KR20130085041A - 이산 배치 리니어 모터 시스템 - Google Patents

이산 배치 리니어 모터 시스템 Download PDF

Info

Publication number
KR20130085041A
KR20130085041A KR1020137012856A KR20137012856A KR20130085041A KR 20130085041 A KR20130085041 A KR 20130085041A KR 1020137012856 A KR1020137012856 A KR 1020137012856A KR 20137012856 A KR20137012856 A KR 20137012856A KR 20130085041 A KR20130085041 A KR 20130085041A
Authority
KR
South Korea
Prior art keywords
motor
individual
sensor
linear
control means
Prior art date
Application number
KR1020137012856A
Other languages
English (en)
Inventor
토모키 사토
Original Assignee
무라다기카이가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무라다기카이가부시끼가이샤 filed Critical 무라다기카이가부시끼가이샤
Publication of KR20130085041A publication Critical patent/KR20130085041A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/062Linear motors of the induction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/90Specific system operational feature
    • Y10S388/902Compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

각각이 독립한 1 대의 리니어 모터의 1 차측의 전기자로서 기능 가능한 복수의 개별 모터(3)를 가동자(4)의 이동 경로를 따라 간격을 두고 배치한 이산 배치 리니어 모터(1)로 한다. 각 개별 모터(3)마다에 가동자(4)의 위치를 검출하는 리니어 스케일로 이루어지는 센서(15)를 설치한다. 모터 제어장치(2)는, 복수의 개별 모터 제어 수단(6)과, 이들을 통괄하는 통괄 제어 수단(7)을 구비한다. 곡선 경로부에 배치된 개별 모터(3)를 제어하는 개별 모터 제어 수단(6)에, 센서(15)의 출력으로부터 얻은 검출치를 경로의 곡선과 센서(15)의 위치와의 관계에 대응하여 보정하는 곡선 대응 보정 수단(9)을 설치한다.

