KR20120027523A - 커패시터들을 형성하는 방법 - Google Patents
커패시터들을 형성하는 방법 Download PDFInfo
- Publication number
- KR20120027523A KR20120027523A KR1020127000840A KR20127000840A KR20120027523A KR 20120027523 A KR20120027523 A KR 20120027523A KR 1020127000840 A KR1020127000840 A KR 1020127000840A KR 20127000840 A KR20127000840 A KR 20127000840A KR 20120027523 A KR20120027523 A KR 20120027523A
- Authority
- KR
- South Korea
- Prior art keywords
- metal oxide
- oxide layer
- ruo
- dielectric metal
- phase
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 37
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 108
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 108
- 238000000137 annealing Methods 0.000 claims abstract description 46
- 239000007772 electrode material Substances 0.000 claims abstract description 39
- 238000000151 deposition Methods 0.000 claims abstract description 36
- 230000008859 change Effects 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 17
- 230000008021 deposition Effects 0.000 claims description 14
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 13
- 239000002243 precursor Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- -1 Ta 2 O 5 Inorganic materials 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 26
- 239000000463 material Substances 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 6
- 229910052707 ruthenium Inorganic materials 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- TZYQADPFBSMPOR-UHFFFAOYSA-N CC1(C=CC=C1)[Zr] Chemical compound CC1(C=CC=C1)[Zr] TZYQADPFBSMPOR-UHFFFAOYSA-N 0.000 description 2
- JFWBIRAGFWPMTI-UHFFFAOYSA-N [Zr].[CH]1C=CC=C1 Chemical compound [Zr].[CH]1C=CC=C1 JFWBIRAGFWPMTI-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- IQSUNBLELDRPEY-UHFFFAOYSA-N 1-ethylcyclopenta-1,3-diene Chemical compound CCC1=CC=CC1 IQSUNBLELDRPEY-UHFFFAOYSA-N 0.000 description 1
- OXJUCLBTTSNHOF-UHFFFAOYSA-N 5-ethylcyclopenta-1,3-diene;ruthenium(2+) Chemical compound [Ru+2].CC[C-]1C=CC=C1.CC[C-]1C=CC=C1 OXJUCLBTTSNHOF-UHFFFAOYSA-N 0.000 description 1
- DFCFYQKPFVUCAV-UHFFFAOYSA-N C(C)C1(C=CC=C1)[Zr] Chemical compound C(C)C1(C=CC=C1)[Zr] DFCFYQKPFVUCAV-UHFFFAOYSA-N 0.000 description 1
- MQOJXNNXXHPKIJ-UHFFFAOYSA-N CCC1(C=CC=C1)C1=CC=CC1(CC)[Ru](C)(C)C=CC=CC Chemical compound CCC1(C=CC=C1)C1=CC=CC1(CC)[Ru](C)(C)C=CC=CC MQOJXNNXXHPKIJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- YHGGQZOFJGJAMR-UHFFFAOYSA-N cyclopenta-1,3-diene ruthenium Chemical compound C1=CC=CC1.C1=CC=CC1.[Ru] YHGGQZOFJGJAMR-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02356—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02186—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/65—Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
커패시터를 형성하는 방법은 내부 전도성 커패시터 전극 재료 위에 75Å 이하의 두께로 제 1 상의 유전체 금속 산화물 층을 증착하는 단계를 포함한다. 제 1 상 유전체 금속 산화물 층은 적어도 15의 k를 갖는다. 전도성 RuO2는 유전체 금속 산화물 층 위에 증착되며, 그것과 물리적으로 접촉한다. 그후, RuO2 및 유전체 금속 산화물 층은 500℃ 미만의 온도에서 어닐링된다. 어닐링 동안 유전체 금속 산화물과 물리적으로 접촉하는 RuO2는 제 1 상으로부터 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 유전체 금속 산화물 층의 변화를 용이하게 한다. 어닐링된 유전체 금속 산화물 층은 커패시터 구성의 커패시터 유전체 영역에 통합된다. 다른 구현예들이 개시되어 있다.
Description
본 명세서에 개시된 실시예들은 커패시터들을 형성하는 방법들에 관한 것이다.
커패시터들은 반도체 집적 회로, 예로서, DRAM 회로 같은 메모리 회로에 일반적으로 사용되는 전기적 구성요소들이다. 통상적 커패시터는 비전도성 커패시터 유전체 영역에 의해 분리된 두 개의 전도성 전극들로 구성된다. 집적 회로 밀도가 증가함에 따라, 커패시터 면적 감소에도 불구하고 충분히 높은 저장 커패시턴스를 유지하는 지속적인 과제가 있다. 셀 커패시턴스를 증가시키는 한 가지 방식은 셀 구조 기술들을 통한 것이다. 이런 기술들은 트렌치 및 스택 커패시터들 같은 3차원 셀 커패시터들을 포함한다. 셀 커패시턴스를 증가시키는 다른 방식들은 커패시터 전극들 및 커패시터 유전체 영역 중 하나 또는 양자 모두를 위한 새로운 재료들의 개발 및 활용을 포함한다.
커패시턴스를 최대화시키는 한 가지 방식은 커패시터 유전체 영역을 위해 매우 높은 유전 상수(k)를 갖는 하나 이상의 유전체들을 사용하는 것이다. 특정 유전체 금속 산화물들이 이런 목적들을 위해 사용될 수 있다. 유전체 금속 산화물들은 다양한 유전 상수를 갖는 다수의 서로 다른 비정질 및 결정 상(phase)들로 이루어질 수 있다. 일부 예들에서, 75Å 이하의 유전체 금속 산화물 층들의 증착은 이런 서로 다른 재료들을 위한 바람직한 가장 높은 k를 달성하기 위해 500℃를 매우 초과하는 후속 고온 어닐링을 필요로할 수 있다. 불행히, 이런 높은 온도들에 대한 기판의 노출은 다른 회로 구성요소들 및 재료들에 대한 손상을 초래할 수 있다. 따라서, 커패시터 유전체 층들의 증착 이후 기판들을 높은 온도들에 노출시킬 필요가 없는 높은 k 유전성을 갖는 커패시터들의 제조를 가능하게 하는 기술들을 개발하는 것이 바람직하다.
도 1은 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 2는 도 1에 의해 도시된 바에 후속하는 처리 단계의 도 1 기판의 도면이다.
도 3은 도 2에 의해 도시된 바에 후속하는 처리 단계의 도 2 기판의 도면이다.
도 4는 도 3에 의해 도시된 바에 후속하는 처리 단계의 도 3 기판의 도면이다.
도 5는 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 6은 도 5에 의해 도시된 바에 후속하는 처리 단계의 도 5 기판의 도면이다.
도 7은 본 발명의 실시예에 따른 처리의 기판 중의 개략 단면도이다.
도 8은 도 7에 의해 도시된 바에 후속하는 처리 단계의 도 7 기판의 도면이다.
