US20190035562A1 - High energy density capacitor system and method - Google Patents

High energy density capacitor system and method Download PDF

Info

Publication number
US20190035562A1
US20190035562A1 US15/942,705 US201815942705A US2019035562A1 US 20190035562 A1 US20190035562 A1 US 20190035562A1 US 201815942705 A US201815942705 A US 201815942705A US 2019035562 A1 US2019035562 A1 US 2019035562A1
Authority
US
United States
Prior art keywords
intermediate dielectric
layers
capacitor
positive
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/942,705
Inventor
Edward L. Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flash Power Capacitors LLC
Original Assignee
Flash Power Capacitors LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flash Power Capacitors LLC filed Critical Flash Power Capacitors LLC
Priority to US15/942,705 priority Critical patent/US20190035562A1/en
Priority to PCT/US2018/034683 priority patent/WO2018218164A1/en
Priority to CN201880049999.5A priority patent/CN111052279B/en
Priority to EP18806703.7A priority patent/EP3631825A4/en
Assigned to FLASH POWER CAPACITORS, LLC reassignment FLASH POWER CAPACITORS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVIS, EDWARD L.
Publication of US20190035562A1 publication Critical patent/US20190035562A1/en
Priority to US16/695,408 priority patent/US10998142B2/en
Priority to US17/245,885 priority patent/US11508533B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/10Organic capacitors or resistors comprising a potential-jump barrier or surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Definitions

