형성된 식별 기호인 것을 특징으로 하는, 액적 토출 장치.
  4. 제3항에 있어서, 상기 워크 상에는, 상기 착탄 영역이 복수 개 형성되고,
    상기 워크 이동 제어부는, 상기 착탄 영역 각각마다 상기 액적 토출 위치에 있어서의 상기 워크의 위치를 보정하는 것을 특징으로 하는, 액적 토출 장치.
  5. 제4항에 있어서, 상기 마크 검출 유닛에 의한 상기 기준 마크의 검출은 미리 정해진 주기로 행해지고,
    상기 마크 검출 유닛과 상기 액적 토출 헤드 사이의 거리는, 상기 기준 마크를 검출하는 주기 동안에 상기 워크 스테이지가 이동하는 거리의 n배(n=양의 정수)로 설정되어 있으며,
    상기 액적 토출 위치에 있어서의 상기 워크의 위치의 보정은, 상기 마크 검출 유닛으로 상기 기준 마크의 검출을 행한 후의 (n-1)회째의 상기 기준 마크의 검출과, n회째의 상기 기준 마크의 검출 사이에 행해지는 것을 특징으로 하는, 액적 토출 장치.
  6. 제1항 또는 제2항에 있어서, 상기 워크의 주주사 방향에 있어서의 상기 액적 토출 헤드의 하류측에 배치된 촬상부를 더 가지고,
    상기 워크에는, 액적에 의해 미리 정해진 패턴이 묘화되는 착탄 영역이 형성되며,
    상기 워크 이동 제어부는,
    상기 액적 토출 위치에 있어서의 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 보정한 상태로, 상기 착탄 영역의 외부의 미리 정해진 위치에 대하여 상기 액적 토출 헤드로부터 액적을 토출하고,
    상기 촬상부에서 촬상된 촬상 화상에 기초하여, 상기 액적 토출 헤드로부터 토출된 액적의 위치를 특정하며,
    상기 특정된 액적의 위치와, 상기 착탄 영역의 외부의 미리 정해진 위치의 어긋남량을 산출하고,
    다음번 이후의 상기 액적 토출 헤드로부터의 액적의 토출에 있어서, 상기 산출된 어긋남량에 기초하여, 상기 액적 토출 위치에 있어서의 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 더 보정하는 것을 특징으로 하는, 액적 토출 장치.
  7. 워크를 주주사 방향으로 이동시키는 워크 이동 기구를 구비한 액적 토출 장치를 이용하여, 워크에 기능액의 액적을 토출하여 묘화하는 액적 토출 방법으로서,
    상기 워크 이동 기구에 의해 주주사 방향을 따라 상기 워크를 액적 토출 헤드를 향하여 이동시킬 때의, 상기 워크의 이동량을 이동량 검출 기구에 의해 검출하고,
    상기 워크의 주주사 방향에 있어서의 상기 액적 토출 헤드의 상류측에 있어서의, 이동 중의 상기 워크의 상면에 미리 형성된 기준 마크를 검출하며,
    상기 워크가 상기 주주사 방향을 따라 미리 정해진 거리를 이동하였을 때에 상기 이동량 검출 기구에 의해 검출되는 이동량에 기초하여, 상기 기준 마크의 위치를 추정하고,
    상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 검출된 상기 기준 마크의 위치와, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 이동량 검출 기구에 의해 검출되는 이동량에 기초하여 추정되는 상기 기준 마크의 위치의 상관 관계에 기초하여, 상기 액적 토출 헤드로부터 상기 워크에 액적을 토출하는 액적 토출 위치에 있어서의, 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 보정하는 것을 특징으로 하는, 액적 토출 방법.
