KR20120130709A - 출력 밀도 특성이 향상된 고출력의 리튬 이차전지 - Google Patents

출력 밀도 특성이 향상된 고출력의 리튬 이차전지 Download PDF

Info

Publication number
KR20120130709A
KR20120130709A KR1020120052852A KR20120052852A KR20120130709A KR 20120130709 A KR20120130709 A KR 20120130709A KR 1020120052852 A KR1020120052852 A KR 1020120052852A KR 20120052852 A KR20120052852 A KR 20120052852A KR 20120130709 A KR20120130709 A KR 20120130709A
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
active material
positive electrode
electrode active
Prior art date
Application number
KR1020120052852A
Other languages
English (en)
Other versions
KR101336082B1 (ko
Inventor
한경희
한창주
박수민
이지은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20120130709A publication Critical patent/KR20120130709A/ko
Application granted granted Critical
Publication of KR101336082B1 publication Critical patent/KR101336082B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 양극 활물질로서 명세서 상의 화학식 1로 표시되는 층상구조의 제 1 양극 활물질과 화학식 2로 표시되는 스피넬 구조의 제 2 양극 활물질을 포함하고 있고, 상기 제 2 양극 활물질의 함량이 양극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 양극; 및 음극 활물질로서 결정질 흑연과 비정질 카본을 포함하고 있고, 비정질 카본의 함량이 음극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 음극; 및 분리막;을 포함하는 것을 특징으로 하는 고출력 리튬 이차전지에 관한 것이다.