도 9는 도 8에 의해 도시된 바에 후속하는 처리 단계의 도 8 기판의 도면이다.
도 10은 도 9에 의해 도시된 바에 후속하는 처리 단계의 도 9 기판의 도면이다.
도 11은 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 12는 도 11에 의해 도시된 바에 후속하는 처리 단계의 도 11 기판의 도면이다.
도 13은 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 14는 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 2는 도 1에 의해 도시된 바에 후속하는 처리 단계의 도 1 기판의 도면이다.
도 3은 도 2에 의해 도시된 바에 후속하는 처리 단계의 도 2 기판의 도면이다.
도 4는 도 3에 의해 도시된 바에 후속하는 처리 단계의 도 3 기판의 도면이다.
도 5는 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 6은 도 5에 의해 도시된 바에 후속하는 처리 단계의 도 5 기판의 도면이다.
도 7은 본 발명의 실시예에 따른 처리의 기판 중의 개략 단면도이다.
도 8은 도 7에 의해 도시된 바에 후속하는 처리 단계의 도 7 기판의 도면이다.
도 9는 도 8에 의해 도시된 바에 후속하는 처리 단계의 도 8 기판의 도면이다.
도 10은 도 9에 의해 도시된 바에 후속하는 처리 단계의 도 9 기판의 도면이다.
도 11은 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 12는 도 11에 의해 도시된 바에 후속하는 처리 단계의 도 11 기판의 도면이다.
도 13은 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
도 14는 본 발명의 실시예에 따른 처리 중의 기판의 개략 단면도이다.
커패시터들을 형성하는 제 1 실시예의 방법들이 도 1 내지 도 4를 참조로 설명되어 있다. 도 1을 참조하면, 기판 부분은 전체가 참조 번호 10으로 표시되어 있으며, 반도체 기판을 포함할 수 있다. 본 문서에 관련하여, 용어 "반도체 기판" 또는 "반전도성 기판"은 반전도성 웨이퍼(단독으로 또는 그 위에 다른 재료들을 포함하는 조립체들로) 및 반전도성 재료 층들(단독으로 또는 다른 재료들을 포함하는 조립체들로) 같은 벌크 반전도성 재료들을 포함하지만 이에 한정되지 않는 반전도성 재료를 포함하는 임의의 구성을 의미하는 것으로 정의된다. 용어 "기판"은 상술한 반전도성 기판들을 포함하지만 이에 한정되지 않는 임의의 지지 구조를 지칭한다. 예시적 기판(10)은 커패시터가 외부에 형성되는 베이스 재료 또는 기판(12)을 포함하는 것으로 도시되어 있다. 기판(12)은 절연성, 전도성 및/또는 반전도성일 수 있는 다수의 서로 다른 조성의 재료들 및 층들을 포함할 수 있다.
내부 전도성 커패시터 전극 재료(14)는 기판(12) 위에 증착되어 있다. 이는 균질하거나 비균질할 수 있으며, 전도성 도핑된 반전도성 재료들 및 하나 이상의 금속들이 예들이다. 본 문서에 관하여, "금속"은 원소 형태 금속들, 원소 금속들의 합금들 및 하나 이상의 전도성 금속 화합물들을 포함한다. 예들은 전도성 도핑된 실리콘, 티타늄, 텅스텐, 전도성 금속 니트라이드들, 백금, 루테늄 및 전도성 금속 산화물들을 포함한다. 내부 전도성 커패시터 전극 재료(14)를 위한 예시적 두께 범위는 50Å 내지 300Å이다.
도 2를 참조하면, 제 1 상(phase)의 유전체 금속 산화물 층(16)은 내부 전도성 커패시터 전극 재료(14) 위에 75Å 이하의 두께로 증착된다. 제 1 상 유전체 금속 산화물 층(16)은 적어도 15의 유전 상수 "k"를 갖는다. 유전체 층(16)은 내부 전도성 커패시터 전극 재료(14)와 직접적으로 물리적 터치 접촉하여 배치되거나 그렇지 않을 수 있다. 따라서, 하나 이상의 서로 다른 커패시터 유전체 재료들은 예로서, 층들(14, 16) 사이의 세 개의 수직 도트들로 표시된 바와 같이 제 1 상 유전체 금속 산화물 층(16) 및 전도성 커패시터 전극 재료(14) 중간에 제공될 수 있다. 그럼에도 불구하고, 일 실시예에서, 유전체 금속 산화물 층(16)의 두께는 60Å 이하이며, 일 실시예에서는 50Å 이하이다.
유전체 금속 산화물 층(16)의 제 1 상은 비정질(amorphous) 또는 결정질(crystalline)일 수 있다. 그럼에도 불구하고, 층(16)의 금속 산화물은 단지 단일 금속 원소를 포함할 수 있거나, 다수의 금속 원소들을 포함할 수 있다. 적어도 15의 k를 갖는 층(16)의 특정 고 k 유전성의 예시적 재료들은 ZrO2, TiO2, Ta2O5, HfO2 및 Nb2O5 중 적어도 하나를 포함한다.
유전체 금속 산화물 층(16)은 임의의 기존 또는 아직 개발되지 않은 방식으로 증착될 수 있으며, 화학 기상 증착 및 원자 층 증착 중 하나 또는 그 조합이 예들이다. 임의의 적절한 전구체들이 사용될 수 있으며, 예로서, 금속 함유 전구체들로서 금속 할라이드들 및 유기금속들이 사용될 수 있고, 산소 재료들을 포함하는 화합물들이 산소 함유 전구체들로서 사용될 수 있다. 예로서, ZrO2에 대하여, 지르코늄을 위한 예시적 화학 기상 증착 또는 원자 층 증착 전구체들은 지르코늄 테트라클로라이드(zirconium tetrachloride), 트리(디메틸-아미도)(사이클로펜타디에닐)지르코늄(tris (dimethyl-amido) (cyclopentadienyl) zirconium), 트리(디메틸-아미도)(메틸-사이클로펜타디에닐)지르코늄(tris (dimethyl-amido) (methyl-cyclopentadienyl) zirconium), 트리(디메틸-아미도)(에틸-사이클로펜타디에닐)지르코늄(tris (dimethyl-amido) (ethyl-cyclopentadienyl) zirconium), 테트라에틸 메틸 아미도 지르코늄(tetraethyl methyl amido zirconium), 및 테트라키스 디메틸 아미도 지르코늄(tetrakis dimethyl amido zirconium)을 포함한다. 예시적 산소-함유 전구체들은 O2, O3 및 H2O를 포함한다. 또한, 다양한 전구체들 중 둘 이상의 혼합물들도 물론 사용될 수 있다. 단지 예들로서, 증착 조건들은 250℃ 내지 350℃의 기판 온도 및 0.5Torr 내지 5Torr의 대기압 미만 챔버 압력을 포함한다.