Description

이산 배치 리니어 모터 시스템{DISTRIBUTED LINEAR MOTOR SYSTEM}
관련 출원의 참조
본 출원은, 2010 년 10 월 26 일 출원의 특허출원 2010-239600의 우선권을 주장하는 것이며, 그 전체를 참조에 의해 본원의 일부를 이루는 것으로서 인용한다.
본 발명은, 공작기계 또는 산업 기계에서의 반송 장치의 주행 구동 또는, 그 외, 각종의 기기의 구동에 이용되는 이산 배치 리니어 모터 시스템에 관한 것이다.
리니어 모터는, 물류 장치의 반송대차 또는 공작기계의 로더가 되는 반송 장치 등에 있어서, 그 주행 구동 등에 널리 이용되고 있다(예를 들면, 특허 문헌 1). 리니어 모터에는, 리니어 유도 모터(LIM), 리니어 동기 모터(LSM), 리니어 직류 모터 등이 있지만, 장거리의 주행 시스템으로서 주로 사용되고 있는 것은 리니어 유도 모터이다. 리니어 동기 모터는, 지상측에 마그넷을 배치하고 코일측을 이동하는 방식이 대부분을 차지한다. 또한, 리니어 동기 모터에 있어서, 부분적으로 지상측에 1 차 코일을 이산 배치한 예는 있지만(예를 들면, 특허 문헌 2), 리니어 동기 모터는 곡선로에서의 보조적인 사용이며, 기본적으로는 리니어 유도 모터를 이용하고 있다. 또한, 가동자의 위치를 검출하는 센서는, 일부의 1 차 코일에 대해서만 설치되어 있다.
일본특허공개공보 소63-114887 호 일본특허공개공보 2007-082307 호
리니어 유도 모터는 추진력이 낮아 주행 성능의 향상이 곤란하기 때문에, 공작기계의 로더가 되는 반송 장치 등에의 적용에 있어서, 리니어 동기 모터의 채용을 시도했다. 종래의 리니어 동기 모터는, 지상측에 마그넷을 배치하고 코일측을 이동하는 방식이 대부분을 차지한다. 그러나, 코일측을 이동시키기 위하여, 가동자에 급전이 필요하며, 가동자에의 배선의 형편상, 무단 경로에서의 주행이 불능인 등, 주행 경로가 한정되거나 급전계가 복잡화된다. 이 때문에, 리니어 동기 모터에 있어서, 지상측에 1 차 코일을 배치하는 것을 시도했다. 그러나, 지상측에 1 차 코일을 배치할 경우, 종래의 리니어 모터와 같이, 이동 경로의 전체 길이에 걸쳐 연속하여 코일을 배치하는 것으로는, 코일의 사용량이 증가하여 코스트가 증대한다.
이러한 과제를 해소하는 동기형 리니어 모터로서, 각각이 독립한 1 대의 리니어 모터의 1 차측의 전기자로서 기능 가능한 전기자로 이루어지는 복수의 개별 모터를 가동자의 이동 방향으로 간격을 두고 배열한 이산 배치의 리니어 동기 모터를 고려했다. 그러나, 그 제어 및 센서의 사용법에 대하여 미해결이었다.
또한, 종래의 일반의 리니어 모터에서는, 곡선 경로에 있어서, 위치, 속도를 제어하기 위해서는 전용 장치가 필요하고, 직선 경로를 주행하기 위한 장치와의 겸용을 할 수 없었다. 그 때문에, 곡선 경로를 가지는 리니어 모터는, 코스트가 증대한다고 하는 문제가 있었다. 또한, 곡선 경로중의 고정밀도의 자극 위치 검출을 행할 수 없고, 그 때문에 곡선 경로에서 정밀도 좋게 위치 결정 또는 속도 제어를 행할 수 없었다.
본 발명의 목적은, 1 차측 코일의 이산 배치에 의해 코일 사용량의 삭감과 급전계의 간소화가 도모되고, 또한 경로 각 부의 구성 부품을 공통화할 수 있고, 코스트 저하를 도모할 수 있는 이산 배치 리니어 모터 시스템을 제공하는 것이다.
본 발명의 이산 배치 리니어 모터 시스템을 실시예에 이용한 부호를 부여하고 설명한다.
본 발명의 이산 배치 리니어 모터 시스템은, 리니어 모터(1)와, 상기 리니어 모터(1)를 제어하는 모터 제어장치(2)로 이루어지는 리니어 모터 시스템으로서, 상기 리니어 모터(1)는, 각각이, 각 상의 코일이 직선 방향으로 배열되어 독립한 1 대의 리니어 모터의 1 차측의 전기자로서 기능 가능한 복수의 개별 모터(3)를, 가동자(4)의 이동 경로를 따라 간격을 두고 배치하고, 상기 가동자(4)를 영구자석으로 구성한 이산 배치 리니어 모터이며, 또한 각 개별 모터(3)마다, 가동자(4)의 위치를 검출하는 리니어 스케일로 이루어지는 센서(15)를, 코일 배열 방향이 되는 상기 직선 방향을 따라 배치하여 이루어진다. 상기 모터 제어장치(2)는, 각 상기 개별 모터(3) 및 센서(15)와 조(3A)로서 배치되고 그 조(3A)의 개별 모터(3)를 제어하는 복수의 개별 모터 제어 수단(6)과, 이들 복수의 개별 모터 제어 수단(6)에 위치 지령을 주는 통괄 제어 수단(7)을 구비한다.
이 구성에 의하면, 고정측으로서 1 차측의 전기자로 이루어지는 개별 모터(3)를 이산 배치했기 때문에, 코일 사용량이 적어도 되고, 또한 이동측에 급전하는 경우에 비해 급전계를 간소하게 할 수 있다. 또한, 1 차측의 전기자가 되는 복수의 개별 모터(3)와 센서(15)와 각 개별 모터(3)를 제어하는 개별 모터 제어 수단(6)을 조(3A)로서 설치하고, 이 개별 모터(3), 센서(15) 및 개별 모터 제어 수단(6)을 코일의 배열 방향을 따라 배열하도록 했기 때문에, 경로 각 부의 구성 부품을 공통화할 수 있고, 코스트 저하를 도모할 수 있다.
본 발명에 있어서, 상기 가동자(4)의 이동 경로(L)는 곡선 경로부(Lb)를 포함하고, 상기 곡선 경로부(Lb)에 배치된 개별 모터(3)를 제어하는 개별 모터 제어 수단(6)에, 상기 센서(15)의 출력으로부터 얻은 검출치를 곡선 경로부(Lb)의 곡선과 상기 센서(15)의 위치와의 관계에 대응하여 보정하고, 보정된 검출치를 개별 모터(3)의 제어에 이용하는 곡선 대응 보정 수단(9)을 설치해도 좋다. 이 구성의 경우, 직선 경로부(La)의 구성 부품이 되는 개별 모터(3), 센서(15) 및 개별 모터 제어 수단(6)의 조(3A)와 동일한 것을, 곡선 경로부(Lb)에 이용하고, 곡선 경로부(Lb)에서는 개별 모터 제어 수단(6)에, 프로그램 등에 의한 곡선 대응 보정 수단(9)을 설치하는 것만으로, 곡선 경로부(Lb)에서의 위치, 속도 제어를 정밀도 좋게 행할 수 있다.
이 경우에, 상기 개별 모터 제어 수단(6)은, 가동자(4)의 자극 위치에 대응하여 전류 제어를 행하는 전류 제어부(13)를 가지고, 상기 곡선 대응 제어 수단(9)은, 상기 센서(15)의 출력을 이용하여 정해진 계산식에 따라 상기 가동자(4)의 자극 위치를 구하여 상기 전류 제어부(13)에 입력하는 것으로 하고, 상기의 정해진 계산식으로서 다음 식 (1)을 이용해도 좋다.
<수 1>
Figure pct00001
여기서, xmi : i(i는 자연수)번째의 개별 모터에서의 자극 위치(rad),
s : 센서 출력치,
xoffset i : i 번째의 개별 모터의 자극 배열시의 위치,
tp : 자극 피치,
c(x) : 보정항,
n : 센서 확대율(상기 곡선 경로의 곡률 중심에 대한 경로 중심선의 위치까지의 거리와 센서까지와의 거리의 비)이다.
이에 의해, 곡선 경로부(Lb)에서의 자극 위치 검출을 정밀도 좋게 행할 수 있고, 곡선 경로부(Lb)에서의 정밀도가 좋은 위치, 속도 제어를 행할 수 있다. 동기형의 리니어 모터에서는, 개별 모터(3)에의 영구자석으로 이루어지는 가동자의 돌입시에는, 코일 인덕턴스 또는 쇄교 자속이 위치에서 변화하기 때문에, 정밀도가 좋은 위치 또는 속도 제어에는, 자극 위치에 따른 전류 제어가 중요해진다. 이 자극 위치에 따른 전류 제어에는, 자극 위치를 정밀도 좋게 검출하는 것이 필요하지만, 리니어 스케일로 이루어지는 센서(15)를 이용할 경우, 곡선 경로부(Lb)에서는 자극 위치의 검출이 곤란하다. 이 과제를 상기의 계산식에 의한 방법에 의해 해소할 수 있다.
본 발명에 있어서, 상기 통괄 제어 수단(7)은, 입력된 위치 지령으로부터, 각 개별 모터(3)를 동작시키는 위치 지령을 생성하는 지령 생성 수단(10)을 가지고, 상기 지령 생성 수단(10)은, 개별 모터(3)의 피치인 모터 피치를 상기 센서(15)의 출력을 이용하여 측정하는 모터 피치 측정부(10a)와, 상기 측정된 모터 피치를 이용하여 정해진 식에 따라, 상기 개별 모터를 동작시키는 위치 지령을 생성하는 지령 생성부(10b)를 가지고, 상기 정해진 식으로서 다음 식 (2), (3)을 이용하도록 해도 좋다.
<수 2>
Figure pct00002
여기서, xi* : 개별 모터(i)에 대한 위치 지령,
di(x) : 모터 피치
xi : 개별 모터 제어 수단(i)으로부터의 위치 피드백