Description

출력 밀도 특성이 향상된 고출력의 리튬 이차전지 {Lithium Secondary Battery of High Power Property with Improved High Power Density}
본 발명은 출력 밀도 특성이 향상된 고출력의 리튬 이차전지에 관한 것으로, 더욱 상세하게는 양극 활물질로서 명세서 상의 화학식 1로 표시되는 층상구조의 제 1 양극 활물질과 화학식 2로 표시되는 스피넬 구조의 제 2 양극 활물질을 포함하고 있고, 상기 제 2 양극 활물질의 함량이 양극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 양극; 및 음극 활물질로서 결정질 흑연과 비정질 카본을 포함하고 있고, 비정질 카본의 함량이 음극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 음극; 및 분리막;을 포함하는 것을 특징으로 하는 고출력 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 최근에는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로서 이차전지의 사용이 실현화되고 있다. 그에 따라 다양한 요구에 부응할 수 있는 이차전지에 대해 많은 연구가 행해지고 있고, 특히, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지에 대한 수요가 높다.
특히, 전기자동차 및 하이브리드 전기자동차의 동력원으로 사용되는 리튬 이차전지는 단시간에 큰 출력을 발휘할 수 있는 고출력 특성이 요구된다.
종래에는 층상 구조(layered structure)의 리튬 코발트 복합산화물을 사용하고 리튬 이차전지의 양극 활물질로 사용하는 것이 일반적이었지만, 리튬 코발트 복합산화물의 경우, 주 구성원소인 코발트가 매우 고가이고, 출력특성이 나쁘므로, 발진과 급가속 등에 일시적으로 요구되는 높은 출력을 전지로부터 얻기 때문에 고출력을 요구하는 하이브리드 전기자동차(HEV)용으로 적합하지 못하다.
한편, 음극 활물질로는 표준 수소 전극 전위에 대해 약 -3V의 매우 낮은 방전 전위를 가지며, 흑연판 층(graphene layer)의 일축 배향성으로 인해 매우 가역적인 충방전 거동을 보이며, 그로 인해 우수한 전극 수명 특성(cycle life)을 보이는 흑연이 주로 사용되고 있다.
그러나, 상기한 흑연은 출력 특성이 우수하지 못하므로 고출력을 요구하는 하이브리드 전기자동차(HEV)용의 에너지원으로 적합하지 못한 문제가 있다. 이에 비정질 카본을 음극 활물질로 사용하기 위한 연구가 진행되고 있으나, 종래의 비정질 카본은 에너지 밀도가 300 mAh/g 미만으로 낮은 문제가 있다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
따라서, 본 발명은 종래의 비정질 카본을 사용한 리튬 이차전지와 동등한 수준의 에너지 밀도특성을 발휘하면서도 전기 자동차 및 하이브리드 전기 자동차에 요구되는 고출력 특성 및 저온특성이 향상된 리튬 이차전지의 제공을 목적으로 한다.
본 발명에 따른 고출력 리튬 이차전지는,
양극 활물질로서 하기 화학식 1로 표시되는 층상구조의 제 1 양극 활물질과 화학식 2로 표시되는 스피넬 구조의 제 2 양극 활물질을 포함하고 있고, 상기 제 2 양극 활물질의 함량이 양극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 양극; 및
음극 활물질로서 결정질 흑연과 비정질 카본을 포함하고 있고, 비정질 카본의 함량이 음극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 음극; 및 분리막;을 포함하는 것을 특징으로 한다.
Lix(NivMnwCoyMz)O2- tAt (1)
상기 식에서,
0.8<x≤1.3, 0≤v≤0.9, 0≤w≤0.9, 0≤y≤0.9, 0≤z≤0.9, x+v+w+y+z=2, 0≤t<0.2;
M은 +2가 내지 +4가 산화수의 하나 이상의 금속 또는 전이금속 양이온이고; A는 -1 또는 -2가의 음이온이다.
LiaMn2-bM'bO4-cA'c (2)
상기 식에서, 0.8<a≤1.3, 0≤b≤0.5, 0≤c≤0.3; M'는 +2가 내지 +4가 산화수의 하나 이상의 금속 또는 전이금속 양이온이고; A'는 -1 또는 -2가의 음이온이다.
상기 결정질 흑연은 용량 대비 비표면적이 0.007 내지 0.011인 제 1 흑연과 용량 대비 비표면적이 0.005 내지 0.013인 제 2 흑연으로 이루어진 군에서 선택된 1종 또는 이들의 혼합물일 수 있다. 혼합물의 경우, 제 1 흑연과 제 2 흑연의 혼합비는 1:9 내지 9:1의 범위에서 결정될 수 있다.
구체적으로, 상기 제 1 흑연은, 1.4 내지 1.6g/cc의 분체밀도에서 분체 전도도가 100 S/cm 이상 내지 1000 S/cm 미만이고, 표면이 개질된 흑연으로서, XRD 데이터의 2θ = 43°(101)면의 능면정체 피크(rhombohedral peak)에서 3R 피크와 2H 피크가 구별되어 나타난다.
또한, 상기 제 2 흑연은, 1.4 내지 1.6g/cc의 분체밀도에서 분체 전도도가 10 S/cm 이상 내지 200 S/cm 미만이고, XRD 데이터의 2θ = 43°(101)면의 능면정체 피크(rhombohedral peak)에서 2H 피크가 나타난다. 이러한 제 2 흑연의 분체 전도도는 비정질 카본의 분체 전도도와 동등한 수준인 바 이로 인해 출력 특성이 향상되는 효과가 있다. 또한, 상기한 제 2 흑연은 내부 구조가 비정질 카본과 유사하여 장수명 특성에 장점을 발휘한다.
한편, 상기 비정질 카본은 용량 대비 비표면적이 0.01 내지 0.031인 제 1 카본과 용량 대비 비표면적이 0.0035 내지 0.0170인 제 2 카본으로 이루어진 군에서 선택된 1종 또는 이들의 혼합물일 수 있고, 혼합물의 경우, 제 1 카본과 제 2 카본의 혼합비는, 중량비를 기준으로 1:9 내지 9:1의 범위에서 결정될 수 있다.
구체적으로, 상기 제 1 카본은 1.0 내지 1.2 g/cc의 분체밀도에서 분체 전도도가 15 S/cm 이상 내지 100 S/cm 미만이고, 상기 제 2 카본은 1.4 내지 1.6 g/cc의 분체밀도에서 분체 전도도가 30 S/cm 이상 내지 100 S/cm 미만이다.
상기 화학식 1로 표시되는 층상 구조의 양극 활물질과 상기 화학식 2로 표시되는 스피넬 구조의 양극 활물질은 상기 양극 활물질의 전체 중량을 기준으로 제 1 양극 활물질이 10 중량% 내지 50 중량%, 및 제 2 양극 활물질이 50 중량% 내지 90 중량%의 범위에서 혼합될 수 있다.