  8. 제7항에 있어서, 상기 상관 관계는, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 검출된 상기 기준 마크의 위치와, 상기 워크가 상기 미리 정해진 거리를 이동하였을 때에 상기 이동량 검출 기구에 의해 검출되는 이동량에 기초하여 추정되는 상기 기준 마크의 위치의 차분이고,
    상기 액적 토출 위치에 있어서의 상기 워크와 상기 액적 토출 헤드의 상대적인 위치의 보정은, 상기 액적 토출 위치에 있어서 상기 차분이 제로가 되도록 행해지는 것을 특징으로 하는, 액적 토출 방법.
  9. 제7항 또는 제8항에 있어서, 상기 기준 마크는, 상기 액적 토출 헤드로부터 토출된 액적을 착탄시키는 착탄 영역을 규정하도록 형성된 뱅크, 또는 상기 착탄 영역의 외부에 형성된 식별 기호인 것을 특징으로 하는, 액적 토출 방법.
  10. 제9항에 있어서, 상기 워크 상에는, 상기 착탄 영역이 복수 개 형성되고,
    상기 액적 토출 위치에 있어서의 상기 워크의 위치의 보정은, 상기 착탄 영역 각각마다 행해지는 것을 특징으로 하는, 액적 토출 방법.
  11. 제10항에 있어서, 상기 액적 토출 헤드의 상류측에 있어서의 상기 기준 마크의 검출은 미리 정해진 주기로 행해지고,
    상기 기준 마크를 검출하는 위치와 상기 액적 토출 헤드 사이의 거리는, 상기 기준 마크를 검출하는 주기 동안에 상기 워크가 이동하는 거리의 n배(n=양의 정수)로 설정되어 있으며,
    상기 액적 토출 위치에 있어서의 상기 워크의 위치의 보정은, 상기 기준 마크의 검출을 행한 후의 (n-1)회째에 행해지는 상기 기준 마크의 검출과, n회째에 행해지는 상기 기준 마크의 검출 사이에 행해지는 것을 특징으로 하는, 액적 토출 방법.
  12. 제7항 또는 제8항에 있어서, 상기 워크에는, 액적에 의해 미리 정해진 패턴이 묘화되는 착탄 영역이 형성되어 있고,
    상기 액적 토출 위치에 있어서의 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 보정한 상태로, 상기 착탄 영역의 외부의 미리 정해진 위치에 대하여 상기 액적 토출 헤드로부터 액적을 토출하며,
    상기 워크의 주주사 방향에 있어서의 상기 액적 토출 헤드의 하류측에 있어서, 상기 착탄 영역의 외부의 미리 정해진 위치에 대하여 토출된 액적의 위치를 검출하고,
    상기 검출된 액적의 위치와, 상기 착탄 영역의 외부의 미리 정해진 위치의 어긋남량을 산출하며,
    다음번 이후의 상기 액적 토출 헤드로부터의 액적의 토출에 있어서, 상기 산출된 어긋남량에 기초하여, 상기 액적 토출 위치에 있어서의 상기 워크와 상기 액적 토출 헤드의 상대적인 위치를 더 보정하는 것을 특징으로 하는, 액적 토출 방법.
  13. 제7항 또는 제8항에 기재된 액적 토출 방법을 액적 토출 장치에 의해 실행시키도록, 상기 액적 토출 장치의 컴퓨터 상에서 동작하는 프로그램을 저장한 컴퓨터 판독 가능한 기억 매체.
KR1020160080142A 2015-07-02 2016-06-27 액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체 KR102492390B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015133323A JP6576124B2 (ja) 2015-07-02 2015-07-02 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
JPJP-P-2015-133323 2015-07-02