k : 변환계수(센서 사양에 따름)이다.
보정항(c(x))은, 가동자의 위치에 따른 함수이며, 적절히 정하면 된다. 예를 들면, 보정항(c(x))은, 개별 모터(3)의 스큐 각도를 고려했을 때에, 위치(x)에 따라 0 ~ 2 π의 값을 취한다.
이와 같이, 자극 위치 또는, 센서와 경로의 위치 관계, 센서 출력에 대한 오프셋치 등을 이용하여 개별 모터(3)에의 위치 지령을 생성함으로써, 이산 배치 리니어 모터로 하면서, 센서(15)의 출력의 비선형성을 양호하게 보상할 수 있다.
청구의 범위, 명세서 및 도면 중 어느 하나에 개시된 적어도 2 개의 구성의 어떠한 조합도 본 발명에 포함된다. 특히, 청구의 범위의 각 청구항의 2 개 이상의 어떠한 조합도 본 발명에 포함된다.
본 발명은, 첨부의 도면을 참고로 한 이하의 적합한 실시예의 설명으로부터 보다 명료하게 이해될 것이다. 그러나, 실시예 및 도면은 단순한 도시 및 설명을 위한 것이며, 본 발명의 범위를 정하기 위하여 이용되어야 하는 것은 아니다. 본 발명의 범위는 첨부의 청구의 범위에 의해 정해진다. 첨부 도면에 있어서, 복수의 도면에서의 동일한 부품 번호는 동일 부분을 나타낸다.
도 1은 본 발명의 일실시예에 따른 이산 배치 리니어 모터 시스템의 개념 구성을 도시한 블럭도이다.
도 2는 해당 리니어 모터의 개별 모터와 센서의 배치를 도시한 레이아웃예의 평면도이다.
도 3(A)는 해당 리니어 모터에서의 개별 모터의 일례의 평면도, 도 3(B)는 도 3(A)의 III-III선 단면도이다.
도 4는 해당 제어장치의 피드백 제어부와 곡선 대응 보정 수단을 도시한 블럭도이다.
도 5는 해당 이산 배치 리니어 모터의 이동 범위를 각 개별 모터마다 구분한 담당 범위의 설명도이다.
도 6은 해당 리니어 모터의 개별 모터의 피치의 설명도이다.
도 7은 각 개별 모터의 센서의 출력의 설명도이다.
도 8(A) 및 (B)는, 센서 출력과 모터 피치의 관계를 나타낸 설명도이다.
도 9는 자극 위치의 설명도이다.
도 10은 센서 확대율의 설명도이다.
도 11(A)는, 실시예의 방법에 의한 지령치 변화와 센서 출력의 관계를 나타낸 그래프이며, 도 11(B)는, 종래 방법에 의한 지령치 변화와 센서 출력의 관계를 나타낸 그래프이다.
도 12는 센서 피드백의 비선형성에 따른 xoffset i의 설명도이다.
도 13은 해당 이산 배치 리니어 모터 시스템을 적용한 반송 장치의 일례를 도시한 정면도이다.
도 14는 해당 반송 장치의 횡단면도이다.
본 발명의 일실시예를 도 1 내지 도 12와 함께 설명한다. 도 1에 있어서, 해당 이산 배치 리니어 모터 시스템은, 리니어 모터(1)와, 해당 리니어 모터(1)를 제어하는 모터 제어장치(2)로 이루어진다. 리니어 모터(1)는, 리니어 동기 모터(LSM)로서, 각각이 독립한 1 대의 리니어 모터의 1 차측의 전기자로서 기능 가능한 전기자로 이루어지는 복수의 개별 모터(3)를, 가동자(4)의 이동 방향(X)으로 간격을 두고 설치한 이산 배치 리니어 모터이다. 각 개별 모터(3)는, 가동자(4)의 레일(도시하지 않음)을 가지는 공통의 프레임(5)에 설치되어 있다. 프레임(5)에는, 이 외에, 각 개별 모터(3)마다 가동자(4)의 위치를 검출하는 위치 검출기가 되는 센서(15)가 설치된다. 센서(15)는, 도 1에서는 도시의 편의상 개별 모터(3) 간에 도시하고 있지만, 실제로는, 가동자 이동 방향(X방향)에 대하여 개별 모터(3)와 동일한 위치에 배치된다.
가동자(4)는, 영구자석으로 이루어지는 N, S의 자극을 가동자 기체(4a)에 이동 방향(X)으로 배열하여 복수 설치한 것이며, 상기 프레임(5)에 설치된 레일(도시하지 않음)에 의해 진퇴 가능하게 안내된다. 가동자(4)의 각 자극 N, S의 피치는 균등하게 되어 있다.
각 개별 모터(3)는, 예를 들면 도 3(A) 및 (B)에 도시한 바와 같이, 각 층의 자극이 되는 복수의 코일(3a)과 코어(3b)를, 상기 이동 방향(X)이 되는 직선 방향으로 배열한 것이다. 각 코어(3b)는, 공통의 본체부로부터 빗살 형상으로 돌출한 부분으로 구성된다. 이 예에서는, 3 상의 교류 전류로 구동하는 것으로 되고, 그 각 상(U, V, W 상)마다 하나의 자극을 설치한 3 극의 1 차측의 전기자로 되어 있다. 또한, 개별 모터(3)는, 각 상(U, V, W 상)마다 복수의 자극을 설치하고, 상수의 정수배의 자극을 가지는 전기자로 해도 좋다.
도 2에 도시한 바와 같이, 센서(15)는 리니어 스케일로서, 개별 모터(3)의 코일 배열 방향이 되는 직선 방향을 따라 설치되고, 개별 모터(3)보다 약간 긴 범위에서 위치 검출이 가능한 것으로 된다. 센서(15)는, 구체적으로는, 도 9에 도시한 바와 같이, 길이 방향으로 복수의 센서 소자(15a)를 배열하여 배치한 것이며, 각 센서 소자(15a)는, 가동자(4)의 자력을 검출하는 자기 센서 소자로 이루어진다. 센서(15)는, 각 센서 소자(15a)의 출력으로부터 가동자(4)의 위치를 검출하는 하나의 위치 검출치를 출력하는데, 특정의 하나, 예를 들면 개별 모터(3)의 중심 위치에 대응하는 센서 소자(15a)의 출력도 가능하게 되어 있다.
도 1에 있어서, 모터 제어장치(2)는, 각 개별 모터(3)를 각각 제어하는 복수의 개별 모터 제어 수단(6)과, 이들 복수의 개별 모터 제어 수단(6)에 위치 지령을 주는 하나의 통괄 제어 수단(7)을 구비한다. 상기 개별 모터(3)와 개별 모터 제어 수단(6)과 센서(15)로, 1 조의 개별 모터조(3A)가 구성된다.
해당 개별 모터조(3A)가, 예를 들면 도 2에 평면도로 도시한 바와 같이, 가동자(4)의 이동 경로(L)를 따라 배치된다. 해당 도면의 이동 경로(L)는, 직각으로 배열되는 2 개의 직선 경로부(La)와, 이들 직선 경로부(La)간에 위치하는 1 개의 곡선 경로부(Lb)를 포함한다. 곡선 경로부(Lb)는 원호 곡선을 이룬다. 각 직선 경로부(La)에 복수의 개별 모터조(3A)가 배치되고, 또한 곡선 경로부(Lb)에도 복수(도시예에서는 3 대)의 개별 모터조(3A)가 배치되어 있다. 각 개별 모터조(3A)는 서로 동일한 구성의 것이며(단, 개별 모터 제어 수단(6)(도 1)에서의, 프로그램 또는 설정 데이터 등의 일부는 상이함), 직선 경로부(La)와 곡선 경로부(Lb)에 동일한 구성의 개별 모터조(3A)가 설치되어 있다. 각 개별 모터조(3A)에 있어서, 개별 모터(3)와, 개별 모터 제어 수단(6)을 구성하는 회로 기판은, 서로 상하로 중첩하는 배치로 되고, 리니어 센서로 이루어지는 센서(15)는, 개별 모터(3)에 대하여 이동 경로(L)의 측방에 배치되어 있다. 도 2의 이동 경로(L)는 일례이며, 이동 경로(L)는, 예를 들면 환상(環狀)으로 이어지는 형상 또는, S 자 형상의 형상, 자유 곡선 등, 자유로운 형상으로 할 수 있다.
도 1에 있어서, 통괄 제어 수단(7)은, 약전계의 회로 소자 또는, 컴퓨터 및 그 프로그램의 일부 등으로 구성된다. 통괄 제어 수단(7)은, 도 5와 같이, 리니어 모터 전체의 이동 범위(M)를 각 개별 모터(3)마다 구분한 담당 범위(Mi(i : 임의의 자연수))의 정보를 가지고 있다. 개별 모터(3)는 이산 배치되어 있기 때문에, 담당 범위(Mi)는 개별 모터(3)보다 긴 범위이며, 또한 개별 모터(3)로부터 어느 정도 떨어진 위치에서 구동력을 확보하기 위하여, 인접하는 담당 범위(Mi)는 일부를 중복시키고, 예를 들면, 개별 모터(3)간에서는 2 대의 개별 모터(3)로 구동을 행하도록 하고 있다. 통괄 제어 수단(7)은, 상위 제어 수단(도시하지 않음)으로부터 입력된 위치 지령(x*)으로부터, 각 개별 모터(3)를 동작시키는 위치 지령(xi*)을, 지령 생성 수단(10)에 의해 생성한다.
각 개별 모터 제어 수단(6)은, 모터 전류를 개별 모터(3)에 흘리는 강전계의 모터 구동 회로(도시하지 않음)와, 해당 모터 구동 회로를 제어하는 약전계의 제어부(도시하지 않음)로 이루어지고, 기판상에 각 회로소자를 장착한 것이다. 강전계의 모터 구동 회로는, 복수의 스위칭 소자를 설치한 인버터 등으로 이루어지고, 구동용의 직류 전원(도시하지 않음)에 접속되어 있다. 개별 모터 제어 수단(6)의 상기 약전계의 제어부는, 마이크로 컴퓨터 및 그 프로그램 또는, 회로 소자 등에 의해 구성된다.
