TWI694239B - 移動體、移動體系統、及移動體的位置檢測方法 - Google Patents

移動體、移動體系統、及移動體的位置檢測方法 Download PDF

Info

Publication number
TWI694239B
TWI694239B TW105126403A TW105126403A TWI694239B TW I694239 B TWI694239 B TW I694239B TW 105126403 A TW105126403 A TW 105126403A TW 105126403 A TW105126403 A TW 105126403A TW I694239 B TWI694239 B TW I694239B
Authority
TW
Taiwan
Prior art keywords
magnetic pole
magnetic
phase angle
section
path
Prior art date
Application number
TW105126403A
Other languages
English (en)
Other versions
TW201716751A (zh
Inventor
花香敏
山田康武
Original Assignee
日商村田機械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商村田機械股份有限公司 filed Critical 日商村田機械股份有限公司
Publication of TW201716751A publication Critical patent/TW201716751A/zh
Application granted granted Critical
Publication of TWI694239B publication Critical patent/TWI694239B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Linear Motors (AREA)

Abstract

移動體係沿著磁極經路來移動。磁極經路,係含有第1磁極區間及第2磁極區間。第1磁極區間,係將由N極與S極所成的一對磁極以第1間距長複數配列而成的區間。第2磁極區間,係將由N極與S極所成的一對磁極以與前述第1間距長不同的第2間距長複數配列而成區間。移動體,係含有檢測部、比率變更部、及位置特定部。檢測部,係檢測因應前述磁極經路之磁通的相位角。比率變更部,係根據由前述檢測部所檢測出的相位角,來將前述磁極經路的相位角與前述磁極經路的位置之對應關係的位置換算比率予以變更。位置特定部,係根據由前述檢測部所檢測出的相位角與由前述比率變更部所變更的位置換算比率,來特定出沿著前述磁極經路之移動體的位置。