본 발명의 구체적인 실시예에서, 상기 제 1 양극 활물질은, 용량 대비 평균입경이 0.03 내지 0.1 ㎛/mAh이고, 2.65 내지 2.85 g/cc의 분체밀도에서 분체 전도도가 1ⅹ10-3 S/cm 이상 내지 10ⅹ10-3 S/cm 미만인 층상 결정구조의 리튬 전이금속 산화물일 수 있다.
하나의 상세한 예에서, 상기 화학식 1로 표시되는 양극 활물질은 Ni 및 Mn의 혼합 전이금속을 포함하며 리튬을 제외한 전체 전이금속의 평균 산화수가 +3가 보다 크고, 몰비 기준으로 니켈의 함량이 망간의 함량과 동일하거나 그 보다 큰 조건을 만족하는 층상 결정구조의 리튬 전이금속 산화물일 수 있다.
또한, 하나의 구체적인 예에서, 상기 화학식 1로 표시되는 리튬 전이금속 산화물은 Li(Ni0.5Mn0.3Co0.2)O2 또는 Li(Ni1/3Mn1/3Co1/3)O2 일 수 있다.
상기 화학식 1에서 Ni, Mn, Co 등의 전이금속은 +2가 내지 +4가 산화수의 금속 및/또는 기타 전이금속(M) 원소로 치환될 수 있는 바, 상세하게는 Al, Mg 및 Ti로 이루어진 군에서 선택되는 하나 이상으로 치환될 수 있고, 이 경우에 상세한 치환량은 0.3≤z≤0.6일 수 있다.
또한, 본 발명의 구체적인 실시예에서, 상기 제 2 양극 활물질은 용량 대비 평균입경이 0.1 내지 0.2 ㎛/mAh이고 2.65 내지 2.85 g/cc의 분체밀도에서 분체 전도도가 1ⅹ10-5 S/cm 이상 내지 10ⅹ10-5 S/cm 미만인 스피넬 결정구조의 리튬 전이금속 산화물일 수 있다.
상기 화학식 2에서 M'는 Co, Mn, Ni, Al, Mg 및 Ti로 이루어진 군에서 선택되는 하나 이상일 수 있다.
또한, 상기 화학식 1 및 2에서 산소이온은 소정의 범위에서 산화수 -1가 또는 -2가의 음이온(A, A')로 치환될 수 있는 바, 상기 A 및 A'는 상세하게는 서로 독립적으로 F, Cl, Br, I 과 같은 할로겐, S 및 N으로 이루어진 군에서 선택되는 하나 이상인 것일 수 있다.
이러한 음이온들의 치환에 의해 전이금속과의 결합력이 우수해지고 화합물의 구조 전이가 방지되기 때문에, 전지의 수명을 향상시킬 수 있다. 반면에, 음이온 A, A'의 치환량이 너무 많으면(t > 0.2) 불완전한 결정구조로 인해 오히려 수명 특성이 저하되는 문제가 있다.
상기 화학식 1 또는 화학식 2의 양극 활물질에서 산소(O)를 할로겐으로 치환하거나, Ni, Mn 등과 같은 전이금속을 다른 전이금속(M, M')으로 치환하는 경우에는, 그에 따른 화합물을 고온 반응 이전에 추가하여 제조될 수 있다.
본 출원의 발명자들이 실험적으로 확인한 바로는, 상기한 함량비 및 물리량의 범위 내에서 본 발명에 따른 리튬 이차전지는 고출력 특성을 발휘한다. 상기한 물리량들은 당업계에서 공지된 측정방법에 따라 측정할 수 있고, 구체적으로, 비표면적은 BET법으로 측정할 수 있으며, 분체 밀도는 진밀도 측정방법으로 측정할 수 있고, 분체 전도도는 분체를 펠렛으로 만든 후 면저항을 측정함으로써 측정할 수 있다.
상기한 바와 같은 특정한 물리량을 갖는 양극 활물질, 음극 활물질을의본 포함하고 있는 본 발명에 따른 고출력 리튬 이차전지는, 0.03 내지 0.05 Ah/cm3의 부피 대비 용량을 발휘하고, 0.1 내지 0.2 Wh/cm3의 부피 대비 에너지를 발휘한다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다.
이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포; 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열(CelgardR 2400, 2300(Hoechest Celanese Corp. 제품), 폴리프로필렌 분리막(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열(Tonen 또는 Entek) 등이 있다.
본 발명의 구체적인 실시예에서, 상기 분리막은 폴리 올레핀계 분리막과 실리콘과 같은 무기물을 포함하는 유무기 복합 분리막일 수 있다. 상기한 유무기 복합 분리막이 리튬 이차전지의 안전성 등을 향상시킴은 본 출원인의 선행출원들에서 설명한 바 있다.
본 발명은 또한, 상기와 같은 고출력 리튬 이차전지를 단위전지로 포함하는 중대형 전지모듈 및 상기 전지모듈을 포함하는 중대형 전지팩을 제공한다.
이러한 전지팩은 전기자동차, 하이브리드 전기자동차 등과 같이 고출력이 요구되는 동력원에 적용될 수 있음은 물론, 고출력에 따른 안정성 및 신뢰성의 확보가 중요한 전력저장 장치에 적용될 수 있다.
따라서, 본 발명은 상기 전지팩을 전원으로 사용하는 디바이스를 제공하고, 구체적으로, 상기 전지팩은 전기자동차, 하이브리드-전기자동차, 플러그-인 하이브리드 자동차, 또는 전력저장장치의 전원으로 사용될 수 있다.
중대형 전지모듈 및 전지팩의 구성 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 그에 대한 설명을 명세서에서는 생략한다.
상기 양극은, 상기한 양극 활물질을 포함하는 양극 합제를 NMP 등의 용매에 혼합하여 만들어진 슬러리를 양극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
상기 양극 합제는 상기 양극 활물질 이외에 선택적으로 도전재, 바인더, 충진제 등이 포함될 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 양극 집전체는, 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 분산액으로는 대표적으로 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등이 사용될 수 있다.
전극 재료의 페이스트를 금속 재료에 고르게 도포하는 방법은 재료의 특성 등을 감안하여 공지 방법 중에서 선택하거나 새로운 적절한 방법으로 행할 수 있다. 예를 들어, 페이스트를 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시킬 수 있다. 경우에 따라서는, 분배와 분산 과정을 하나의 공정으로 실행하는 방법을 사용할 수도 있다. 이 밖에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 택할 수도 있으며, 또는 별도의 기재(substrate) 위에 성형한 후 프레싱 또는 라미네이션 방법에 의해 집전체와 접합시킬 수도 있다.
금속판 위에 도포된 페이스트의 건조는 50 내지 200℃의 진공오븐에서 1일 이내로 건조시키는 것이 바람직하다.
상기 음극은, 음극 집전체 상에 상기한 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 도전제, 바인더 및 충진제 등의 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