각 개별 모터 제어 수단(6)에서의 상기 약전계의 제어부에, 모터 전환 응답부(6a)와 피드백 제어부(8)를 가진다. 상기 곡선 경로부(Lb)에 설치하는 개별 모터(3)의 개별 모터 제어 수단(6)에는, 상기 외에, 곡선 대응 보정 수단(9)이 설치된다. 모터 전환 응답부(6a)는, 통괄 제어 수단(7)으로부터 주어진 위치 지령에 응답하여, 입력된 위치 지령을 피드백 제어부(8)에 전달한다.
피드백 제어부(8)는, 도 4에 일례를 도시한 바와 같이, 각각 위치, 속도, 전류의 피드백 제어를 행하는 위치 제어부(11)와 속도 제어부(12)와 전류 제어부(13)를 가지고 있다. 즉, 피드백 제어부(8)는, 위치 루프, 속도 루프 및 전류 루프를 가지는 캐스케이드 제어를 행한다.
위치 제어부(11)는, 개별 모터(3)에 대한 가동자(4)의 현재 위치를 검출하는 상기 센서(15)의 검출치와 위치 지령의 지령치와의 편차에 따라, 정해진 위치 루프 게인의 피드백 제어를 행한다. 위치 제어부(11)는, 그 출력으로서 속도 지령치를 출력한다. 속도 제어부(12)는, 센서(15)의 위치 검출치로부터 속도를 검출하는 미분 수단 등의 속도 검출 수단(16)을 거쳐 얻어지는 속도 검출치와 속도 지령치와의 편차에 따라, 정해진 속도 루프 게인의 피드백 제어를 행한다. 속도 제어부(12)는, 그 출력으로서 전류 지령치를 출력한다. 전류 제어부(13)는, 개별 모터(3)에 인가되는 구동 전류를 전류 검출기 등의 전류 검출 수단(14)으로 검출하여, 전류 검출치와 전류 지령치와의 편차에 따른 전류 지령치를, 정해진 전류 루프 게인을 이용하여 생성하고, 모터 구동 전류를 제어한다. 해당 전류 제어부(13)는, 벡터 제어 등으로 제어하는 것이며, 가동자(4)의 자극 위치에 대응하여 전류 제어를 행하는 기능을 가지고 있다.
상기 곡선 대응 보정 수단(9)은, 상기 센서(15)의 출력으로부터 얻은 검출치를 곡선 경로부(Lb)의 곡선과 상기 센서(15)의 위치와의 관계에 대응하여 보정하고, 보정된 검출치를 개별 모터(3)의 제어에 이용하는 수단이다.
곡선 대응 보정 수단(9)은, 구체적으로는, 상기 센서(15)의 출력을 이용하여, 정해진 계산식에 따라 상기 가동자(4)의 자극 위치를 구하고 상기 전류 제어부(13)(도 4)에 입력하는 것이다. 상기의 정해진 계산식으로서, 다음 식 (1)을 이용한다.
<수 3>
Figure pct00003
단, xmi는 i(i는 자연수) 번째의 개별 모터에서의 자극 위치(rad), s는 센서 출력치, xoffset i는 i 번째의 개별 모터의 자극 배열시의 위치, tp는 자극 피치, c(x)는 보정항, n은 센서 확대율(상기 곡선 경로의 곡률 중심에 대한 경로 중심선의 위치까지의 거리와 센서까지와의 거리의 비)이다.
상기 자극 위치는, 도 9에 도시한 바와 같이, 개별 모터(3)의 가동자 이동 방향의 중심 위치(O3)에 대한, 가동자(4)의 임의의 N, S극으로 이루어지는 자극쌍(도면에서는 2 개째의 자극쌍을 도시하고 있음)(4p) 내에서의 정해진 특정의 위치를 말한다. 이 정해진 특정의 위치는, 도시의 예에서는, S 극에서의 가장 자력이 커지는 위치로 하고 있다. 단위는 (rad)이다. xmi는, 이 자극 위치에 대하여 i 번째의 개별 모터에서의 것을 나타낸다. 각 자극쌍은 등피치이다.
센서 출력치(s)는, 센서(15)를 구성하는 자기 센서 소자인 각 센서 소자(15a) 중, 상기 중심 위치(O3)에 있는 센서 소자(15a)의 출력이며, 검출한 자력(자계의 세기)을 전압치 등으로 출력한다.
xoffset i는, i 번째의 개별 모터(3)의, 예를 들면 자극 배열시의 위치이다. 센서 소자(15a)는, 자계가 일정하다고 하면, X 방향(이동 방향)의 위치에 관계없이 출력에 선형성을 가지도록 설치하는 것이 이상이지만, 설치의 형편상 출력에 차이가 발생한다. 그 때문에, 정해진 특정의 위치에서의 센서 출력치를 측정하여, 오프셋치(xoffset)로서 기억시켜 두고, 센서 출력으로부터 감산(減算)한다. xoffset i는, 예를 들면 도 12에 나타낸 값이다. 이 값은, 시스템의 사양, 센서 사양에 따라 변화한다. 일례로서 자극 배열시의 위치를 기준으로 한 예를 들었지만, 이 경우, 자극 배열시의 위치가 제로가 되도록 조정하는 값이 된다. 또한, xoffset i는, 초기 설정되는 값이며 변화하지 않는다. 이 실시예의 시스템에서는, 시스템 부팅 시에 자극 배열 작업을 행하여 각 개별 모터 제어 수단(6)이 가지는 서보 드라이버에 학습시킨다(부팅 시에 한번만).
관련된 정보로서, 도 6에 나타낸 di(x)를 든다. di(x)는, 가동자(4)의 위치에 의해 변화하는 값으로서 정의된다. 도 12 중에 그 값을 나타냈다(도면은 개별 모터(3)가 4 대인 경우). 센서 피드백이 비선형성을 가질 경우, di(x)를 계측하면서 운전함으로써, 센서 피드백의 비선형성을 고려한 각 모터 지령치를 생성할 수 있다.
위치 지령치 생성에 의한 센서 피드백의 비선형성 보상에 대하여 설명한다.
이산 배치 리니어 모터(1)에서의 지령치 생성은, 통합 좌표로부터 각 개별 모터(3)에의 지령치 분해를 기본으로 하고 있다. 종래 방법에서는, 센서 피드백이 충분히 선형성을 가진다고 가정하고, xoffset i를 고정치로서 취급했다. 그 때문에, 도 11(B)와 같이 센서 피드백의 비선형성이 강해지면, 급격한 편차의 증대 등을 초래하고, 가동자(4)의 거동에 진동 등의 큰 영향을 초래했다. 본 실시예의 방법에서는, 센서 피드백의 비선형성을 고려하여, xoffset i를 운전 중에 계측하고, 도 11(A)에 나타낸 바와 같이, 즉시 지령치에 반영시키는 것으로 했다. 이에 의해, 리니어 모터(1)를 통괄하는 통괄 제어 수단(7) 또는 개별 모터 제어 수단(6)은, 사전에 센서 피드백의 비선형성에 관계된 정보 없이, 간단한 연산에 의해 리니어 모터(1)의 비선형성을 보상할 수 있다. 그 때문에, 가동자(4)를 매끄럽게 운전하는 것이 가능해진다.
자극 피치(tp)는, 가동자(4)에서의 N, S 극의 자극쌍의 배치의 피치이다. 보정항(c(x))은, 센서(15) 자체 또는 그 배치에 의해 필요한 보정치로서, 임의로 정하면 되고, 사전의 측정 등에 의해 적절한 값을 구하여 정한다. 보정항(c(x))은 이동 방향의 위치(x)의 함수로서 정해진다. 전술한 바와 같이, 보정항(c(x))은, 가동자의 위치에 의한 함수이며 적절히 정하면 된다. 예를 들면, 보정항(c(x))은, 개별 모터(3)의 스큐 각도를 고려했을 때에, 위치(x)에 따라 0 ~ 2 π의 값을 취한다. 센서 확대율(n)은, 예를 들면, 도 10에 도시한 바와 같이, 상기 곡선 경로(Lb)의, 검출에 이용하는 센서 소자(15a)가 있는 위치에서의 곡률 중심(O)에 대한, 경로 중심선(Lb0)의 위치까지의 거리(A)와 센서까지의 거리(B)의 비, B / A이다. 경로 중심선(Lb0)은 가동자(4)가 이동하는 운동 중심의 궤적이다. 또한 센서 확대율(n)은, 센서의 설치 상황, 가동자(4)의 레일의 구성 등에 의해 바뀌는 값이며, 이들을 고려하여 적절히 설정된다.
상기의 식 (1)에 의해, 곡선 경로부(Lb)에서도 자극 위치(xmi)의 검출을 정밀도 좋게 행할 수 있다. 이 검출한 자극 위치(xmi)를 전류 제어에 이용함으로써, 곡선 경로부(Lb)에서의 정밀도가 좋은 위치, 속도 제어를 행할 수 있다. 동기형의 리니어 모터에서는, 개별 모터(3)에의 영구자석으로 이루어지는 가동자(4)의 돌입 시에는, 코일 인덕턴스 또는 쇄교 자속이 위치에 따라 변화하기 때문에, 정밀도가 좋은 위치 또는 속도 제어에는, 자극 위치(xmi)에 따른 전류 제어가 중요해진다. 이 자극 위치(xmi)에 따른 전류 제어에는, 자극 위치(xmi)를 정밀도 좋게 검출하는 것이 필요하지만, 리니어 스케일로 이루어지는 센서(15)를 이용했을 경우, 곡선 경로부(Lb)에서는 자극 위치(xmi)의 검출이 곤란하다. 이 과제를, 상기의 계산식(1)에 의한 방법으로 해소할 수 있다.