Description

移動體、移動體系統、及移動體的位置檢測方法
本發明,係關於利用線性馬達,沿著將由N極與S極所成之一對磁極予以複數配列而成的磁極經路來移動的移動體、移動體系統、及移動體的位置檢測方法。
以往,移動體系統就一般而言已知具備:將由N極與S極所成之一對磁極予以複數配列而成的磁極經路、以及具有線性馬達的移動體。移動體系統,係藉由磁極經路之磁通間的磁氣相互作用來驅動線性馬達,藉此使移動體沿著磁極經路移動。
但是,在移動體系統中,磁極經路的長度,係例如隨著工廠的規劃而有各種變化,有時候難以將磁極經路的間距長(將一對磁極作為1間距的間距長)統一成規定的間距長。此情況時,於磁極經路會存在有間距長與規定間距長不同的區間,而使複數種類的間距長混合存 在。
但是,移動體系統中,係以磁極經路的間距長被統一成規定間距長為前提,移動體,係使用磁氣感測器來檢測因應於磁極經路之磁通的相位角,並將相位角換算成實際之磁極經路的位置。因此,若為複數種類的間距長混合存在的磁極經路的情況時,移動體,將無法在與規定間距長不同的區間精度良好地檢測移動體的位置。
在此,本發明的目的係提供:即使磁極經路的間距長變化,亦可精度良好地檢測移動體之位置的移動體、移動體系統、及移動體的位置檢測方法。
本發明,根據第1觀點係構成如下。亦即,移動體,係沿著磁極經路移動。磁極經路,係含有第1磁極區間及第2磁極區間。第1磁極區間,係使由N極與S極所成的一對磁極以第1間距長複數配列而成的區間,第2磁極區間,係使由N極與S極所成的一對磁極以與第1間距長不同的第2間距長複數配列而成的區間。且,移動體,係含有檢測部、比率變更部、及位置特定部。檢測部,係檢測因應磁極經路之磁通的相位角。比率變更部,係根據由檢測部所檢測出的相位角,來將磁極經路的相位角與磁極經路的位置之對應關係的位置換算比率予以變更。位置特定部,係根據由檢測部所檢測出的相位角與由比率變更部所變更的位置換算比率,來特定出沿著磁極經 路之移動體的位置。
且,本發明,根據第2觀點係構成如下。亦即,移動體系統,係含有磁極經路、移動體、檢測部、比率變更部、及位置特定部。磁極經路,係含有第1磁極區間及第2磁極區間。第1磁極區間,係使由N極與S極所成的一對磁極以第1間距長複數配列而成的區間,第2磁極區間,係使由N極與S極所成的一對磁極以與第1間距長不同的第2間距長複數配列而成的區間。檢測部,係設在移動體,並檢測因應磁極經路之磁通的相位角。比率變更部,係根據由檢測部所檢測出的相位角,來將磁極經路的相位角與磁極經路的位置之對應關係的位置換算比率予以變更。位置特定部,係根據由檢測部所檢測出的相位角與由比率變更部所變更的位置換算比率,來特定出沿著磁極經路之移動體的位置。
此外,本發明,根據第3觀點係構成如下。亦即,移動體的位置檢測方法,係沿著磁極經路來移動之移動體的位置檢測方法,該磁極經路係含有:使由N極與S極所成的一對磁極以第1間距長複數配列而成的第1磁極區間、以及使由N極與S極所成的一對磁極以與第1間距長不同的第2間距長複數配列而成的第2磁極區間。移動體的位置檢測方法,係含有檢測步驟、比率變更步驟、及位置特定步驟。於檢測步驟,檢測因應磁極經路之磁通的相位角。於比率變更步驟,根據在檢測步驟所檢測出的相位角,來將磁極經路的相位角與磁極經路的位置之 對應關係的位置換算比率予以變更。於位置特定步驟,根據在檢測步驟所檢測出的相位角與在比率變更步驟所變更的位置換算比率,來特定出沿著磁極經路之移動體的位置。
根據上述的移動體、移動體系統、及移動體的位置檢測方法,係變更用來特定位置的位置換算比率,藉此即使是磁極經路的間距長產生變化,亦可精度良好地檢測位置。
本發明,進一步以如下構成較佳。亦即,上述的檢測部,係含有:第1檢測部,用來檢測因應磁極經路之磁通的第1相位角;及第2檢測部,其在磁極經路的經路方向上被配置在與第1檢測部不同的位置,用來檢測因應磁極經路之磁通的第2相位角。上述的比率變更部,係根據第1相位角與第2相位角的相位差,來變更位置換算比率。
藉此,能夠比較來自2個檢測部的實際檢測值,故可精度良好地掌握磁極經路之間距長的變化,來精度良好地調整位置換算比率。
本發明,進一步以如下構成較佳。亦即,上述的第1檢測部,係含有至少2個磁氣元件,且根據至少2個磁氣元件來檢測第1相位角。上述的第2檢測部,係含有至少2個磁氣元件,且根據至少2個磁氣元件來檢測第2相位角。
藉此,於各檢測部能夠比較來自複數個磁氣 元件的實際檢測值,故可精度良好地掌握磁極經路之間距長的變化,來精度良好地調整位置換算比率。
本發明,進一步以如下構成較佳。亦即,上述的第1檢測部及第2檢測部,係作為互相不同的磁氣感測器所構成。或是,上述的第1檢測部及第2檢測部,係作為相同的磁氣感測器所構成。為相同的磁氣感測器的情況,可用1個磁氣感測器來掌握磁極經路之間距長的變化,來調整位置換算比率。
本發明,進一步以如下構成較佳。亦即,上述的第1檢測部,係含有第1磁氣元件及第2磁氣元件,其互相差了90度檢測面,且在磁極經路的經路方向上被配置在磁氣感測器內的大致相同位置。上述的第2檢測部,係含有第3磁氣元件及第4磁氣元件,其互相差了90度檢測面,且在磁極經路的經路方向上被配置在磁氣感測器內的大致相同位置。
藉此,例如,可在同一位置精巧地將磁氣元件收納於感測器內,來使檢測面指向縱方向與橫方向。
本發明,進一步以如下構成較佳。亦即,上述的移動體,進一步含有事先記憶基準相位差的記憶部。上述的比率變更部,係根據第1相位角及第2相位角的相位差與基準相位差的偏差量,來變更位置換算比率。
藉此,能夠與固定值的基準相位差進行比較,故不只是在第1磁極區間與第2磁極區間之間的過渡期,即使是在第1檢測部與第2檢測部一起在第1磁極區 間或第2磁極區間進行檢測的情況,亦可掌握磁極經路之間距長的變化來調整位置換算比率。
本發明,進一步以如下構成較佳。亦即,上述的基準相位差,係在第1磁極區間藉由第1檢測部及第2檢測部各自所檢測出之相位角的相位差。
本發明,進一步以如下構成較佳。亦即,上述的比率變更部,係根據第1相位角的變位量與第2相位角的變位量之差,來變更位置換算比率。
藉此,不用事先記憶基準相位差,便可在第1磁極區間與第2磁極區間之間的過渡期,掌握磁極經路之間距長的變化來調整位置換算比率。
1‧‧‧移動體系統
11‧‧‧第1線性馬達
12‧‧‧第2線性馬達
21‧‧‧第1磁極感測器
22‧‧‧第2磁極感測器
23‧‧‧第3磁極感測器
30‧‧‧感測器界面
40‧‧‧控制器
50‧‧‧第1伺服放大器
60‧‧‧第2伺服放大器
100‧‧‧移動體
200‧‧‧磁極經路
211‧‧‧N極的磁鐵
212‧‧‧S極的磁鐵
213‧‧‧一對磁極
X‧‧‧移動方向
圖1為表示關於一實施形態之移動體系統及關於本發明之一實施形態之移動體的圖。
圖2為表示圖1所示之移動體系統之移動體的圖。
圖3為表示在不同間距長的磁極區間移動之移動體之主要部分的圖。
圖4為表示含有互相差90度檢測面之2個霍爾元件之磁極感測器的圖。
圖5A為表示圖4所示之2個霍爾元件之檢測原理的圖。
圖5B為表示圖4所示之2個霍爾元件之檢測原理的 圖。
圖6為表示圖4所示之2個霍爾元件之檢測原理的圖。
圖7為表示圖4所示之2個霍爾元件之檢測原理的圖。
圖8為表示含有具有相同方向檢測面之2個霍爾元件之磁極感測器的圖。
圖9為表示關於本發明之變形例之磁極感測器的圖。
以下,參照圖式針對本發明之合適的實施形態進行詳細說明。且,在各圖式中對於相同或相對應的部分賦予相同的符號。
[第1實施形態] 1.移動體系統1的構造
圖1為表示關於一實施形態之移動體系統1及關於本發明之一實施形態之移動體100的圖。圖1所示的移動體系統1,係具備:移動體100、及磁極經路200。
於磁極經路200,係使N極的磁鐵211與S極的磁鐵212交錯地以既定的間距(例如33mm)配置成一列。換言之,於磁極經路200,係複數配列有由N極與S極所成的一對磁極213。移動體100,係利用線性馬達,來沿著磁極經路200移動。
作為移動體系統1的一例,有沿著設置在天花板的軌道(磁極經路)200使搬送台車(移動體)100行進的天車系統。該種移動體系統1中,軌道200為數Km,搬送台車100有300台~400台。且,移動體,可為在地上行進的搬送台車,或是,亦可不為搬送台車。例如,移動體,亦可為搬送台車以外之其他的台車,或是機械手臂等。
在此種移動體系統1中,磁極經路的長度,係例如隨著工廠的規劃而有著各種變化,故難以將以一對磁極作為1間距之磁極經路的間距長統一成規定間距長。且,由於磁極的尺寸產生有誤差,故有時候難以將磁極經路的間距長統一成滿足所要求之精度的規定間距長。根據上述理由,於此種的磁極經路,會存在有間距長與規定間距長不同的區間。本實施形態中,如圖3所示般,磁極經路200,係含有:使一對磁極213以第1間距長(規定間距長:例如66mm)複數配列而成的第1磁極區間210、以及使一對磁極213以與第1間距長不同的第2間距長(例如65mm)複數配列而成的第2磁極區間220。且,磁極經路200,除了第1磁極區間210及第2磁極區間220之外,還具有磁極缺損的磁極缺損區間。
2.移動體100的構造
圖2為表示圖1所示之移動體系統1之移動體100的圖。圖1及圖2所示的移動體100,係具備:第1及第2 線性馬達11、12;第1、第2及第3磁極感測器21、22、23;感測器界面30;控制器40;以及第1及第2伺服放大器50、60。本實施形態中,係從移動體之移動方向X的上游側,依序配置:第1磁極感測器21、第1線性馬達11、第2磁極感測器22、第2線性馬達12、及第3磁極感測器23。本實施形態中,第1及第2磁極感測器21、22分別相當於申請專利範圍的第1及第2檢測部。且,第3及第2磁極感測器23、22分別相當於申請專利範圍的第1及第2檢測部。
3.第1及第2線性馬達11、12的構造
第1線性馬達11及第2線性馬達12,係各自例如為3相線性馬達,藉由與磁極經路200之磁通的磁性相互作用來驅動。第1線性馬達11的磁場,係藉由來自第1伺服放大器50的交流驅動電流而受到控制,第2線性馬達12的磁場,係藉由來自第2伺服放大器60的交流驅動電流而受到控制。第1線性馬達11與第2線性馬達12,係在移動體100的移動方向(磁極經路200的經路方向)X上被配置在不同的位置。
4.第1~3磁極感測器21、22、23的構造
第1磁極感測器21,係用來檢測磁極經路200之磁極的磁極感測器(Magnetic Pole Sensor:MPS),例如含有2個霍爾元件(磁氣元件)21A、21B。該等2個霍爾 元件21A、21B,係如圖4所示般,互相差90度檢測面,且在磁極經路200的經路方向X上被配置在第1磁極感測器21內的大致相同位置。藉由上述構成,第1磁極感測器21,係根據該等2個霍爾元件21A、21B的輸出,來檢測:將由N極與S極所成的一對磁極213作為1周期之磁極經路200的磁通所對應的相位角(第1相位角)。且,如後述般,該磁極感測器所檢測的相位角係使用於第1線性馬達11的電氣角,故可稱該磁極感測器為第1電氣角檢測感測器。
同樣地,第3磁極感測器23,係用來檢測磁極經路200之磁極的磁極感測器(Magnetic Pole Sensor:MPS),例如含有2個霍爾元件(磁氣元件)23A、23B。該等2個霍爾元件23A、23B,係如圖4所示般,互相差90度檢測面,且在磁極經路200的經路方向X上被配置在第3磁極感測器23內的大致相同位置。藉由上述構成,第3磁極感測器23,係根據該等2個霍爾元件23A、23B的輸出,來檢測:將由N極與S極所成的一對磁極213作為1周期之磁極經路200的磁通所對應的相位角(第1相位角)。且,如後述般,該磁極感測器所檢測的相位角係使用於第2線性馬達12的電氣角,故可稱該磁極感測器為第2電氣角檢測感測器。
且,第2磁極感測器22,係用來檢測磁極經路200之磁極的磁極感測器(Magnetic Pole Sensor:MPS),例如含有2個霍爾元件(磁性元件)22A、22B。 該等2個霍爾元件22A、22B,係如圖4所示般,互相差90度檢測面,且在磁極經路200的經路方向X上被配置在第2磁極感測器22內的大致相同位置。藉由上述構成,第2磁極感測器22,係根據該等2個霍爾元件22A、22B的輸出,來檢測:將由N極與S極所成的一對磁極213作為1周期之磁極經路200的磁通所對應的相位角(第2相位角)。且,如後述般,該磁極感測器所檢測的相位角係使用於移動體100的位置檢測,故可稱該磁極感測器為位置檢測感測器。
第1、第2及第3磁極感測器21、22、23,係具有:根據所檢測之磁極經路200的磁通,來判斷是否位在磁極缺損區間的功能。第1、第2及第3磁極感測器21、22、23,在不位於磁極缺損區間時,係將表示輸出為有效狀態的訊號(Validation)予以輸出,在位於磁極缺損區間時,係將表示輸出為無效狀態的訊號(Validation)予以輸出。
第1磁極感測器21、第2磁極感測器22、第3磁極感測器23,係在移動體100的移動方向(磁極經路200的經路方向)X上被配置在不同的位置。第1磁極感測器21與第2磁極感測器22,係在移動體100的移動方向(磁極經路200的經路方向)X上被配置成夾著第1線性馬達11。且,第2磁極感測器22與第3磁極感測器23,係在移動體100的移動方向(磁極經路200的經路方向)X上被配置成夾著第2線性馬達12。
如上述般,本實施形態中,用來檢測線性馬達之電氣角的感測器,係對1個線性馬達1個個地設置,而用來檢測移動體之位置的感測器,係對移動體設置1個。
在此,以往的感測器21(22、23)中,係如圖8所示般,係將線圈或霍爾元件等之2個磁氣檢測元件21A、21B(22A、22B或23A、23B),相對於一對磁極213的磁極間距(一周期)於磁極經路200的經路方向X錯開4分1(90度)來配置,而得到相位相差90度的sin訊號與cos訊號。之後,將該等訊號予以PD變換處理,或是進行使用該等訊號之對應表的處理來同定磁極。此情況時,於磁極經路200的經路方向X會變長,而產生配置的限制。
關於此點,本案發明者們,發現可將圖5A所示的磁通密度分解成縱向量與橫向量,如圖5B所示般,該等縱向量與橫向量,係相差90度相位。於霍爾元件等的磁氣檢測元件,存在有磁通密度檢測面,故如圖6所示般,配置成磁通密度檢測面相差90度,藉此可使該等霍爾元件21A、21B(22A、22B或23A、23B)分別檢測出磁通密度的縱向量與橫向量。藉此,即使將霍爾元件21A、21B(22A、22B或23A、23B)配置在大致相同位置,亦可得到相位相差90度的sin訊號與cos訊號。之後,使用sin訊號與cos訊號,進行PD變換等的訊號處理,藉此同定磁極(導出磁極的相位角)。
換言之,以往的手法,係如圖8所示般,將2個磁氣檢測元件21A、21B(22A、22B或23A、23B)於磁極經路200的經路方向X錯開90度來配置,且,將2個磁氣檢測元件21A、21B(22A、22B或23A、23B)的磁通密度檢測面相對於磁極經路200平行配置。因此,以往的手法,係使2個磁氣檢測元件21A、21B(22A、22B或23A、23B)均檢測磁通密度的縱向量。
相對於此,本案係如圖4所示般,將2個磁氣檢測元件21A、21B(22A、22B或23A、23B)於磁極經路200的經路方向X上配置在大致相同位置,且,將一方之磁氣檢測元件21A、21B(22A、22B或23A、23B)的磁通密度檢測面相對於磁極經路平行配置,且將另一方之磁氣檢測元件的磁通密度檢測面相對於磁極經路200垂直配置,亦即,使2個磁氣檢測元件21A、21B(22A、22B或23A、23B)的磁通密度檢測面相差90度。因此,本案中,2個磁氣檢測元件21A、21B(22A、22B或23A、23B),係分別檢測磁通密度的縱向量與橫向量。
但是,如圖7所示般,例如線性馬達11,在激磁時會產生磁氣雜訊,故若是緊鄰線性馬達11來配置磁極感測器21的話,磁極感測器21會受到磁氣雜訊的影響。因此,磁極感測器21係有必要與線性馬達11分離配置,若如上述般分離配置的話,無用空間會變多,而產生運用上的問題(例如配置限制)。關於此點,根據本案的磁極感測器21,即使對線性馬達11偏移配置,亦可將無 用空間抑制成最少。
5.感測器界面30的構造
感測器界面30,係具有:磁極轉換器(Magnetic Pole Converter)31、位置轉換器(Position Converter)32、及位置比率轉換器33。且,位置比率轉換器33,係作為申請專利範圍所記載的比率變更部、位置特定部、記憶部來發揮功能。
磁極轉換器31,係根據第1磁極感測器21所檢測的相位角,導出第1線性馬達11之磁場的電氣角(驅動第1線性馬達11之驅動電流的電氣角)。具體而言,磁極轉換器31,係對第1磁極感測器21所檢測的相位角,加上因應第1線性馬達11與第1磁極感測器21之距離的偏移角,來作為第1線性馬達11的電氣角。磁極轉換器31,係將所導出之第1線性馬達11的電氣角(Magnetic Pole)供給至第1伺服放大器50。
且,磁極轉換器31,係根據第3磁極感測器23所檢測的相位角,導出第2線性馬達12之磁場的電氣角(驅動第2線性馬達12之驅動電流的電氣角)。具體而言,磁極轉換器31,係對第3磁極感測器23所檢測的相位角,加上因應第2線性馬達12與第3磁極感測器23之距離的偏移角,來作為第2線性馬達12的電氣角。磁極轉換器31,係將所導出之第2線性馬達12的電氣角(Magnetic Pole)供給至第2伺服放大器60。
位置轉換器32,在從第1及第2磁極感測器21、22接收到有效狀態訊號(Validation)的情況,將第1及第2磁極感測器21、22的輸出供給至位置比率轉換器33。另一方面,位置轉換器32,在從第1磁極感測器21接收到無效狀態訊號(Validation),且,在從第2及第3磁極感測器22、23接收到有效狀態訊號(Validation)的情況,將第2及第3磁極感測器22、23的輸出供給至位置比率轉換器33。且,位置轉換器32,將來自第1、第2及第3磁極感測器21、22、23之表示有效狀態/無效狀態的訊號(Validation)供給至控制器40。
位置比率轉換器33,係調整從藉由第2磁極感測器22所檢測的相位角來換算位置用的位置換算比率,而求出補正後的位置。具體而言,位置比率轉換器33,係根據由第1磁極感測器(第1檢測部)21所檢測出的第1相位角、以及由第2磁極感測器(第2檢測部)22所檢測出的第2相位角之間的相位差,來調整位置換算比率,而求出補正後的位置。以下,進一步詳細說明位置比率轉換器33。
首先,位置比率轉換器33,係發揮作為記憶部的功能,在移動體100位於第1磁極區間(第1間距長=規定間距長)210時,將藉由第1磁極感測器21所檢測出的第1相位角X1org、以及藉由第2磁極感測器22所檢測出的第2相位角X2org之間的相位差,作為基準相位 差△X2而事先予以記憶。
△X2=X1org-X2org
且,位置比率轉換器33,係發揮作為比率變更部的功能,求出現在位置(現在的磁極區間)之藉由第1磁極感測器21所檢測出的第1相位角X1與藉由第2磁極感測器22所檢測出的第2相位角X2之間的相位差△X1,而求出該現在位置(現在的磁極區間)之相位差△X1與基準相位差△X2之間的偏差量C。
(X1-X2)-(X1org-X2org)=△X1-△X2=C
此外,位置比率轉換器33,係根據:該偏差量C;移動體100位在第1磁極區間(第1間距長=規定間距長)210時之位置換算比率的初始值(例如,第1間距長=規定間距長)D0;偏移量β;及位置換算比率的調整常數γ,來求出位置換算比率D。
D=D0×{(C+β)×γ}
且,位置比率轉換器33,係發揮作為位置特定部的功能,根據位置換算比率D、以及藉由第2磁極感測器22所檢測出的現在位置資料(相位角X2)P,來求出補正位置資料P’。
P’=P×D
位置比率轉換器33,係將所導出的補正位置資料P’(Position)供給至控制器40、以及第1及第2伺服放大器50、60。
同樣地,位置比率轉換器33,係根據由第3 磁極感測器(第1檢測部)21所檢測出的第1相位角、以及由第2磁極感測器(第2檢測部)22所檢測出的第2相位角之間的相位差,來調整位置換算比率,而求出補正後的位置。以下,進一步詳細說明位置比率轉換器33。
首先,位置比率轉換器33,係發揮作為記憶部的功能,在移動體100位於第1磁極區間(第1間距長=規定間距長)210時,將藉由第3磁極感測器23所檢測出的第1相位角X1org、以及藉由第2磁極感測器22所檢測出的第2相位角X2org之間的相位差,作為基準相位差△X2而事先予以記憶。
△X2=X1org-X2org
且,位置比率轉換器33,係發揮作為比率變更部的功能,求出現在位置(現在的磁極區間)之藉由第3磁極感測器23所檢測出的第1相位角X1與藉由第2磁極感測器22所檢測出的第2相位角X2之間的相位差△X1,而求出該現在位置(現在的磁極區間)之相位差△X1與基準相位差△X2之間的偏差量C。
(X1-X2)-(X1org-X2org)=△X1-△X2=C
此外,位置比率轉換器33,係根據:該偏差量C;移動體100位在第1磁極區間(第1間距長=規定間距長)210時的初始位置換算比率(例如,第1間距長=規定間距長)D0;既定的偏移量β;及既定的位置換算比率調整常數γ,來求出位置換算比率D。
D=D0×{(C+β)×γ}
且,位置比率轉換器33,係發揮作為位置特定部的功能,根據位置換算比率D、以及藉由第2磁極感測器22所檢測出的現在位置資料(相位角X2)P,來求出補正位置資料P’。
P’=P×D
位置比率轉換器33,係將所導出的補正位置資料P’(Position)供給至控制器40、以及第1及第2伺服放大器50、60。
且,本實施形態中,C在移動體位於規定間距時為0。且,規定間距+α則取-x,規定間距-α則取+x。+x、-x的範圍係藉由磁極間距來決定。且,β與γ係在C=0時,定為{(C+β)×γ}=1。意思是β係使C之值的±符號只取+並以γ的值來對初始位置換算比率乘上比率。
以上,雖針對位置比率轉換器33進行了說明,換言之,位置比率轉換器(比率變更部)33,係以磁極經路之第1磁極區間210的第1間距長(規定間距長)所對應的初期位置換算比率D0為基準,來算出:將第1間距長之相位角X1org、X2org與磁極經路的位置之對應關係的初期位置換算比率D0予以變更後的位置換算比率D。且,位置比率轉換器(比率變更部)33之作為基準的初期位置換算比率D0,並不限定於第1磁極區間210的第1間距長。例如,位置比率轉換器(比率變更部)33,亦可將磁極經路之第1磁極區間210的第1間距長(例如66mm)與第2磁極區間220的第2間距長(例如65mm) 的中間(例如65.5mm)所對應的初期位置換算比率D0作為基準。且,1間距位置,係以磁極間距的境界點(相位角0度)為基準的距離(單位為mm),相位角,係以磁極間距的境界點(相位角0度)為基準的相位差(單位為digit)。例如,位置換算比率,其對應關係設為1digit=A mm。此式,係因為在磁極經路N極及S極的1組磁極為360度,故只要將知道相當於360度之數位值(digit)和物理的距離(mm),便可賦予上述般的關係。而且,位置比率轉換器(位置特定部)33,係根據該位置換算比率D,來特定出沿著磁極經路之移動體的位置。
6.控制器40的構造
控制器40,係具有:車體控制器(Vehicle Controller)41、及動作控制器(Motion Controller)43。
車體控制器41,係將目標位置(Target Position)、目標速度(Target Velocity)、目標停止距離(Target Stop-distance)等之移動體的驅動控制資訊,從上位控制器(未圖示)取得,並事先記憶。車體控制器41,係將該等資訊供給至動作控制器43。
動作控制器43,在從位置轉換器32接收到第1磁極感測器21之有效狀態訊號(Validation)的情況,根據來自位置比率轉換器33的補正位置資料P’(Position),將用來到達指令位置的位置指令(Command Position)供給至第1伺服放大器50。另一方 面,在從位置轉換器32接收到第1磁極感測器21之無效狀態訊號(Validation)時,動作控制器43,係停止將位置指令(Command Position)供給至第1伺服放大器50。
同樣地,動作控制器43,在從位置轉換器32接收到第3磁極感測器23之有效狀態訊號(Validation)的情況,根據來自位置比率轉換器33的補正位置資料P’(Position),將用來到達指令位置的位置指令(Command Position)供給至第2伺服放大器60。另一方面,在從位置轉換器32接收到第3磁極感測器23之無效狀態訊號(Validation)時,動作控制器43,係停止將位置指令(Command Position)供給至第2伺服放大器60。
7.第1、2伺服放大器50、60
第1伺服放大器50,係具有:位置控制器(Position Controller)51、速度控制器(Velocity Controller)52、電流控制器(Current Controller)53、減算器54A、54B、54C、微分器55、變頻器(Inverter)56、及電流感測器57。
於位置控制器51,係藉由減算器54A,輸入有:將來自動作控制器43的位置指令所示之目標位置與來自位置比率轉換器33的補正位置資料P’所示之現在位置之間的差予以求得的資料(差分位置資料)。位置控制器51,係輸出因應該差分位置資料的速度資料。
於速度控制器52,係藉由微分器55將來自位 置比率轉換器33的位置資訊予以微分,並藉由減算器54B,輸入有:將該微分資料與來自位置控制器51的速度資料之間的差予以求得的資料(差分速度資料)。速度控制器52,係輸出因應該差分速度資料的電流值資料。
於電流控制器53,係藉由電流感測器57檢測出第1線性馬達11之現在的電流值,並藉由減算器54C,輸入有:將來自速度控制器52的電流值資料與來自電流感測器57之現在的電流值(實電流值)所對應的回授資料之間的差予以求得的資料(差分電流值資料)。電流控制器53,係輸出因應該差分電流值資料的直流驅動電流。
變頻器56,係根據來自磁極轉換器31之第1線性馬達的電氣角,將來自電流控制器53的直流驅動電流變換成交流驅動電流,而生成用來驅動第1線性馬達的驅動電流。變頻器56的一例為使用IPM(Intelligent Power Module)的3相變頻器。
同樣地,第2伺服放大器60,係具有:位置控制器(Position Controller)61、速度控制器(Velocity Controller)62、電流控制器(Current Controller)63、減算器64A、64B、64C、微分器65、變頻器(Inverter)66、及電流感測器67。
於位置控制器61,係藉由減算器64A,輸入有:將來自動作控制器43的位置指令所示之目標位置與來自位置比率轉換器33的補正位置資料P’所示之現在位 置之間的差予以求得的資料(差分位置資料)。位置控制器61,係輸出因應該差分位置資料的速度資料。
於速度控制器62,係藉由微分器65將來自位置比率轉換器33的位置資訊予以微分,並藉由減算器64B,輸入有:將該微分資料與來自位置控制器61的速度資料之間的差予以求得的資料(差分速度資料)。速度控制器62,係輸出因應該差分速度資料的電流值資料。
於電流控制器63,係藉由電流感測器67檢測出第2線性馬達12之現在的電流值,並藉由減算器64C,輸入有:將來自速度控制器62的電流值資料與來自電流感測器67之現在的電流值(實電流值)所對應的回授資料之間的差予以求得的資料(差分電流值資料)。電流控制器63,係輸出因應該差分電流值資料的直流驅動電流。
變頻器66,係根據來自磁極轉換器31之第2線性馬達的電氣角,將來自電流控制器63的直流驅動電流變換成交流驅動電流,而生成用來驅動第2線性馬達的驅動電流。變頻器66的一例為使用IPM(Intelligent Power Module)的3相變頻器。
8.移動體系統1(移動體100)的動作及位置檢測方法
接著,針對本實施形態之移動體系統1(移動體100)的動作及位置檢測方法進行說明。首先,根據來自第1及第2磁極感測器21、22之表示有效狀態/無效狀 態的訊號(Validation),來判斷第1及第2磁極感測器21、22是否位在磁極缺損區間。當第1及第2磁極感測器21、22並未位在磁極缺損區間的情況,藉由第1磁極感測器(檢測部)21來檢測現在位置(現在磁極區間)的第1相位角X1,並藉由第2磁極感測器(檢測部)來檢測現在位置(現在磁極區間)的第2相位角X2(檢測步驟)。
接著,藉由位置比率轉換器(比率變更部)33,求出現在位置之第1相位角X1與第2相位角X2之間的相位差△X1,而求出現在位置之相位差△X1與基準相位差△X2之間的偏差量C。在此,基準相位差△X2,係在移動體100位於第1磁極區間(第1間距長=規定間距長)210時,藉由第1磁極感測器21所檢測出的第1相位角X1org、與藉由第2磁極感測器22所檢測出的第2相位角X2org之間的相位差。接著,位置比率轉換器(比率變更部)33,係根據:該偏差量C;移動體100位在第1磁極區間(第1間距長=規定間距長)210時的初始位置換算比率(例如,第1間距長=規定間距長)D0;既定的偏移量β;及既定的位置換算比率調整常數γ,來求出位置換算比率D(比率變更步驟)。
接著,藉由位置比率轉換器(位置特定部)33,來根據位置換算比率D、以及藉由第2磁極感測器22所檢測出的現在位置資料(相位角X2)P,來求出補正位置資料P’(位置特定步驟)。接著,根據補正位置資料 P’,藉由控制器40及第1伺服放大器50來驅動第1線性馬達11。
另一方面,當第1磁極感測器21位在磁極缺損區間的情況(無效狀態訊號),根據來自第2及第3磁極感測器22、23之表示有效狀態/無效狀態的訊號(Validation),來判斷第2及第3磁極感測器22、23是否位在磁極缺損區間。當第2及第3磁極感測器22、23並未位在磁極缺損區間的情況,藉由第3磁極感測器(檢測部)23來檢測現在位置(現在磁極區間)的第1相位角X1,並藉由第2磁極感測器(檢測部)來檢測現在位置(現在磁極區間)的第2相位角X2(檢測步驟)。
接著,藉由位置比率轉換器(比率變更部)33,求出現在位置之第1相位角X1與第2相位角X2之間的相位差△X1,而求出現在位置之相位差△X1與基準相位差△X2之間的偏差量C。在此,基準相位差△X2,係在移動體100位於第1磁極區間(第1間距長=規定間距長)210時,藉由第1磁極感測器21所檢測出的第1相位角X1org、與藉由第2磁極感測器22所檢測出的第2相位角X2org之間的相位差。接著,位置比率轉換器(比率變更部)33,係根據:該偏差量C;移動體100位在第1磁極區間(第1間距長=規定間距長)210時的初始位置換算比率(例如,第1間距長=規定間距長)D0;既定的偏移量β;及既定的位置換算比率調整常數γ,來求出位置換算比率D(比率變更步驟)。
接著,藉由位置比率轉換器(位置特定部)33,來根據位置換算比率D、以及藉由第2磁極感測器22所檢測出的現在位置資料(相位角X2)P,來求出補正位置資料P’(位置特定步驟)。接著,根據補正位置資料P’,藉由控制器40及第2伺服放大器60來驅動第2線性馬達12。
如以上說明般,根據本實施形態的移動體100、移動體系統1、及移動體的位置檢測方法,係基於藉由2個磁極感測器(檢測部)所實際檢測出的第1相位角與第2相位角之間的相位差,來變更用來特定位置的位置換算比率,故可精度良好地掌握磁極經路之間距長的變化,來精度良好地調整位置換算比率。因此,即使是磁極經路的間距長產生變化,亦可精度良好地檢測位置。
且,根據本實施形態的移動體100、移動體系統1、及移動體的位置檢測方法,能夠與固定值的基準相位差進行比較,故不只是在第1磁極區間與第2磁極區間之間的過渡期,即使是在2個磁極感測器(檢測部)一起在第1或第2磁極區間進行檢測的情況,亦可掌握磁極經路之間距長的變化來調整位置換算比率。
且,根據本實施形態的移動體100、移動體系統1、及移動體的位置檢測方法,係使2個磁極感測器(檢測部)分別互相差90度檢測面,並於磁極經路的經路方向上具有被配置在磁氣感測器內之大致相同位置的2個霍爾元件,故可在同一位置精巧地將霍爾元件收納於感 測器內,來使檢測面指向縱方向與橫方向。
[第2實施形態]
本發明並不限定於上述實施形態,可進行各種變形。例如,本實施形態中,位置比率轉換器33係如上述式般,求出連續的位置換算比率D及補正位置資料P’,但亦可如下所示般求出離散的補正位置資料P’。例如,位置比率轉換器(比率變更部)33,係將如下之離散的位置換算比率D予以事先記憶。
D=D1(D<I1)、D2(I1≦D<I2)、D3(I2≦D<I3)、D4(I3≦D<I4)、D5(I4≦D)
I1~I4:既定的閥值
位置比率轉換器(位置特定部)33,亦可根據該位置換算比率D、以及藉由第2磁極感測器22所檢測出的現在位置資料(相位角X2)P,來求出補正位置資料P’。
P’=P×D
第2實施形態中,位置比率轉換器(比率變更部)33,係將磁極經路之既定的相位角與磁極經路的位置之對應關係之離散的位置換算比率D=D1、D2、D3、D4、D5予以選擇變更。
[其他實施形態]
且,上述實施形態中,係示例出第1及第2磁極感測器21、22分別為第1及第2檢測部的形態,以及,第3及第2磁極感測器23、22分別為第1及第2檢測部的形態,但亦可為第1及第3的磁極感測器21、23分別為第1及第2檢測部。此情況時,位置比率轉換器33,亦可根據藉由第1及第3磁極感測器21、23(2個電氣角檢測感測器)所檢測出的相位角來變更位置換算比率D,且根據該位置換算比率D與藉由第2磁極感測器22(位置檢測感測器)所檢測出的現在位置資料P來特定移動體的位置。
且,上述實施形態中,雖然係將藉由磁極感測器所檢測出的相位角作為位置資訊(Position),但亦可將藉由磁極感測器所檢測出的相位角的變位量作為位置資訊(Position)。例如,亦可將從任意基準位置之相位角的變位量、亦即移動量作為位置資訊(Position)。更具體而言,係藉由位置轉換器32,定期取得以磁極感測器所檢測出的相位角來求出相位角的變位量,且藉由位置比率轉換器33來將所求得之相位角的變位量換算成位置換算比率,並將所換算的變位量(移動量)作為位置資訊(Position))來輸出至控制器40及伺服放大器50、60亦可。且,基準位置,可為移動體的移動開始位置,或是,亦可為藉由設置在移動體的讀取器來讀取離散地配置於軌道的條碼而取得的座標資訊。
此情況時,控制器40及伺服放大器50、60,係利用從任意基準位置之相位角的變位量亦即移動量,來作為現在位置資訊(Position)。具體而言,動作控制器43,係將表示移動量的資訊供給至伺服放大器50、60來作為位置指令(Command Position)。伺服放大器50、60,係由來自動作控制器43之位置指令所示的目標位置、來自位置比率轉換器33之作為位置資訊的移動量所示的現在位置、及藉由電流感測器所檢測之線性馬達的實電流值所對應的回授資料,來生成驅動線性馬達用的驅動電流。
且,上述實施形態中,係示例出第1檢測部及第2檢測部作為互相不同的磁氣感測器所構成的形態,但第1檢測部及第2檢測部,亦可作為相同的磁氣感測器所構成的形態。亦即,上述實施形態中,係如圖4所示般,示例出第1、第2及第3磁極感測器21、22、23,其分別具有互相差90度檢測面的2個霍爾元件21A、21B、22A、22B、23A、23B。但是,第1及第3磁極感測器21、23,亦可分別如圖9所示般,具有:互相差90度檢測面的2個霍爾元件(第1檢測部)21A、21B、及互相差90度檢測面的2個霍爾元件(第2檢測部)22A、22B,且霍爾元件21A、21B與霍爾元件22A、22B在磁極經路的經路方向上偏移。此情況時,位置比率轉換器33,係根據相同的磁氣感測器內之藉由霍爾元件(第1檢測部)21A、21B所檢測出的第1相位角、以及藉由霍爾 元件(第2檢測部)22A、22B所檢測出的第2相位角之間的相位差,來調整位置換算比率,而求出補正後的位置。藉此,可用1個磁氣感測器來掌握磁極經路之間距長的變化,來調整位置換算比率。
且,上述實施形態中,係如圖4所示般,示例出第1、第2及第3磁極感測器21、22、23,其分別具有互相差90度檢測面的2個霍爾元件21A、21B、22A、22B、23A、23B。但是,第1、第2及第3磁極感測器21、22、23,亦可不是分別相差90度檢測面,而是如圖8所示般,在磁極經路的經路方向相差4分1間距(90度)來配置。
且,上述實施形態中,係示例出藉由位置比率轉換器(比率變更部),來根據由第1或第3磁極感測器(檢測部)21、23所檢測出的第1相位角、與由第2磁極感測器(檢測部)22所檢測出的第2相位角之間的相位差,來變更位置換算比率的形態,但亦可使位置比率轉換器(比率變更部),根據以第1或第3磁極感測器(檢測部)21、23所檢測出的第1相位角的變位量(不同位置/時刻之第1相位角的變位量)、與以第2磁極感測器(檢測部)22所檢測出的第2相位角的變位量(不同位置/時刻之第1相位角的變位量)之間的差,來變更位置換算比率(對應技術方案9)。藉此,不用事先記憶基準相位差,便可在第1磁極區間與第2磁極區間之間的過渡期,掌握磁極經路之間距長的變化來調整位置換算比 率。
且,上述實施形態中,係示例出藉由位置比率轉換器(比率變更部),來基於藉由2個磁極感測器(檢測部)所檢測出的2個相位角來變更位置換算比率的形態,但亦可為使位置比率轉換器(比率變更部),根據藉由1個磁極感測器(檢測部)所檢測出的1個相位角來變更位置換算比率的形態。例如,位置比率轉換器,係當檢測部所檢測的相位角,與作為系統所保有的基準相位角(例如,初期值a+移動體速度v×移動時間t)有偏差時,則判斷磁極經路的間距長有變化而變更位置換算比率亦可。且,例如,位置比率轉換器,係將檢測部所檢測的1個相位角依時序記憶,當現在所檢測之相位角的值偏離過去履歷時,判斷磁極經路的間距長有變化而變更位置換算比率亦可。
且,作為檢測部,亦可使用檢測與磁氣感測器不同之要素的感測器。例如,亦可在搭載有磁極感測器的移動體上搭載速度感測器。將由磁極感測器的輸出值所生成的位置予以微分則能求出速度。由於在與規定間距不同的磁鐵間距上,位置的換算比率會不同,故由磁極感測器所生成的速度會與由速度感測器所輸出之實際的台車速度不同。利用該差異來調整磁極感測器的位置換算比率,可輸出補正過的位置。且,例如,亦可在搭載有磁極感測器的移動體上搭載條碼讀取器或是RFID讀取器般的讀取裝置。此情況時,在磁極經路上安裝有附上磁極間距之資 訊的讀取對象。磁極感測器係使用由讀取裝置所取得之磁極間距的資訊來調整位置換算比率,而可輸出補正過的位置。
且,上述實施形態中,雖示例出具有2個線性馬達的移動體,但移動體亦可具備3個以上的線性馬達。
且,上述的實施形態中,雖示例出沿著具有磁極缺損區間的磁極經路來移動的移動體,但本發明的特徵,亦可適用於沿著不存在有磁極缺損區間的磁極經路來移動的移動體。此情況時,移動體亦可為僅具備1個線性馬達的形態。
且,上述的實施形態中,雖示例出具備線性馬達的移動體,但本發明的特徵,亦可適用於具備旋轉型馬達的移動體。
1‧‧‧移動體系統
11‧‧‧線性馬達
12‧‧‧線性馬達
21~23‧‧‧磁極感測器
30‧‧‧感測器界面
40‧‧‧控制器
50‧‧‧第1伺服放大器
60‧‧‧第2伺服放大器
100‧‧‧移動體
200‧‧‧磁極經路
211‧‧‧N極的磁鐵
212‧‧‧S極的磁鐵
213‧‧‧一對磁極

Claims (19)

  1. 一種移動體,係沿著含有將由N極與S極所成的一對磁極以第1間距長複數配列而成的第1磁極區間、以及將由N極與S極所成的一對磁極以與第1間距長不同的第2間距長複數配列而成的第2磁極區間的磁極經路來移動之移動體,其特徵為,含有:檢測部,係檢測因應前述磁極經路之磁通的相位角;比率變更部,係根據由前述檢測部所檢測出的相位角,來將前述磁極經路的相位角與前述磁極經路的位置之對應關係的位置換算比率予以變更;及位置特定部,係根據由前述檢測部所檢測出的相位角與由前述比率變更部所變更的位置換算比率,來特定出沿著前述磁極經路之移動體的位置。
  2. 如請求項1所述之移動體,其中,前述檢測部,含有:第1檢測部,係檢測因應前述磁極經路之磁通的第1相位角;及第2檢測部,其在前述磁極經路的經路方向上被配置在與前述第1檢測部不同的位置,用來檢測因應前述磁極經路之磁通的第2相位角,前述比率變更部,係根據前述第1相位角與前述第2相位角的相位差,來變更前述位置換算比率。
  3. 如請求項2所述之移動體,其中,前述第1檢測部,係含有至少2個磁氣元件,且根據前述至少2個磁氣 元件來檢測前述第1相位角,前述第2檢測部,係至少含有2個磁氣元件,且根據前述至少2個磁氣元件來檢測前述第2相位角。
  4. 如請求項2所述之移動體,其中,前述第1檢測部及前述第2檢測部,係作為互相不同的磁氣感測器所構成。
  5. 如請求項2所述之移動體,其中,前述第1檢測部及前述第2檢測部,係作為相同的磁氣感測器所構成。
  6. 如請求項4所述之移動體,其中,前述第1檢測部,係含有第1磁氣元件及第2磁氣元件,其互相差了90度檢測面,且在前述磁極經路的經路方向上被配置在磁氣感測器內的大致相同位置,前述第2檢測部,係含有第3磁氣元件及第4磁氣元件,其互相差了90度檢測面,且在前述磁極經路的經路方向上被配置在磁氣感測器內的大致相同位置。
  7. 如請求項2~6項中任一項所述之移動體,其中,進一步含有事先記憶基準相位差的記憶部,前述比率變更部,係根據前述第1相位角及前述第2相位角的相位差與前述基準相位差之間的偏差量,來變更前述位置換算比率。
  8. 如請求項7所述之移動體,其中,前述基準相位差,係在前述第1磁極區間藉由前述第1檢測部及前述第2檢測部各自所檢測出之相位角的相位差。
  9. 如請求項2~6項中任一項所述之移動體,其中, 前述比率變更部,係根據前述第1相位角的變位量與前述第2相位角的變位量之間的差,來變更前述位置換算比率。
  10. 一種移動體系統,係含有:磁極經路,其含有將由N極與S極所成的一對磁極以第1間距長複數配列而成的第1磁極區間、以及將由N極與S極所成的一對磁極以與前述第1間距長不同的第2間距長複數配列而成的第2磁極區間;移動體,其沿著前述磁極經路來移動;檢測部,係設在前述移動體,並檢測因應前述磁極經路之磁通的相位角;比率變更部,係根據由前述檢測部所檢測出的相位角,來將前述磁極經路的相位角與前述磁極經路的位置之對應關係的位置換算比率予以變更;及位置特定部,係根據由前述檢測部所檢測出的相位角與由前述比率變更部所變更的位置換算比率,來特定出沿著前述磁極經路之移動體的位置。
  11. 如請求項10所述之移動體系統,其中,前述檢測部,含有:第1檢測部,係檢測因應前述磁極經路之磁通的第1相位角;及第2檢測部,其在前述磁極經路的經路方向上被配置在與前述第1檢測部不同的位置,用來檢測因應前述磁極經路之磁通的第2相位角, 前述比率變更部,係根據前述第1相位角與前述第2相位角的相位差,來變更前述位置換算比率。
  12. 如請求項11所述之移動體系統,其中,前述第1檢測部,係含有至少2個磁氣元件,且根據前述至少2個磁氣元件來檢測前述第1相位角,前述第2檢測部,係至少含有2個磁氣元件,且根據前述至少2個磁氣元件來檢測前述第2相位角。
  13. 如請求項11所述之移動體系統,其中,前述第1檢測部及前述第2檢測部,係作為互相不同的磁氣感測器所構成。
  14. 如請求項11所述之移動體系統,其中,前述第1檢測部及前述第2檢測部,係作為相同的磁氣感測器所構成。
  15. 如請求項13所述之移動體系統,其中,前述第1檢測部,係含有第1磁氣元件及第2磁氣元件,其互相差了90度檢測面,且在前述磁極經路的經路方向上被配置在磁氣感測器內的大致相同位置,前述第2檢測部,係含有第3磁氣元件及第4磁氣元件,其互相差了90度檢測面,且在前述磁極經路的經路方向上被配置在磁氣感測器內的大致相同位置。
  16. 如請求項11~15項中任一項所述之移動體系統,其中,進一步含有事先記憶基準相位差的記憶部,前述比率變更部,係根據前述第1相位角及前述第2相位角的相位差與前述基準相位差之間的偏差量,來變更 前述位置換算比率。
  17. 如請求項16所述之移動體系統,其中,前述基準相位差,係在前述第1磁極區間藉由前述第1檢測部及前述第2檢測部各自所檢測出之相位角的相位差。
  18. 如請求項11~15項中任一項所述之移動體系統,其中,前述比率變更部,係根據前述第1相位角的變位量與前述第2相位角的變位量之間的差,來變更前述位置換算比率。
  19. 一種位置檢測方法,係沿著磁極經路來移動之移動體的位置檢測方法,該磁極經路含有:將由N極與S極所成的一對磁極以第1間距長複數配列而成的第1磁極區間、以及將由N極與S極所成的一對磁極以與前述第1間距長不同的第2間距長複數配列而成的第2磁極區間,其特徵為,含有:檢測步驟,係檢測因應前述磁極經路之磁通的相位角;比率變更步驟,係根據在前述檢測步驟所檢測出的相位角,來將前述磁極經路的相位角與前述磁極經路的位置之對應關係的位置換算比率予以變更;及位置特定步驟,係根據在前述檢測步驟所檢測出的相位角與在前述比率變更步驟所變更的位置換算比率,來特定出沿著前述磁極經路之移動體的位置。
TW105126403A 2015-08-21 2016-08-18 移動體、移動體系統、及移動體的位置檢測方法 TWI694239B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-163938 2015-08-21
JP2015163938A JP6206458B2 (ja) 2015-08-21 2015-08-21 移動体、及び、移動体の位置検出方法