Publications (2)

Publication Number Publication Date
KR20170004866A true KR20170004866A (ko) 2017-01-11
KR102492390B1 KR102492390B1 (ko) 2023-01-26

Family

ID=57739167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160080142A KR102492390B1 (ko) 2015-07-02 2016-06-27 액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체

Country Status (3)

Country Link
JP (1) JP6576124B2 (ko)
KR (1) KR102492390B1 (ko)
CN (1) CN106311524B (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180102491A (ko) * 2017-03-07 2018-09-17 도쿄엘렉트론가부시키가이샤 액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체
KR20180102490A (ko) * 2017-03-07 2018-09-17 도쿄엘렉트론가부시키가이샤 워크 가공 장치, 워크 가공 방법 및 컴퓨터 기억 매체
KR20180102500A (ko) * 2017-03-07 2018-09-17 도쿄엘렉트론가부시키가이샤 액적 토출 장치, 액적 토출 방법, 및 컴퓨터 기억 매체
US11192356B2 (en) 2019-07-03 2021-12-07 Semes Co., Ltd. Ink jet printing system
US11285716B2 (en) 2019-06-11 2022-03-29 Semes Co., Ltd. Ink jet printing system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805017B2 (ja) * 2017-02-10 2020-12-23 東京エレクトロン株式会社 塗布装置、および塗布方法
JP6987206B2 (ja) * 2017-02-10 2021-12-22 東京エレクトロン株式会社 塗布装置、および塗布方法
JP6925143B2 (ja) * 2017-03-07 2021-08-25 東京エレクトロン株式会社 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
US11946100B2 (en) 2018-01-24 2024-04-02 Sniper (Suzhou) Life Technology Co., Ltd. Microdroplet container and method for manufacturing the same, method for spreading microdroplets, microdroplet-generating kit, temperature-controlling device, oil phase composition for microdroplet generating and method for treating the same
JP7220366B2 (ja) 2018-01-24 2023-02-10 思納福(蘇州)生命科技有限公司 運動制御機構、液体吐出ピペットチップ、微小液滴生成装置及び生成方法、流体駆動機構及び流体駆動方法、微小液滴生成方法並びに液体吐出ピペットチップの表面処理方法
CN110066721B (zh) * 2018-01-24 2020-04-21 思纳福(北京)医疗科技有限公司 微液滴生成方法
JP7069751B2 (ja) 2018-01-29 2022-05-18 カシオ計算機株式会社 印刷装置
CN109910437B (zh) * 2019-01-22 2020-10-13 深圳市华星光电半导体显示技术有限公司 一种喷涂装置及显示面板的制备方法
CN110571360B (zh) * 2019-09-11 2022-01-25 昆山国显光电有限公司 喷墨打印系统和显示面板的制备方法
CN111038114B (zh) * 2019-11-13 2021-03-16 深圳市华星光电半导体显示技术有限公司 喷墨打印装置及其制备有机发光二极体显示面板的方法
JP7446854B2 (ja) 2020-03-02 2024-03-11 住友重機械工業株式会社 インク塗布装置、インク塗布装置の制御装置、及びインク塗布方法
CN111570138B (zh) * 2020-05-19 2021-08-31 济宁市广顺包装有限公司 一种编织袋智能印刷系统
JP7055185B2 (ja) * 2020-12-03 2022-04-15 東京エレクトロン株式会社 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
CN112829466B (zh) * 2021-02-02 2023-12-19 北京亚美科软件有限公司 一种喷墨打印机用连续图文拼接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337725A (ja) * 2003-05-14 2004-12-02 Seiko Epson Corp 液滴吐出装置、電気光学装置の製造方法、電気光学装置、電子機器および基板
JP2006240015A (ja) * 2005-03-02 2006-09-14 Dainippon Printing Co Ltd パターン形成装置、アライメント装置、基板処理装置、パターン形成方法、基板処理方法
JP2007090888A (ja) * 2005-09-29 2007-04-12 Applied Materials Inc インクジェット液滴の位置決め方法及びシステム
JP2010198028A (ja) 2010-04-02 2010-09-09 Seiko Epson Corp 液滴吐出装置
JP2011235225A (ja) * 2010-05-10 2011-11-24 Panasonic Corp インクジェット装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760926B2 (ja) * 2003-04-25 2006-03-29 セイコーエプソン株式会社 液滴吐出装置、及び液滴吐出方法
JP4726123B2 (ja) * 2005-09-27 2011-07-20 大日本スクリーン製造株式会社 塗布システム
JP6078298B2 (ja) * 2012-11-01 2017-02-08 武蔵エンジニアリング株式会社 位置補正機能を有する作業装置および作業方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337725A (ja) * 2003-05-14 2004-12-02 Seiko Epson Corp 液滴吐出装置、電気光学装置の製造方法、電気光学装置、電子機器および基板
JP2006240015A (ja) * 2005-03-02 2006-09-14 Dainippon Printing Co Ltd パターン形成装置、アライメント装置、基板処理装置、パターン形成方法、基板処理方法
JP2007090888A (ja) * 2005-09-29 2007-04-12 Applied Materials Inc インクジェット液滴の位置決め方法及びシステム
JP2010198028A (ja) 2010-04-02 2010-09-09 Seiko Epson Corp 液滴吐出装置
JP2011235225A (ja) * 2010-05-10 2011-11-24 Panasonic Corp インクジェット装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180102491A (ko) * 2017-03-07 2018-09-17 도쿄엘렉트론가부시키가이샤 액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체
KR20180102490A (ko) * 2017-03-07 2018-09-17 도쿄엘렉트론가부시키가이샤 워크 가공 장치, 워크 가공 방법 및 컴퓨터 기억 매체
KR20180102500A (ko) * 2017-03-07 2018-09-17 도쿄엘렉트론가부시키가이샤 액적 토출 장치, 액적 토출 방법, 및 컴퓨터 기억 매체
US11577269B2 (en) 2017-03-07 2023-02-14 Tokyo Electron Limited Workpiece processing apparatus using workpiece having reference marks, workpiece processing method, and computer storage medium
US11623237B2 (en) 2017-03-07 2023-04-11 Tokyo Electron Limited Droplet ejecting apparatus having correctable movement mechanism for workpiece table and droplet ejecting method
US11285716B2 (en) 2019-06-11 2022-03-29 Semes Co., Ltd. Ink jet printing system
US11192356B2 (en) 2019-07-03 2021-12-07 Semes Co., Ltd. Ink jet printing system