  • Embodiments of the present invention relate generally to energy storage.
  • the potential energy in a capacitor is stored in an electric field, whereas a battery stores its potential energy in a chemical form.
  • the technology for chemical storage currently yields greater energy densities (capable of storing more energy per weight) than capacitors, but batteries require much longer to charge.
  • Prior art ultra-capacitors have energy densities far below comparably sized batteries of any modern chemistry on the market.
  • the highest energy density ultra-capacitor commercially available today is Maxwell at 6 Wh/kg. Batteries like lithium ion are over 100 Wh/kg.
  • capacitors there is a significant need for high energy density capacitors to replace batteries in many applications (e.g. electric vehicles and other modes of transportation including planes or trains, cell phones, backup storage for utilities, windmills, and any other type of electrical facility) because capacitors can be charged and discharged very rapidly and last for many thousands, even millions of cycles. Whereas, batteries typically charge very slowly and last only a couple thousand full cycles at most, and much less if discharged more than fifty percent (50%) each cycle. Further, capacitors are not hazardous and do not have any of the safety issues typically associated with batteries.
  • a further object of the invention is to provide an improved capacitor by substantially increasing the dielectric constant “k”, while shrinking the distance between the plates.
  • a high energy density capacitor comprising a substrate and at least one dielectric layer disposed between a positive electrode and a negative electrode.
  • a metal layer is deposited on each of the dielectric layers for attachment to the poles of the electrodes.
  • the positive and negative electrodes extend along a height of the capacitor and have poles in an alternating arrangement around an edge thereof, such that the positive and negative electrodes are attached to periodic metal layers deposited on each of the intermediate dielectric layers.
  • Each intermediate dielectric layer is polarized such that its dipoles are aligned in an opposite direction of an electric field created between the positive and negative electrodes while charging.
  • the capacitor of the present invention is a multi-layer capacitor comprising internal passivation layers disposed between each capacitor stack, wherein a stack consists of a plurality of intermediate dielectric layers and metal layers arranged in series.
  • Each intermediate dielectric layer is comprised of a high surface area dielectric material, an electrolyte and a polar organic solvent, and is formed by depositing sequential layers of the high surface area dielectric material, the electrolyte and the polar organic solvent onto the substrate using semiconductor fabrication techniques.
  • the high surface area dielectric material has a dielectric constant in the range of about 10 9 to about 10 11 .
  • the polar organic solvent may be a polar protic solvent selected from the group comprising NH 3 , (CH 3 ) 3 COH, C 3 H 8 O, C 2 H 6 O, CH 3 OH, CH 3 COOH, and H 2 O.
  • the polar organic solvent may be a polar aprotic solvent selected from the group comprising C 3 H 6 O, (CH 3 ) 2 NCH, CH 3 CN, C 2 H 6 OS, CH 2 Cl 2 , C 4 H 8 O, and C 4 H 8 O 2 .
  • Each intermediate dielectric layer may be comprised by molar percentage of about three percent (3%) to about twenty percent (20%) electrolyte, about three percent (3%) to about wenty percent (20%) dielectric material, and about sixty percent (60%) to about ninety-four percent (94%) polar organic solvent.
  • the present invention is directed to a method of forming a high energy density capacitor, comprising: providing a substrate, providing a positive electrode disposed on the substrate and a negative electrode opposite the positive electrode, providing at least one intermediate dielectric layer disposed between the positive electrode and negative electrode, and providing a metal layer deposited on each of the at least one intermediate dielectric layers.
  • Each intermediate dielectric layer is comprised of a high surface area dielectric material, an electrolyte and a polar organic solvent, and is formed by depositing sequential layers of the high surface area dielectric material, the electrolyte and the polar organic solvent onto the substrate using semiconductor fabrication techniques.
  • the method may comprise positioning the positive and negative electrodes to extend along a height of the capacitor such that the poles of the electrodes are in an alternating arrangement around an edge thereof, and attaching the positive and negative electrodes to periodic metal layers deposited on each of the at least one intermediate dielectric layers.
  • the dipoles of each intermediate dielectric layer may be aligned such that the polarized dielectric layer opposes an electric field created between the positive and negative electrodes while charging.
  • the method may include providing a plurality of intermediate dielectric layers and metal layers arranged in series to form a stack, and providing at least one an internal passivation layer disposed between each stack.
  • the polar organic solvent in the intermediate dielectric layer may be a polar protic solvent selected from the group comprising NH 3 , (CH 3 ) 3 COH, C 3 H 8 O, C 2 H 6 O, CH 3 OH, CH 3 COOH, and H 2 O.
  • the polar organic solvent may be a polar aprotic solvent selected from the group comprising C 3 H 6 O, (CH 3 ) 2 NCH, CH 3 CN, C 2 H 6 OS, CH 2 Cl 2 , C 4 H 8 O, and C 4 H 8 O 2 .
  • FIG. 1 depicts a wafer or panel with layers of metal and dielectric layers, in accordance with disclosed embodiments of the present invention.
  • FIG. 2 depicts the capacitors of the present invention in serial parallel arrays, in accordance with disclosed embodiments.
  • FIG. 3 depicts the capacitors of the present invention having an alternating anode and cathode pole arrangement around the edge of the device in order to get the charge in and out quickly with minimal effective series resistance (ESR).
  • ESR effective series resistance
  • FIG. 4 depicts the dielectric surface area of a capacitor in accordance with embodiments of the present invention, wherein surface area “A” is a three dimensional (3D) surface area, as opposed to two dimensional (2D).
  • FIG. 5 depicts the capacitor layer anatomy of a capacitor in accordance with disclosed embodiments of the present invention.
  • FIG. 6 depicts a deposition chamber used in an exemplary process for forming a capacitor in accordance with embodiments of the present invention.
  • FIG. 7 depicts a deposition chamber used in a second exemplary process for forming a capacitor in accordance with embodiments of the present invention.
  • FIGS. 1-7 of the drawings in which like numerals refer to like features of the invention.
  • the high energy density capacitor of the present invention provides a solution for replacing slow charging, short-life batteries with quick charging, long-life capacitors.
  • the method of forming the capacitor(s) of the present invention utilizes atomic layer deposition (ALD), metal oxide chemical vapor deposition (MOCVD), Electrospray, Sputtering, 3D printing and other semiconducting fabrication equipment to produce sub-micron thin layers and the capability for at least twelve (12) inch wafers and/or rectangular substrates, like those used for LED panels, which are available in a wide variety of generations and sizes. Wafers may also be sawed into any shape or size and stacked to any height.
  • ALD atomic layer deposition
  • MOCVD metal oxide chemical vapor deposition
  • Electrospray, Sputtering, 3D printing and other semiconducting fabrication equipment to produce sub-micron thin layers and the capability for at least twelve (12) inch wafers and/or rectangular substrates, like those used for LED panels, which are available in a wide variety of generations and sizes. Wafers
  • the instant invention takes advantages of these advances by utilizing a large array of ALD machines and other standard semiconducting fabrication machinery, 3D printing and robotic automation to apply up to thousands of layers per day to mass produce the capacitors in any shape or size.
  • the primary advantage that batteries currently have over prior art capacitors is energy density.
  • the capacitor of the present invention eliminates this barrier.
  • the word “exemplary” is used to mean serving as an example, instance or illustration. Any aspect or design described herein as “exemplary” is not necessarily intended to be construed as preferred or advantageous over other aspects or design. Rather, the use of the word “exemplary” is merely intended to present concepts in a concrete fashion.
  • the capacitor includes a wafer or substrate upon which is deposited alternating layers of metal and dielectric layers, and further includes a positive electrode 100 , a negative electrode 101 , and a “stack” of five (5) capacitors 102 , which makes a 25 volt stack at one-fifth (1 ⁇ 5 th ) the capacitance of a single instantiation, since the five are in series.
  • a “stack” of five capacitors is being shown for exemplary purposes only, and that any number of capacitors may be implemented, in series, in order to achieve the desired voltage per design requirements, as will be described below.
  • a passivation layer 103 or insulator isolates the “stacks” 102 .
  • a metal layer 104 , an ultra-dielectric material (UDM) layer 105 , and the substrate or wafer 106 complete the assembly, in accordance with disclosed embodiments of the present invention.
  • UDM ultra-dielectric material
  • FIG. 2 depicts how a plurality of capacitors are organized in serial parallel arrays, in accordance with disclosed embodiments.
  • Capacitor 201 is a single capacitor formed with UDM and metal layers.
  • Stack 202 depicts a stack of five (5) capacitors in series. Putting capacitors in series lowers the capacitance, but it is necessary to increase the voltage.
  • each capacitor 201 is rated at 5 volts, therefore the stack 202 is rated up to 25 volts, albeit at one-fifth (1 ⁇ 5 th ) the capacitance of a single capacitor.
  • the total capacitance is increased by arranging an array of stacks in parallel, because capacitors in parallel sum. Up to n stacks 203 may be created until the desired level of energy storage is achieved.
  • Capacitance is defined as:
  • the present invention produces a high capacitance EDLC-type electrochemical capacitor by substantially increasing the dielectric constant “k”, while shrinking the distance between the plates.
  • the capacitors' alternating anode 300 and cathode 301 pole arrangement around the edge of the capacitor device is shown. Alternating poles in such a way allows the charge in and out quickly with minimal effective series resistance (ESR).
  • ESR effective series resistance