Publications (2)

Publication Number Publication Date
TW201716751A TW201716751A (zh) 2017-05-16
TWI694239B true TWI694239B (zh) 2020-05-21

Family

ID=58157976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126403A TWI694239B (zh) 2015-08-21 2016-08-18 移動體、移動體系統、及移動體的位置檢測方法

Country Status (3)

Country Link
US (1) US9716459B2 (zh)
JP (1) JP6206458B2 (zh)
TW (1) TWI694239B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033578A1 (ja) 2015-08-21 2017-03-02 村田機械株式会社 移動体
CN110081874B (zh) * 2019-03-29 2021-07-06 西人马联合测控(泉州)科技有限公司 车辆定位方法和系统
CN109951702B (zh) * 2019-03-29 2024-04-05 荣耀终端有限公司 位置检测机构、移动终端及位置检测方法
US11326868B2 (en) * 2019-05-23 2022-05-10 Melexis Technologies Sa Magnetic position sensor system, device, magnet and method
JP2021189069A (ja) * 2020-06-01 2021-12-13 株式会社日立ハイテク 搬送装置、および分析システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175479A (en) * 1990-02-13 1992-12-29 Hitachi, Ltd. Moving body position control apparatus and signal reproducing apparatus
JP2013024778A (ja) * 2011-07-22 2013-02-04 Murata Mach Ltd 移動体システムと移動体の位置検出方法
TW201443399A (zh) * 2013-03-15 2014-11-16 Murata Machinery Ltd 磁力式位置感測器及位置檢測方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285407A (ja) 1991-03-12 1992-10-09 Mitsubishi Electric Corp リニアシンクロナスモータ制御装置
JP2003121201A (ja) * 2001-10-15 2003-04-23 Sanyo Special Steel Co Ltd エンコーダー用磁気スケール材料
US20120133357A1 (en) * 2009-06-26 2012-05-31 Continental Teves Ag & Co. Ohg Hybrid sensor arrangement
DE102010028333A1 (de) * 2010-04-28 2011-11-03 Robert Bosch Gmbh Inkrementelles Multipositions-Erfassungssystem für ein umlaufendes elektromagnetisches Transfersystem
JP5062454B2 (ja) * 2011-05-24 2012-10-31 Tdk株式会社 磁気センサ
JP6314372B2 (ja) 2013-04-22 2018-04-25 村田機械株式会社 位置検出装置、位置検出方法、及び移動体システム
JP6314371B2 (ja) * 2013-04-22 2018-04-25 村田機械株式会社 移動体システム及び移動体の駆動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175479A (en) * 1990-02-13 1992-12-29 Hitachi, Ltd. Moving body position control apparatus and signal reproducing apparatus
JP2013024778A (ja) * 2011-07-22 2013-02-04 Murata Mach Ltd 移動体システムと移動体の位置検出方法
TW201443399A (zh) * 2013-03-15 2014-11-16 Murata Machinery Ltd 磁力式位置感測器及位置檢測方法

Also Published As

Publication number Publication date
US20170054397A1 (en) 2017-02-23
US9716459B2 (en) 2017-07-25
JP2017040621A (ja) 2017-02-23
JP6206458B2 (ja) 2017-10-04
TW201716751A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
TWI694239B (zh) 移動體、移動體系統、及移動體的位置檢測方法
US11848594B2 (en) Curvilinear track sections having position sensors
US10476413B2 (en) Method for determining the absolute position of a rotor of a linear motor
TWI505055B (zh) Moving body system and moving body transition control method
US8294391B2 (en) Moving body system and method of determining initial position of moving body
TWI538381B (zh) Discrete configuration linear motor system
TWI519466B (zh) Driving Control Method for Linear Conveyor, Transfer Trolley and Linear Conveyor
US7703396B2 (en) Carriage system
JP6650529B2 (ja) 位置検出装置及びそれを備えたリニアコンベア装置
CN102804566B (zh) 动磁式直线电动机用的位置检测装置
US20070016341A1 (en) Traveling vehicle system and stop control method for traveling vehicle
TWI697198B (zh) 移動體、及移動體系統
JP5783410B2 (ja) 移動体システムと移動体の位置検出方法
CN113156969A (zh) 一种轨道机器人定位控制方法和系统
JP2011129072A (ja) 自律移動方法及び自律移動体
JP5336298B2 (ja) 搬送台車の位置決め停止装置