도 2를 계속 참조하면, 전도성 RuO2(18)는 유전체 금속 산화물 층(16) 위에 증착되어 있고, 그것과 물리적으로 접촉한다. 이는 증착 상태에서 임의의 비정질 또는 결정질 상으로 이루어질 수 있다. 일 실시예에서, RuO2(18)의 두께는 적어도 50Å이다. 일 실시예에서, RuO2의 두께는 75Å 내지 300Å이며, 더 특정한 이상적 실시예는 100Å 내지 150Å이다.
RuO2(18)는 기존의 또는 아직 개발되지 않은 방식으로 증착될 수 있으며, 원자 층 증착 및 화학 기상 증착 중 하나 또는 양자가 예들이다. 예시적 온도, 압력 및 산소 함유 전구체들은 유전체 금속 산화물 층(16)의 증착에 대해 상술된 것들과 동일할 수 있다. 예시적 루테늄 함유 전구체들은 비스(사이클로펜타디에닐)류테늄(bis (cyclopentadienyl) ruthenium), 비스(에틸-사이클로펜타디에닐)루테늄(bis (ethyl-cyclopentadienyl) ruthenium), 비스(디메틸-펜타디에닐)루테늄(bis (dimethyl-pentadienyl) ruthenium), 트리(테트라-메틸-헵탄에디오네이트)루테늄(tris (tetra-methyl-heptanedionate) ruthenium), (디메틸-펜타디에닐)(에틸-사이클로펜타디에닐)루테늄((dimethyl-pentadienyl) (ethyl-cyclopentadienyl) ruthenium), (메틸-사이클로펜타디에닐)(피롤릴)루테늄((methyl-cyclopentadienyl) (pyrrolyl) ruthenium), (테트라에틸메틸아미도)루테늄((tetraethylmethylamido) ruthenium) 및 (테트라키스디메틸아미도)루테늄((tetrakisdimethylamido) ruthenium)을 포함한다.
도 3을 참조하면, RuO2(18) 및 유전체 금속 산화물 층(16)은 500℃ 미만의 온도로 어닐링되었다. 어닐링 동안 층(16)의 유전체 금속 산화물과 물리적으로 접촉하는 RuO2(18)는 제 1 상으로부터 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 유전체 금속 산화물 층(16)의 변화가 촉진되거나 이러한 변화를 부여받는다. 이는 도 2에 비해 점각된 상태로 유전체 금속 산화물 층(16)을 도시함으로써 도 3에 예시되어 있다. 일 실시예에서, 어닐링은 적어도 200℃의 온도에서 수행되며, 일 실시예에서, 400℃ 이하의 온도에서 수행된다. 압력은 대기압, 대기압미만 또는 대기압초과일 수 있으며, 어닐링 동안의 분위기는 불활성이거나 불활성이 아닐 수 있다.
증착된 상태의 RuO2가 비정질인 일 실시예에서, 이는 어닐링의 결과로서 결정질로 될 것이다. 일 실시예에서, 제 2 결정 상은 정방정계(tetragonal) 및 증착된 상태의 RuO2는 정방정계 이외의 상으로 이루어진다. 이런 실시예의 어닐링은 RiO2의 상을 정방정계로 변화시킨다.
금속 산화물 층이 75Å 이하의 두께를 갖는 경우, 적어도 15의 k를 갖는 유전체 금속 산화물 층과 직접적으로 물리적 터치 접촉하는 RuO2의 제공은 금속 산화물 층이 원하는 가장 높은 k 결정 상태를 달성하기 위해 노출되어야만 하는 온도 및 시간을 현저히 감소시킬 수 있다는 것이 발견되었다. 예로서, 70Å 이하의 두께로 증착된 ZrO2는 가장 높은 k 및 원하는 정방정계 상에 반대로 비정질, 단사정계(monoclinic) 또는 입방정계(cubic) 상 중 하나로 증착된다. RuO2 층과의 직접적인 물리적 터치 접촉의 부재시, 증착 상태의 ZrO2 층은 정방정계로의 완전한 변환을 달성하기 위해 적어도 5분 동안 적어도 600℃의 온도를 겪어야만 한다. 그와 직접적으로 물리적 터치 접촉하는 RuO2의 제공은 500℃ 미만의 온도들이 사용될 수 있게 한다.
특정 예들로서, ZrO2의 50Å 두께 층 위에 수용된 150Å 두께 RuO2 층은 5분 이하 이내에 250℃의 어닐링 온도에서 임의의 분위기 또는 임의의 압력에서 이런 ZrO2 층을 정방정계 상으로 변환시킬 것이다. 50Å의 증착 상태와 동일한 ZrO2가 RuO2의 100Å 두께 층에 의해 접촉되는 경우, 5분 이하 동안의 400℃의 온도에 대한 노출은 원하는 정방정계 상으로의 변환을 초래할 것이다.
제 2 결정 상은 예로서, 유전체 금속 산화물의 조성에 따라서 정방정계, 육방정계 또는 다른 것일 수 있다. 예로서, TiO2, HFO2 및 ZrO2를 위해, 바람직한 최고 k 상은 정방정계이다. Ta2O5 및 Nb2O5에 관하여, 최고 k 결정 상은 육방정계이다.
어닐링의 상술된 작용은 더 높은 k의 제 2 결정 상으로의 특정 및/또는 단일 목적의 변환을 위한 전용 어닐링으로서 수행될 수 있다. 대안적으로, 이런 어닐링은 하나 이상의 다른 목적들을 위한 기판의 후속 처리로부터 고유하게 초래될 수 있다. 예로서, 실온보다 높은 온도 및 500℃ 미만에서의 추가적 층들의 증착은 어닐링의 상술한 작용을 초래하거나 이를 구성할 수 있다. 예로서, 전도성 도핑된 폴리실리콘 및 티타늄 니트라이드 중 하나 또는 양자 모두의 외부 커패시터 전극 재료가 증착되는 경우, 이는 어닐링의 상술한 작용을 제공하기에 충분한 시간 기간 및 온도로 수행될 수 있다.