도 1에 있어서, 상기 통괄 제어 수단(7)의 지령 생성 수단(10)은, 모터 피치 측정부(10a)와 지령 생성부(10b)를 가진다. 모터 피치 측정부(10a)는, 개별 모터(3)의 피치인 모터 피치(di(x))를, 가동자(4)의 위치 검출에 이용하는 상기 센서(15)의 출력을 이용하여 측정한다. 센서(15)의 출력은, 개별 모터 제어 수단(6)로부터 통괄 제어 수단(7)에 송신하고, 이 송신된 값을 모터 피치의 측정에 이용한다. 모터 피치 측정부(10a)에 의한 측정은, 가동자(4)의 주행마다 행한다. 지령 생성부(10b)는, 상위 제어 수단으로부터 입력된 위치 지령(x*)에 대하여, 모터 피치 측정부(10a)로 측정된 모터 피치(di(x))를 이용하고, 정해진 식에 따라, 각 개별 모터(3)를 동작시키는 위치 지령(xi*)을 생성한다.
이 정해진 식으로서, 다음 식 (2), (3)을 이용한다.
<수 4>
Figure pct00004
단, xi*는, i 번째의 개별 모터(3)에 대한 위치 지령, di(x)는 모터 피치, xi는 i 번째의 개별 모터(3)의 개별 모터 제어 수단(6)으로부터 송신되는 위치 피드백치, k는 센서 사양에 따라 임의로 정해지는 변환계수이다.
통괄 제어 수단(7)의 지령 생성 수단(10)에 의한 위치 지령(xi*)의 생성에 대하여, 도 7, 8(A) 및 (B)를 이용하여 설명한다. 지령 생성 수단(10)은, 상위 제어 수단으로부터 입력된 위치 지령(x*)에 대하여, 해당 위치 지령(x*)의 이동 범위를 담당 범위(Mi)(도 5)로서 포함한 각 개별 모터(3)에, 그 개별 모터(3)마다의 값으로 좌표 변화한 지령으로서 분배한다. 즉, 리니어 모터(1)의 전체로서의 위치는, 단부의 개별 모터(3)의 원점 위치가 되지만, 개개의 개별 모터(3)는, 그 개별 모터(3)가 가지는 원점 위치의 좌표로 구동되기 때문에, 리니어 모터(1)의 전체의 좌표 위치로부터, 동작시키고자 하는 개별 모터(3)의 원점 위치까지의 값을 뺀 값이, 그 동작시키고자 하는 개별 모터(3)에 대한 위치 지령(xi*)이 된다. 따라서, 각 개별 모터(3)의 센서(15)의 검출치는 도 7과 같이 된다. 도 8(B)와 같이, 각 센서(15)의 검출치를, 중복 범위를 제외하고 가산한 값이, 리니어 모터(1)의 전체로서의 위치를 나타낸다.
상기의 리니어 모터(1)의 전체의 좌표 위치로부터, 동작시키고자 이루어지는 개별 모터(3)의 원점 위치까지의 값을 빼는 계산을 행하는 것에 대하여, 각 개별 모터(3)간의 모터 피치(di(x))의 값이 필요해진다. 모터 피치(di(x))는, 직선 경로부(La)에서는 기존의 값으로서 정할 수 있지만, 곡선 경로부(Lb)에서는, 기존의 값으로서 정밀도 좋게 정하는 것이 곤란하다. 따라서, 본 실시예에서는, 가동자(4)의 위치 검출에 이용하는 센서(15)의 출력을 이용하여, 모터 피치(di(x))를 측정하고, 상기의 식 (2), (3)에 의해 구하고 있다.
식 (3)에 있어서, 「(xi+1 - xi) / k」라고 하는 것은, 단순히 i + 1 번째의 개별 모터(3)의 위치의 검출치(xi+1)로부터, i 번째의 개별 모터(3)의 위치의 검출치(xi)를 뺀 것만으로는, 센서 사양에 따른 오차가 발생하기 때문에, 그 오차를 없애기 위하여, 적절해지는 센서 사양에 따른 변환계수(k)를 정해 두고 계수와 제산한 것이다.
식 (3)에 있어서, 우변은, 상위 제어 수단으로부터 주어진 위치 지령(x*)으로부터 모터 피치(di(x))를 뺀 값을 나타낸다. 또한, 여기서 빼는 모터 피치(di(x))는, 리니어 모터(1)의 시단(始端)으로부터 이동 개시시킬 경우, 시단의 개별 모터(3)로부터, 이동시키고자 하는 범위의 종단의 개별 모터(3)까지의 모든 개별 모터(3)간의 모터 피치를 가산한 값이다.
이와 같이, 가동자(4)의 위치 검출에 이용하는 상기 센서(15)의 출력을 이용하여 모터 피치(di(x))를 측정하여 상기 식 (2), (3)의 계산을 행함으로써, 곡선 경로부(Lb)에서도, 센서(15)의 비선형성을 보상하고, 각 개별 모터(3)의 개별 모터 제어 수단(6)에 정밀도 좋게 위치 지령(xi*)을 줄 수 있다.
상기 구성의 이산 배치 리니어 모터 시스템에 의하면, 이와 같이, 고정측으로서 1 차측의 전기자로 이루어지는 개별 모터(3)를 이산 배치했기 때문에, 코일 사용량이 적어도 되고, 또한 이동측에 급전하는 경우에 비해 급전계를 간소하게 할 수 있다. 또한, 1 차측의 전기자가 되는 복수의 개별 모터(3)와, 위치 검출용의 센서(15)와, 각 개별 모터(3)를 제어하는 개별 모터 제어 수단(6)을 조로서 설치하고, 이 개별 모터(3), 센서(15) 및 개별 모터 제어 수단(6)을 배열하도록 했기 때문에, 경로 각 부의 구성 부품을 공통화할 수 있어, 코스트 저하를 도모할 수 있다.
또한, 개별 모터 제어 수단(6)에, 상기 센서(15)의 출력으로부터 얻은 검출치를 곡선 경로부의 곡선과 상기 센서의 위치와의 관계에 대응하여 보정하고, 보정된 검출치를 개별 모터(3)의 제어에 이용하는 곡선 대응 보정 수단(9)을 설치했기 때문에, 직선 경로부(La)의 구성 부품이 되는 개별 모터(3), 센서(15) 및 개별 모터 제어 수단(6)의 조와 동일한 것을 곡선 경로부(Lb)에 이용하고, 곡선 경로부(Lb)에서는 개별 모터 제어 수단(6)에 프로그램 등에 의한 곡선 대응 보정 수단(9)을 설치하는 것만으로, 곡선 경로부(Lb)에서의 위치, 속도 제어를 정밀도 좋게 행할 수 있다. 해당 곡선 대응 보정 수단(9)은, 구체적으로는, 상기의 식 (1)에 의해 자극 위치(xmi)를 구하고, 피드백 제어부(8)의 전류 제어부(13)에 의한 전류 제어에 이용하도록 했기 때문에, 곡선 경로부(Lb)에서의 위치, 속도 제어를 양호하게 행할 수 있다.
또한, 통괄 제어 수단(7)에, 상기와 같이 모터 피치 측정부(10a)와 지령 생성부(10b)를 가지는 지령 생성 수단(10)을 설치하고, 상기의 식 (2), (3)에 의해, 자극 위치 및, 센서(15)와 경로의 위치 관계, 센서 출력에 대한 오프셋치 등을 이용하여 개별 모터(3)에의 위치 지령을 생성하도록 했기 때문에, 이산 배치 리니어 모터(1)로 하면서, 센서(15)의 출력의 비선형성을 양호하게 보상할 수 있다.
도 13, 도 14는, 해당 이산 배치 리니어 모터 시스템을 적용한 반송 장치(21)의 일례를 도시한다. 도 13에 도시한 바와 같이, 해당 반송 장치는, 선반 등으로 이루어지는 공작기계(20)에 대하여 워크의 반입 반출을 행하는 갠트리형의 로더가 되는 것이다. 해당 반송 장치(21)는, 수평의 프레임(22)에 길이 방향을 따라 설치된 레일에 주행체(23)가 주행 가능하게 설치되고, 주행체(23)에, 주행 방향(X 방향)과 직교하는 방향인 전후 방향(Z 방향)으로 이동 가능하게 전후 이동대(24)가 탑재되어 있다. 전후 이동대(24)에 로드 형상의 승강체(25)가 승강 가능하게 설치되고, 승강체(25)의 하단에 워크를 파지 가능한 척(26)을 가지는 로더 헤드(27)가 설치되어 있다. 척(26)과 공작기계(20)의 주축(20a)과의 사이에서 워크의 전달이 행해진다.
상기 주행체(23)의 주행 구동원으로서, 이산 배치 리니어 모터(1)가 설치되어 있다. 이산 배치 리니어 모터(1)는, 그 각 개별 모터(3)가, 프레임(22)에 길이 방향을 따라 배열되고, 주행체(23)에 상기 가동자(4)가 설치되어 있다. 도 14에 도시한 바와 같이, 주행체(23)는, 상기 프레임(22)에 설치된 레일(28)에 차륜(29)에 의해 주행 가능하게 설치되어 있다. 또한, 이 예에서는 개별 모터(3)의 하측에 가동자(4)가 대향하여 위치한다. 이 실시예에서의 이산 배치 리니어 모터(1) 및 그 모터 제어장치(2)는, 특별히 설명한 사항 외에는 도 1 ~ 도 12와 함께 전술한 바와 같다.
이상과 같이, 도면을 참조하여 본 발명의 적합한 실시예를 설명했지만, 본 발명의 취지를 일탈하지 않는 범위 내에서 다양한 추가, 변경 또는 삭제가 가능하다. 따라서, 그러한 것도 본 발명의 범위 내에 포함된다.
1 : 리니어 모터
2 : 모터 제어장치
3 : 개별 모터
3A : 개별 모터조
4 : 가동자
5 : 프레임
6 : 개별 모터 제어 수단
7 : 통괄 제어 수단
8 : 피드백 제어부
9 : 곡선 대응 보정 수단
10 : 지령 생성 수단
10a : 모터 피치 측정부
10b : 지령 생성부
13 : 전류 제어부
15 : 센서
15a : 센서 소자
di(x) : 모터 피치
L : 이동 경로
La : 직선 경로부
Lb : 곡선 경로부
tp : 자극 피치

Claims (4)

  1. 리니어 모터와, 상기 리니어 모터를 제어하는 모터 제어장치로 이루어지는 리니어 모터 시스템으로서,
    상기 리니어 모터는, 각각이, 각 상의 코일이 직선 방향으로 배열되어 독립한 1 대의 리니어 모터의 1 차측의 전기자로서 기능 가능한 복수의 개별 모터를, 가동자의 이동 경로를 따라 간격을 두고 배치하고, 상기 가동자를 영구자석으로 구성한 이산 배치 리니어 모터이며, 또한 각 개별 모터마다, 가동자의 위치를 검출하는 리니어 스케일로 이루어지는 센서를, 코일 배열 방향이 되는 상기 직선 방향을 따라 배치하여 이루어지고,
    상기 모터 제어장치는, 각 상기 개별 모터 및 센서와 조로서 배치되어 그 조의 개별 모터를 제어하는 복수의 개별 모터 제어 수단과, 이들 복수의 개별 모터 제어 수단에 위치 지령을 주는 통괄 제어 수단을 구비하는 이산 배치 리니어 모터 시스템.
  2. 제 1 항에 있어서,
    상기 가동자의 이동 경로는 곡선 경로부를 포함하고, 상기 곡선 경로부에 배치된 개별 모터를 제어하는 개별 모터 제어 수단에, 상기 센서의 출력으로부터 얻은 검출치를 곡선 경로부의 곡선과 상기 센서의 위치와의 관계에 대응하여 보정하고, 보정된 검출치를 개별 모터의 제어에 이용하는 곡선 대응 보정 수단을 설치한 이산 배치 리니어 모터 시스템.
  3. 제 2 항에 있어서,
    상기 개별 모터 제어 수단은, 가동자의 자극 위치에 대응하여 전류 제어를 행하는 전류 제어부를 가지고, 상기 곡선 대응 제어 수단은, 상기 센서의 출력을 이용하여 정해진 계산식에 따라 상기 가동자의 자극 위치를 구하고 상기 전류 제어부에 입력하는 것으로 하고,
    상기의 정해진 계산식으로서, 다음 식 (1)을 이용하는 이산 배치 리니어 모터 시스템.
    <수 1>
    Figure pct00005

    단, xmi : i(i는 자연수) 번째의 개별 모터에서의 자극 위치(rad), s : 센서 출력치, xoffset i : i 번째의 개별 모터의 자극 배열시의 위치, tp : 자극 피치, c(x) : 보정항, n : 센서 확대율(상기 곡선 경로의 곡률 중심에 대한 경로 중심선의 위치까지의 거리와 센서까지와의 거리의 비)이다.
  4. 제 2 항 또는 제 3 항에 있어서,
    상기 통괄 제어 수단은, 입력된 위치 지령으로부터, 각 개별 모터를 동작시키는 위치 지령을 생성하는 지령 생성 수단을 가지고,
    상기 지령 생성 수단은, 개별 모터의 피치인 모터 피치를 상기 센서의 출력을 이용하여 측정하는 모터 피치 측정부와, 상기 측정된 모터 피치를 이용하여 정해진 식에 따라, 상기 개별 모터를 동작시키는 위치 지령을 생성하는 지령 생성부를 가지고,
    상기 정해진 식으로서, 다음 식 (2), (3)을 이용하는 이산 배치 리니어 모터 시스템.
    <수 2>
    Figure pct00006

    xi* : 개별 모터(i)에 대한 위치 지령,
    di(x) : 모터 피치
    xi : 개별 모터 제어 수단(i)으로부터의 위치 피드백
    k : 변환계수(센서 사양에 따름)
KR1020137012856A 2010-10-26 2011-09-27 이산 배치 리니어 모터 시스템 KR20130085041A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010239600 2010-10-26
JPJP-P-2010-239600 2010-10-26
PCT/JP2011/072003 WO2012056842A1 (ja) 2010-10-26 2011-09-27 離散配置リニアモータシステム

Publications (1)

Publication Number Publication Date
KR20130085041A true KR20130085041A (ko) 2013-07-26

Family

ID=45993572

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137012856A KR20130085041A (ko) 2010-10-26 2011-09-27 이산 배치 리니어 모터 시스템

Country Status (7)

Country Link
US (1) US8796959B2 (ko)
EP (1) EP2634913A4 (ko)
JP (1) JP5590137B2 (ko)
KR (1) KR20130085041A (ko)
CN (1) CN103181073B (ko)
TW (1) TWI538381B (ko)
WO (1) WO2012056842A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210083746A (ko) * 2019-12-27 2021-07-07 알에스오토메이션주식회사 다중 리니어 모터 시스템의 병렬 운전 제어 방법
KR20220088009A (ko) * 2020-12-18 2022-06-27 현대엘리베이터주식회사 선형전동기의 자기각 오차 보정 장치 및 방법

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314372B2 (ja) * 2013-04-22 2018-04-25 村田機械株式会社 位置検出装置、位置検出方法、及び移動体システム
JP5648722B1 (ja) * 2013-08-02 2015-01-07 株式会社安川電機 リニアモータシステム
JP6313642B2 (ja) 2014-04-18 2018-04-18 キヤノン株式会社 リニアモータ制御装置及びリニアモータ制御システム
US10550676B2 (en) * 2015-06-01 2020-02-04 Baker Hughes Incorporated Systems and methods for determining proper phase rotation in downhole linear motors
AT517219B1 (de) * 2015-06-23 2016-12-15 Bernecker + Rainer Industrie-Elektronik Ges M B H Verfahren und Langstatorlinearmotor zur Übergabe einer Transporteinheit an einer Übergabeposition
US9812939B2 (en) 2015-08-21 2017-11-07 Murata Machinery, Ltd. Linear motor system
JP6704705B2 (ja) * 2015-10-22 2020-06-03 キヤノン株式会社 可動磁石型リニアモータ制御システム及びその制御方法
CN108702122B (zh) 2015-10-29 2022-06-21 超级高铁技术公司 变频驱动系统
KR20170137253A (ko) * 2016-06-02 2017-12-13 주식회사 탑 엔지니어링 위치 조절 장치 및 이를 구비한 페이스트 디스펜서
US10511247B2 (en) * 2016-09-26 2019-12-17 Yamaha Hatsudoki Kabushiki Kaisha Linear conveyor device and drive control method therefor
US11296587B2 (en) 2016-11-30 2022-04-05 Massachusetts Institute Of Technology High force and low noise linear fine-tooth motor
AT519664B1 (de) 2017-03-21 2018-09-15 B & R Ind Automation Gmbh Verfahren zur Regelung der Normalkraft einer Transporteinheit eines Langstatorlinearmotors
EP3447904B1 (de) * 2017-08-21 2024-03-20 B&R Industrial Automation GmbH Steuerung von langstatorlinearmotor-spulen eines langstatorlinearmotor-stators
JP7137300B2 (ja) * 2017-09-25 2022-09-14 キヤノン株式会社 搬送装置、搬送システム、搬送システムの制御方法、加工システム及び物品の製造方法
US10889449B2 (en) 2017-09-25 2021-01-12 Canon Kabushiki Kaisha Transport system and manufacturing method of article
US10381958B2 (en) * 2017-09-28 2019-08-13 Rockwell Automation Technologies, Inc. Method and apparatus for commutation of drive coils in a linear drive system with independent movers
BR112020008195B1 (pt) 2017-10-26 2024-01-09 Zhongshan Opike Hardware Products Co., Ltd Sistema de motor linear para porta deslizante e porta deslizante
JP6490273B2 (ja) * 2018-03-22 2019-03-27 キヤノン株式会社 リニアモータ制御装置及びリニアモータ制御システム
EP3653428A1 (de) * 2018-11-19 2020-05-20 B&R Industrial Automation GmbH Verfahren zum sicheren überwachen der funktion eines langstatorlinearmotors
DE112019007252T5 (de) * 2019-04-23 2021-12-30 Yamaha Hatsudoki Kabushiki Kaisha Linearfördersystem, Steuerverfahren für ein Linearfördersystem, Steuerprogramm für ein Linearfördersystem und Aufzeichnungsmedium
DE102019117430A1 (de) 2019-06-27 2020-12-31 Beckhoff Automation Gmbh Verfahren zum Bewegen eines Läufers in einem Planarantriebssystem
CN114762242A (zh) * 2019-12-27 2022-07-15 松下知识产权经营株式会社 直线电动机系统
US11718482B2 (en) * 2020-08-31 2023-08-08 Rockwell Automation Technologies, Inc. System and method of monitoring disturbance force in an independent cart system, compensation of said disturbance force
EP4030146B1 (en) 2021-01-14 2024-07-17 Hiwin Mikrosystem Corp. Position measuring mechanism and measuring method of linear motion system
US11774521B2 (en) * 2021-01-20 2023-10-03 Hiwin Mikrosystem Corp. Position measuring mechanism and measuring method of linear motion system
CN118414777A (zh) * 2021-12-27 2024-07-30 村田机械株式会社 马达系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876966A (en) * 1984-03-06 1989-10-31 Fujitsu Ltd Transport control system with linear motor drive
JPS63114887A (ja) 1986-10-31 1988-05-19 日立電子エンジニアリング株式会社 ワ−ク搬送ロボツト
JPH05168283A (ja) * 1991-12-11 1993-07-02 Yaskawa Electric Corp リニアモータシステムの曲線部の励磁電流位相決定方法
US5801462A (en) * 1995-03-31 1998-09-01 Minolta Co., Ltd. Linear motor and image reading apparatus
JP2000245128A (ja) * 1999-02-22 2000-09-08 Nkk Corp リニア同期モータ
JP3447639B2 (ja) * 1999-12-28 2003-09-16 川崎重工業株式会社 ホームドアシステムの制御方法及び装置
JP2003244929A (ja) * 2002-02-18 2003-08-29 Yaskawa Electric Corp リニアモータ
WO2003105324A1 (en) * 2002-06-05 2003-12-18 Jacobs Automation Llc Controlled motion system
DE102005013349A1 (de) * 2005-03-23 2006-10-05 Bosch Rexroth Aktiengesellschaft Linearmotor und Verfahren zum Betrieb eines Linearmotors
JP4661365B2 (ja) * 2005-05-27 2011-03-30 横河電機株式会社 リニアモータの制御方法及びリニアモータの制御装置
JP4304625B2 (ja) 2005-09-13 2009-07-29 村田機械株式会社 有軌道台車システム
JP5154425B2 (ja) * 2006-09-29 2013-02-27 Thk株式会社 複数台交流リニアモータの制御方法、複数台交流リニアモータ駆動装置、及び複数台交流リニアモータシステム
WO2010024234A1 (ja) * 2008-08-29 2010-03-04 Thk株式会社 分散配置リニアモータおよび分散配置リニアモータの駆動システム
JP2010130740A (ja) * 2008-11-26 2010-06-10 Toshiba Mach Co Ltd マグネット可動型リニアモータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210083746A (ko) * 2019-12-27 2021-07-07 알에스오토메이션주식회사 다중 리니어 모터 시스템의 병렬 운전 제어 방법
KR20220088009A (ko) * 2020-12-18 2022-06-27 현대엘리베이터주식회사 선형전동기의 자기각 오차 보정 장치 및 방법

Also Published As

Publication number Publication date
TW201230661A (en) 2012-07-16
JPWO2012056842A1 (ja) 2014-03-20
US8796959B2 (en) 2014-08-05
TWI538381B (zh) 2016-06-11
CN103181073A (zh) 2013-06-26
CN103181073B (zh) 2016-07-06
EP2634913A1 (en) 2013-09-04
JP5590137B2 (ja) 2014-09-17
WO2012056842A1 (ja) 2012-05-03
EP2634913A4 (en) 2017-02-22
US20130229134A1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
KR20130085041A (ko) 이산 배치 리니어 모터 시스템
US8653766B2 (en) Linear motor driving system and linear motor control method
KR101480785B1 (ko) 반송 시스템
CN106612095B (zh) 动磁式线性马达控制系统及部件制造方法
US9292018B2 (en) Moving body system and method for controlling travel of moving body
WO2012056844A1 (ja) リニアモータ制御装置
KR101597862B1 (ko) 자석 가동형 리니어 모터용의 위치 검출 장치
KR101584022B1 (ko) 반송 시스템
US9333875B2 (en) System and method for providing power to a moving element
JP2011050220A (ja) 分散配置リニアモータおよび分散配置リニアモータの制御方法
CN104348399A (zh) 直线电机系统
TWI694239B (zh) 移動體、移動體系統、及移動體的位置檢測方法
CN101517887B (zh) 多台交流线性电动机的控制方法、多台交流线性电动机驱动装置和多台交流线性电动机系统
JP7313836B2 (ja) キャリア及び搬送システム
JP4683369B2 (ja) リニアモータの制御装置
JP5532140B2 (ja) 離散配置リニアモータの乗り移り制御装置
US11081951B2 (en) Location of a secondary part during use in a linear-motor-based system
CN101132164A (zh) 消除外部磁场对电机干扰的方法
US20220001902A1 (en) Carrier device and control method for carrier device
JP4661970B2 (ja) 移動体システム
JP2008198134A (ja) 可動テーブルの制御装置およびそれを備えた可動テーブル装置
JP2006050875A (ja) 門型ステージ装置のリニアモータ制御方法
JP3491680B2 (ja) X/yステージ
JP2005301936A (ja) Xyステージ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20140711

Effective date: 20150630