리튬염 함유 비수계 전해질은, 비수 전해질과 리튬으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 에틸메틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(fluoro-ethylene carbonate), PRS(propene sultone), FPC(fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.
이상 설명한 바와 같이, 본 발명에 따른 리튬 이차전지는, 종래의 비정질 카본보다 높은 에너지 밀도(300 mAh/g 이상)를 갖고 특정한 물리량을 갖는 비정질 카본을 로딩량을 감소시켜 출력특성을 향상시키는 결정질 흑연과 소정의 혼합비로 혼합한 혼합물을 음극 활물질로 사용하고, 상기 음극 활물질과 조화를 이룰 수 있는 양극 활물질로서 소정의 함량비를 갖는 층상구조의 리튬 전이금속 산화물 및 스피넬 구조의 리튬 망간 산화물의 혼합물을 양극 활물질로 사용하여 리튬 이차전지를 구성함으로써 종래와 동등한 수준의 에너지 밀도 유지하는 동시에 전기 자동차 및 하이브리드 전기자동차에 요구되는 출력특성 등이 향상되는 장점이 있다.
도 1은 본 발명에 따른 표면 개질된 제 1 흑연의 X선 회절분석 결과를 도시한 것으로서, (a)는 표면 개질 전의 X선 회절분석 결과이고, (b)는 표면 개질 후의 X선 회절 분석 결과이다.
이하, 본 발명의 실시예를 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
용량 대비 평균입경이 0.05 ㎛/mAh인 LiNi1 /3Co1 /3Mn1 /3O2와 용량 대비 평균입경이 0.14 ㎛/mAh인 LiMn2O4를 30 : 70 의 혼합비로 혼합한 양극 활물질: 도전재: 바인더의 양이 89 : 6.0 : 5.0가 되도록 계량한 후 NMP에 넣고 믹싱(mixing)하여 양극 합제를 제조하고, 20 ㎛ 두께의 알루미늄 호일에 상기 양극 합제를 코팅한 후 압연 및 건조하여 양극을 제조하였다.
상기 양극과 마찬가지의 방법으로, 용량 대비 비표면적이 0.020 m2/mAh인 카본과 용량 대비 비표면적이 0.009 m2/mAh인 흑연을 70 : 30의 혼합비로 혼합한 음극 활물질: 도전재: 바인더의 양이 92 : 2 : 6 가 되도록 계량한 후 믹서에 넣고 믹싱(mixing)하여 음극 합제를 제조하고, 10 ㎛ 두께의 구리호일에 상기 음극 합제를 코팅한 후 압연 및 건조하여 음극을 제조하였다.
상기 양극, 음극 및 전해질로 LiPF6가 1몰 녹아있는 카보네이트 전해액을 이용하여 전지를 제작하였다.
이 때, LiNi1/3Co1/3Mn1/3O2는 2.75 g/cc의 분체밀도에서 1.0ⅹ10-3 S/cm의 분체 전도도를 발휘하고, LiMn2O4는 2.80 g/cc의 분체밀도에서, 5ⅹ10-5 S/cm 의 분체 전도도를 발휘하며, 카본은, 1.1 g/cc의 분체밀도에서, 30 S/cm의 분체 전도도를 발휘하고, 흑연은, 1.5 g/cc의 분체밀도에서, 250 S/cm의 분체 전도도를 발휘한다.
<실시예 2>
실시예 1에서, LiNi1 /3Co1 /3Mn1 /3O2와 LiMn2O4의 혼합비가 20 : 80 인 양극 활물질을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<실시예 3>
실시예 1에서, 카본과 흑연의 혼합비가 80 : 20 인 음극 활물질을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<실시예 4>
실시예 1에서, 용량 대비 비표면적이 0.020 m2/mAh인 카본 대신에 용량 대비 비표면적이 0.012 m2/mAh인 카본을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다. 이 때, 상기 카본은 1.5 g/cc의 분체밀도에서, 65 S/cm의 분체 전도도를 발휘한다.
<실시예 5>
실시예 4에서, LiNi1/3Co1/3Mn1/3O2와 LiMn2O4의 혼합비가 20 : 80 인 양극 활물질을 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 전지를 제작하였다.
<실시예 6>
실시예 4에서, 카본과 흑연의 혼합비가 80 : 20 인 음극 활물질을 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 전지를 제작하였다.
<비교예 1>
실시예 1에서, LiNi1 /3Co1 /3Mn1 /3O2와 LiMn2O4의 혼합비를 70 : 30로 한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<비교예 2>
실시예 1에서, 카본과 흑연의 혼합비를 30: 70로 한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<비교예 3>
실시예 1에서, 용량 대비 평균입경이 0.12 ㎛/mAh인 LiNi1/3Co1/3Mn1/3O2와 용량 대비 평균입경이 0.23 ㎛/mAh인 LiMn2O4의 혼합물을 양극 활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<비교예 4>
실시예 1에서, 2.75 g/cc의 분체밀도에서 9ⅹ10-4 S/cm의 분체 전도도를 발휘하는 LiNi1/3Co1/3Mn1/3O2와 2.80 g/cc의 분체밀도에서, 5ⅹ10-6 S/cm 의 분체 전도도를 발휘하는 LiMn2O4의 혼합물을 양극 활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<비교예 5>
실시예 1에서, 용량 대비 비표면적이 0.007 m2/mAh인 카본과 용량 대비 비표면적이 0.004 m2/mAh인 흑연의 혼합물을 음극 활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<비교예 6>
실시예 1에서, 1.1 g/cc의 분체밀도에서, 10 S/cm의 분체 전도도를 발휘하는 카본과 1.5 g/cc의 분체밀도에서 50 S/cm의 분체 전도도를 발휘하는 흑연의 혼합물을 음극 활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제작하였다.
<실험예 1>
실시예 1 내지 6 및 비교예 1 내지 6의 전지들을 이용하여 0.2C 대비 3C의 비율로 레이트 특성을 확인하고 그 결과를 하기 표 1에 나타내었다. C-rate 측정 기준은 1C을 13A으로 하였다. 충방전은 3.0V 내지 4.2V 사이에서 진행되었으며 충전은 CC/CV, 방전은 CC로 측정되었다.
<표 1>
Figure pat00001

<실험예 2>
10초 동안 전류를 흘린 후 실시예 1 내지 6 및 비교예 1 내지 6의 전지들의 출력 값을 하기 식들을 이용하여 계산하고 비교하여 출력 특성을 확인하였다. 그 결과를 하기 표 2에 나타내었다.
SOC 50%에서 10초 동안 방전 시의 전지 저항(10s discharge battery resistances at SOC50%)
R = (OCV - V)/I
상기 식에서, OCV 는 방전 펄스 직전의 개방회로전압;이고 V 는 10초 방전 펄스의 종지 전압; 이다.
상이한 SOC 에서 10초 방전 시의 출력(10s discharge power at the different SOC%)
P = Vmin(OCV - Vmin)/R
<표 2>
Figure pat00002

본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (20)

  1. 양극 활물질로서 하기 화학식 1로 표시되는 층상구조의 제 1 양극 활물질과 화학식 2로 표시되는 스피넬 구조의 제 2 양극 활물질을 포함하고 있고, 상기 제 2 양극 활물질의 함량이 양극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 양극; 및
    음극 활물질로서 결정질 흑연과 비정질 카본을 포함하고 있고, 비정질 카본의 함량이 음극 활물질 전체 중량을 기준으로 40 내지 100 중량%인 음극; 및 분리막;을 포함하는 것을 특징으로 하는 고출력 리튬 이차전지.
    Lix(NivMnwCoyMz)O2- tAt (1)
    상기 식에서,
    0.8<x≤1.3, 0≤v≤0.9, 0≤w≤0.9, 0≤y≤0.9, 0≤z≤0.9, x+v+w+y+z=2, 0≤t<0.2;
    M은 +2가 내지 +4가 산화수의 하나 이상의 금속 또는 전이금속 양이온이고;
    A는 -1 또는 -2가의 음이온이다.
    LiaMn2 - bM'bO4 - cA'c (2)
    상기 식에서,
    0.8<a≤1.3, 0≤b≤0.5, 0≤c≤0.3;
    M'는 +2가 내지 +4가 산화수의 하나 이상의 금속 또는 전이금속 양이온이고;
    A'는 -1 또는 -2가의 음이온이다.
  2. 제 1 항에 있어서, 상기 결정질 흑연은 용량 대비 비표면적이 0.007 내지 0.011인 제 1 흑연과 용량 대비 비표면적이 0.005 내지 0.013인 제 2 흑연으로 이루어진 군에서 선택된 1종 또는 이들의 혼합물인 것을 특징으로 하는 고출력 리튬 이차전지.
  3. 제 2 항에 있어서, 상기 제 1 흑연은 1.4 내지 1.6g/cc의 분체밀도에서 분체 전도도가 100 S/cm 이상 내지 1000 S/cm 미만인 것을 특징으로 하는 고출력 리튬 이차전지.
  4. 제 3 항에 있어서, 상기 제 1 흑연은 표면이 개질된 흑연으로서 XRD 데이터의 2θ = 43°(101)면의 능면정체 피크(rhombohedral peak)에서 3R 피크와 2H 피크가 구별되어 나타나는 것을 특징으로 하는 고출력 리튬 이차전지.
  5. 제 2 항에 있어서, 상기 제 2 흑연은 1.4 내지 1.6g/cc의 분체밀도에서 분체 전도도가 10 S/cm 이상 내지 200 S/cm 미만인 것을 특징으로 하는 고출력 리튬 이차전지.
  6. 제 5 항에 있어서, 상기 제 2 흑연은 XRD 데이터의 2θ = 43°(101)면의 능면정체 피크(rhombohedral peak)에서 2H 피크가 나타나는 것을 특징으로 하는 고출력 리튬 이차전지.
  7. 제 1 항에 있어서, 상기 비정질 카본은 용량 대비 비표면적이 0.01 내지 0.031인 제 1 카본과 용량 대비 비표면적이 0.0035 내지 0.0170인 제 2 카본으로 이루어진 군에서 선택된 1종 또는 이들의 혼합물인 것을 특징으로 하는 고출력 리튬 이차전지.
  8. 제 7 항에 있어서, 상기 제 1 카본은 1.0 내지 1.2 g/cc의 분체밀도에서 분체 전도도가 15 S/cm 이상 내지 100 S/cm 미만인 것을 특징으로 하는 고출력 리튬 이차전지.
  9. 제 7 항에 있어서, 상기 제 2 카본은 1.4 내지 1.6 g/cc의 분체밀도에서 분체 전도도가 30 S/cm 이상 내지 100 S/cm인 것을 특징으로 하는 고출력 리튬 이차전지.
  10. 제 1 항에 있어서, 상기 제 1 양극 활물질은 용량 대비 평균입경이 0.03 내지 0.1 ㎛/mAh인 것을 특징으로 하는 고출력 리튬 이차전지.
  11. 제 10 항에 있어서, 상기 제 1 양극 활물질은 2.65 내지 2.85 g/cc의 분체밀도에서 분체 전도도가 1ⅹ10-3 S/cm 이상 내지 10ⅹ10-3 S/cm 미만인 것을 특징으로 하는 고출력 리튬 이차전지.
  12. 제 1 항에 있어서, 상기 제 2 양극 활물질은 용량 대비 평균입경이 0.1 내지 0.2 ㎛/mAh인 것을 특징으로 하는 고출력 리튬 이차전지.
  13. 제 1 항에 있어서, 상기 제 2 양극 활물질은 2.65 내지 2.85 g/cc의 분체밀도에서 분체 전도도가 1ⅹ10-5 S/cm 이상 내지 10ⅹ10-5 S/cm 미만인 것을 특징으로 하는 고출력 리튬 이차전지.
  14. 제 1 항에 있어서, 상기 화학식 1에서 M은 Al, Mg 및 Ti로 이루어진 군에서 선택되는 하나 이상이고, 상기 화학식 2에서 M'는 Co, Mn, Ni, Al, Mg 및 Ti로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 고출력 리튬 이차전지.
  15. 제 1 항에 있어서, 상기 화학식 1 및 2에서 A 및 A'는 서로 독립적으로 할로겐, S 및 N으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 고출력 리튬 이차전지.
  16. 제 1 항에 있어서, 상기 리튬 이차전지는 부피 대비 용량이 0.03 내지 0.05 Ah/cm3 및 부피 대비 에너지가 0.1 내지 0.2 Wh/cm3인 것을 특징으로 하는 고출력 리튬 이차전지.
  17. 제 1 항에 있어서, 상기 분리막은 유무기 복합 분리막인 것을 특징으로 하는 고출력 리튬 이차전지.
  18. 제 1 항의 리튬 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  19. 제 18 항에 따른 전지모듈을 전원으로 사용하는 전기자동차 또는 하이브리드 전기자동차.
  20. 제 18 항에 따른 전지모듈을 전원으로 사용하는 전력저장장치.
KR1020120052852A 2011-05-23 2012-05-18 출력 밀도 특성이 향상된 고출력의 리튬 이차전지 KR101336082B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110048544 2011-05-23
KR1020110048544 2011-05-23

Publications (2)

Publication Number Publication Date
KR20120130709A true KR20120130709A (ko) 2012-12-03
KR101336082B1 KR101336082B1 (ko) 2013-12-03

Family

ID=47217874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120052852A KR101336082B1 (ko) 2011-05-23 2012-05-18 출력 밀도 특성이 향상된 고출력의 리튬 이차전지

Country Status (6)

Country Link
US (1) US9263737B2 (ko)
EP (1) EP2696408B1 (ko)
JP (1) JP2014513408A (ko)
KR (1) KR101336082B1 (ko)
CN (1) CN103563140B (ko)
WO (1) WO2012161479A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143337A (ko) 2014-06-13 2015-12-23 주식회사 엘지화학 실리콘-탄소 복합체, 이를 포함하는 음극, 상기 실리콘-탄소 복합체를 이용하는 이차 전지 및 상기 실리콘-탄소 복합체의 제조방법
KR20160029687A (ko) 2014-09-05 2016-03-15 주식회사 엘지화학 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법
KR20160033608A (ko) 2014-09-18 2016-03-28 주식회사 엘지화학 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
US10199693B2 (en) 2014-09-29 2019-02-05 Lg Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode
US10680290B2 (en) 2014-09-29 2020-06-09 Lg Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336083B1 (ko) * 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161479A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
CN103548188B (zh) 2011-05-23 2016-03-30 株式会社Lg化学 具有增强的能量密度特性的高能量密度锂二次电池
KR101336078B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161476A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
CN103503204B (zh) 2011-05-23 2016-03-09 株式会社Lg化学 具有增强的功率密度特性的高输出锂二次电池
WO2013009078A2 (ko) 2011-07-13 2013-01-17 주식회사 엘지화학 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
JP6518061B2 (ja) * 2014-12-18 2019-05-22 株式会社エンビジョンAescジャパン リチウムイオン二次電池
CN113594447B (zh) * 2018-02-13 2023-11-10 宁德时代新能源科技股份有限公司 三元正极材料、正极极片及制备方法、应用
KR20210133085A (ko) * 2020-04-28 2021-11-05 삼성에스디아이 주식회사 전고체 이차 전지

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660880A (ja) 1992-08-05 1994-03-04 Hitachi Maxell Ltd リチウム二次電池
JPH08227714A (ja) 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd リチウムイオン二次電池負極用炭素材料およびその製造方法
ID18173A (id) 1996-05-09 1998-03-12 Matsushita Electric Ind Co Ltd Baterai sekunder elektrolit tidak berair
JPH1012217A (ja) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd リチウムイオン二次電池用負極
JPH1083818A (ja) * 1996-09-06 1998-03-31 Hitachi Ltd リチウム二次電池
JPH10112318A (ja) 1996-10-08 1998-04-28 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JP3722318B2 (ja) 1996-12-12 2005-11-30 株式会社デンソー 二次電池用電極およびその製造方法、並びに非水電解液二次電池
JPH10241690A (ja) * 1997-02-27 1998-09-11 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極
JPH1131501A (ja) 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd 2次電池用電極の製造方法及び2次電池用電極並びにそれを用いた2次電池
JP4379925B2 (ja) 1998-04-21 2009-12-09 住友金属工業株式会社 リチウムイオン二次電池の負極材料に適したグラファイト粉末
US6482547B1 (en) * 1998-05-21 2002-11-19 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery using the same
JP2000012030A (ja) 1998-06-24 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP3152226B2 (ja) 1998-08-27 2001-04-03 日本電気株式会社 非水電解液二次電池、その製造法および炭素材料組成物
US6083150A (en) 1999-03-12 2000-07-04 C. R. Bard, Inc. Endoscopic multiple sample biopsy forceps
JP4497622B2 (ja) 2000-02-17 2010-07-07 株式会社Kri リチウム系二次電池用負極材料
JP3705728B2 (ja) * 2000-02-29 2005-10-12 株式会社東芝 非水電解液二次電池
FR2812119B1 (fr) 2000-07-24 2002-12-13 Commissariat Energie Atomique Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau mis en forme par thermo- compression
JP2002117836A (ja) 2000-08-04 2002-04-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極およびそれを用いた電池
JP4524881B2 (ja) * 2000-08-14 2010-08-18 ソニー株式会社 非水電解質二次電池
JP4151210B2 (ja) 2000-08-30 2008-09-17 ソニー株式会社 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法
JP2002270247A (ja) 2001-03-14 2002-09-20 Osaka Gas Co Ltd 非水系二次電池
JP2002279987A (ja) 2001-03-15 2002-09-27 Nikko Materials Co Ltd リチウム二次電池用正極材料及び該材料を用いたリチウム二次電池
JP2002358966A (ja) 2001-06-04 2002-12-13 Hitachi Ltd リチウム二次電池正極板及びリチウム二次電池
JP2003092108A (ja) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP3979044B2 (ja) * 2001-07-24 2007-09-19 新神戸電機株式会社 リチウム二次電池
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP4177574B2 (ja) * 2001-11-02 2008-11-05 松下電器産業株式会社 リチウム二次電池
JP4085243B2 (ja) * 2002-03-26 2008-05-14 大阪瓦斯株式会社 非水系二次電池
JP2003282139A (ja) 2002-03-26 2003-10-03 Osaka Gas Co Ltd 非水系二次電池
JP2004006094A (ja) 2002-05-31 2004-01-08 Nec Corp 非水電解液二次電池
JP4183472B2 (ja) * 2002-10-10 2008-11-19 三洋電機株式会社 非水電解質二次電池
JP2004259511A (ja) 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd リチウム二次電池
KR100576221B1 (ko) 2003-05-15 2006-05-03 주식회사 엘지화학 대용량 리튬 2차 전지용 음극 활물질 및 이를 포함하는대용량 리튬 2차 전지
US20070072086A1 (en) 2003-05-15 2007-03-29 Yuasa Corporation Nonaqueous electrolyte cell
JP4742866B2 (ja) 2003-05-26 2011-08-10 日本電気株式会社 二次電池用正極活物質、二次電池用正極、二次電池、および二次電池用正極活物質の製造方法
TWI246212B (en) 2003-06-25 2005-12-21 Lg Chemical Ltd Anode material for lithium secondary cell with high capacity
KR100560538B1 (ko) * 2003-06-27 2006-03-15 삼성에스디아이 주식회사 리튬 이온 이차 전지용 음극 활물질
KR100548988B1 (ko) * 2003-11-26 2006-02-02 학교법인 한양학원 리튬이차전지용 양극활물질 제조방법, 그 방법에 사용되는반응기 및 그 방법으로 제조되는 리튬이차전지용 양극활물질
JP2005259617A (ja) 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JP2005285462A (ja) 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005285633A (ja) 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP4748949B2 (ja) * 2004-03-31 2011-08-17 三洋電機株式会社 非水電解質二次電池
JP4841814B2 (ja) 2004-07-14 2011-12-21 株式会社Kri 非水系二次電池
JP5086085B2 (ja) 2004-10-21 2012-11-28 エボニック デグサ ゲーエムベーハー リチウムイオンバッテリー用の無機セパレータ電極ユニット、その製造方法及びリチウムバッテリーにおけるその使用
JP2006172778A (ja) 2004-12-14 2006-06-29 Hitachi Ltd エネルギー貯蔵デバイス
JP2006236830A (ja) 2005-02-25 2006-09-07 Ngk Insulators Ltd リチウム二次電池
JP5105393B2 (ja) 2005-03-02 2012-12-26 日立マクセルエナジー株式会社 非水電解質二次電池
KR100660759B1 (ko) 2005-03-11 2006-12-22 제일모직주식회사 비수계 전해질 리튬 이차전지용 양극활물질, 그 제조방법및 그를 포함하는 리튬 이차전지
KR100674287B1 (ko) 2005-04-01 2007-01-24 에스케이 주식회사 핵·껍질 다층구조를 가지는 리튬이차전지용 양극 활물질,그 제조 방법 및 이를 사용한 리튬이차전지
JP4781004B2 (ja) 2005-04-28 2011-09-28 パナソニック株式会社 非水電解液二次電池
KR101347671B1 (ko) 2005-06-07 2014-01-03 히다치 막셀 가부시키가이샤 비수전해액 이차 전지
WO2007021086A1 (en) 2005-08-16 2007-02-22 Lg Chem, Ltd. Cathode active material and lithium secondary battery containing them
KR100783293B1 (ko) 2005-08-16 2007-12-10 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
KR20220156102A (ko) 2005-10-20 2022-11-24 미쯔비시 케미컬 주식회사 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액
JP5016814B2 (ja) * 2005-12-14 2012-09-05 株式会社日立製作所 非水系二次電池
JP5076316B2 (ja) 2005-12-27 2012-11-21 ソニー株式会社 二次電池用負極および二次電池
JP5309421B2 (ja) 2006-02-02 2013-10-09 日産自動車株式会社 リチウムイオン二次電池
KR100801637B1 (ko) 2006-05-29 2008-02-11 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
JP2007335360A (ja) * 2006-06-19 2007-12-27 Hitachi Ltd リチウム二次電池
JP2008262768A (ja) * 2007-04-11 2008-10-30 Nec Tokin Corp リチウムイオン二次電池
JP2009032682A (ja) 2007-06-28 2009-02-12 Hitachi Maxell Ltd リチウムイオン二次電池
JP5229472B2 (ja) * 2007-11-12 2013-07-03 戸田工業株式会社 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
KR100999563B1 (ko) 2008-01-14 2010-12-08 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조방법, 및 이를포함하는 리튬 이차 전지
JP5171283B2 (ja) * 2008-01-22 2013-03-27 日立ビークルエナジー株式会社 非水電解液二次電池
JP5430920B2 (ja) * 2008-03-17 2014-03-05 三洋電機株式会社 非水電解質二次電池
JP2010034024A (ja) 2008-06-25 2010-02-12 Hitachi Maxell Ltd リチウムイオン二次電池
JP2010092845A (ja) 2008-09-10 2010-04-22 Sumitomo Chemical Co Ltd 非水電解質二次電池
KR20110015021A (ko) 2009-02-06 2011-02-14 파나소닉 주식회사 리튬 이온 이차전지 및 리튬 이온 이차전지의 제조방법
JP5195499B2 (ja) 2009-02-17 2013-05-08 ソニー株式会社 非水電解質二次電池
KR101073619B1 (ko) 2009-06-01 2011-10-14 재단법인 구미전자정보기술원 전기화학 셀용 유무기 복합 분리막 및 이를 포함하는 전기화학 셀
JP2011034675A (ja) 2009-07-29 2011-02-17 Sony Corp 二次電池用正極および二次電池
JP5286200B2 (ja) * 2009-09-01 2013-09-11 日立ビークルエナジー株式会社 リチウムイオン二次電池
CN102362384B (zh) 2009-09-01 2013-10-09 日立车辆能源株式会社 非水电解质二次电池
JP5084802B2 (ja) 2009-09-04 2012-11-28 株式会社日立製作所 リチウムイオン二次電池
JP5495300B2 (ja) 2009-10-02 2014-05-21 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP2011081960A (ja) 2009-10-05 2011-04-21 Kri Inc 非水系二次電池
DE102009049326A1 (de) * 2009-10-14 2011-04-21 Li-Tec Battery Gmbh Kathodische Elektrode und elektrochemische Zelle hierzu
US20120231340A1 (en) 2009-11-20 2012-09-13 Sumitomo Chemical Company, Limited Transition-metal-containing hydroxide and lithium-containing metal oxide
CN103548188B (zh) 2011-05-23 2016-03-30 株式会社Lg化学 具有增强的能量密度特性的高能量密度锂二次电池
KR101336083B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
CN103503204B (zh) 2011-05-23 2016-03-09 株式会社Lg化学 具有增强的功率密度特性的高输出锂二次电池
WO2012161479A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101336078B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161476A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2013009078A2 (ko) 2011-07-13 2013-01-17 주식회사 엘지화학 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143337A (ko) 2014-06-13 2015-12-23 주식회사 엘지화학 실리콘-탄소 복합체, 이를 포함하는 음극, 상기 실리콘-탄소 복합체를 이용하는 이차 전지 및 상기 실리콘-탄소 복합체의 제조방법
US10249872B2 (en) 2014-06-13 2019-04-02 Lg Chem, Ltd. Silicon-carbon composite, negative electrode comprising same, secondary battery using silicon-carbon composite, and method for preparing silicon-carbon composite
KR20160029687A (ko) 2014-09-05 2016-03-15 주식회사 엘지화학 리튬 전극, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 리튬 전극의 제조방법
US10388962B2 (en) 2014-09-05 2019-08-20 Lg Chem, Ltd. Lithium electrode, lithium secondary battery comprising same, battery module comprising lithium secondary battery, and preparation method of lithium electrode
KR20160033608A (ko) 2014-09-18 2016-03-28 주식회사 엘지화학 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
US10199693B2 (en) 2014-09-29 2019-02-05 Lg Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode
US10680290B2 (en) 2014-09-29 2020-06-09 Lg Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode

Also Published As

Publication number Publication date
US20140080000A1 (en) 2014-03-20
KR101336082B1 (ko) 2013-12-03
US9263737B2 (en) 2016-02-16
CN103563140B (zh) 2015-11-25
WO2012161479A3 (ko) 2013-01-17
EP2696408A2 (en) 2014-02-12
JP2014513408A (ja) 2014-05-29
EP2696408A4 (en) 2014-11-05
CN103563140A (zh) 2014-02-05
WO2012161479A2 (ko) 2012-11-29
EP2696408B1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
KR101336082B1 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101336070B1 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
KR101336079B1 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
KR101336076B1 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101336083B1 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101336674B1 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
KR101336078B1 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 7