그럼에도 불구하고, 어닐링된 유전체 금속 산화물 층(16)은 커패시터 구성의 커패시터 유전체 영역에 통합될 것이다. 예로서, 도 3은 커패시터 구성(22)의 커패시터 유전체 영역(20)의 일부를 포함할 때 어닐링된 유전체 금속 산화물 층(16)을 도시한다. 커패시터 유전체 영역(20)은 단지 어닐링된 유전체 금속 산화물 층(16)에 의해 구성될 수 있거나, 어닐링된 유전체 금속 산화물 층(16)과 내부 전도성 커패시터 전극 재료(14) 사이에 하나 이상의 추가적 재료들을 포함할 수 있다. 그럼에도 불구하고, 도 3의 커패시터 구성(22)은 커패시터 유전체 영역(20), 내부 전도성 커패시터 전극 재료(14) 및 어닐링된 전도성 RuO2(18)를 포함하는 외부 전도성 커패시터 전극(24)을 포함하는 것으로서 도시되어 있다. 하나 이상의 추가적 전도성 재료들은 외부 전도성 커패시터 전극(24)의 일부를 포함하도록 추가될 수 있다. 예로서, 도 4에 도시된 바와 같이, 전도성 재료(26)는 외부 전도성 커패시터 전극(24)의 일부를 포함하도록 RuO2(18) 위에 증착되어 있다. 전도성 재료(26)는 균질하거나 비균질할 수 있으며, 하나 이상의 서로 다른 조성의 전도성 층들 및 재료들을 포함한다. 일 실시예에서, 재료(26)는 추가적 RuO2를 포함하거나 이를 주 구성요소로하여 구성된다.
일부 실시예들에서, 최종 커패시터 구성에서 RuO2는 외부 커패시터 전극의 일부에 포함되는 것이 바람직하지 않을 수 있다. 대안적으로, RuO2가 외부 커패시터 전극의 조성이되는 것이 바람직한 경우, 이는 최종 커패시터 구성의 커패시터 유전체 영역과 직접적으로 물리적 터치 접촉하지 않는 것이 바람직할 수 있다. 따라서, 어닐링의 상술한 작용 이후, 어닐링된 RuO2의 적어도 일부 또는 가능하게는 모두가 기판으로부터 에칭될 수 있다. 예로서, 도 5 및 도 6은 기판 부분(10a)에 관하여 커패시터를 형성하는 대안적 예시적 방법을 도시한다. 설명된 제 1 실시예들로부터의 유사 번호들이 적절하다면, 접미사 "a" 또는 다른 숫자들로 표시되는 일부 구성 편차들과 함께 사용된다. 도 5는 도 3에 도시된 것에 바로 후속하는 처리를 도시하며, RuO2(18)(미도시) 모두는 기판으로부터 에칭되었다. 비록, 도 5가 RuO2 모두가 에칭 제거된 것을 도시하지만, RuO2(18) 중 단지 일부만이 에칭 제거될 수 있다. 다른 유전체 금속 산화물 재료들에 대해 선택적으로 RuO2를 에칭하는 예시적 에칭 화학제는 O3, 예로서, O2와 O3의 혼합물을 포함하며, 여기서, O3은 이런 혼합물의 체적 백분율로 18% 내지 22 %이다.
도 6을 참조하면, 전도성 재료(26)는 어닐링된 유전체 금속 산화물 층(16)위에 증착되어 있으며, 그에 의해, 외부 전도성 커패시터 전극(24a)을 형성한다.
커패시터들을 형성하는 방법들의 예시적 추가적 실시예들이 기판 부분(10b)에 관하여 도 7 내지 도 10을 참조로 다음에 설명된다. 상술한 실시예들로부터의 참조 번호들은 적절하다면, 접미사 "b" 또는 다른 숫자들로 표시된 일부 구성 편차들과 함께 사용되어 있다. 도 7을 참조하면, 내부 전도성 커패시터 전극 재료(14b)는 기판(12) 위에 증착되어 있다. 재료(14b)는 재료(14)와 동일할 수 있으며, RuO2를 포함하는 그 일부 최외측 부분(30)을 갖는다. 최외측 부분(30)은 임의의 적절한 두께로 이루어질 수 있으며, RuO2 재료(18)에 대하여 상술된 예시적 두께 범위들이 예들이다.
도 8을 참조하면, 제 1 상의 유전체 금속 산화물 층(16)은 내부 전도성 커패시터 전극 재료(14b)의 RuO2(30) 위에, 그것과 물리적으로 접촉하여, 75Å 이하의 두께로 증착되어 있다.
도 9를 참조하면, RuO2(30) 및 유전체 금속 산화물 층(16)은 500℃ 미만의 온도로 어닐링된다. 어닐링 동안 층(16)의 유전체 금속 산화물과 물리적으로 접촉하는 RuO2(30)은 제 1 상으로부터 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 유전체 금속 산화물 층(16)의 변화를 용이하게 하거나, 변화를 부여한다. 예시적 처리는 설명된 제 1 실시예들에 관하여 상술한 바와 같다.
더 높은 k의 제 2 결정 상의 어닐링된 유전체 금속 산화물 층(16)은 내부 및 외부 커패시터 전극들을 포함하는 커패시터 구성의 커패시터 유전체 영역의 일부 또는 모두에 통합될 수 있다. 따라서, 외부 전도성 커패시터 전극 재료는 유전체 금속 산화물 층 위에 증착된다. 개입 재료들 또는 층들이 상 변화 어닐링을 받는 유전체 금속 산화물 층(16)과 외부 전도성 커패시터 전극 재료 사이에 수용될 수 있다. 대안적으로, 상 변화 어닐링을 받는 유전체 금속 산화물 층은 외부 전도성 커패시터 전극 재료와 직접적으로 물리적 터치 접촉할 수 있다.
도 10은 내부 전도성 커패시터 전극 재료(14b), 외부 전도성 커패시터 전극(24b) 및 그 사이에 수용된 커패시터 유전체 영역(20b)을 포함하는 커패시터 구성(22b)을 도시한다. 어닐링된 유전체 금속 산화물 층(16)은 커패시터 유전체 영역(20b)의 일부를 포함하고, 하나 이상의 다른 재료들 또는 층들은 세 개의 수직 배열 도트들에 의해 표시된 바와 같이 그 위에 수용될 수 있다. 대안적으로, 외부 전도성 커패시터 전극(24b)은 어닐링된 유전체 금속 산화물(16)과 직접 물리적으로 접촉할 수 있다. 또한, 그리고, 그럼에도 불구하고, 도 7 내지 도 10의 실시예들에서 상술한 어닐링의 작용은 전용 어닐링으로서 수행될 수 있으며, 그럼에도 불구하고, 어닐링은 외부 전도성 커패시터 전극(24b)의 증착 이전, 도중 또는 이후에 이루어질 수 있다.
RuO2는 O3를 사용하여 적절히 에칭될 수 있다. 따라서, 유전체 금속 산화물 층이 RuO2 위에 증착되는 일 실시예에서, 이는 예로서, RuO2의 에칭을 피하기 위해 O3가 없는 산소 함유 전구체를 사용하여 증착을 적어도 시작하는 것이 이런 증착에 바람직할 수 있다. 일 실시예에서, 내부 전도성 커패시터 전극 재료가 O3가 없는 산소 함유 전구체를 사용하여 유전체 금속 산화물로 덮여진 이후, 유전체 금속 산화물 층의 증착이 O3을 사용하여 계속될 수 있다.
상술한 어닐링이 수행될 때, 유전체 금속 산화물 층 위 및 아래 양자 모두와 물리적으로 접촉하는 RuO2를 제공하는 것이 바람직할 수 있다. 도 11 및 도 12는 기판 부분(10c)에 관한 이런 실시예의 예를 도시한다. 상술한 실시예들로부터의 유사 번호들은 적절하다면, 접미사 "c"와 함께 또는 다른 숫자들과 함께 표시된 일부 구성 편차들과 함께 사용되어 있다. 도 11은 도 8에 도시된 것에 바로 후속하여 이루어질 수 있는 바와 같은 처리를 도시한다. 구체적으로, 전도성 RuO2(18)는 유전체 금속 산화물 층(16) 위에 증착되어 그것과 물리적으로 접촉한다.
도 12를 참조하면, RuO2(18 및 30) 및 유전체 금속 산화물 층(16)은 제 1 결정 상보다 높은 k를 갖는 제 2 결정 상을 형성하도록 상술한 바와 같이 어닐링된다. RuO2(18) 중 일부 또는 모두는 예로서, 도 5 및 도 6의 실시예에 관하여 연속적으로 상술된 바와 같이 기판으로부터 에칭 제거될 수 있다. 대안적으로 또는 추가적으로, RuO2(18)는 외부 전도성 커패시터 전극 재료 중 일부 또는 모두를 포함할 수 있다.
도 13은 도 11 및 도 12를 참조로 설명된 처리에 도시된 것에 대한 추가적 대안적 실시예의 기판 부분(10d)을 도시한다. 상술된 실시예들로부터 유사 번호들은 적절하다면, 접미사 "d" 또는 다른 번호들로 표시된 일부 구성 편차들과 함께 사용된다. 도 13에서, 그 최외측 부분으로서 RuO2(30)를 포함하는 내부 전도성 커패시터 전극 재료(14b)가 증착되어 있다. 제 1 상의 제 1 유전체 금속 산화물 층(16)은 RuO2(30) 위에 그것과 물리적으로 접촉하여 75Å 이하의 두께로 증착되어 있다.
하나 이상의 추가적 또는 서로 다른 조성의 유전체 층들은 제 1 유전체 금속 산화물 층(16) 위에 제공되어 있다. 예로서, 도 13의 실시예에서, 적어도 제 2 유전체 층(40)은 제 1 유전체 금속 산화물 층(16) 위에 증착되어 있으며, 제 2 유전체 층(40)은 제 1 유전체 금속 산화물 층(16)의 조성과는 다른 조성으로 이루어진다. 이상적으로, 제 2 유전체 층(40)은 적어도 15의 k를 갖는 고 k 유전성이며, 그럼에도 불구하고, 유전체 금속 산화물을 포함하거나 그렇지 않을 수 있다. 하나 이상의 추가적 유전체 층들은 예로서, 층들(16 및 40) 사이에 세 개의 수직 도트들로 표시된 바와 같이, 제 2 유전체 층(40)과 제 1 유전체 금속 산화물 층(16) 사이에 제공될 수 있다.
제 3 유전체 금속 산화물 층(50)은 제 2 유전체 층(40) 위에 75Å 이하의 두께로 증착된다. 개입 유전체 층들은 층들(50 및 40) 사이의 세 개의 수직 도트들로 표시된 바와 같이 층들(50 및 40) 사이에 제공될 수 있다. 그럼에도 불구하고, 제 3 유전체 금속 산화물 층(50)은 제 2 유전체 층(40)의 조성과는 다른 조성으로 이루어지며, 적어도 15의 k를 갖는다. 제 1 및 제 2 유전체 금속 산화물 층들(16 및 50)은 동일 조성으로 이루어질 수 있거나, 서로 다른 조성들로 이루어질 수 있다. 또한, 이는 동일하거나 서로 다른 두께들로 이루어질 수 있다.
전도성 RuO2(18)는 제 3 유전체 금속 산화물 층(50) 위에 증착되어 그것과 물리적으로 접촉한다. 그후, 기판은 500℃ 미만의 온도에서 어닐링된다. 어닐링 동안 제 1 유전체 금속 산화물 층과 물리적으로 접촉하는 RuO2(30)는 제 1 상으로부터 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 제 1 유전체 금속 산화물 층(16)의 변화를 용이하게 하거나, 이러한 변화를 부여한다. 유사하게, 어닐링 동안 제 3 유전체 금속 산화물 층(50)과 물리적으로 접촉하는 RuO2(18)는 제 3 상으로부터 제 3 상보다 높은 k를 갖는 제 4 결정 상으로의 제 3 유전체 금속 산화물 층(50)의 변화를 용이하게 하거나, 이러한 변화를 부여한다. 제 1 및 제 3 상들은 동일할 수 있거나, 서로 다를 수 있다. 그럼에도 불구하고, 처리는 상술된 임의의 방식으로 이루어질 수 있으며, 도 14는 도 13의 기판에서 이루어지는 어닐링을 도시한다.
일 실시예에서, 어닐링된 제 1, 제 2 및 제 3 유전체 층들은 커패시터 구성(22d)의 커패시터 유전체 영역(20d)에 통합되고, 커패시터 구성(22d)은 RuO2(30)를 포함하는 내부 전도성 커패시터 전극 재료(14b)와, 전도성 RuO2(18)를 포함하는 외부 전도성 커패시터 전극 재료(24)를 포함한다. 추가적 전도성 층들은 이런 외부 전도성 커패시터 전극의 일부로서 RuO2 층(18) 위에 제공되거나 그렇지 않을 수 있다.
Claims (25)
- 커패시터를 형성하는 방법으로서,
기판 위에 내부 전도성 커패시터 전극 재료를 증착하는 단계;
상기 내부 전도성 커패시터 전극 재료 위에 75Å 이하의 두께로 적어도 15의 k를 갖는 제 1 상의 유전체 금속 산화물 층을 증착하는 단계;
상기 유전체 금속 산화물 층 위에, 그리고 그것과 물리적으로 접촉하여 전도성 RuO2를 증착하는 단계;
상기 전도성 RuO2의 증착 이후, 500℃ 미만의 온도에서 상기 RuO2와 상기 유전체 금속 산화물 층을 어닐링하는 단계로서, 상기 어닐링 동안 상기 유전체 금속 산화물과 물리적으로 접촉하는 상기 RuO2는 상기 제 1 상으로부터 상기 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 상기 유전체 금속 산화물 층의 변화를 촉진하는, 상기 어닐링하는 단계; 및
상기 어닐링된 유전체 금속 산화물 층을 내부 전도성 커패시터 전극 재료와, 어닐링된 전도성 RuO2를 포함하는 외부 전도성 커패시터 전극 재료를 포함하는 커패시터 구성의 커패시터 유전체 영역에 통합시키는 단계를 포함하는, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
적어도 상기 어닐링 이전에 상기 RuO2는 적어도 50Å의 두께를 갖는, 커패시터를 형성하는 방법. - 청구항 2에 있어서,
적어도 상기 어닐링 이전에 상기 RuO2는 75Å 내지 300Å의 두께를 갖는, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
증착된 상태의 상기 RuO2는 결정질인, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
증착된 상태의 상기 RuO2는 비정질이고, 상기 어닐링으로부터 결정질이 되는, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
상기 제 2 결정 상은 정방정계이고,
증착된 상태의 상기 RuO2는 정방정계 이외의 상으로 이루어지며, 상기 어닐링은 상기 RuO2의 상을 정방정계로 변화시키는, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
상기 유전체 금속 산화물 층의 두께는 60Å 이하인, 커패시터를 형성하는 방법. - 청구항 7에 있어서,
상기 유전체 금속 산화물 층의 두께는 50Å 이하인, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
상기 어닐링은 적어도 200℃의 온도인, 커패시터를 형성하는 방법. - 청구항 9에 있어서,
상기 어닐링 온도는 400℃ 이하인, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
상기 제 1 상은 결정질인, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
상기 제 1 상은 비정질인, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
상기 제 2 결정질 상은 정방정계인, 커패시터를 형성하는 방법. - 청구항 1에 있어서,
상기 제 2 결정질 상은 육방정계인, 커패시터를 형성하는 방법. - 커패시터를 형성하는 방법으로서,
기판 위의 그 최외측 부분에 RuO2를 포함하는 내부 전도성 커패시터 전극 재료를 증착하는 단계;
상기 내부 전도성 커패시터 전극 재료의 RuO2 위에, 그것과 물리적으로 접촉하여, 75Å 이하의 두께로 적어도 15의 k를 갖는 제 1 상의 유전체 금속 산화물 층을 증착하는 단계;
500℃ 미만의 온도에서 RuO2와 상기 유전체 금속 산화물 층을 어닐링하는 단계로서, 상기 어닐링 동안 상기 유전체 금속 산화물과 물리적으로 접촉하는 상기 RuO2는 제 1 상으로부터 상기 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 상기 유전체 금속 산화물 층의 변화를 촉진하는, 상기 어닐링하는 단계; 및
상기 유전체 금속 산화물 층 위에 외부 전도성 커패시터 전극 재료를 증착하는 단계를 포함하는, 커패시터를 형성하는 방법. - 청구항 15에 있어서,
상기 유전체 금속 산화물 층을 증착하는 단계는 적어도 O3가 없는 산소 함유 전구체를 사용하여 시작되는, 커패시터를 형성하는 방법. - 청구항 16에 있어서,
상기 유전체 금속 산화물 층을 증착하는 단계는 상기 내부 전도성 커패시터 전극 재료가 O3가 없는 산소 함유 전구체를 사용하여 유전체 금속 산화물로 덮여진 이후 O3를 사용하는, 커패시터를 형성하는 방법. - 청구항 15에 있어서,
상기 유전체 금속 산화물 층은 단일 금속 원소만을 포함하는, 커패시터를 형성하는 방법. - 청구항 15에 있어서,
상기 유전체 금속 산화물 층은 ZrO2, TiO2, Ta2O5, HfO2 및 Nb2O5 중 적어도 하나를 포함하는, 커패시터를 형성하는 방법. - 커패시터를 형성하는 방법으로서,
기판 위에 내부 전도성 커패시터 전극 재료를 증착하는 단계;
상기 내부 전도성 커패시터 전극 재료 위에 75Å 이하의 두께로 적어도 15의 k를 가지는 제 1 상의 유전체 금속 산화물 층을 증착하는 단계;
상기 유전체 금속 산화물 층 위에, 그리고, 그것과 물리적으로 접촉하여 전도성 RuO2를 증착하는 단계;
상기 전도성 RuO2의 증착 이후, 500℃ 미만의 온도에서 상기 RuO2와 상기 유전체 금속 산화물 층을 어닐링하는 단계로서, 상기 어닐링 동안 상기 유전체 금속 산화물과 물리적으로 접촉하는 상기 RuO2는 상기 제 1 상으로부터 상기 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 상기 유전체 금속 산화물 층의 변화를 촉진하는, 상기 어닐링하는 단계;
상기 어닐링 이후, 상기 기판으로부터 상기 RuO2 중 적어도 일부를 에칭하는 단계; 및
상기 에칭 이후, 상기 어닐링된 유전체 금속 산화물 층 위에 외부 전도성 커패시터 전극 재료를 증착하는 단계를 포함하는, 커패시터를 형성하는 방법. - 청구항 20에 있어서,
상기 에칭하는 단계는 상기 기판으로부터 상기 RuO2 모두를 제거하는, 커패시터를 형성하는 방법. - 커패시터를 형성하는 방법으로서,
기판 위의 그 최외측 부분에 RuO2를 포함하는 내부 전도성 커패시터 전극 재료를 증착하는 단계;
상기 내부 전도성 커패시터 전극 재료의 RuO2 위에 그것과 물리적으로 접촉하여 75Å 이하의 두께로 적어도 15의 k를 가지는 제 1 상의 유전체 금속 산화물 층을 증착하는 단계;
상기 유전체 금속 산화물 층 위에, 그리고, 그것과 물리적으로 접촉하여 전도성 RuO2를 증착하는 단계;
상기 전도성 RuO2의 증착 이후, 500℃ 미만의 온도에서 상기 RuO2와 상기 유전체 금속 산화물 층을 어닐링하는 단계로서, 상기 어닐링 동안 상기 유전체 금속 산화물은 상기 제 1 상으로부터 상기 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 상기 유전체 금속 산화물 층의 변화를 촉진하는, 상기 어닐링하는 단계; 및
상기 어닐링된 유전체 금속 산화물 층을 RuO2를 포함하는 상기 내부 전도성 커패시터 전극 재료와 상기 유전체 금속 산화물 층 위에 증착되어 그것과 물리적으로 터치 접촉하는 상기 전도성 RuO2를 포함하는 외부 전도성 커패시터 전극 재료를 포함하는 커패시터 구성의 커패시터 유전체 영역에 통합시키는 단계를 포함하는, 커패시터를 형성하는 방법. - 커패시터를 형성하는 방법으로서,
기판 위의 그 최외측 부분에 RuO2를 포함하는 내부 전도성 커패시터 전극 재료를 증착하는 단계;
상기 내부 전도성 커패시터 전극 재료의 RuO2 위에 그것과 물리적으로 접촉하여 75Å 이하의 두께로 적어도 15의 k를 가지는 제 1 상의 유전체 금속 산화물 층을 증착하는 단계;
상기 제 1 유전체 금속 산화물 층 위에, 상기 제 1 유전체 금속 산화물 층의 조성과는 다른 조성으로 이루어진 제 2 유전체 층을 증착하는 단계;
상기 제 2 유전체 층 위에 75Å 이하의 두께로 제 3 유전체 금속 산화물 층을 증착하는 단계로서, 상기 제 3 유전체 금속 산화물 층은 상기 제 2 유전체 층의 조성과는 다른 조성으로 이루어지며, 적어도 15의 k를 갖는, 제 3 유전체 금속 산화물 층을 증착하는 단계;
상기 제 3 유전체 금속 산화물 층 위에 그것과 물리적으로 접촉하여 전도성 RuO2를 증착하는 단계;
상기 전도성 RuO2의 증착 이후, 500℃ 미만의 온도에서 상기 기판을 어닐링하는 단계로서, 상기 어닐링 동안 상기 제 1 유전체 금속 산화물 층과 물리적으로 접촉하는 상기 RuO2는 상기 제 1 상으로부터 상기 제 1 상보다 높은 k를 갖는 제 2 결정 상으로의 상기 제 1 유전체 금속 산화물 층의 변화를 촉진하며, 상기 어닐링 동안 상기 제 3 유전체 금속 산화물 층과 물리적으로 접촉하는 상기 RuO2는 제 3 상으로부터 상기 제 3 상보다 높은 k를 갖는 제 4 결정 상으로의 상기 제 3 유전체 금속 산화물 층의 변화를 촉진하는, 상기 어닐링하는 단계; 및
상기 어닐링된 제 1, 제 2 및 제 3 유전체 층들을 RuO2를 포함하는 상기 내부 전도성 커패시터 전극 재료와 상기 제 3 유전체 산화물 금속 층 위에 증착되어 그것과 물리적으로 터치 접촉하는 상기 전도성 RuO2를 포함하는 외부 전도성 커패시터 전극 재료를 포함하는 커패시터 구성의 커패시터 유전체 영역 내에 통합시키는 단계를 포함하는, 커패시터를 형성하는 방법. - 청구항 23에 있어서,
상기 제 1 및 제 3 유전체 금속 산화물 층들은 동일 조성으로 이루어지는, 커패시터를 형성하는 방법. - 청구항 23에 있어서,
상기 제 1 및 제 3 유전체 금속 산화물 층들은 서로 다른 조성들로 이루어지는, 커패시터를 형성하는 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/496,890 US9159551B2 (en) | 2009-07-02 | 2009-07-02 | Methods of forming capacitors |
US12/496,890 | 2009-07-02 | ||
PCT/US2010/038591 WO2011002603A2 (en) | 2009-07-02 | 2010-06-15 | Methods of forming capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120027523A true KR20120027523A (ko) | 2012-03-21 |
KR101368147B1 KR101368147B1 (ko) | 2014-02-27 |
Family
ID=43411667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020127000840A KR101368147B1 (ko) | 2009-07-02 | 2010-06-15 | 커패시터들을 형성하는 방법 |
Country Status (5)
Country | Link |
---|---|
US (2) | US9159551B2 (ko) |
KR (1) | KR101368147B1 (ko) |
CN (1) | CN102473681B (ko) |
TW (1) | TWI424533B (ko) |
WO (1) | WO2011002603A2 (ko) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9159551B2 (en) | 2009-07-02 | 2015-10-13 | Micron Technology, Inc. | Methods of forming capacitors |
US8940388B2 (en) * | 2011-03-02 | 2015-01-27 | Micron Technology, Inc. | Insulative elements |
US8813325B2 (en) | 2011-04-12 | 2014-08-26 | Intermolecular, Inc. | Method for fabricating a DRAM capacitor |
US8815677B2 (en) | 2011-06-14 | 2014-08-26 | Intermolecular, Inc. | Method of processing MIM capacitors to reduce leakage current |
US9431474B2 (en) * | 2011-12-20 | 2016-08-30 | Imec | Metal-insulator-metal stack and method for manufacturing the same |
WO2018218164A1 (en) * | 2017-05-26 | 2018-11-29 | Flash Power Capacitors, Llc | High energy density capacitor and wireless charging system |
US20190035562A1 (en) | 2017-05-26 | 2019-01-31 | Flash Power Capacitors, Llc | High energy density capacitor system and method |
US20190096967A1 (en) * | 2017-09-25 | 2019-03-28 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Organic electroluminescent display apparatus |
US11788241B2 (en) | 2018-05-29 | 2023-10-17 | Hunt Energy Enterprises, L.L.C. | Road based electrical storage batteries |
CN111261634A (zh) * | 2020-02-10 | 2020-06-09 | 无锡拍字节科技有限公司 | 一种存储器件的制造设备及其方法 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0812802B2 (ja) * | 1986-11-14 | 1996-02-07 | 株式会社日立製作所 | サ−マルヘツド用厚膜抵抗体材料,サ−マルヘツド用厚膜抵抗体,並びにサ−マルヘツド |
US6404003B1 (en) * | 1999-07-28 | 2002-06-11 | Symetrix Corporation | Thin film capacitors on silicon germanium substrate |
KR100259039B1 (ko) * | 1997-02-17 | 2000-06-15 | 윤종용 | 반도체장치의커패시터제조방법 |
US6177351B1 (en) * | 1997-12-24 | 2001-01-23 | Texas Instruments Incorporated | Method and structure for etching a thin film perovskite layer |
JP2000068230A (ja) * | 1998-08-25 | 2000-03-03 | Mitsubishi Electric Corp | 半導体装置、その製造装置、および、その製造方法 |
JP2000200885A (ja) * | 1999-01-06 | 2000-07-18 | Seiko Epson Corp | キャパシタ―の製造方法 |
US6320244B1 (en) * | 1999-01-12 | 2001-11-20 | Agere Systems Guardian Corp. | Integrated circuit device having dual damascene capacitor |
US6492241B1 (en) * | 2000-04-10 | 2002-12-10 | Micron Technology, Inc. | Integrated capacitors fabricated with conductive metal oxides |
US7253076B1 (en) * | 2000-06-08 | 2007-08-07 | Micron Technologies, Inc. | Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers |
US7009240B1 (en) * | 2000-06-21 | 2006-03-07 | Micron Technology, Inc. | Structures and methods for enhancing capacitors in integrated circuits |
TW564550B (en) * | 2001-06-05 | 2003-12-01 | Hitachi Ltd | Semiconductor device |
JP3822804B2 (ja) * | 2001-06-18 | 2006-09-20 | 株式会社日立製作所 | 半導体装置の製造方法 |
US6635497B2 (en) * | 2001-12-21 | 2003-10-21 | Texas Instruments Incorporated | Methods of preventing reduction of IrOx during PZT formation by metalorganic chemical vapor deposition or other processing |
JP2003332539A (ja) * | 2002-05-17 | 2003-11-21 | Nec Electronics Corp | 強誘電体キャパシタ及びその製造方法並びに半導体記憶装置 |
KR100578212B1 (ko) * | 2003-06-30 | 2006-05-11 | 주식회사 하이닉스반도체 | 엠티피 구조의 강유전체 캐패시터 및 그 제조 방법 |
KR100607178B1 (ko) * | 2004-01-14 | 2006-08-01 | 삼성전자주식회사 | 불균일하게 분포된 결정 영역을 갖는 유전막을 포함하는캐패시터 및 그 제조 방법 |
KR100590536B1 (ko) * | 2004-01-26 | 2006-06-15 | 삼성전자주식회사 | 반도체 장치의 커패시터, 이를 포함하는 메모리 소자 및커패시터 제조 방법 |
US20070026621A1 (en) * | 2004-06-25 | 2007-02-01 | Hag-Ju Cho | Non-volatile semiconductor devices and methods of manufacturing the same |
US7588988B2 (en) * | 2004-08-31 | 2009-09-15 | Micron Technology, Inc. | Method of forming apparatus having oxide films formed using atomic layer deposition |
KR100680952B1 (ko) | 2004-11-08 | 2007-02-08 | 주식회사 하이닉스반도체 | 반도체 소자의 캐패시터 형성방법 |
KR100772099B1 (ko) | 2005-06-28 | 2007-11-01 | 주식회사 하이닉스반도체 | 반도체 소자의 캐패시터 형성방법 |
KR100648860B1 (ko) * | 2005-09-08 | 2006-11-24 | 주식회사 하이닉스반도체 | 유전막 및 그 형성방법과, 상기 유전막을 구비한 반도체메모리 소자 및 그 제조방법 |
US20070065578A1 (en) * | 2005-09-21 | 2007-03-22 | Applied Materials, Inc. | Treatment processes for a batch ALD reactor |
JP4636613B2 (ja) * | 2005-12-22 | 2011-02-23 | ニチコン株式会社 | チップ状固体電解コンデンサ |
US7297983B2 (en) * | 2005-12-29 | 2007-11-20 | Infineon Technologies Ag | Method for fabricating an integrated circuit on a semiconductor substrate |
US7625814B2 (en) * | 2006-03-29 | 2009-12-01 | Asm Nutool, Inc. | Filling deep features with conductors in semiconductor manufacturing |
US20070259111A1 (en) * | 2006-05-05 | 2007-11-08 | Singh Kaushal K | Method and apparatus for photo-excitation of chemicals for atomic layer deposition of dielectric film |
US7560392B2 (en) * | 2006-05-10 | 2009-07-14 | Micron Technology, Inc. | Electrical components for microelectronic devices and methods of forming the same |
US20080272421A1 (en) * | 2007-05-02 | 2008-11-06 | Micron Technology, Inc. | Methods, constructions, and devices including tantalum oxide layers |
US20090065896A1 (en) * | 2007-09-07 | 2009-03-12 | Seoul National University Industry Foundation | CAPACITOR HAVING Ru ELECTRODE AND TiO2 DIELECTRIC LAYER FOR SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME |
US20090230555A1 (en) * | 2008-03-17 | 2009-09-17 | International Business Machines Corporation | Tungsten liner for aluminum-based electromigration resistant interconnect structure |
CN102037547B (zh) * | 2008-04-28 | 2014-05-14 | 台湾积体电路制造股份有限公司 | 形成含纳米丛集介电层的方法及包括上述介电层的装置 |
US7968452B2 (en) * | 2009-06-30 | 2011-06-28 | Intermolecular, Inc. | Titanium-based high-K dielectric films |
US9159551B2 (en) | 2009-07-02 | 2015-10-13 | Micron Technology, Inc. | Methods of forming capacitors |
-
2009
- 2009-07-02 US US12/496,890 patent/US9159551B2/en active Active
-
2010
- 2010-06-15 CN CN201080029584.5A patent/CN102473681B/zh active Active
- 2010-06-15 WO PCT/US2010/038591 patent/WO2011002603A2/en active Application Filing
- 2010-06-15 KR KR1020127000840A patent/KR101368147B1/ko active IP Right Grant
- 2010-07-01 TW TW099121739A patent/TWI424533B/zh not_active IP Right Cessation
-
2015
- 2015-10-07 US US14/877,677 patent/US9887083B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9887083B2 (en) | 2018-02-06 |
US9159551B2 (en) | 2015-10-13 |
WO2011002603A3 (en) | 2011-03-03 |
WO2011002603A2 (en) | 2011-01-06 |
US20160027642A1 (en) | 2016-01-28 |
CN102473681B (zh) | 2014-12-10 |
CN102473681A (zh) | 2012-05-23 |
TW201112355A (en) | 2011-04-01 |
KR101368147B1 (ko) | 2014-02-27 |
TWI424533B (zh) | 2014-01-21 |
US20110000875A1 (en) | 2011-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101368147B1 (ko) | 커패시터들을 형성하는 방법 | |
EP1368822B1 (en) | Rhodium-rich oxygen barriers | |
KR100371891B1 (ko) | 마이크로 일렉트로닉 구조물 및 이의 형성 방법 | |
KR20040008992A (ko) | 산화방지막을 삽입하는 유전막 증착 방법 | |
KR20040060443A (ko) | 반도체 소자의 커패시터 및 그 제조방법 | |
KR20200033013A (ko) | 집적회로 소자 및 그 제조 방법 | |
Huang | Huang | |
US20110027465A1 (en) | Method for forming dielectric film and method for forming capacitor in semiconductor device using the same | |
KR100532434B1 (ko) | 반도체 메모리 소자의 커패시터 제조 방법 | |
KR20030013626A (ko) | 스택형 캐패시터의 제조 방법 | |
KR20100089522A (ko) | 커패시터 및 그 제조 방법. | |
US6828190B2 (en) | Method for manufacturing capacitor of semiconductor device having dielectric layer of high dielectric constant | |
KR100505397B1 (ko) | 반도체메모리소자의캐패시터제조방법 | |
JP2002343888A (ja) | 半導体素子のキャパシタ及びその製造方法 | |
CN113053898B (zh) | 半导体结构及其制造方法 | |
KR100712525B1 (ko) | 반도체 소자의 커패시터 및 그 제조방법 | |
US11973106B2 (en) | Semiconductor device and method for manufacturing the same | |
KR20070027789A (ko) | 캐패시터 및 그의 제조방법 | |
KR100760632B1 (ko) | 커패시터 형성 방법 | |
US20220399435A1 (en) | Semiconductor device and method for fabricating the same | |
KR100671634B1 (ko) | 반도체 소자의 캐패시터 제조방법 | |
KR20030059388A (ko) | 반도체 메모리 소자의 캐패시터 제조방법 | |
KR20010114049A (ko) | 반도체 소자의 커패시터 제조 방법 | |
JP2004023079A (ja) | 容量素子の製造方法 | |
JP2007243190A (ja) | キャパシタ形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170119 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180202 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190130 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20200211 Year of fee payment: 7 |