  • additional positive and negative electrodes may be dispersed intermittently in the interior of the capacitor device, and may be arranged around the center of the device. As shown in the side view of FIG. 3 , the electrodes extend along the full height of the capacitor array, even though these poles only attach to the metal layers periodically.
  • the electrodes 301 are attached to every fifth layer (as depicted in FIG. 1 ), in order to achieve 25 volt stacks. The unconnected layers may be masked to create a gap between the metal layers 501 and the electrodes 300 , 301 .
  • FIG. 4 depicts the dielectric surface area of an embodiment of a capacitor of the present invention.
  • surface area “A” is a three dimensional (3D) surface area, not 2D.
  • the atomic layer of conducting atoms snuggle in around the dielectric atoms, forming a three dimensional structure which yields a much higher surface area than just the 2D. It's the 3D surface area which in this case is the surface area for a bunch of half spheres, i.e. 1 ⁇ 2*(4 ⁇ r 2 ) multiplied by the number of atoms or molecules in the length by width area.
  • FIG. 5 depicts the capacitor layer anatomy of one embodiment of the capacitor of the present invention, comprising anode and cathode metal layers 501 , with layers of high surface area dielectric material (such as silica) and positive and negative atomic layers disposed therebetween.
  • FIG. 5 illustrates how the dipoles 502 in the dielectric layer 500 align with the electric field 503 of the capacitor, but in the opposite direction, which leads to a reduction in the total field, and an increase in the total quantity of charge that the capacitor can hold for a given voltage/applied field. As a result, more charge can build up on the positive and negative electrodes 501 .
  • the “k” in physics is determined by the degree of polarization that the dielectric layers 500 can undergo, in other words, how many dipoles 502 are available inside the “N”-type and “P”-type atomic layers to reduce the applied field across the capacitor, thereby allowing more charge to be stored on the plates.
  • the metal atoms with their conduction band and free electrons snuggle in around the hemispherical surfaces of the top of the dielectric layer ( FIG. 4 ).
  • the dielectric layers become “electrets,” equivalent to magnets; however, instead of aligning magnetic domains, the high energy density capacitor of the present invention comprises aligning electric dipole domains.
  • the present invention optimizes energy density by maximizing the operating voltage.
  • Some polar organic solvents have breakdown voltages three (3) to four (4) times higher than distilled water, and some are in the 5V range at micron thicknesses.
  • distilled water breakdown voltage limits the operating voltage to 0.8 to 1.2 volts per cell.
  • the present invention also encompasses replacing the polar protic solvents with electric dipole materials, electrets, that are deposited and aligned to oppose the main electric field created when the capacitor is charging.
  • each capacitor may have a thickness of much less than 1 micron ( ⁇ m) to optimize energy density while increasing capacitance.
  • the ultra-dielectric materials (UDM) utilized in one embodiment comprise a combination of a polar organic solvent from Table 1 below, an electrolyte from Table 2 below, and a high surface area dielectric material from Table 3 below.
  • polar protic solvents are used for their high dielectric constants and high dipole moments.
  • polar aprotic solvents work well also, e.g. DMSO, KCl, and SiO 2 or DMSO, NaCl, and SiO 2 , and therefore it should be understood by those skilled in the art that the present invention encompasses such alternative compositions which include a polar aprotic solvent in place of a polar protic solvent.
  • ammonia (NH 3 ) is used as the polar protic solvent
  • NH 4 CL is the electrolyte
  • silicon dioxide is the high surface area dielectric material.
  • these materials are each deposited in sequential layers onto the wafer or substrate to build up a half micron (0.5 ⁇ m) layer of UDM material 105 using semiconductor processing equipment and/or 3D printers. Then a quarter micron (0.25 ⁇ m) layer of metal 104 is deposited on top of the UDM layer 105 . This is repeated in an alternating process until five (5) complete UDM/metal sandwich layers are completed, thereby forming a 25 volt stack 102 .
  • the three UDM compounds are built up sequentially in molar percentages of about three percent (3%) to about twenty percent (20%) electrolyte (Table 2), about three percent (3%) to about twenty percent (20%) dielectric materials (Table 3), and about sixty percent (60%) to about ninety-four percent (94%) polar organic solvent (Table 1).
  • Table 4 below reveals the high energy density of an embodiment of the capacitor of the present invention using a six (6) inch wafer and assuming k is at the median point of the range of about 10 10 .
  • the UDM dielectric layer thickness is 0.5 ⁇ m in this example. Stacks of five layers in series creates a 25 volt capacitor. This embodiment yields 56.1 kWh of capacity with only 100 stacks.
  • the Fumed Silica utilized was 7 nm Aldrich powder.
  • Capacitors made in accordance with the present invention may have a life cycle of more than 1,000,000 cycles even at deep discharge rates, e.g., eighty percent (80%) depth of discharge (“DoD”).
  • DoD depth of discharge
  • the charge time for each capacitor may be about 30 seconds for full recharge.
  • the capacitors may be sawed in various shapes and sizes and placed into the final packaging using activated carbon, graphene or other type electrodes.
  • capacitors may be used in electric vehicles (EVs) and charged using a “Capacitive Wireless Charging System and Method,” as described in patent application Ser. No. 62/511,754, filed May 26, 2017, by the same inventor, which may be easily installed in existing service stations.
  • Other applications for the improved high energy density capacitor of the present invention include not only vehicles, but other modes of transportation including planes or trains, backup storage for utilities, windmills, and any other type of electrical facilities.
  • the wafers or substrates may be twelve (12′′) inch ( ⁇ 300 mm), but any size wafer or even rectangular LED panels will work in ALD, MOCVD and other semiconductor or 3D printing systems. Up to 370 mm ⁇ 470 mm panels may be used to make rectangular capacitors. It is further contemplated by the present invention that larger panels may be used as they become available in the future.
  • In one embodiment according to the present invention is a two solvent mixture of ethylene glycol and a polar organic cosolvent from Table 1. Boric acid is dissolved in this mixture with a carboxylic acid.
  • FIG. 6 A deposition chamber used in an exemplary solid state process for forming a capacitor in accordance with embodiments of the present invention is shown in FIG. 6 .
  • Dipoles structures in each dielectric layer are fabricated by depositing a layer of polarized dielectric material and aligning the dipoles using high voltage plates. This process requires minimal layers per capacitor.
  • Capacitive plates are placed above and below the deposition chamber external to the chamber and a high voltage DC is applied.
  • One capacitive plate takes on a high positive Voltage and the other a high negative Voltage, to ensure that the dipoles remain aligned while applying each subsequent layer.
  • the small dipoles in the Oxide layer align in the opposite direction of the Electric Field. After each layer is completed, the dipoles will remain aligned after the external Electric Field is removed. Consequently, the dielectric k value increases by several orders of magnitude and the breakdown voltages increase by an order of magnitude or more over what is conventionally expected.
  • An advantage of this solid state deposition process is that many layers may be built up to make very large capacitors.
  • an atomic layer deposition (ALD) chamber used in a second, different solid state process for forming a high energy density capacitor of the present invention is shown.
  • the dipole structures are fabricated in a sandwich of alternating layers of ions and dielectric by first depositing a layer of dielectric 605 disposed above the p-Electrode 606 , then a layer of n-ions 604 , another layer of dielectric 603 , a layer of p-ions 602 , and another layer of dielectric 601 to insulate the p-ions from the n-Electrode 600 .
  • This process requires more layers per capacitor.
  • a wafer or substrate is placed at the bottom of the deposition chamber, and aligned with the positive electrode or p-Electrode.
  • the first layer of ions is deposited by filling the chamber with ionic gas and placing a High Voltage plate inside the chamber beneath the substrate or wafer, as well as placing a High Voltage plate having an opposite voltage above and external to the chamber, to create a strong Electric Field by applying a DC Voltage.
  • the chamber is cleared, and a dielectric layer is applied to hold the ions (up to five atomic layers may be required), before removing the Electric field.
  • the chamber is then flooded with a positive ion gas and the voltage on the plates is reversed.
  • the Positive ions get close to the dielectric layer, the Negative ions underneath the dielectric layer attract the Positive ions and align them overhead, creating smaller dipoles.
  • the process of reversing the chamber plate Voltage is repeated, selecting the other ionizing tip, as necessary.
  • the positive and negative ions may instead be replaced by a mixture of bare electrons and protons.
  • electrospray may be used to deposit the ion layers.
  • dielectric layer it is contemplated that other low cost, high fidelity methods may be used to deposit the dielectric layer.
  • technologies that may be suitable for producing dielectric layers of appropriate thickness include spin-coating, spray-coating, or screen printing. Generally, roll-to-roll coating methods are considered suitable.
  • the capacitor of the present invention provides a solution for replacing slow charging, short-life batteries with quick charging, long-life capacitors having a significant higher energy density than prior art capacitors.
  • the method of forming the capacitor(s) of the present invention utilizes atomic layer deposition (ALD), metal oxide chemical vapor deposition (MOCVD), 3D printing and other semiconducting fabrication equipment to produce sub-micron thin layers and the capability for 12 inch wafers and/or rectangular substrates, like those used for LED panels, which are available in a wide variety of generations and sizes. Wafers may also be sawed into any shape or size and stacked to any height.
  • ALD atomic layer deposition
  • MOCVD metal oxide chemical vapor deposition
  • 3D printing and other semiconducting fabrication equipment to produce sub-micron thin layers and the capability for 12 inch wafers and/or rectangular substrates, like those used for LED panels, which are available in a wide variety of generations and sizes. Wafers may also be sawed into any shape or size and stacked to any height

Abstract

A high energy density capacitor comprising a substrate, a positive electrode, a negative electrode, a plurality of intermediate dielectric layers disposed between the positive electrode and negative electrode, and a metal layer deposited on each of the intermediate dielectric layers. Each intermediate dielectric layer comprises sequential layers of a high surface area dielectric material, an electrolyte and a polar organic solvent deposited onto the substrate. The plurality of intermediate dielectric layers and metal layers are arranged in series to form a stack, and at least one an internal passivation layer is disposed between each stack. The positive and negative electrodes extend along a height of the capacitor and have poles in an alternating arrangement around an edge thereof, wherein the positive and negative electrodes are attached to periodic metal layers deposited on each of the intermediate dielectric layers. Dipoles of the intermediate dielectric layers are aligned in an opposite direction of an electric field created between the positive and negative electrodes while charging.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 62/511,727 filed May 26, 2017, and U.S. Provisional Patent Application No. 62/556,640 filed Sep. 11, 2017, the entire disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • Embodiments of the present invention relate generally to energy storage.
  • 2. Description of Related Art
  • The potential energy in a capacitor is stored in an electric field, whereas a battery stores its potential energy in a chemical form. The technology for chemical storage currently yields greater energy densities (capable of storing more energy per weight) than capacitors, but batteries require much longer to charge.
  • Prior art ultra-capacitors have energy densities far below comparably sized batteries of any modern chemistry on the market. The highest energy density ultra-capacitor commercially available today is Maxwell at 6 Wh/kg. Batteries like lithium ion are over 100 Wh/kg.
  • There is a significant need for high energy density capacitors to replace batteries in many applications (e.g. electric vehicles and other modes of transportation including planes or trains, cell phones, backup storage for utilities, windmills, and any other type of electrical facility) because capacitors can be charged and discharged very rapidly and last for many thousands, even millions of cycles. Whereas, batteries typically charge very slowly and last only a couple thousand full cycles at most, and much less if discharged more than fifty percent (50%) each cycle. Further, capacitors are not hazardous and do not have any of the safety issues typically associated with batteries.
  • SUMMARY OF THE INVENTION
  • Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide an improved capacitor having a higher energy density.
  • It is another object of the present invention to provide an improved capacitor having a three-dimensional dielectric surface.
  • A further object of the invention is to provide an improved capacitor by substantially increasing the dielectric constant “k”, while shrinking the distance between the plates.
  • It is yet another object of the present invention to provide an improved method of forming a capacitor utilizing standard semiconductor fabrication techniques by adding a supplemental apparatus to aid in polarization alignment.
  • Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
  • The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to a high energy density capacitor comprising a substrate and at least one dielectric layer disposed between a positive electrode and a negative electrode. A metal layer is deposited on each of the dielectric layers for attachment to the poles of the electrodes. The positive and negative electrodes extend along a height of the capacitor and have poles in an alternating arrangement around an edge thereof, such that the positive and negative electrodes are attached to periodic metal layers deposited on each of the intermediate dielectric layers. Each intermediate dielectric layer is polarized such that its dipoles are aligned in an opposite direction of an electric field created between the positive and negative electrodes while charging.
  • In one or more embodiments, the capacitor of the present invention is a multi-layer capacitor comprising internal passivation layers disposed between each capacitor stack, wherein a stack consists of a plurality of intermediate dielectric layers and metal layers arranged in series.
  • Each intermediate dielectric layer is comprised of a high surface area dielectric material, an electrolyte and a polar organic solvent, and is formed by depositing sequential layers of the high surface area dielectric material, the electrolyte and the polar organic solvent onto the substrate using semiconductor fabrication techniques. The high surface area dielectric material has a dielectric constant in the range of about 109 to about 1011.
  • In one or more embodiments, the polar organic solvent may be a polar protic solvent selected from the group comprising NH3, (CH3)3COH, C3H8O, C2H6O, CH3OH, CH3COOH, and H2O. In other embodiments, the polar organic solvent may be a polar aprotic solvent selected from the group comprising C3H6O, (CH3)2NCH, CH3CN, C2H6OS, CH2Cl2, C4H8O, and C4H8O2. Each intermediate dielectric layer may be comprised by molar percentage of about three percent (3%) to about twenty percent (20%) electrolyte, about three percent (3%) to about wenty percent (20%) dielectric material, and about sixty percent (60%) to about ninety-four percent (94%) polar organic solvent.
  • In another aspect, the present invention is directed to a method of forming a high energy density capacitor, comprising: providing a substrate, providing a positive electrode disposed on the substrate and a negative electrode opposite the positive electrode, providing at least one intermediate dielectric layer disposed between the positive electrode and negative electrode, and providing a metal layer deposited on each of the at least one intermediate dielectric layers. Each intermediate dielectric layer is comprised of a high surface area dielectric material, an electrolyte and a polar organic solvent, and is formed by depositing sequential layers of the high surface area dielectric material, the electrolyte and the polar organic solvent onto the substrate using semiconductor fabrication techniques.
  • The method may comprise positioning the positive and negative electrodes to extend along a height of the capacitor such that the poles of the electrodes are in an alternating arrangement around an edge thereof, and attaching the positive and negative electrodes to periodic metal layers deposited on each of the at least one intermediate dielectric layers. The dipoles of each intermediate dielectric layer may be aligned such that the polarized dielectric layer opposes an electric field created between the positive and negative electrodes while charging.
  • In one or more embodiments, the method may include providing a plurality of intermediate dielectric layers and metal layers arranged in series to form a stack, and providing at least one an internal passivation layer disposed between each stack.
  • In one or more embodiments, the polar organic solvent in the intermediate dielectric layer may be a polar protic solvent selected from the group comprising NH3, (CH3)3COH, C3H8O, C2H6O, CH3OH, CH3COOH, and H2O. In other embodiments, the polar organic solvent may be a polar aprotic solvent selected from the group comprising C3H6O, (CH3)2NCH, CH3CN, C2H6OS, CH2Cl2, C4H8O, and C4H8O2.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
  • FIG. 1 depicts a wafer or panel with layers of metal and dielectric layers, in accordance with disclosed embodiments of the present invention.
  • FIG. 2 depicts the capacitors of the present invention in serial parallel arrays, in accordance with disclosed embodiments.
  • FIG. 3 depicts the capacitors of the present invention having an alternating anode and cathode pole arrangement around the edge of the device in order to get the charge in and out quickly with minimal effective series resistance (ESR).
  • FIG. 4 depicts the dielectric surface area of a capacitor in accordance with embodiments of the present invention, wherein surface area “A” is a three dimensional (3D) surface area, as opposed to two dimensional (2D).
  • FIG. 5 depicts the capacitor layer anatomy of a capacitor in accordance with disclosed embodiments of the present invention.
  • FIG. 6 depicts a deposition chamber used in an exemplary process for forming a capacitor in accordance with embodiments of the present invention.
  • FIG. 7 depicts a deposition chamber used in a second exemplary process for forming a capacitor in accordance with embodiments of the present invention.
  • DESCRIPTION OF THE EMBODIMENT(S)
  • In describing the embodiments of the present invention, reference will be made herein to FIGS. 1-7 of the drawings in which like numerals refer to like features of the invention.
  • The high energy density capacitor of the present invention provides a solution for replacing slow charging, short-life batteries with quick charging, long-life capacitors. The method of forming the capacitor(s) of the present invention utilizes atomic layer deposition (ALD), metal oxide chemical vapor deposition (MOCVD), Electrospray, Sputtering, 3D printing and other semiconducting fabrication equipment to produce sub-micron thin layers and the capability for at least twelve (12) inch wafers and/or rectangular substrates, like those used for LED panels, which are available in a wide variety of generations and sizes. Wafers may also be sawed into any shape or size and stacked to any height.
  • The instant invention takes advantages of these advances by utilizing a large array of ALD machines and other standard semiconducting fabrication machinery, 3D printing and robotic automation to apply up to thousands of layers per day to mass produce the capacitors in any shape or size.
  • The primary advantage that batteries currently have over prior art capacitors is energy density. The capacitor of the present invention eliminates this barrier.
  • Certain terminology is used herein for convenience only and is not to be taken as a limitation of the invention. For example, words such as “upper,” “lower,” “left,” “right,” “horizontal,” “vertical,” “upward,” and “downward” merely describe the configuration shown in the drawings. For purposes of clarity, the same reference numbers may be used in the drawings to identify similar elements.
  • Additionally, in the subject description, the word “exemplary” is used to mean serving as an example, instance or illustration. Any aspect or design described herein as “exemplary” is not necessarily intended to be construed as preferred or advantageous over other aspects or design. Rather, the use of the word “exemplary” is merely intended to present concepts in a concrete fashion.
  • Referring now to FIG. 1, an exemplary high energy density capacitor of the present invention is shown. The capacitor includes a wafer or substrate upon which is deposited alternating layers of metal and dielectric layers, and further includes a positive electrode 100, a negative electrode 101, and a “stack” of five (5) capacitors 102, which makes a 25 volt stack at one-fifth (⅕th) the capacitance of a single instantiation, since the five are in series. It should be understood by those skilled in the art that a “stack” of five capacitors is being shown for exemplary purposes only, and that any number of capacitors may be implemented, in series, in order to achieve the desired voltage per design requirements, as will be described below. A passivation layer 103 or insulator isolates the “stacks” 102. A metal layer 104, an ultra-dielectric material (UDM) layer 105, and the substrate or wafer 106 complete the assembly, in accordance with disclosed embodiments of the present invention.
  • FIG. 2 depicts how a plurality of capacitors are organized in serial parallel arrays, in accordance with disclosed embodiments. Capacitor 201 is a single capacitor formed with UDM and metal layers. Stack 202 depicts a stack of five (5) capacitors in series. Putting capacitors in series lowers the capacitance, but it is necessary to increase the voltage. By way of example herein, each capacitor 201 is rated at 5 volts, therefore the stack 202 is rated up to 25 volts, albeit at one-fifth (⅕th) the capacitance of a single capacitor. The total capacitance is increased by arranging an array of stacks in parallel, because capacitors in parallel sum. Up to n stacks 203 may be created until the desired level of energy storage is achieved.
  • Capacitance is defined as:

  • C=( 0 A)/d
  • where:
  • C=Capacitance (Farads)
  • k=Dielectric multiplier
  • ε0=permittivity constant
  • A=Area of the plates (m2)
  • d=distance between plates (μm)
  • The present invention produces a high capacitance EDLC-type electrochemical capacitor by substantially increasing the dielectric constant “k”, while shrinking the distance between the plates.
  • Referring now to FIG. 3, the capacitors' alternating anode 300 and cathode 301 pole arrangement around the edge of the capacitor device is shown. Alternating poles in such a way allows the charge in and out quickly with minimal effective series resistance (ESR). In larger capacitors, additional positive and negative electrodes may be dispersed intermittently in the interior of the capacitor device, and may be arranged around the center of the device. As shown in the side view of FIG. 3, the electrodes extend along the full height of the capacitor array, even though these poles only attach to the metal layers periodically. In one embodiment, the electrodes 301 are attached to every fifth layer (as depicted in FIG. 1), in order to achieve 25 volt stacks. The unconnected layers may be masked to create a gap between the metal layers 501 and the electrodes 300, 301.
  • FIG. 4 depicts the dielectric surface area of an embodiment of a capacitor of the present invention. Of particular note is that surface area “A” is a three dimensional (3D) surface area, not 2D. The atomic layer of conducting atoms snuggle in around the dielectric atoms, forming a three dimensional structure which yields a much higher surface area than just the 2D. It's the 3D surface area which in this case is the surface area for a bunch of half spheres, i.e. ½*(4πr2) multiplied by the number of atoms or molecules in the length by width area.
  • FIG. 5 depicts the capacitor layer anatomy of one embodiment of the capacitor of the present invention, comprising anode and cathode metal layers 501, with layers of high surface area dielectric material (such as silica) and positive and negative atomic layers disposed therebetween. FIG. 5 illustrates how the dipoles 502 in the dielectric layer 500 align with the electric field 503 of the capacitor, but in the opposite direction, which leads to a reduction in the total field, and an increase in the total quantity of charge that the capacitor can hold for a given voltage/applied field. As a result, more charge can build up on the positive and negative electrodes 501. The “k” in physics is determined by the degree of polarization that the dielectric layers 500 can undergo, in other words, how many dipoles 502 are available inside the “N”-type and “P”-type atomic layers to reduce the applied field across the capacitor, thereby allowing more charge to be stored on the plates.
  • The metal atoms with their conduction band and free electrons snuggle in around the hemispherical surfaces of the top of the dielectric layer (FIG. 4). Using pairs of high voltage plates to align the dipoles, as will be described in more detail below, the dielectric layers become “electrets,” equivalent to magnets; however, instead of aligning magnetic domains, the high energy density capacitor of the present invention comprises aligning electric dipole domains.
  • The present invention optimizes energy density by maximizing the operating voltage. Some polar organic solvents have breakdown voltages three (3) to four (4) times higher than distilled water, and some are in the 5V range at micron thicknesses. By contrast, distilled water breakdown voltage limits the operating voltage to 0.8 to 1.2 volts per cell. The present invention also encompasses replacing the polar protic solvents with electric dipole materials, electrets, that are deposited and aligned to oppose the main electric field created when the capacitor is charging.
  • One advantage of the present invention is that each capacitor may have a thickness of much less than 1 micron (μm) to optimize energy density while increasing capacitance.
  • The ultra-dielectric materials (UDM) utilized in one embodiment comprise a combination of a polar organic solvent from Table 1 below, an electrolyte from Table 2 below, and a high surface area dielectric material from Table 3 below. In an embodiment, polar protic solvents are used for their high dielectric constants and high dipole moments. In other embodiments, polar aprotic solvents work well also, e.g. DMSO, KCl, and SiO2 or DMSO, NaCl, and SiO2, and therefore it should be understood by those skilled in the art that the present invention encompasses such alternative compositions which include a polar aprotic solvent in place of a polar protic solvent.
  • TABLE 1
    Polar Protic/Aprotic Solvents
    Protic Break
    or Dielectric Dipole Down
    Polar Solvents Aprotic Constant Moment Volts1
    Ammonia protic 25 1.40 D
    t-Butanol protic 12 1.70 D
    n-Propanol protic 20 1.68 D
    Ethanol protic 25 1.69 D
    Methanol protic 33 1.70 D
    Acetic Acid protic 6.2 1.74 D
    Water protic 80 1.85 D .8-1.2
    Acetone aprotic 25 1.40 D
    Dimethylformamide (DMF) aprotic 12 1.70 D
    Acetonitrile (MeCN) aprotic 20 1.68 D
    Dimethyl Sulfoxide (DMSO) aprotic 25 1.69 D
    Dichloromethane aprotic 9.1 1.60 D
    Tetrahydrofuran (THF) aprotic 7.5 1.75 D
    Ethyl Acetate aprotic 6 1.78 D
  • TABLE 2
    Electrolyte materials
    Electrolyte Materials
    NaCL
    NH4CL
    KCl
  • TABLE 3
    High Surface Area Dielectric materials
    High Surface Area Dielectric Materials In situ k
    Pyrogenic Silica (Fumed Silica) 1010 to 1011
    Silicon Dioxide (SiO2) ~1010
    Alumina 109 to 1010
  • In one exemplary embodiment, ammonia (NH3) is used as the polar protic solvent, NH4CL is the electrolyte, and silicon dioxide is the high surface area dielectric material.
  • In an embodiment, these materials are each deposited in sequential layers onto the wafer or substrate to build up a half micron (0.5 μm) layer of UDM material 105 using semiconductor processing equipment and/or 3D printers. Then a quarter micron (0.25 μm) layer of metal 104 is deposited on top of the UDM layer 105. This is repeated in an alternating process until five (5) complete UDM/metal sandwich layers are completed, thereby forming a 25 volt stack 102.
  • The three UDM compounds are built up sequentially in molar percentages of about three percent (3%) to about twenty percent (20%) electrolyte (Table 2), about three percent (3%) to about twenty percent (20%) dielectric materials (Table 3), and about sixty percent (60%) to about ninety-four percent (94%) polar organic solvent (Table 1).
  • These UDM compounds yield dielectric k values in the 108 to 1011 range.
  • Table 4 below reveals the high energy density of an embodiment of the capacitor of the present invention using a six (6) inch wafer and assuming k is at the median point of the range of about 1010. The UDM dielectric layer thickness is 0.5 μm in this example. Stacks of five layers in series creates a 25 volt capacitor. This embodiment yields 56.1 kWh of capacity with only 100 stacks.
  • TABLE 4
    A six inch wafer at the median k range
    k ε0 A d F/lyr Lyrs F/stk Par Stks F Total J = CV2/2 kWh
    1.00E+10 8.85E−12 0.182415 5.00E−07 3.23E+04 5 6460.5 100 646,055 201,892,084 56.1
  • In one embodiment, the Fumed Silica utilized was 7 nm Aldrich powder.
  • Capacitors made in accordance with the present invention may have a life cycle of more than 1,000,000 cycles even at deep discharge rates, e.g., eighty percent (80%) depth of discharge (“DoD”). The charge time for each capacitor may be about 30 seconds for full recharge.
  • After the wafers or panels are processed, the capacitors may be sawed in various shapes and sizes and placed into the final packaging using activated carbon, graphene or other type electrodes.
  • These capacitors may be used in electric vehicles (EVs) and charged using a “Capacitive Wireless Charging System and Method,” as described in patent application Ser. No. 62/511,754, filed May 26, 2017, by the same inventor, which may be easily installed in existing service stations. Other applications for the improved high energy density capacitor of the present invention include not only vehicles, but other modes of transportation including planes or trains, backup storage for utilities, windmills, and any other type of electrical facilities.
  • In another embodiment, the wafers or substrates may be twelve (12″) inch (˜300 mm), but any size wafer or even rectangular LED panels will work in ALD, MOCVD and other semiconductor or 3D printing systems. Up to 370 mm×470 mm panels may be used to make rectangular capacitors. It is further contemplated by the present invention that larger panels may be used as they become available in the future.
  • In one embodiment according to the present invention is a two solvent mixture of ethylene glycol and a polar organic cosolvent from Table 1. Boric acid is dissolved in this mixture with a carboxylic acid.
  • A deposition chamber used in an exemplary solid state process for forming a capacitor in accordance with embodiments of the present invention is shown in FIG. 6. Dipoles structures in each dielectric layer are fabricated by depositing a layer of polarized dielectric material and aligning the dipoles using high voltage plates. This process requires minimal layers per capacitor.
  • Capacitive plates are placed above and below the deposition chamber external to the chamber and a high voltage DC is applied. One capacitive plate takes on a high positive Voltage and the other a high negative Voltage, to ensure that the dipoles remain aligned while applying each subsequent layer. During ion deposition, the small dipoles in the Oxide layer align in the opposite direction of the Electric Field. After each layer is completed, the dipoles will remain aligned after the external Electric Field is removed. Consequently, the dielectric k value increases by several orders of magnitude and the breakdown voltages increase by an order of magnitude or more over what is conventionally expected. An advantage of this solid state deposition process is that many layers may be built up to make very large capacitors.
  • Referring now to FIG. 7, an atomic layer deposition (ALD) chamber used in a second, different solid state process for forming a high energy density capacitor of the present invention is shown. In this process, the dipole structures are fabricated in a sandwich of alternating layers of ions and dielectric by first depositing a layer of dielectric 605 disposed above the p-Electrode 606, then a layer of n-ions 604, another layer of dielectric 603, a layer of p-ions 602, and another layer of dielectric 601 to insulate the p-ions from the n-Electrode 600. This process requires more layers per capacitor.
  • As shown in FIG. 7, a wafer or substrate is placed at the bottom of the deposition chamber, and aligned with the positive electrode or p-Electrode. The first layer of ions is deposited by filling the chamber with ionic gas and placing a High Voltage plate inside the chamber beneath the substrate or wafer, as well as placing a High Voltage plate having an opposite voltage above and external to the chamber, to create a strong Electric Field by applying a DC Voltage. The stronger the Electric field applied, the more densely the layer of ions is able to be packed. Next, the chamber is cleared, and a dielectric layer is applied to hold the ions (up to five atomic layers may be required), before removing the Electric field. The chamber is then flooded with a positive ion gas and the voltage on the plates is reversed. As the Positive ions get close to the dielectric layer, the Negative ions underneath the dielectric layer attract the Positive ions and align them overhead, creating smaller dipoles. On each successive layer, the process of reversing the chamber plate Voltage is repeated, selecting the other ionizing tip, as necessary. It is further contemplated by the present invention that the positive and negative ions may instead be replaced by a mixture of bare electrons and protons. In another embodiment, electrospray may be used to deposit the ion layers.
  • It is contemplated that other low cost, high fidelity methods may be used to deposit the dielectric layer. For example, technologies that may be suitable for producing dielectric layers of appropriate thickness include spin-coating, spray-coating, or screen printing. Generally, roll-to-roll coating methods are considered suitable.
  • Thus, the present invention achieves one or more of the following advantages. The capacitor of the present invention provides a solution for replacing slow charging, short-life batteries with quick charging, long-life capacitors having a significant higher energy density than prior art capacitors. The method of forming the capacitor(s) of the present invention utilizes atomic layer deposition (ALD), metal oxide chemical vapor deposition (MOCVD), 3D printing and other semiconducting fabrication equipment to produce sub-micron thin layers and the capability for 12 inch wafers and/or rectangular substrates, like those used for LED panels, which are available in a wide variety of generations and sizes. Wafers may also be sawed into any shape or size and stacked to any height. The instant invention takes advantage of these advances by utilizing a large array of ALD machines and other standard semiconducting fabrication machinery, 3D printing and robotic automation to apply up to thousands of layers per day to mass produce the capacitors of the present invention in any shape or size.
  • While the present invention has been particularly described, in conjunction with specific embodiments, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.