Also Published As

Publication number Publication date
CN106311524B (zh) 2020-04-14
JP2017013011A (ja) 2017-01-19
CN106311524A (zh) 2017-01-11
KR102492390B1 (ko) 2023-01-26
JP6576124B2 (ja) 2019-09-18

Similar Documents

Publication Publication Date Title
KR102492390B1 (ko) 액적 토출 장치, 액적 토출 방법 및 컴퓨터 기억 매체
CN108568382B (zh) 液滴排出装置、液滴排出方法、程序和计算机存储介质
JP7128531B2 (ja) 印刷および製造システムにおける精密な位置合わせ、較正および測定
KR102382924B1 (ko) 액적 토출 장치, 액적 토출 방법
TWI750336B (zh) 工件加工裝置、工件加工方法及電腦記憶媒體
TWI755491B (zh) 液滴吐出裝置、液滴吐出方法及電腦記憶媒體
JP5587616B2 (ja) インクジェット塗布装置及び方法
WO2016080235A1 (ja) 蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
KR20160044587A (ko) 기판제조장치 및 기판제조방법
KR20180021647A (ko) 액적 토출 장치 및 액적 토출 조건 보정 방법
JP4774890B2 (ja) インキ吐出印刷装置
JP6572437B2 (ja) 部品実装装置および部品実装方法
JP4530224B2 (ja) 塗布装置および塗布方法
CN107464877B (zh) 检查装置、检查方法和功能液排出装置
JP6532778B2 (ja) 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
US7272887B2 (en) Component placement device and method
KR20170103455A (ko) 액적 검사 장치, 액적 검사 방법 및 컴퓨터 기억 매체
JP2007144375A (ja) 塗布装置および塗布方法
KR20190042479A (ko) 액적 토출 장치, 액적 토출 방법, 프로그램 및 컴퓨터 기억 매체
JP2011156482A (ja) 液体塗布装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant