TW201015818A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
TW201015818A
TW201015818A TW97137916A TW97137916A TW201015818A TW 201015818 A TW201015818 A TW 201015818A TW 97137916 A TW97137916 A TW 97137916A TW 97137916 A TW97137916 A TW 97137916A TW 201015818 A TW201015818 A TW 201015818A
Authority
TW
Taiwan
Prior art keywords
magnetic
energy storage
power supply
power
storage devices
Prior art date
Application number
TW97137916A
Other languages
Chinese (zh)
Inventor
Yueh-Teng Hsu
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97137916A priority Critical patent/TW201015818A/en
Publication of TW201015818A publication Critical patent/TW201015818A/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention provides a power supply system. When a plurality of electric energy storing devices have different energy, the power supply system can be utilized for discharging electric energy storing device(s) having higher energy. The power supply system comprises: a plurality of electric energy storing devices; a plurality of electric energy adjusting modules, respectively coupled to the electric energy storing devices, each electric energy adjusting module for adjusting electric energy of a corresponding electric energy storing device; a voltage stabilizing unit, coupled to the electric energy storing devices, for stabilizing a voltage value provided by the electric energy storing devices; and a processing unit, coupled to the voltage stabilizing unit, the electric energy storing devices, and the electric energy adjusting modules, for controlling the electric energy adjusting modules according to electric energy of the electric energy storing devices, to let the electric energy storing devices have same electric energy.

Description

201015818 *1 九、發明說明: 【發明所屬之技彳标領域】 本發明係有關於一種電源供應系統,尤指一種當一儲能裝置 發生儲能不均時’可適當放電磁性電容(magneticcapacitor),以 保護系統的電源供應系統。 【先前技術】 〇 齡雛元件廣泛運職家電設備、手持式裝置(例如:行 動電話(MobilePhone)、PDA等)以及交通工具等產品,以滿足 人們對獨立能源系統的需求。狹義的元件主要指電池,包含 一次電池及二次電池產品;而廣義的儲能元件則泛指所有具備儲 能功能的元件,包括暫時性儲能的電容及電感,還有一種介於電 池與電容間的超級電容(Supercapacit〇r)也包括在内。 電容是以物理反應之電位能形式來儲能,在製作上較為簡 ❹單,且具有充放電速度快、高神密度的特性,但是物理儲能的 效果卻不佳(即儲能容量較小),故只能被當做短暫儲能使用。 電池可分為一次電池及二次電池。一次電池僅能使用一次, 無法透過充電的方式再補充已被轉化掉的化學能。而二次電池主 要是利用化學能的方式來進行能量儲存,因此其能量儲存密度明 顯優於-般電容’而可應用於各種電力供應裝置,但是,缺點是: * 細能產生之賴電力輸丨會受限於化學反應速率,而無法快速 201015818 的充放電或進行高功率輸出,且充放電次數有限,過度充放時易 滋生各種問題;例如··目前所使用的蓄電池,雖然標榜著可重複 使用,但還是有其壽命之限制。且蓄電池在多次充放電後容量會 下降,甚至長時間不使用,也會有容量下降問題,且容易損壞, 原因在於蓄電池是利用化學能轉換為電能,化學物質要常保其活 性’才不至於失效變質,當原來的化合物雖都作収或將近用 完時,便無法再進行新的化學反應,進而導致蓄電池老化而宣告 ^ 壽終。 口 Ο 超級電容是一種介於電池與電容間的元件,又稱雙電層電容 (Electrical Double-Layer Capacitor),因同時透過部分物理儲能、部 分化學儲能架構,其功率密度及能量密度介於電池與電容之間。 但其缺點t因有化學材料而具化學特性,而易有如電池的漏電 現象’又加上目還有部肢物理雖之放電速度快的現象,前述 兩麵素下很快就會沒電,無法制有效蓄電魏。甚至,超級 電谷文限於電解質的分解電塵(水系電解質1V、有機電解質約 2-5V),所以其耐電麗低,内阻較大,因而不適用於交流電路,且 如果使用不當會造成電解質泄漏等現象。 疋以,上述習知儲能元件的技術,皆無法同時達到電源供應 系統所要求之壽命長(高充放電次數)、高能量儲存密度、瞬間高功 率輸出、及快速充放電等優點。且目前的二次電池及超級電容皆 需要電鑛以化學的方式儲存魏,並無法在—般現今的半導體 201015818 製私下製造,因此一但在封裝完成後,其儲存電能的容量較不易 改變,且週邊相關的電路在規劃上也較不彈性,故習知技術仍有 改良精進之處。 此外,當一傳統的電源供應系統設有複數個能量儲存裝置 時’若該等能量儲存織不管是為上述的那—種習知儲能元件, 因各個儲能TG件在放電時會有放電速度不一致現象這現象將導 ❹致其裡面儲能狀況,有的儲電較多,有的儲電較少,就會使得儲 電較多的能量贿裝置對树壓的可承受性會降低,料成為短 路故障的源頭,勢必危害到整個電源供應系統。 【發明内容】 有鑑於此,本發明之一目的,係在提供一種電源供應系統, 應用具有低成本、壽命長(高充放電次數)、能量儲存密度高、體積 小、重量輕、容量大、無需維護、環保低污染等優點的能量儲存 〇 裝置。 ▲本發明之另-目的,係提供—種齡磁性電容的能量儲存密 度高於絕大多數的電容及電池,因此利用複數個磁性電容來作為 電源供應系統中的能量儲存裝置,並且可以使得所有儲能裝置均 具有相同的電量。 , n㈣目的之—在於提供-種當複數個儲能裝置發生儲能 201015818 不均時,藉磁性電容(magnetic capacitor)高充放電次數特性而使 具最尚電壓者先行放電,直到所有儲能裝置之電壓值均等時才一 起放電’以保護整個系統的電源供應系統。 依據本發明之申請專利範圍’其係揭露一種包含有具磁性電 容(magnetic capacitor)的儲能裝置之電源供應系統,包含有:複 ,個儲能裝置;複數個f量罐池,分_接於該些儲能裝置, 母一電量調整模組係用以調整相對應之一儲能裝置的電量;一穩 壓單元’输_些航裝置,胁歡該雖能裝置所提供之 -電壓值;収-處理單元’雛於雜壓單元、_儲能裝置 與該些電量調麵組’驗爾_舰裝置之電量來控制該些 電量調整模組,以使該些儲能裝置具有一相同電量。 在一較佳實施例中,該儲能裝置包含至少一個磁性電容或包 含由複數個磁性電容(magneticcapacit〇r)以串聯、並聯或串並聯方 式組成的一磁性電容組。 在-較佳實施例中,該磁性電容包含有一第一磁性電極、一 第二磁性電極以及設於其間之—介電層’其中該第—磁性電極與 第二磁性電極内具有磁偶極以抑制該磁性電容之漏電流。 在一較佳實施例中,該第一磁性電極包含有:一第一磁性層, 具有排列成第-方向之磁偶m性層,具有排列成第二 方向之磁偶極;以及—隔離層,包含有非磁性材料,辦該第- 201015818 磁性層與該第二磁性層之間;其中該第一方向與該第二方向互為 反向,以抑制該磁性電容之漏電流。 如上所述’由於本發明所提供的磁性電容電源供應系統可以 使得所有儲能裝置均具有相_電量,·可以避免當各個儲能 裝置具有不同電量時所造成整體電路容易短路故障的問題。此 外,本發_磁性電容電職齡統之雜料適餘傳統具化 ❹學能的電池或超級電容,因為傳統具化學_電减超級電容並 不像磁性電容具有極佳之能量儲存能力及高充放電次數,所以在 放電調整電量的過程中會很快就損失極高比例的電量,而無法提 供充足的電量。 【實施方式】 ❹ 在本說明書以及後續的巾請專利範圍當中使用了某些詞棄身 =^定的元件,而領域中具有通常知識者應可轉,棚 能會用不_名詞來稱侧—個元件,本說明書及制 =申=利綱並抑名稱縣躲作為㈣元件的方式,而是 =Γ上?差異來作為區分的準則,在通篇說明書及制 釋^、I:所提及的「包含有」係為—開放式的用語,故應朝 釋成「包含有但稀定於b ^ 何直接及間接的妹連接伴詞在祕包含抽 接於-第二裝置,則代表此,敎中描述—第一裝置耦 表以第一裝置可以直接電氣連接於該第二 10 201015818 、或透過其他裝置或連接手段間接地電氣連接至該第二褒置。 本發明_示之儲能裝㈣包含有至少—雜電容,其 徵在於使_性電容作為能麵树置錢電力來源。值得注专 3:=於一般電容’磁性電容可藉由於上、下電極處形成: \抑编電流,並大幅提升能量儲存密度,故可作為一極 佳之能量齡裝置或電力供應來源。 ❹ ❹ μ參考第1圖’第丨圖為本發明之磁性電容與其他習知能量 2媒介之比較示意圖。相較於主要以化學能方式進祕量儲存 I他習知能量儲存媒介(例如傳統電池或超級電容),其所 之瞬間電力輸出亦會受限於化學反應速率,而無法快速的充放電 或進行高轉輸出’且級電魏紐,過度充放料滋生 問題。反觀’由於磁性電容中儲存的能量全部係以電位能的方式 進仃儲存’磁性電容除了具有可匹配的高能量儲存密度外,更因 m電:的特性’而具有壽命長(高充放電次數)、無記憶效 …、可進㈣轉触、快·放料_,故 電池所遇到的各種問題。 解决田則 μ參考第2圖’第2圖為本發明一實施例中磁性電容1〇〇之 、-構不意圖。如第2圖所示,磁性電容酬係包含有—第—磁性 電極no、-第二磁性電極12G,以及位於其間之—介電層⑽。 ”第磁I·生電極110與第二磁性電極⑽係由具磁性的導電材 11 201015818 , 料,構成’並藉由適當的外加電場進行磁化,使第一磁性電極⑽ 與第一磁丨生電極12〇内分別形成磁偶極(爪喂⑽丨。邮也)出與 U5,以於磁性電容1〇〇内部構成一磁場,對帶電粒子的移動造成 影響,從而抑制磁性電容1〇〇之漏電流。 所需要特別強調的是,第2圖中磁偶極出與⑵的箭頭方 向僅為一示意圖。對熟習該項技藝者而言,應可瞭解到磁偶極115 ❹與125實際上係由多個整齊排列的微小磁偶極所疊加而成,且在 本發明中,磁偶極115與125最後形成的方向並無限定例如可 指向同-方向或不同方向。介電層13〇則係用來分隔第一磁性電 極110與第一磁性電極120,以於第一磁性電極⑽與第二磁性電 極120處累積電荷,儲存電位能。 在本發明之一實施例中,第一磁料極ιι〇與第二磁性電極 !2〇餘含有雜導電材f,例如稀土元素,介電層i3G係由氧化 ©鈦陶、氧化鋇_aTi〇3)或—半導體層,例如氧化抑脱如 〇硫)所構成,細本發不限於此,第—雜電極⑽、第二 磁性電極120與介電層13〇均可視產品之需求而選用適當之其他 奸料。 進-步說明磁性電容之操作原理如下。物質在一定磁場下電 阻改變的縣,稱為「雜效應」,雜金屬和合金材料一般都有 這種磁電阻絲’通倾訂,物_她率在磁射僅產生輕 12 201015818 微的減小;在某種條件下,電阻率減小的幅度相當大,比通常磁 性金屬與合金材料的磁電阻值高出10倍以上,而能夠產生很龐大 的磁阻效應。若進一步結合Maxweii—Wagnei•電路模型,磁性顆粒 複合介質中也可能會產生很龐大的磁電容效應。 在習知電容中,電容值C係由電容之面積A、介電層之介電 常數从及厚度d決定,如下式。然而在本發明中,磁性電容刚 ❺主要利用第—磁性電極11G與第二磁性電極12G中整齊排列的磁 偶極來形成磁場,使崎儲存的電子翻-自旋方向轉動,進行 整齊的期,故可在囉條件τ,容納〇的電荷,進而增加能 量的儲存密度。類比於習知電容,磁性電容之運作原理相當 於藉由磁場之作用來改變介電層u〇之介電常數,故而造成電^ 值之大幅提升。 C = g〇gr^ ~~τ~ ο 此外’在本實施例中,第一磁性電極110與介電層130之間 的”面131以及第二磁性電極12〇與介電層之間的介面⑶ 均為-不平坦的表面,以藉由增加表面積A的方式,進一步提升 磁性電容100之電容值C。 13 201015818 多層結構,包含有-第—磁性層112、一隔離層ιΐ4以及一第二磁 性層116。其中隔離層114係由非磁性材料所構成,而第一磁性層 m與第二磁性層m則包含有具磁性的導電材料,並在磁化時, 藉由不同的外加電場’使得第一磁性層112與第二磁性層ιΐ4中 的磁偶極113與117分別具有不同的方向,例如在本發明之一較 佳實施例中,磁偶極113與117的方向係為反向,而能進一步抑 制雜電容100之漏電流。此外,需要強調的是磁性電極⑽ ❺ 之結構並不限於前述之三層結構,而可_似之方式,以複數個 磁性層與非磁性層不斷交錯堆疊,再#由各雖相磁偶極方向 的調整來進-步抑制磁性電容卿之漏電流,甚至達到幾乎無漏 電流的效果。 此外,由於習知儲能元件多半以化學能的方式進行儲存因 此都需要有-定的尺寸,頻姉會造姐率的大幅下降。相較 於此,本發明之磁性電容⑽係以電位能的方式進行儲存,且因 所使用之材料可適用於半導體製程,故可藉由適當的半導體製程 來形成磁性電容100以及周邊電路連接,進而縮小磁性電容 之體積與重量,由於此製作方法可使用一般半導體製程,其應為 熟習該項技藝者所熟知,故在此不予贅述。 請參考第4圖,第4圖為本發明另一實施例中一磁性電容組 200之示意圖。承前所述,在本實施例_,係利用半導體製程於— 石夕基板上製作複數個小尺寸的磁性電容100,並藉由適當的金屬化 201015818 製程’於該些磁性電容刚間形成電連接,從而構成一個包含有 ^固磁性電容1GG的磁性f容組·,再以磁性電容組·作為能 置儲存裝置或外部裝置的電力供應來源。在本實_巾,磁性電 容組200内的複數個磁性電容勘係以類似陣列的方式電連接, 然而本發明並不限於此,而可根據不_電壓或電容值需求,進 適當的㈣或並聯’以滿足各種不·置的電力供應需求。 ❹ 她於傳統具化學池或超級電容,本發财的儲能裝 置具有低穌、壽命長(高歧電讀)、能量贿紐高、體積小、 重量輕、容量大、無需維護、環保低污染等優點。因此,本發明 在此提供一種包含有複數個具磁性電容(magnetic capadt〇r )之儲 能裝置的電源供應系統。 明參考第5圖,第5圖所繪示的係為本發明之一實施例的一 磁性電容電源供應系統3〇〇之簡化方塊圖。如第5圖所示,磁性 ❹電容電源供應系統300包含有:三個儲能裝置31〇、32()、33〇、三 個電量調整模組312、322、332、一穩壓單元340以及一處理單元 350,並且磁性電容電源供應系統3〇〇耦接於一負載36〇。儲能裝 置310、320、330分別耦接於電量調整模組312、322、332,儲能 裝置310、320、330係分別用以調整電量調整模組312、322、332 的電量。穩壓單元340係搞接於儲能裝置31〇、320、330,用於穩 疋儲能裝置310、320、330所提供之一電壓值。處理單元350係 轉接於該穩壓單元340、儲能裝置310、320、330、以及電量調整 15 201015818 Λ 模組312、322、332,用於依據儲能裝置31〇、32〇、33〇之電量來 控制電量調整模組312、322、332,以使儲能裝置310、32〇、33〇 具有一相同電量。 1 在本實施例中’電量調整模組312、322、332皆為放電模組, 以及處理單元350係從儲能裝置310、320、330中偵測出具有一 最低電量之一儲能裝置,並控制電量調整模組312、322、332以 ^ 使其他儲能裝置的電量等於該最低電量,其中電量調整模組312 包含有:一開關314,辆接於儲能裝置31〇 ;以及一控制單元gig, 耦接於開關314與處理單元350,用於接收處理單元35〇之一控制 訊號以控制開關314來決定是否將相對應之儲能裝置31〇經由控 制單元316放電,以使儲能裝置31〇的電量等於該最低電量。電 量調整模組322包含有:一開關324,耦接於儲能裝置320 ;以及 一控制單元326,耦接於開關324與處理單元350,用於接收處理 單元350之一控制訊號以控制開關324來決定是否將相對應之儲 ❹旎裝置320經由控制單元326放電,以使儲能裝置320的電量等 於該最低電量1量調整模組332包含有:一開關334,耦接於儲 旎裝置330 ;以及一控制單元336,耦接於開關334與處理單元 35〇 ’用於接收處理單元35〇之一控制訊號以控制開關3料來決定 疋否將相對應之儲能裝置33〇經由控制單元336放電以使儲能 裝置330的電量等於該最低電量。舉例來說,假設儲能裝置31〇、 320、330充電完成後的電量分別是Q卜Q2、Q3,且Q1<Q2<Q3, /虽處理單元350從儲能裝置31〇、32〇、33〇中偵測出儲能裝置3⑴ 201015818 _ 具有-最低的電量Φ,處理單元35〇就會關閉開關3i4,並開啟 開關324、334,來將儲能裝置320、330分別經由控制單元326、 336放電,以使儲能裝置32〇、33〇的電量等於電量qi。然而,上 述的實施例僅作為本發明的舉例說明,而不是本發明的限制條 件’舉例來說,儲能裝置的數量並秘制為三個。 综上所述’由於本發明所提供的磁性電容電源供應系統可以 ❹使得财雛㈣均具有_的《,因此可簡枝各個儲能 裝置具有不同電量時所造成整體電路容易短路故障的問題。此 外’本發明的含磁性電容的儲能裝置之電源供應系統之架構並不 適用於傳統具化學能的電池或超級電容,因為傳統的化學能的電 池或超級電容並不像磁性電容具有極佳之能量儲存能力及高充放 電次數,所以在放·整電量的過程中會錄就損失極高比例的 電量’而無法提供充足的電量。 》 Μ上所雜林剌之餘實_,驗轉”請專利範 圍所做之均等變化與修舞’皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為本發明之磁性電容與其他習知能量儲存媒介之比較示意 圖0 第2圖為本發明一實施例中磁性電容之結構示意圖。 第3圖為本發明之另一實施例中第一磁性電極之結構示意圖。 201015818 第4圖為本發明另一實施例中一磁性電容組之示意圖。 第5圖所繪示的係為本發明之一實施例的一包含有具磁性電容的 儲能裝置之電源供應系統之簡化方塊圖。 【主要元件符號說明】 100 :磁性電容 110、120 :磁性電極 115、125、113、117 :磁偶極 Ο U 130 :介電層 112、116 :磁性層 114 :隔離層 200 :磁性電容組 300:電源供應系統 310、320、330 :儲能裝置 312、322、332 :電量調整模組 ◎ 316、326、336 :控制單元 340 :穩壓單元 350 :處理單元 360 :負載 18201015818 *1 IX. Description of the invention: [Technical target field to which the invention pertains] The present invention relates to a power supply system, and more particularly to a magnetic capacitor that can be properly discharged when an energy storage device is unevenly stored. To protect the system's power supply system. [Prior Art] 〇 Ageing components are widely used in home appliances, handheld devices (such as mobile phones, PDAs, etc.) and vehicles to meet people's needs for independent energy systems. The narrowly defined components mainly refer to batteries, including primary batteries and secondary battery products; while the generalized energy storage components refer to all components with energy storage functions, including temporary storage capacitors and inductors, and a battery and The supercapacitor between capacitors (Supercapacit〇r) is also included. Capacitor is stored in the form of potential energy of physical reaction. It is simple and simple in production, and has the characteristics of fast charge and discharge speed and high density of God. However, the effect of physical energy storage is not good (ie, the energy storage capacity is small). ), it can only be used as a short-term storage. The battery can be divided into a primary battery and a secondary battery. The primary battery can only be used once, and the chemical energy that has been converted can not be replenished by charging. The secondary battery is mainly used for energy storage by means of chemical energy, so its energy storage density is obviously superior to that of the general capacitor' and can be applied to various power supply devices, but the disadvantages are: * The fine energy can be generated by the power transmission丨 will be limited by the chemical reaction rate, but can not quickly charge and discharge or high-power output of 201015818, and the number of charge and discharge is limited. It is easy to breed various problems when over-charged; for example, the battery currently used is advertised. Reuse, but still have a limit on its life. Moreover, the capacity of the battery will decrease after repeated charge and discharge, and even if it is not used for a long time, there will be a problem of capacity drop, and it is easy to be damaged. The reason is that the battery is converted into electric energy by using chemical energy, and the chemical substance should always keep its activity'. In the case of failure and deterioration, when the original compound is used up or nearly used up, it is impossible to carry out a new chemical reaction, which leads to the aging of the battery and the end of life. The supercapacitor is a component between the battery and the capacitor, also known as the Electrical Double-Layer Capacitor. Due to the simultaneous transmission of part of the physical energy storage and part of the chemical energy storage structure, the power density and energy density are introduced. Between the battery and the capacitor. However, its shortcomings t have chemical properties due to chemical materials, and it is easy to have a leakage phenomenon such as a battery. In addition, the phenomenon of rapid discharge of the limbs and the physical properties of the limbs, the two sides will soon have no electricity. It is impossible to make an effective storage of electricity. Even, Super Electric Valley is limited to electrolyte decomposition of electric dust (water system electrolyte 1V, organic electrolyte about 2-5V), so its resistance to electricity is low, internal resistance is large, so it is not suitable for AC circuits, and if used improperly, it will cause electrolytes. Leakage and other phenomena. As a result, the above-mentioned conventional energy storage component technologies cannot simultaneously achieve the advantages of long life (high charge and discharge times), high energy storage density, instantaneous high power output, and rapid charge and discharge required by the power supply system. Moreover, current secondary batteries and supercapacitors require the use of electric ore to store Wei in a chemical manner, and cannot be manufactured privately in the current semiconductor 201015818 system. Therefore, once the package is completed, the capacity of the stored electrical energy is not easily changed. And the peripheral related circuits are also less flexible in planning, so the conventional technology still has improved and improved. In addition, when a conventional power supply system is provided with a plurality of energy storage devices, if the energy storage fabrics are the conventional energy storage components, the respective energy storage TG components may discharge during discharge. The phenomenon of speed inconsistency will lead to the storage of energy inside, some of which have more electricity storage, and some have less electricity storage, which will make the energy-relief device with more electricity storage reduce the tree pressure. The material becomes the source of short-circuit faults, which is bound to endanger the entire power supply system. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a power supply system having low cost, long life (high number of charge and discharge times), high energy storage density, small size, light weight, and large capacity. An energy storage device that does not require maintenance, environmental protection and low pollution. ▲ Another object of the present invention is to provide an energy storage density of an age-old magnetic capacitor that is higher than most capacitors and batteries, and therefore utilizes a plurality of magnetic capacitors as an energy storage device in a power supply system, and can make all The energy storage devices all have the same amount of electricity. , n (four) purpose - to provide - when a plurality of energy storage devices generate energy storage 201015818 uneven, by the magnetic capacitor (magnetic capacitor) high charge and discharge times characteristics so that the most voltage first discharge, until all energy storage devices When the voltage values are equal, they are discharged together to protect the power supply system of the entire system. According to the patent application scope of the present invention, a power supply system including an energy storage device having a magnetic capacitor includes: a complex energy storage device; a plurality of f-volume tanks; In the energy storage devices, the mother-electricity adjustment module is used to adjust the power of one of the corresponding energy storage devices; a voltage stabilizing unit 'transports some of the navigation devices, and the voltage value provided by the device The receiving-processing unit is configured to control the power adjustment modules by the power of the miscellaneous pressure unit, the energy storage device, and the power-regulating group's 'well' ship device, so that the energy storage devices have the same Electricity. In a preferred embodiment, the energy storage device comprises at least one magnetic capacitor or a magnetic capacitor group consisting of a plurality of magnetic capacitors (magneticcapacit〇r) in series, parallel or series-parallel. In a preferred embodiment, the magnetic capacitor includes a first magnetic electrode, a second magnetic electrode, and a dielectric layer disposed therebetween, wherein the first magnetic electrode and the second magnetic electrode have magnetic dipoles therein The leakage current of the magnetic capacitor is suppressed. In a preferred embodiment, the first magnetic electrode comprises: a first magnetic layer having a magnetic coupling m layer arranged in a first direction, having magnetic dipoles arranged in a second direction; and an isolation layer And comprising a non-magnetic material between the magnetic layer and the second magnetic layer; wherein the first direction and the second direction are opposite to each other to suppress leakage current of the magnetic capacitor. As described above, the magnetic capacitor power supply system provided by the present invention can make all the energy storage devices have a phase power amount, and can avoid the problem that the entire circuit is easily short-circuited when the respective energy storage devices have different power amounts. In addition, the _ magnetic capacitor electric age system of the miscellaneous material is suitable for the traditional battery or super capacitor of the chemistry, because the traditional chemistry _ 减 超级 super capacitor does not have excellent energy storage capacity like magnetic capacitors and The number of high charge and discharge times, so in the process of adjusting the power of the discharge will quickly lose a very high proportion of the power, and can not provide sufficient power. [Embodiment] ❹ In the specification and the subsequent patent application scope, some words used in the patent are used, and those who have the usual knowledge in the field should be able to turn, and the shed can use the _ noun to - a component, this specification and system = Shen = Li Gang and the name of the county to hide as (four) components, but = Γ ?? Differences as a criterion for differentiation, in the overall specification and release ^, I: And "included" is an open-ended term, so it should be interpreted as "including but not limited to b ^ direct and indirect sister connection affiliation in the secret containing the second device, then In this regard, the first device coupling table can be electrically connected directly to the second device by the first device, or indirectly connected to the second device through other devices or connection means. Can be installed (four) contains at least - hetero-capacitor, the sign is to make the _-capacity as a power source for the energy tree. It is worthy of special 3: = in general capacitance 'magnetic capacitance can be formed by the upper and lower electrodes: \ Current is programmed and the energy storage density is greatly increased, so As an excellent energy age device or power supply source. ❹ ❹ μ Refer to Figure 1 for the comparison of the magnetic capacitance of the present invention with other conventional energy 2 media. Compared with the main chemical energy approach The secret storage I knows the energy storage medium (such as traditional batteries or super capacitors), and the instantaneous power output is also limited by the chemical reaction rate, and cannot be quickly charged and discharged or high-turn output. New, excessive charging and discharging problems. In contrast, 'the energy stored in the magnetic capacitors is stored in the form of potential energy. 'In addition to the high energy storage density that can be matched, the characteristics of the electric energy: And has a long life (high charge and discharge times), no memory effect ..., can enter (four) touch, fast · discharge _, so the battery encountered various problems. Solve the field is the reference to Figure 2 'Figure 2 In one embodiment of the present invention, the magnetic capacitor is not configured. As shown in FIG. 2, the magnetic capacitor includes - a magnetic electrode no, a second magnetic electrode 12G, and a portion therebetween - Dielectric layer (10) "The magnetic I, the green electrode 110 and the second magnetic electrode (10) are made of a magnetic conductive material 11 201015818, and are magnetized by a suitable applied electric field to make the first magnetic electrode (10) and the first magnetic body A magnetic dipole (claw feed (10) 丨.) is also formed in the crucible electrode 12 to form a magnetic field inside the magnetic capacitor 1 ,, which affects the movement of the charged particles, thereby suppressing the magnetic capacitance 1〇.漏 leakage current. It is particularly emphasized that the direction of the arrow in the magnetic dipole and (2) in Fig. 2 is only a schematic view. It will be appreciated by those skilled in the art that magnetic dipoles 115 and 125 are actually superposed by a plurality of closely arranged micro magnetic dipoles, and in the present invention, magnetic dipoles 115 and 125 The direction of the final formation is not limited, for example, to the same direction or different directions. The dielectric layer 13 is used to separate the first magnetic electrode 110 from the first magnetic electrode 120 to accumulate charges at the first magnetic electrode (10) and the second magnetic electrode 120 to store potential energy. In an embodiment of the invention, the first magnetic material pole ιι and the second magnetic electrode 〇2 contain a hetero-conducting material f, such as a rare earth element, and the dielectric layer i3G is made of oxidized titanium, yttrium oxide _aTi 〇3) or - a semiconductor layer, such as oxidizing and depressing, such as bismuth sulphur, is not limited thereto, and the first-electrode electrode (10), the second magnetic electrode 120 and the dielectric layer 13 are all selected according to the needs of the product. Appropriate other spoils. The step-by-step description of the magnetic capacitor operates as follows. The county whose material changes under a certain magnetic field is called "hetero effect". Heterogeneous metals and alloy materials generally have such a magnetoresistance wire 'passing the order, and the material _ her rate is only slightly lighter in the magnetic radiation 12 201015818 Small; under certain conditions, the magnitude of the decrease in resistivity is quite large, which is more than 10 times higher than the magnetic resistance of magnetic materials and alloy materials, and can produce a very large magnetoresistance effect. If combined with the Maxweii-Wagnei• circuit model, a large magnetic capacitance effect may also occur in the magnetic particle composite medium. In the conventional capacitor, the capacitance value C is determined by the area A of the capacitor, the dielectric constant of the dielectric layer, and the thickness d, as shown in the following equation. However, in the present invention, the magnetic capacitors are mainly formed by the magnetic dipoles arranged in the n-magnetic electrodes 11G and the second magnetic electrodes 12G to form a magnetic field, and the electrons in the saddle storage are rotated in the spin direction to perform a neat period. Therefore, in the 啰 condition τ, the charge of 〇 can be accommodated, thereby increasing the storage density of energy. Analogous to conventional capacitors, the principle of operation of magnetic capacitors is equivalent to changing the dielectric constant of the dielectric layer by the action of a magnetic field, thus causing a significant increase in the electrical value. C = g〇gr^ ~~τ~ ο Furthermore, in the present embodiment, the interface between the first magnetic electrode 110 and the dielectric layer 130 and the interface between the second magnetic electrode 12 and the dielectric layer (3) Both are - uneven surfaces to further increase the capacitance value C of the magnetic capacitor 100 by increasing the surface area A. 13 201015818 The multilayer structure includes a - magnetic layer 112, an isolation layer ι 4 and a second The magnetic layer 116. The isolation layer 114 is composed of a non-magnetic material, and the first magnetic layer m and the second magnetic layer m comprise a magnetic conductive material, and when magnetized, by a different applied electric field The magnetic dipoles 113 and 117 in the first magnetic layer 112 and the second magnetic layer ι 4 respectively have different directions. For example, in a preferred embodiment of the present invention, the directions of the magnetic dipoles 113 and 117 are reversed. Further, it is possible to further suppress the leakage current of the impurity capacitor 100. Further, it is emphasized that the structure of the magnetic electrode (10) ❺ is not limited to the above-described three-layer structure, and the magnetic layer and the non-magnetic layer may be continuously interleaved in a similar manner. Stacking, then # by each phase magnetic dipole The adjustment of the direction to further suppress the leakage current of the magnetic capacitor, and even achieve the effect of almost no leakage current. In addition, since most of the conventional energy storage components are stored in a chemical energy manner, it is necessary to have a certain size, frequency. In contrast, the magnetic capacitor (10) of the present invention is stored in the form of potential energy, and since the material used can be applied to a semiconductor process, it can be processed by a suitable semiconductor process. The magnetic capacitor 100 and the peripheral circuit are formed to reduce the volume and weight of the magnetic capacitor. Since the manufacturing method can use a general semiconductor process, it should be well known to those skilled in the art, and therefore will not be described here. 4 is a schematic view of a magnetic capacitor group 200 according to another embodiment of the present invention. As described above, in the present embodiment, a plurality of small-sized magnetic capacitors 100 are fabricated on a Si Xi substrate by using a semiconductor process. And through the appropriate metallization 201015818 process 'to form an electrical connection between the magnetic capacitors, thus forming a solid magnetic capacitor 1GG Magnetic f-capacity group, and then magnetic capacitor group as a power supply source for an energy storage device or an external device. In the present invention, a plurality of magnetic capacitances in the magnetic capacitor group 200 are electrically connected in an array-like manner. However, the present invention is not limited thereto, and may be appropriately (four) or connected in parallel to meet various power supply requirements according to non-voltage or capacitance value requirements. ❹ She has a conventional chemical pool or super capacitor, The energy-storing device with richness has the advantages of low sac, long life (high-resolution electric reading), high energy bribe, small volume, light weight, large capacity, no maintenance, low environmental pollution, etc. Therefore, the present invention provides a A power supply system comprising a plurality of energy storage devices with magnetic capacitors. Referring to Figure 5, Figure 5 is a simplified block diagram of a magnetic capacitor power supply system 3 according to one embodiment of the present invention. As shown in FIG. 5 , the magnetic tantalum capacitor power supply system 300 includes: three energy storage devices 31 〇, 32 (), 33 〇, three power adjustment modules 312, 322, 332, a voltage stabilization unit 340, and A processing unit 350, and the magnetic capacitor power supply system 3 is coupled to a load 36A. The energy storage devices 310, 320, and 330 are respectively coupled to the power adjustment modules 312, 322, and 332, and the energy storage devices 310, 320, and 330 are used to adjust the power consumption of the power adjustment modules 312, 322, and 332, respectively. The voltage stabilizing unit 340 is connected to the energy storage devices 31, 320, 330 for stabilizing one of the voltage values provided by the energy storage devices 310, 320, and 330. The processing unit 350 is coupled to the voltage stabilizing unit 340, the energy storage devices 310, 320, 330, and the power adjustment 15 201015818 模组 modules 312, 322, 332 for use according to the energy storage devices 31〇, 32〇, 33〇 The power is used to control the power adjustment modules 312, 322, 332 such that the energy storage devices 310, 32A, 33A have the same amount of power. In the present embodiment, the power adjustment modules 312, 322, and 332 are all discharge modules, and the processing unit 350 detects an energy storage device having a minimum power from the energy storage devices 310, 320, and 330. And controlling the power adjustment module 312, 322, 332 to make the power of the other energy storage device equal to the minimum power, wherein the power adjustment module 312 includes: a switch 314 connected to the energy storage device 31; and a control The unit gig is coupled to the switch 314 and the processing unit 350 for receiving a control signal from the processing unit 35 to control the switch 314 to determine whether to discharge the corresponding energy storage device 31 via the control unit 316 to enable energy storage. The amount of power of the device 31 is equal to the minimum amount of electricity. The power adjustment module 322 includes a switch 324 coupled to the energy storage device 320, and a control unit 326 coupled to the switch 324 and the processing unit 350 for receiving a control signal from the processing unit 350 to control the switch 324. Determining whether to discharge the corresponding storage device 320 via the control unit 326, so that the amount of the energy storage device 320 is equal to the minimum amount of electricity. The adjustment module 332 includes: a switch 334 coupled to the storage device 330 And a control unit 336 coupled to the switch 334 and the processing unit 35' to receive a control signal from the processing unit 35 to control the switch 3 to determine whether the corresponding energy storage device 33 is passed through the control unit The discharge 336 is such that the amount of energy stored in the energy storage device 330 is equal to the minimum amount of electricity. For example, suppose that the electric energy after completion of charging of the energy storage devices 31, 320, 330 is Q Q2, Q3, and Q1 < Q2 < Q3, / although the processing unit 350 is from the energy storage devices 31, 32, 33 〇 储 储 储 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有Discharge so that the amount of energy stored in the energy storage device 32〇, 33〇 is equal to the amount of electricity qi. However, the above-described embodiments are merely illustrative of the present invention, rather than the limiting conditions of the present invention. For example, the number of energy storage devices is three and is secret. In summary, the magnetic capacitor power supply system provided by the present invention can make the Caijing (4) have the _, so that the overall circuit can be easily short-circuited when the respective energy storage devices have different electric quantities. In addition, the structure of the power supply system of the magnetic capacitor-containing energy storage device of the present invention is not suitable for a conventional battery or super capacitor with chemical energy, because the conventional chemical energy battery or super capacitor is not as excellent as the magnetic capacitor. The energy storage capacity and the high number of charge and discharge times, so in the process of releasing the whole power, it will record a very high proportion of the amount of electricity' and cannot provide sufficient power. 》 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上FIG. 2 is a schematic structural view of a magnetic capacitor according to an embodiment of the present invention. FIG. 3 is a schematic structural view of a first magnetic electrode according to another embodiment of the present invention. 4 is a schematic diagram of a magnetic capacitor group according to another embodiment of the present invention. FIG. 5 is a simplified block diagram of a power supply system including an energy storage device with magnetic capacitance according to an embodiment of the present invention. Fig. [Description of main component symbols] 100: Magnetic capacitors 110, 120: Magnetic electrodes 115, 125, 113, 117: Magnetic dipole Ο U 130: Dielectric layer 112, 116: Magnetic layer 114: Isolation layer 200: Magnetic capacitor Group 300: power supply system 310, 320, 330: energy storage device 312, 322, 332: power adjustment module ◎ 316, 326, 336: control unit 340: voltage stabilization unit 350: processing unit 360: load 18

Claims (1)

201015818 十、申請專利範圍: I 一種電源供應系統,包含有: 複數個儲能裝置; 複數個電量調整模組,分別麵接於該些儲能裝置,每一電量調 整模組係用以調整相對應之一儲能裝置的電量; 一穩壓單元,耦接於該些儲能裝置,用於穩定該些儲能裝置所 提供之一電壓值;以及 ❹ 一處理單元’輕接於該穩壓單元、該些儲能裝置與該些電量調 整模組’用於依據該些儲能裝置之電量來控制該些電量調整 模組,以使該些儲能裝置具有一相同電量。 2·如申請專利範圍第1項所述之電源供應系統,其中該些電量調 整模組係為複數個放電模組,以及該處理單元係從該些儲能裝 置中偵測出具有一最低電量之一儲能裝置,並控制該些放電模 G 組以使其他儲能裝置的電量等於該最低電量。 3.如申請專利範圍第2項所述之電源供應系統,其中各該放電模 組包含有: 一開關’耦接於相對應之一儲能裝置;以及 一控制單元’耦接於該開關與該處理單元,用於接收該處理單 元之一控制訊號以控制該開關來決定是否將相對應之該儲 能裝置經由該控制單元放電,以使相對應之該儲能裝置的電 - 量等於該最低電量控制單元。 201015818 4. 如申請專利範圍第!項所述之電源供應系統,其另_於一負 載。 、 5. 如申請專利範圍第1項所述之電源供應系統’其中各該館能裝 置包含有複數個磁性絲,且各該雜絲伽χ串聯或並獅 方式互相電連接。 ❹6.如申請專利賴第5項所述之電源供應纽,其中各該磁性電 容包含有·· 一第一磁性電極; 一第二磁性電極;以及 一介電層設於該第一磁性電極與該第二磁性電極之間; •其中該第一磁性電極與該第二雜電極内具有磁偶極(聰即咖 dipole)以抑制該磁性電容之漏電流。 7.如申請專利範圍第6項所述之電源供應系統,其巾該第一磁性 電極包含有: 一第-磁性層’具有排列成第—方向之磁偶極; 第一磁性層,具有排列成第二方向之磁偶極;以及 一隔離層,包含有非磁性材料’設於該第—磁性層與該第二磁 性層之間; 其中該第-方向與該第二方向互為反向,以抑制該磁性電容之 20 201015818 漏電流。 8.如申請專利範圍第1項所述之電源供應系統,其係整合於一積 體電路中。 十一、囷式: ❹ 21201015818 X. Patent application scope: I A power supply system, comprising: a plurality of energy storage devices; a plurality of power adjustment modules respectively connected to the energy storage devices, each power adjustment module is used to adjust the phase Corresponding to the power of one of the energy storage devices; a voltage stabilizing unit coupled to the energy storage devices for stabilizing one of the voltage values provided by the energy storage devices; and a processing unit 'lightly connected to the voltage regulator The unit, the energy storage device and the power adjustment module are configured to control the power adjustment modules according to the power of the energy storage devices, so that the energy storage devices have the same power. 2. The power supply system of claim 1, wherein the power adjustment modules are a plurality of discharge modules, and the processing unit detects a minimum amount of power from the energy storage devices. One of the energy storage devices controls the group of discharge modes G such that the amount of power of the other energy storage devices is equal to the minimum amount of electricity. 3. The power supply system of claim 2, wherein each of the discharge modules comprises: a switch coupled to a corresponding one of the energy storage devices; and a control unit coupled to the switch The processing unit is configured to receive a control signal of the processing unit to control the switch to determine whether to discharge the corresponding energy storage device via the control unit, so that the corresponding electric quantity of the energy storage device is equal to the Minimum power control unit. 201015818 4. If you apply for a patent scope! The power supply system described in the item is another load. 5. The power supply system of claim 1, wherein each of the museums can include a plurality of magnetic wires, and each of the wires is connected in series or in a lion manner. ❹6. The power supply of claim 5, wherein each of the magnetic capacitors comprises a first magnetic electrode; a second magnetic electrode; and a dielectric layer is disposed on the first magnetic electrode Between the second magnetic electrodes; • wherein the first magnetic electrode and the second hybrid electrode have a magnetic dipole (the dipole) to suppress leakage current of the magnetic capacitor. 7. The power supply system of claim 6, wherein the first magnetic electrode comprises: a first magnetic layer having magnetic dipoles arranged in a first direction; a first magnetic layer having an arrangement a magnetic dipole in a second direction; and an isolation layer comprising a non-magnetic material disposed between the first magnetic layer and the second magnetic layer; wherein the first direction and the second direction are opposite to each other To suppress the leakage current of the magnetic capacitor 20 201015818. 8. The power supply system of claim 1, wherein the power supply system is integrated in an integrated circuit. XI. 囷: ❹ 21
TW97137916A 2008-10-02 2008-10-02 Power supply system TW201015818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97137916A TW201015818A (en) 2008-10-02 2008-10-02 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97137916A TW201015818A (en) 2008-10-02 2008-10-02 Power supply system

Publications (1)

Publication Number Publication Date
TW201015818A true TW201015818A (en) 2010-04-16

Family

ID=44830194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97137916A TW201015818A (en) 2008-10-02 2008-10-02 Power supply system

Country Status (1)

Country Link
TW (1) TW201015818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411196B (en) * 2010-05-18 2013-10-01
TWI427885B (en) * 2010-09-13 2014-02-21 Richpower Microelectronics Battery pack and protection circuit and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411196B (en) * 2010-05-18 2013-10-01
TWI427885B (en) * 2010-09-13 2014-02-21 Richpower Microelectronics Battery pack and protection circuit and method therefor

Similar Documents

Publication Publication Date Title
JP2006287174A (en) High-voltage electric double-layer capacitor
CN101656433A (en) Fault protection device
CN101752910A (en) Power supply device with variable voltage output
WO2019093654A1 (en) Method for charging battery and device for charging battery
CN209691893U (en) Composite power energy storage battery core
US20130162214A1 (en) Capacitor active balancing device with high-voltage differential and method thereof
TW201015818A (en) Power supply system
CN101626166A (en) Standby power supply device
CN101685984A (en) System chip and power supply method thereof
TW201019566A (en) Balance module for power and method thereof
CN203150391U (en) Static electric energy storage apparatus
CN101741147A (en) Power supply device
TW201019561A (en) Power system
TW201013381A (en) System-on-chip (SoC) and power supply method thereof
CN101639025A (en) Starting system for starting engine
TW201018932A (en) Power system and detecting method thereof
TW201004085A (en) Magnetic capacitor device for storing energy
TW201011319A (en) Power apparatus and testing method of power array
TW201023475A (en) A power supply device having various voltage outputs
CN101667751A (en) Power supply device and power control module
KR101211667B1 (en) Super capacitor type of pouch and manufacturing method
CN101685985A (en) Power supplying system
CN101728845A (en) Power supply system with control mechanism
CN101656434A (en) Power supply device with protective function
TW201012042A (en) Power supply apparatus and power control module