Claims (16)

Thus, having described the invention, What is claimed is:
1. A high energy density capacitor, comprising:
a substrate;
a positive electrode;
a negative electrode;
at least one intermediate dielectric layer disposed between the positive electrode and negative electrode, the at least one intermediate dielectric layer comprised of a high surface area dielectric material, an electrolyte and a polar organic solvent; and
a metal layer deposited on each of the at least one intermediate dielectric layers.
2. The capacitor according to claim 1 wherein the high surface area dielectric material has a dielectric constant in the range of about 109 to about 1011.
3. The capacitor according to claim 1 wherein the polar organic solvent is a polar protic solvent selected from the group comprising NH3, (CH3)3COH, C3H8O, C2H6O, CH3OH, CH3COOH, and H2O.
4. The capacitor according to claim 1 wherein the polar organic solvent is a polar aprotic solvent selected from the group comprising C3H6O, (CH3)2NCH, CH3CN, C2H6OS, CH2Cl2, C4H8O, and C4H8O2.
5. The capacitor according to claim 1 wherein the intermediate dielectric layer is formed by depositing sequential layers of the high surface area dielectric material, electrolyte and polar organic solvent onto the substrate using semiconductor fabrication techniques.
6. The capacitor according to claim 1 further comprising:
a plurality of intermediate dielectric layers and metal layers arranged in series to form a stack; and
at least one an internal passivation layer disposed between each stack.
7. The capacitor according to claim 1 wherein the at least one intermediate dielectric layer is comprised by molar percentage of about 3% to about 20% electrolyte, about 3% to about 20% dielectric material, and about 60% to about 94% polar organic solvent.
8. The capacitor according to claim 1 wherein dipoles of the at least one intermediate dielectric layer align in an opposite direction of an electric field created between the positive and negative electrodes while charging.
9. The capacitor according to claim 1 wherein the positive and negative electrodes extend along a height of the capacitor and have poles in an alternating arrangement around an edge thereof, and wherein the positive and negative electrodes are attached to periodic metal layers deposited on each of the at least one intermediate dielectric layers.
10. A method of forming a high energy density capacitor, comprising:
providing a substrate;
providing a positive electrode disposed on the substrate;
providing a negative electrode opposite the positive electrode;
providing at least one intermediate dielectric layer disposed between the positive electrode and negative electrode, the at least one intermediate dielectric layer comprised of a high surface area dielectric material, an electrolyte and a polar organic solvent; and
providing a metal layer deposited on each of the at least one intermediate dielectric layers.
11. The method according to claim 10 wherein the step of providing at least one intermediate dielectric layer disposed between the positive electrode and negative electrode further comprises:
depositing sequential layers of the high surface area dielectric material, electrolyte and polar organic solvent onto the substrate using semiconductor fabrication techniques.
12. The method according to claim 10 further comprising:
providing a plurality of intermediate dielectric layers and metal layers arranged in series to form a stack; and
providing at least one an internal passivation layer disposed between each stack.
13. The method according to claim 10 further comprising:
aligning dipoles of the at least one intermediate dielectric layer such that the polarized dielectric layer opposes an electric field created between the positive and negative electrodes while charging.
14. The method according to claim 10 further comprising:
positioning the positive and negative electrodes to extend along a height of the capacitor such that poles of the electrodes are in an alternating arrangement around an edge thereof; and
attaching the positive and negative electrodes to periodic metal layers deposited on each of the at least one intermediate dielectric layers.
15. The method according to claim 10 wherein the polar organic solvent is a polar protic solvent selected from the group comprising NH3, (CH3)3COH, C3H8O, C2H6O, CH3OH, CH3COOH, and H2O.
16. The method according to claim 10 wherein the polar organic solvent is a polar aprotic solvent selected from the group comprising C3H6O, (CH3)2NCH, CH3CN, C2H6OS, CH2Cl2, C4H8O, and C4H8O2.
US15/942,705 2017-05-26 2018-04-02 High energy density capacitor system and method Abandoned US20190035562A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/942,705 US20190035562A1 (en) 2017-05-26 2018-04-02 High energy density capacitor system and method
PCT/US2018/034683 WO2018218164A1 (en) 2017-05-26 2018-05-25 High energy density capacitor and wireless charging system
CN201880049999.5A CN111052279B (en) 2017-05-26 2018-05-25 High energy density capacitor and wireless charging system
EP18806703.7A EP3631825A4 (en) 2017-05-26 2018-05-25 High energy density capacitor and wireless charging system
US16/695,408 US10998142B2 (en) 2017-05-26 2019-11-26 High energy density capacitor system and method
US17/245,885 US11508533B2 (en) 2017-05-26 2021-04-30 High energy density capacitor system and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762511727P 2017-05-26 2017-05-26
US201762556640P 2017-09-11 2017-09-11
US15/942,705 US20190035562A1 (en) 2017-05-26 2018-04-02 High energy density capacitor system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/695,408 Division US10998142B2 (en) 2017-05-26 2019-11-26 High energy density capacitor system and method

Publications (1)

Publication Number Publication Date
US20190035562A1 true US20190035562A1 (en) 2019-01-31

Family

ID=65038200

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/942,705 Abandoned US20190035562A1 (en) 2017-05-26 2018-04-02 High energy density capacitor system and method
US16/695,408 Active US10998142B2 (en) 2017-05-26 2019-11-26 High energy density capacitor system and method
US17/245,885 Active 2038-05-15 US11508533B2 (en) 2017-05-26 2021-04-30 High energy density capacitor system and method

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/695,408 Active US10998142B2 (en) 2017-05-26 2019-11-26 High energy density capacitor system and method
US17/245,885 Active 2038-05-15 US11508533B2 (en) 2017-05-26 2021-04-30 High energy density capacitor system and method

Country Status (1)

Country Link
US (3) US20190035562A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019132143A1 (en) * 2019-11-27 2021-05-27 Bayerische Motoren Werke Aktiengesellschaft A method for manufacturing a polarized capacitor, a polarized capacitor and a method for determining a polarization of a capacitor
DE102020114682A1 (en) 2020-06-03 2021-12-09 Bayerische Motoren Werke Aktiengesellschaft A method of manufacturing a polarized capacitor and a method of polarizing a capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110007451A1 (en) * 2009-07-08 2011-01-13 Apaq Technology Co., Ltd. Stacked solid electrolytic capacitor with multi-pin structure
US20160351347A1 (en) * 2014-01-16 2016-12-01 Elbit Systems Land And C4I Ltd. Supercapacitor configurations with graphene-based electrodes and/or peptide
US10020125B1 (en) * 2015-02-17 2018-07-10 The United States Of America, As Represented By The Secretary Of The Navy Super dielectric capacitor

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101543A (en) * 1990-07-02 1992-04-07 Gentex Corporation Method of making a variable capacitor microphone
US5119154A (en) * 1990-12-03 1992-06-02 Micron Technology, Inc. Ferroelectric capacitor and method for forming local interconnect
US5414588A (en) 1993-09-20 1995-05-09 The Regents Of The University Of California High performance capacitors using nano-structure multilayer materials fabrication
US6001299A (en) * 1995-02-21 1999-12-14 Japan Vilene Company, Ltd. Process and apparatus for manufacturing an electret article
NO309500B1 (en) * 1997-08-15 2001-02-05 Thin Film Electronics Asa Ferroelectric data processing apparatus, methods for its preparation and readout, and use thereof
US5985731A (en) 1998-08-17 1999-11-16 Motorola, Inc. Method for forming a semiconductor device having a capacitor structure
US6943414B2 (en) 2001-03-15 2005-09-13 Newport Fab, Llc Method for fabricating a metal resistor in an IC chip and related structure
US20030011043A1 (en) 2001-07-14 2003-01-16 Roberts Douglas R. MIM capacitor structure and process for making the same
US6936994B1 (en) * 2002-09-03 2005-08-30 Gideon Gimlan Electrostatic energy generators and uses of same
EP1616360A4 (en) 2003-03-05 2006-12-27 William B Duff Jr Electrical charge storage device having enhanced power characteristics
JP3103711U (en) * 2003-10-24 2004-08-19 台湾楼氏電子工業股▼ふん▲有限公司 High efficiency condenser microphone
CN100563039C (en) * 2004-03-09 2009-11-25 京瓷株式会社 Laminate type piezoelectric element and manufacture method thereof
JP2006108291A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Ferroelectric capacitor and its manufacturing method, and ferroelectric memory device
US7428137B2 (en) 2004-12-03 2008-09-23 Dowgiallo Jr Edward J High performance capacitor with high dielectric constant material
ATE448573T1 (en) 2005-07-26 2009-11-15 Siemens Ag METHOD FOR PRODUCING A MONOLITHIC PARTIAL STACKING PIEZO ACTOR, MONOLITHIC PARTIAL STACKING PIEZO ACTOR AND USE OF THE PIEZO ACTOR
US7990679B2 (en) 2006-07-14 2011-08-02 Dais Analytic Corporation Nanoparticle ultracapacitor
US7804678B2 (en) 2007-04-25 2010-09-28 Industrial Technology Research Institute Capacitor devices
WO2010029161A1 (en) 2008-09-12 2010-03-18 Imec Patterned electret structures and methods for manufacturing patterned electret structures
US9159551B2 (en) 2009-07-02 2015-10-13 Micron Technology, Inc. Methods of forming capacitors
US8315032B2 (en) 2010-07-16 2012-11-20 Ut-Battelle, Llc High power density capacitor and method of fabrication
JP5775936B2 (en) 2010-11-30 2015-09-09 クイックハッチ・コーポレーション Nanoparticle deposition method on substrate and high energy density device fabrication
JP5902926B2 (en) 2011-11-25 2016-04-13 Necトーキン株式会社 Conductive polymer composition, conductive polymer material, conductive substrate, electrode, and solid electrolytic capacitor
US20140063689A1 (en) 2012-09-04 2014-03-06 Christopher Lorne Blair Dielectric material to enhance capacitance of a capacitor
US9041148B2 (en) 2013-06-13 2015-05-26 Qualcomm Incorporated Metal-insulator-metal capacitor structures
US9595398B2 (en) 2013-08-30 2017-03-14 Corning Incorporated Low resistance ultracapacitor electrode and manufacturing method thereof
US20150103465A1 (en) 2013-10-11 2015-04-16 Samsung Electro-Mechanics Co., Ltd. Ultra thin film capacitor and manufacturing method thereof
US9871077B2 (en) * 2013-12-06 2018-01-16 University Of Massachusetts Resistive memory device with semiconductor ridges
US9530574B1 (en) 2014-11-05 2016-12-27 The United States Of America, As Represented By The Secretary Of The Navy Super dielectric materials
US10991675B2 (en) * 2016-10-10 2021-04-27 Monolithic 3D Inc. 3D semiconductor device and structure
US10038092B1 (en) * 2017-05-24 2018-07-31 Sandisk Technologies Llc Three-level ferroelectric memory cell using band alignment engineering
FR3079359B1 (en) * 2018-03-22 2020-10-09 Arkema France USE OF 1-CHLORO-2,3,3,3-TETRAFLUOROPROPENE FOR INSULATING OR EXTINGUISHING ELECTRIC ARCS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110007451A1 (en) * 2009-07-08 2011-01-13 Apaq Technology Co., Ltd. Stacked solid electrolytic capacitor with multi-pin structure
US20160351347A1 (en) * 2014-01-16 2016-12-01 Elbit Systems Land And C4I Ltd. Supercapacitor configurations with graphene-based electrodes and/or peptide
US10020125B1 (en) * 2015-02-17 2018-07-10 The United States Of America, As Represented By The Secretary Of The Navy Super dielectric capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019132143A1 (en) * 2019-11-27 2021-05-27 Bayerische Motoren Werke Aktiengesellschaft A method for manufacturing a polarized capacitor, a polarized capacitor and a method for determining a polarization of a capacitor
DE102020114682A1 (en) 2020-06-03 2021-12-09 Bayerische Motoren Werke Aktiengesellschaft A method of manufacturing a polarized capacitor and a method of polarizing a capacitor

Also Published As

Publication number Publication date
US20200126733A1 (en) 2020-04-23
US10998142B2 (en) 2021-05-04
US11508533B2 (en) 2022-11-22
US20210319959A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US11508533B2 (en) High energy density capacitor system and method
US10741334B2 (en) Method and associated capacitors having engineered electrodes with very high energy density
US6510043B1 (en) Cylindrical high voltage supercapacitor having two separators
CN103227048B (en) solid-state energy storage device
US8863363B2 (en) Method for fabricating a supercapacitor electronic battery
RU2357313C2 (en) Method of making super capacitors or quantum accumulators and super capacitor or quantum accumulator
US10644324B2 (en) Electrode material and energy storage apparatus
JP2013080937A (en) Energy storage device
US7903390B2 (en) Bipolar membrane for electrochemical supercapacitors and other capacitors
CN106099197B (en) All solid state metal ion battery and preparation method thereof, electric vehicle
CN111052279B (en) High energy density capacitor and wireless charging system
WO2018218164A1 (en) High energy density capacitor and wireless charging system
CN101741105A (en) Power system and detection method thereof
US9312076B1 (en) Very high energy-density ultracapacitor apparatus and method
TW201015818A (en) Power supply system
KR20180101286A (en) electric double layer capacitor with separating objects included electrodes
US10770228B2 (en) Capacitor including electrodes having complementary pattern formed in horizontal direction
Mourokh et al. Molecular Materials for Energy Storage
KR102302822B1 (en) Electrode struscture and electrochemical device using the same
CN116487192A (en) Super capacitor battery with thin film electrode
CN102969798A (en) Field effect electric energy storage method, field effect electric energy storage device and field effect electric battery
CN101685985A (en) Power supplying system
CN201417774Y (en) Assembly of solar battery and high-quality and density memorizer
CN101540334B (en) Integration of solar cell and high energy density memory and manufacturing method thereof
HEGGO Super charged capacitor… theory and application

Legal Events

Date Code Title Description
AS Assignment

Owner name: FLASH POWER CAPACITORS, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DAVIS, EDWARD L.;REEL/FRAME:047167/0365

Effective date: 20181007

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION