TW201004085A - Magnetic capacitor device for storing energy - Google Patents

Magnetic capacitor device for storing energy Download PDF

Info

Publication number
TW201004085A
TW201004085A TW97126631A TW97126631A TW201004085A TW 201004085 A TW201004085 A TW 201004085A TW 97126631 A TW97126631 A TW 97126631A TW 97126631 A TW97126631 A TW 97126631A TW 201004085 A TW201004085 A TW 201004085A
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic capacitor
voltage
capacitor
energy storage
Prior art date
Application number
TW97126631A
Other languages
Chinese (zh)
Inventor
Ching-Feng Cheng
Jiin-Cheng Jow
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97126631A priority Critical patent/TW201004085A/en
Publication of TW201004085A publication Critical patent/TW201004085A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A magnetic capacitor device for storing energy includes a magnetic capacitor unit for storing electrical energy, and a voltage regulating unit electrically connected to the magnetic capacitor unit for up/down voltage conversion of discharge voltage from the magnetic capacitor unit so as to output a fixed voltage. The magnetic capacitor unit includes a magnetic capacitor, or a magnetic capacitor set formed from a plurality of magnetic capacitors that are connected in series, in parallel, or in series and in parallel. The magnetic capacitor device of this invention utillzes the magnetic capacitor unit as an energy storage element, and has advantages of low cost, high energy storage density, adaptability to semi-conductor processes, small size, light weight, large capacity, being maintenance-free, long service life, low pollution, etc.

Description

201004085 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種儲能裝置,特別是指一種應用磁性 電容做為儲能元件之磁性電容儲能裝置。 【先前技術】 現今應用上大都利用電池、電容或超級電容(Super capacitor)作為能量儲存的元件。電容雖然在製程上較為簡 單,但因其儲存容量小,只能當做短暫儲能使用。而電池 主要是利用化學能的方式來進行能量儲存,因此其能量儲 存密度明顯優於一般電容,而可應用於各種電力供應裝置 ,但是,其所能產生之瞬間電力輸出會受限於化學反應速 率,而無法快速的充放電或進行高功率輸出,且充放電次 數有限,過度充放時易滋生各種問題。 超級電容是一種介於電池與電容間的元件,又稱雙電 層電容(Electrical Double-Layer Capacitor),因同時透過部分 物理儲能、部分化學儲能架構,故其具有比普通電容更大的 容量,但其缺點是:因有化學材料而具化學特性,而易有 如電池的漏電缺點,又加上因還有部份是物理特性之放電 速度快的現象,如此一來就產生很快就會沒電的現象,無 法達到有效蓄電功能。甚至,超級電容的耐壓度不高,内 阻較大,因而不可以用於交流電路,且如果使用不當會造 成電解質泄漏等現象。 而且,上述習知儲能元件並無法同時倶備壽命長(高充 放電次數)、高能量儲存密度、瞬間高功率輸出及快速充放 201004085 電等優點。所以,若能開發一種同時俱備壽命長(高充放電 次數)、高能量儲存密度、瞬間高功率輸出及快速充放電等 優點的儲能裝置,將對於需要使用電池、電容等儲能裝置 的電子裝置有大助益。 【發明内容】 因此,本發明之目的,係在提供一種應用具有低成本 、能量儲存密度高、體積小、重量輕、容量大、無需維護 、使用壽命長、環保低污染等優點的磁性電容做為儲能元 件之磁性電容儲能裝置。 於是,本發明之磁性電容儲能裝置,包括:一磁性電 容單元,用以儲存電能,以及一電壓調節單元,與該磁性電 容單元電性連接,並根據該磁性電容的放電電壓產生一具有 一個定電壓的輸出電源,當該磁性電容單元的放電電壓大於 該定電壓時,該電壓調節單元對該放電電壓進行降壓,當該 磁性電容單元的放電電壓小於該定電壓時,該電壓調節單元 對該放電電壓進行升壓。 較佳地,該磁性電容單元是一磁性電容或由複數個磁 性電容以串聯、並聯或串並聯方式組成的一磁性電容組。 較佳地,該磁性電容包含有一第一磁性電極、一第二 磁性電極以及設於其間之一介電層,其中該第一磁性電極與 第二磁性電極内具有磁偶極以抑制該磁性電容之漏電流。 較佳地,該第一磁性電極包含有:一第一磁性層,具 有排列成第一方向之磁偶極;一第二磁性層,具有排列成第 二方向之磁偶極;以及一隔離層,包含有非磁性材料,設於 6 201004085 該第一磁性層與該 二方向互為反向, 第二磁性層之間;其中該第一 以抑制該磁性電容之漏電流。 方向與該第 較佳地,該第一磁μ番托ώ, 一 锻!生電極與第一磁性電極係包含有稀 土兀素亥介電層係由氧化勒m η、 虱化鈦(丁103)、氧化鋇鈦(BaTi03)或 -半導體層所構成。其中該半導體層為氧化石夕。 較佳地,該電壓調筋置;& # ^ 门即早7G包括一電感,一與電感之一 第-端及該磁性電容單元的—正極端連接的第―開關,一與 該電感之該第-端連接的第二開關,—控制該第—開關及第 二開關,以對該磁性電容單元的放電電壓進行降壓的降壓控 制電路,與電感之-第二端連接的—第三開關及—第四開關 ’-控制該第三開關及第四開關,以對磁性電容單元的放電 電壓進行升壓的升壓_轉,以及_對該電感之輸出電流 進行滤波整流的滤波電路。 較佳地,當該放電電壓大於該定電壓時,該降壓控制 電路被啟動,當該放電電壓小於該定電壓時,該升壓控制電 路被啟動。 較佳地,當該放電電壓介於該定電壓與一接近但大於 該定電壓之間的值,或當該放電電壓介於該定電壓與一接近 但小於該定電壓之間的值時,該降壓控制電路及該升壓控制 電路被依序啟動。 較佳地,該第一、第二、第三及第四開關是金氧半場 效電晶體。 較佳地’該磁性電容單元更包括一過電流保護電路, 其連接在該巨磁電容組之正、負極兩端之間,用以保護該巨 201004085 磁電容組不致因充/放電電流過大而燒燬。 較佳地,該過電流保護電路包含一串接在該磁性電容 組的正極端與該電壓調節單元之間的保險絲,一與該磁性電 容組的正極端連接的保護電路,一串接在該磁性電容組的負 極端與該電壓調節單元之間,並受該保護電路控制的開關, 以及一連接在該保護電路與該磁性電容組的負極端之間的電 阻,該電阻偵測該磁性電容組的輸出電流並送給該保護電路 ,使該保護電路根據該輸出電流決定是否切斷該開關,使該 磁性電容組停止放電。 本發明利用磁性電容做為儲能元件,並搭配一電壓調 節單元對磁性電容之放電電壓進行適當升降壓轉換,即可以 將磁性電容單元之放電電壓轉換成定電壓輸出,而且能達到 減少磁性電容儲能裝置的整體體積、重量和製造成本,並提 高能量儲存效率、儲存容量和使用壽命,改善習知電池、電 容或超級電容等儲能元件的缺點。 【實施方式】· 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 請參見圖1,是本發明磁性電容儲能裝置的較佳實施例 之電路方塊示意圖。 本實施例的磁性電容儲能裝置1主要包括一磁性電容 單元11及一電壓調節單元12。 磁性電容單元11可以是單一個磁性電容或是由複數磁 8 201004085 性電=以串聯、並聯或串、並聯方式組成的一磁性電容組 二本實施例應用之磁性電容是一種以矽半導體為原料,在 一定的磁場作用下透過物理儲能方式實^密度、大容量 儲存電=的儲能元件。且磁性電容具有輸出電流大、體積 重里心、超長使用壽命、充放電能力佳以及沒有充電 記憶效應等特性,因此拿來做為蓄電元件以取代傳統的電 池、電容或超級電容,除了可以使儲能裳置的體積、重量 和製造成本減少,而且可以使儲能裝置的使用壽命提高。 所X本發明之—特徵在於使用磁性電容作為能量儲 、置乂及電力來源。值得注意的是,相較於一般電容, 容可藉由於上、下電極處形叙磁場,來抑制漏電 二置=提升能量儲存密度,故可作為一極佳之能量儲 存裝置或電力供應來源。 量儲= 圖:為本實施例之磁性電容與其他習知能 子媒…較不意圖。如圖2所示,由於 =:(r傳統電池或超級電容)主要是利用化學能的方: 灯此讀存’因此其能量儲存密度將會明 :二而可應用於各種電力供應裝置,但在此同時,4 充放電於化學反應速率,* 度充放時㈣生各種題’且A放電錢有限,過 相較於此,由於磁性電容中錯存的能量 能的方式進行儲存’因此,除了具有可與一般電二:位 電容匹配的能量儲存密度外,更因充分保有電容的^級 9 201004085 而具有壽命長(高充放電次數)、無記憶效應、可進行高功率 輸出、快速充放電等特點,故可有效解決當前電池所遇到 的各種問題。 B月參考圖3 ’圖3為本發明_實施例中之磁性電容彻 的結構示意圖。如圖3所示,磁性電纟權係包含有一第 —磁性電極m、-第二磁性電極12G,以及位於其間之一 介電層13G°其中第—磁性電極11G與第二磁性電極120係 由具磁性的導電材料所構成,並藉由適當的外加電場進行 磁化,使第一磁性電極110與第二磁性電極120内分別形成 磁偶極(magenedc dipole)115與125,以於磁性電容4〇〇内 部構成-磁場,料電粒子的移動造成影響,從而抑制磁 性電容400之漏電流。 所需要特別強調的是,圖3中的磁偶極115與125的箭 頭方向僅為一示意圖。對熟習該項技藝者而言應可瞭解 到磁偶極115與125實際上係由多個整齊排列的微小磁偶極 所疊加而成,且在本發明中,磁偶極115與125最後形成的 方向並無限定,例如可指向同一方向或不同方向。介電層 則係用來分隔第一磁性電極110與第二磁性電極12〇, 以於第一磁性電極110與第二磁性電極12〇處累積電荷儲 存電位能。 <在本發明之一實施例中,第一磁性電極11〇與第二磁性 電極120係包含有磁性導電材質,例如稀土元素,介電層 130係由氧化鈦(Ti〇3)、氧化鋇鈦(BaTi〇3)或一半導體層, 氧化石夕(silicon oxide)所構成,然而本發明並不限於此 10 201004085 ,第一磁性電極110、第二磁性電極120與介電層13〇均可 視產品之需求而選用適當之其他材料。 進一步說明磁性電容之操作原理如下。物質在一定磁 場下電阻改變的現象,稱為「磁阻效應」,磁性金屬和合金 材料一般都有這種磁電阻現象,通常情況下,物質的電阻 率在磁場中僅產生輕微的減小;在某種條件下,電阻率減 ㈣幅度相當大’比通常磁性金屬與合金材料的磁電阻值 高出10倍以上,稱為「巨磁阻效應」(GMR)。進一步結合201004085 IX. Description of the Invention: [Technical Field] The present invention relates to an energy storage device, and more particularly to a magnetic capacitor energy storage device using a magnetic capacitor as an energy storage element. [Prior Art] Most applications today use batteries, capacitors or super capacitors as energy storage components. Although the capacitor is relatively simple in the process, it can only be used as a short-term storage because of its small storage capacity. The battery is mainly used for energy storage by means of chemical energy. Therefore, its energy storage density is obviously superior to that of general capacitors, but it can be applied to various power supply devices. However, the instantaneous power output that can be generated is limited by chemical reactions. The rate is not fast charging and discharging or high power output, and the number of charging and discharging is limited. When charging and discharging excessively, various problems are easily generated. A supercapacitor is a component between a battery and a capacitor. It is also called an Electrical Double-Layer Capacitor. It has a larger physical energy storage structure and a partial chemical energy storage structure. Capacity, but its shortcomings are: chemical properties due to chemical materials, and easy to have the shortcomings of battery leakage, coupled with the fact that some of the physical characteristics of the discharge speed is fast, so it will soon There will be no power, and the effective power storage function cannot be achieved. Even the supercapacitor has a low withstand voltage and a large internal resistance, so it cannot be used in an AC circuit, and if it is used improperly, it may cause electrolyte leakage. Moreover, the above conventional energy storage components cannot simultaneously provide advantages such as long life (high charge and discharge times), high energy storage density, instantaneous high power output, and rapid charge and discharge of 201004085. Therefore, if we can develop an energy storage device that has the advantages of long life (high charge and discharge times), high energy storage density, instantaneous high power output, and fast charge and discharge, it will be used for energy storage devices such as batteries and capacitors. Electronic devices have great benefits. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a magnetic capacitor having the advantages of low cost, high energy storage density, small volume, light weight, large capacity, no maintenance, long service life, low environmental pollution, and the like. A magnetic capacitor energy storage device for energy storage components. Therefore, the magnetic capacitor energy storage device of the present invention comprises: a magnetic capacitor unit for storing electrical energy, and a voltage regulating unit electrically connected to the magnetic capacitor unit and generating a discharge voltage according to the magnetic capacitor a voltage-regulated output power supply, wherein when the discharge voltage of the magnetic capacitor unit is greater than the constant voltage, the voltage regulating unit steps down the discharge voltage, and when the discharge voltage of the magnetic capacitor unit is less than the constant voltage, the voltage adjustment unit The discharge voltage is boosted. Preferably, the magnetic capacitor unit is a magnetic capacitor or a magnetic capacitor group composed of a plurality of magnetic capacitors in series, parallel or series-parallel. Preferably, the magnetic capacitor comprises a first magnetic electrode, a second magnetic electrode and a dielectric layer disposed therebetween, wherein the first magnetic electrode and the second magnetic electrode have magnetic dipoles therein to suppress the magnetic capacitance Leakage current. Preferably, the first magnetic electrode comprises: a first magnetic layer having magnetic dipoles arranged in a first direction; a second magnetic layer having magnetic dipoles arranged in a second direction; and an isolation layer And comprising a non-magnetic material, disposed at 6 201004085, the first magnetic layer and the two directions are opposite to each other, between the second magnetic layers; wherein the first is to suppress leakage current of the magnetic capacitor. Preferably, the first magnetic susceptor, a forged! raw electrode and the first magnetic electrode system comprise a rare earth lanthanum dielectric layer from oxidized Mn, titanium oxide (Ding 103) ), yttrium titanium oxide (BaTi03) or - semiconductor layer. Wherein the semiconductor layer is oxidized stone. Preferably, the voltage rib is set; &# ^ gate 7G includes an inductor, a first switch connected to the first end of the inductor and the positive terminal of the magnetic capacitor unit, and the inductor a second switch connected to the first end, a buck control circuit for controlling the first switch and the second switch to step down a discharge voltage of the magnetic capacitor unit, and a second end connected to the inductor a three-switch and a fourth switch'-control the third switch and the fourth switch to boost the discharge voltage of the magnetic capacitor unit, and to filter and rectify the output current of the inductor . Preferably, the buck control circuit is activated when the discharge voltage is greater than the constant voltage, and the boost control circuit is activated when the discharge voltage is less than the constant voltage. Preferably, when the discharge voltage is between the constant voltage and a value close to but greater than the constant voltage, or when the discharge voltage is between the constant voltage and a value close to but smaller than the constant voltage, The buck control circuit and the boost control circuit are sequentially activated. Preferably, the first, second, third and fourth switches are metal oxide half field effect transistors. Preferably, the magnetic capacitor unit further includes an overcurrent protection circuit connected between the positive and negative ends of the giant magnetic capacitor group to protect the giant 201004085 magnetic capacitor group from being excessively charged/discharged. burn. Preferably, the overcurrent protection circuit includes a fuse connected in series between the positive terminal of the magnetic capacitor group and the voltage regulating unit, and a protection circuit connected to the positive terminal of the magnetic capacitor group. a resistor between the negative terminal of the magnetic capacitor group and the voltage regulating unit, and controlled by the protection circuit, and a resistor connected between the protection circuit and the negative terminal of the magnetic capacitor group, the resistor detecting the magnetic capacitor The output current of the group is sent to the protection circuit, so that the protection circuit determines whether to cut off the switch according to the output current, so that the magnetic capacitor group stops discharging. The invention utilizes the magnetic capacitor as the energy storage component, and cooperates with a voltage regulating unit to appropriately perform the buck-boost conversion of the discharge voltage of the magnetic capacitor, that is, the discharge voltage of the magnetic capacitor unit can be converted into a constant voltage output, and the magnetic capacitance can be reduced. The overall volume, weight and manufacturing cost of the energy storage device, and increase energy storage efficiency, storage capacity and service life, and improve the disadvantages of conventional energy storage components such as batteries, capacitors or super capacitors. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. 1 is a block diagram of a preferred embodiment of a magnetic capacitor energy storage device of the present invention. The magnetic capacitor energy storage device 1 of this embodiment mainly includes a magnetic capacitor unit 11 and a voltage adjusting unit 12. The magnetic capacitor unit 11 can be a single magnetic capacitor or a plurality of magnetic poles. 201004085 Electrical power = a magnetic capacitor group composed of series, parallel or series or parallel. The magnetic capacitor used in this embodiment is a kind of germanium semiconductor. Under the action of a certain magnetic field, through the physical energy storage method, the energy storage element of the density and large capacity storage electricity =. Moreover, the magnetic capacitor has the characteristics of large output current, heavy volume, long life, good charge and discharge capability, and no charging memory effect, so it is used as a storage element to replace the traditional battery, capacitor or super capacitor, in addition to The volume, weight and manufacturing cost of the energy storage device are reduced, and the service life of the energy storage device can be increased. The invention of the present invention is characterized in that magnetic capacitors are used as energy storage, storage and power sources. It is worth noting that compared to the general capacitance, the capacitance can be used as an excellent energy storage device or power supply source by suppressing the leakage current due to the magnetic field at the upper and lower electrodes. Quantity storage = Figure: The magnetic capacitor of this embodiment is less intended than other conventional energy media. As shown in Figure 2, since =: (r conventional battery or supercapacitor) is mainly the use of chemical energy: the lamp is read and stored, so its energy storage density will be clear: two can be applied to various power supply devices, but At the same time, 4 charge and discharge in the chemical reaction rate, * degree charge and discharge (four) students of various questions 'and A discharge money is limited, over-phase compared to this, due to the energy energy stored in the magnetic capacitor to store the way' In addition to the energy storage density that can be matched with the general electric two: bit capacitance, it has a long life (high charge and discharge times), no memory effect, high power output, fast charge due to the full capacity of the capacitor 9 201004085. The characteristics of discharge, etc., can effectively solve various problems encountered in current batteries. Fig. 3 is a schematic view showing the structure of the magnetic capacitor in the embodiment of the present invention. As shown in FIG. 3, the magnetic power system includes a first magnetic electrode m, a second magnetic electrode 12G, and a dielectric layer 13G therebetween, wherein the first magnetic electrode 11G and the second magnetic electrode 120 are The magnetic conductive material is formed and magnetized by a suitable applied electric field to form magnetic dipoles 115 and 125 respectively in the first magnetic electrode 110 and the second magnetic electrode 120 to form a magnetic capacitor 4〇. The internal structure of the crucible, the magnetic field, affects the movement of the electric particles, thereby suppressing the leakage current of the magnetic capacitor 400. It is particularly emphasized that the arrow directions of the magnetic dipoles 115 and 125 in Fig. 3 are only a schematic view. It will be appreciated by those skilled in the art that the magnetic dipoles 115 and 125 are actually superposed by a plurality of closely arranged micro magnetic dipoles, and in the present invention, the magnetic dipoles 115 and 125 are finally formed. The direction is not limited, for example, it can point in the same direction or in different directions. The dielectric layer is used to separate the first magnetic electrode 110 from the second magnetic electrode 12A to accumulate charge storage potential energy at the first magnetic electrode 110 and the second magnetic electrode 12A. < In an embodiment of the present invention, the first magnetic electrode 11 and the second magnetic electrode 120 comprise a magnetic conductive material such as a rare earth element, and the dielectric layer 130 is made of titanium oxide (Ti〇3) or cerium oxide. Titanium (BaTi〇3) or a semiconductor layer composed of silicon oxide, however, the present invention is not limited to this 10 201004085, and the first magnetic electrode 110, the second magnetic electrode 120 and the dielectric layer 13 are visible. Use other materials as appropriate for the product's needs. Further explaining the operation principle of the magnetic capacitor is as follows. The phenomenon that the resistance of a substance changes under a certain magnetic field is called the "magnetoresistive effect". Magnetic metal and alloy materials generally have such a magnetoresistance phenomenon. Generally, the resistivity of a substance is only slightly reduced in a magnetic field; Under certain conditions, the resistivity minus (four) amplitude is quite large 'more than 10 times higher than the magnetic resistance value of the usual magnetic metal and alloy material, called "Giant Magnetoresistance Effect" (GMR). Further integration

MaXWell_Wagner電路模型,磁性顆粒複合介質中也可能產 生所謂的龐磁電容效應(Colossal magnet0 Capacitance,c^c) 或巨磁電容效應(Giant magneto capacitance,GMC)。 在習知電容中’電容值C係由電容之面積A、介電層 之介電常數仏及厚度d決定,如下式—。然而在本發明中 ’磁性電容彻主要利用第—磁性電極㈣與第二磁性電極 120中整齊排列的磁偶極來形成磁場來,使内部儲存的電子 朝同-自旋方向轉動’進行整齊的排列,故可在同樣條件 下,容納更多的電#,進而增加能量的儲存密度。類比於 習知電容,磁性…00之運作原理相當於藉由磁場之作 用來改變介電I 13〇之介電常數,故而造成電容值之大中sThe MaXWell_Wagner circuit model, the so-called Colossal magnet0 Capacitance (c^c) or Giant Magneto capacitance (GMC) may also be produced in the magnetic particle composite medium. In the conventional capacitor, the capacitance value C is determined by the area A of the capacitor, the dielectric constant 仏 of the dielectric layer, and the thickness d, as follows. However, in the present invention, the magnetic capacitor is mainly formed by using the magnetic poles arranged in the first magnetic electrode (four) and the second magnetic electrode 120 to form a magnetic field, so that the internally stored electrons are rotated in the same-spin direction. Arranged, so that more electricity can be accommodated under the same conditions, thereby increasing the storage density of energy. Analogous to conventional capacitors, the principle of operation of magnetic...00 is equivalent to changing the dielectric constant of dielectric I 13〇 by the magnetic field, thus causing a large capacitance value.

C = d 此外,在本實施财,[磁性電極⑽與介電層 11 201004085 之間的介面m以及第二磁性電極12〇與介電層i3〇之間 的介面132均為一不平坦的表面,以藉由增加表面積a的 方式,進一步提升磁性電容400之電容值C。 請參考圖4,圖4為本發明之另_實施例中第—磁性電 極m之結構示意圖。如圖4所示,第—磁性電極ιι〇係為 -多層結構’包含有一第一磁性層112、一隔離層ιΐ4以及 -第二磁性層116。其中隔離層114係由非磁性材料所構成 中而第-磁性層112與第二磁性層116則包含有具磁性的導 嗓材料’並在磁化時,藉由不同的外加電場,使得第一磁 性層112與第二磁性層114中的磁偶極113與⑴分別具有 不同的方向,例如在本發明之—較佳實施例中磁偶極⑴ 與117的方向係為反向,而能進一步抑制磁性電容之 電流。 ' 此外,需要強調的是,磁性電極m之結構並不限於前 述之三層結構,而可以類似之方式,以複數個磁性層與非 磁性層不斷交錯堆疊,再藉由各磁性層内磁偶極方向的調 整來進—步抑制磁性電容4〇〇之漏電流,甚至達到幾乎無 漏電流的效果。 此外,由於習知儲能元件多半以化學能的方式進行儲 存’因此都需要有一定的尺寸,否則往往會造成效率的大 幅下降。相較於此’本發明之磁性電容400係以電位能的 弋進行儲存,且因所使用之材料可適用於半導體製程, 文可藉由適虽的半導體製程來形成磁性電容4⑽以及周邊 電路連接’進而縮小磁性電I 4〇〇之體積與重量,由於此 12 201004085 製作方法可使用一般半導體製程,其應為熟習該項技藝者 所熟知,故在此不予贅述。 請參考圖5,圖5為本發明另一實施例中一磁性電容組 500之示意圖。承前所述’在本實施例中,係利用半導體製 程於一矽基板上製作複數個小尺寸的磁性電容400,並藉由 適當的金屬化製程,於該複數個磁性電容400間形成電連 接,從而構成一個包含有多個磁性電容400的磁性電容組 500,再以磁性電容組500作為能量儲存裝置或外部裝置的 丨工屯令組)υυ内的複數 個磁性電容400係以類似陣列的方式電連接,然而本發明 2不限於此,而可根據不同的電壓或電容值需求,進行適 當的串聯或並聯,以滿足各種不同裝置的電力供應需求。C = d In addition, in the implementation, the interface m between the magnetic electrode (10) and the dielectric layer 11 201004085 and the interface 132 between the second magnetic electrode 12 〇 and the dielectric layer i3 均为 are both uneven surfaces. The capacitance value C of the magnetic capacitor 400 is further increased by increasing the surface area a. Please refer to FIG. 4. FIG. 4 is a schematic structural view of a first magnetic electrode m according to another embodiment of the present invention. As shown in Fig. 4, the first magnetic electrode is a multilayer structure comprising a first magnetic layer 112, an isolation layer ι4, and a second magnetic layer 116. Wherein the isolation layer 114 is composed of a non-magnetic material and the first magnetic layer 112 and the second magnetic layer 116 comprise a magnetic conductive material 'and, when magnetized, the first magnetic force is caused by different applied electric fields. The magnetic dipoles 113 and (1) in the layer 112 and the second magnetic layer 114 have different directions, respectively. For example, in the preferred embodiment of the present invention, the directions of the magnetic dipoles (1) and 117 are reversed, and can be further suppressed. The current of the magnetic capacitor. In addition, it should be emphasized that the structure of the magnetic electrode m is not limited to the above-described three-layer structure, but in a similar manner, a plurality of magnetic layers and non-magnetic layers are continuously staggered and stacked, and magnetic moments in each magnetic layer are further The adjustment of the polar direction further suppresses the leakage current of the magnetic capacitor 4〇〇, and even achieves the effect of almost no leakage current. In addition, since conventional energy storage components are mostly stored in a chemical energy manner, they all need to have a certain size, otherwise the efficiency will be greatly reduced. In contrast, the magnetic capacitor 400 of the present invention is stored with potential energy, and since the material used can be applied to a semiconductor process, the magnetic capacitor 4 (10) and peripheral circuit connections can be formed by a suitable semiconductor process. Further, the volume and weight of the magnetic battery are reduced. Since the manufacturing method of the 12 201004085 can be carried out using a general semiconductor process, it should be well known to those skilled in the art, and therefore will not be described herein. Please refer to FIG. 5. FIG. 5 is a schematic diagram of a magnetic capacitor group 500 according to another embodiment of the present invention. In the present embodiment, a plurality of small-sized magnetic capacitors 400 are fabricated on a substrate by a semiconductor process, and an electrical connection is formed between the plurality of magnetic capacitors 400 by a suitable metallization process. Thus, a magnetic capacitor group 500 including a plurality of magnetic capacitors 400 is formed, and the magnetic capacitor group 500 is used as an energy storage device or a plurality of magnetic capacitors 400 of the external device. Electrical connection, however, the present invention 2 is not limited thereto, and may be appropriately connected in series or in parallel according to different voltage or capacitance value requirements to meet the power supply requirements of various devices.

再參見圖6所示,是本實施例之磁性電容單元“的一 充放電特性示意圖,由圖中顯示的放電曲線可知,磁性電 容=Η放電時的電壓並非如同—般f電池維持在—定值 施^呈現隨著放電時間迅速遞減的趨勢。因此,在本實 必需搭配電壓調節單元12 _ ^ 電電懕沧一 玎艰注罨谷早兀11的放 電莹進仃適當的升/降壓轉換 生1有-個定電壓—輪:電 表示電壓調r — “、且圖6中的粗橫線 單元心::升/降壓臨界點,例如,若電壓調節 所欲輸出的定電壓是磁性 的3㈣,則當磁性電容單元n Μ 以U的額定電塵 3°%時,電壓調節單元12二Γ電壓大於額定電壓的 電容單元11的放電電壓=動作,反之,當磁性 電電壓小於額定電壓的3〇%時,電壓調節 13 201004085 單元12則進行升壓動作。 因此’如圖7所示’本實施例之電壓調節單元12連接 磁性電容單元u,並 平$12運接 匕括電感[,一連接磁性電容單元 11與電感L的第一诚P1认外 电谷早兀 弟编P1的弟一電晶體開關Q1,— 感L的第一端P1的第二電晶體開關Q2,一 二電晶體開關Q1、Q2作動的降麼(bud)控制電路如,一 連接電感L的第二端Μ的第三電晶體開關Q3, _連接電 感—L的第二端P2與—遽波電路攻的第四電晶體開關 ,一控制第三及第四電晶體開關⑴、Q4的升壓(b〇〇st)控制 電路233。 降壓控制電路231藉由控制第—及第二電晶體開關φ 、Q2的開關頻率及PWM週期,對磁性電容單元u的輸出 電壓進行降壓,升塵(b〇()st)控制電路232藉由控制第三及第 四電晶體開關Q3、q4的開關頻率及pwM週期對师電容 單元22的輸出電壓進行升壓動作。亦即,假設電壓調節單 兀〗2要輸出12V的定電壓,而磁性電容單元丨〗儲存電壓 為30V,則在磁性電容單元u從―開始放電時的電壓即 3〇V逐漸下降至15V的這段時間,由於放電電壓範圍 (30V〜15V)遠大於12V,所以如圖8所示,降壓控制電路 231會根據放電電壓控制第一及第二電晶體開關卩丨、Q2的 開關頻率及PWM週期,同時升壓控制電路233令第三電晶 體開關Q3 OFF,令第四電晶體開關Q4 〇N以進行降壓,而 將放電電壓(30V〜15V)轉換成12V輸出。 而在磁性電容單元11的放電電壓從15V降低至12v的 14 201004085 又時間’如® 9所示’降壓控制電路231及升壓控制電 路/32會[5]時作冑,以對應放電電壓分別控制第—、第二 、第三及第四電晶體開關QhQ2、Q3及Q4的開關頻率及 PWM週期’使進行小幅度的升降壓調整以使輸出電壓 持在12V。 ^ 接著,s磁性電容單元n的放電電壓從i2v下降至接 近但小於12V,例如12V〜爾的這段時間,如圖iq所示, 降壓控制電路231及升壓控制電路232亦會依序作動以對 應放電電壓分別控制第—、第二、第三及第四電晶體開關 Q1、Q2、Q3及Q4的開關頻率及PWM週期,使進行小幅 度的升降壓調整,讓輸出電壓維持在12V。 而虽磁性電容單元11的放電電壓下降至10V以下,例 如1 〇V〜3V的這段時間,如圖11所示,降壓控制電路23 1 令第一電晶體開關Q1 〇N,令第二電晶體開關Q2 〇FF,且 升壓控制電路232根據放電電壓控制第三及第四電晶體開 關Q3、Q4的開關頻率及PWM週期以進行升壓,使輸出電 壓維持在12V。 上述電壓調節單元12可以直接採用現有的例如 LINEAR TECHNOLOGY生產之型號為LTC378〇的升降壓轉 換器來實現。 藉由電壓調節單元12搭配磁性電容單元u,就可以克 服磁性電容單元11輸出電壓(放電電壓)不穩定的情況,而 能提供一個定電壓輸出給需要的負载。 值得一提的是,上述電壓調節單元12亦可直接以磁性 15 201004085 '°- 的放电電壓與該定電壓的比較結果來控制降塵 =制電路231及升堡控制電路232的作動,亦即當放電電 亥疋书壓時,則啟動該降壓控制電路23 1,當該放電 電壓小於該定電壓時,則啟動該升壓控制電路说。 再者’為了保護磁性電容單元u中的磁性電容(組), 使不致因輸出/入電流過大而燒燦,如圖12所示,本實施例 之磁性電容單元11中除了磁性電容(組)111外,還包括-過 電流保護電路112。 過電流保護電路112中包含,在磁性電容(組)m 的=極端與電壓㈣單元12之間的保險絲⑴,—與磁性 電合(組)1U的正極端連接的保護電路114,-串接在磁性 電容(組)iu #負極端與電壓調節單元12之間, 路114控制的開關115,以 ’、邊電 人及運接在保濩電路116與磁性 電容(組)111的負極端之間的電阻116。 其十保險絲113在磁性電容(組)lu充/放電過程中當 流經電流過大時會過熱燒斷,以保護磁性電容。組)⑴;電 阻116债測磁性電容⑻111的放電電流並送給保護電路 114,使保護電路114在發現輸出電流突然變大時,可以立 即切斷_ 115,使磁性電容(組)⑴停止供電,以保護磁 性電容(組)111不致因輸出電流過大而燒燬。 知上所述’上述實施例利用磁性電容做為儲能元件, 並搭配-電壓調節單元12對磁性電容之放電電壓進行適备 升降壓轉換,即可以將磁性電容單元u之放電電㈣換: 定電壓輸出,而且能達到減少磁性電容儲能裝S !的整體 16 201004085 體積、重量和製造成本,並提高能量儲存效率、儲存容量 和使用壽命,改善習知電池、電容或超級電容等儲能元件 的缺點。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1繪示本發明磁性電容儲能裝置的一較佳實施例之 電路方塊示意圖; 圖2繪示本實施例之磁性電容與其他習知能量儲存媒 介之比較示意圖; 圖3繪示本實施例中磁性電容之結構示意圖; 圖4繪示本實施例之磁性電容另一實施例中第一磁性 電極之結構示意圖; 圖5繪示本發明另一實施例中一磁性電容組之示意圖 圖6繪示本實施例之磁性電容單元的充放電特性曲線 圖; 圖7繪示本實施例之電壓調節單元的細部電路圖; 圖8〜圖11繪示本實施例之電壓調節單元於不同操作模 式下的控制訊號波形圖;及 圖12繪不本實施例之過電流保護電路的詳細電路圖。 17 201004085 【主要元件符號說明】 1 磁性電容儲能裝置 11 磁性電容單元 12 電壓調節單元 110 弟一磁性電極 112 第一磁性層 114 隔離層 132 介面 115 、125、113、117 磁偶極 116 第二磁性層 120 弟二磁性電極 130 介電層 P1 第一端 P2 第二端 400 磁性電容 500 磁性電容組 111 磁性電容組 112 過電流保護電路 113 保險絲 114 保護電路 115 開關 116 電阻 231 降壓控制電路 232 濾波電路 233 升壓控制電路 L 電感 Q1 第一電晶體開關 Q2 第二電晶體開關 Q3 第三電晶體開關 Q4 第四電晶體開關 18Referring to FIG. 6 again, it is a schematic diagram of a charge and discharge characteristic of the magnetic capacitor unit of the present embodiment. It can be seen from the discharge curve shown in the figure that the voltage of the magnetic capacitor=Η is not the same as that of the battery. The value of the application shows a tendency to decrease rapidly with the discharge time. Therefore, it is necessary to match the voltage adjustment unit 12 _ ^ electric power 懕沧 玎 玎 玎 罨 罨 兀 兀 的 的 的 的 的 的 的 的 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃Health 1 has a constant voltage - wheel: electricity means voltage regulation r - ", and the thick horizontal line element in Figure 6:: the rising / lowering critical point, for example, if the voltage regulation is to output the constant voltage is magnetic 3 (4), when the magnetic capacitor unit n Μ is 8 °% of the rated dust of U, the voltage of the voltage regulating unit 12 is greater than the rated voltage of the capacitor unit 11 discharge voltage = action, and conversely, when the magnetic voltage is less than the rated voltage At 3〇%, voltage regulation 13 201004085 Unit 12 performs a boosting operation. Therefore, as shown in FIG. 7 , the voltage adjusting unit 12 of the present embodiment is connected to the magnetic capacitor unit u, and is connected to the inductor 12 in a flat state. [1] A first P1 connected to the magnetic capacitor unit 11 and the inductor L is early.兀弟编 P1's brother, a transistor switch Q1, the second transistor switch Q2 of the first end P1 of the sense L, the diostat switch Q1, Q2 actuate the bud control circuit, such as a connection inductor The third transistor switch Q3 of the second terminal of L, the second terminal P2 of the connection inductor-L, and the fourth transistor switch of the chopper circuit, one for controlling the third and fourth transistor switches (1), Q4 Boost (b〇〇st) control circuit 233. The buck control circuit 231 steps down the output voltage of the magnetic capacitor unit u by controlling the switching frequency and the PWM period of the first and second transistor switches φ and Q2 to raise the dust (b〇()st) control circuit 232. The boosting operation of the output voltage of the capacitor unit 22 is performed by controlling the switching frequency of the third and fourth transistor switches Q3 and q4 and the pwM period. That is, assuming that the voltage regulation unit 2 2 is to output a constant voltage of 12V, and the magnetic capacitor unit 储存 〗 〖 storage voltage is 30V, then the voltage of the magnetic capacitor unit u from the beginning of discharge, that is, 3 〇 V gradually decreased to 15V During this period, since the discharge voltage range (30V~15V) is much larger than 12V, as shown in FIG. 8, the buck control circuit 231 controls the switching frequencies of the first and second transistor switches 卩丨, Q2 according to the discharge voltage. During the PWM period, the boost control circuit 233 causes the third transistor switch Q3 to turn OFF, the fourth transistor switch Q4 〇N to step down, and the discharge voltage (30V to 15V) to a 12V output. On the other hand, when the discharge voltage of the magnetic capacitor unit 11 is lowered from 15V to 12v, 201004085, the time 'shows as shown in FIG. 9', the step-down control circuit 231 and the step-up control circuit/32 will [5] 胄 to correspond to the discharge voltage. Controlling the switching frequency and PWM period of the first, second, third, and fourth transistor switches QhQ2, Q3, and Q4, respectively, enables a small-amplitude buck-boost adjustment to hold the output voltage at 12V. ^ Next, the discharge voltage of the s magnetic capacitor unit n drops from i2v to near but less than 12V, for example, 12V~ er, as shown in Figure iq, the buck control circuit 231 and the boost control circuit 232 are also sequentially Actuation controls the switching frequency and PWM period of the first, second, third and fourth transistor switches Q1, Q2, Q3 and Q4 correspondingly to the discharge voltage, so that a small amplitude buck-boost adjustment is performed to maintain the output voltage at 12V. . When the discharge voltage of the magnetic capacitor unit 11 drops below 10V, for example, 1 〇V~3V, as shown in FIG. 11, the buck control circuit 23 1 makes the first transistor switch Q1 〇N, so that the second The transistor switch Q2 〇 FF, and the boost control circuit 232 controls the switching frequency and the PWM period of the third and fourth transistor switches Q3 and Q4 according to the discharge voltage to perform boosting to maintain the output voltage at 12V. The voltage regulating unit 12 described above can be directly implemented by using an existing LTC378 升降 buck-boost converter such as LINEAR TECHNOLOGY. By the voltage adjusting unit 12 being matched with the magnetic capacitor unit u, the output voltage (discharge voltage) of the magnetic capacitor unit 11 can be overcome, and a constant voltage output can be supplied to the required load. It is worth mentioning that the voltage adjusting unit 12 can also directly control the operation of the dust reduction=system 231 and the lifting control circuit 232 by comparing the discharge voltage of the magnetic 15 201004085 '°- with the constant voltage, that is, when When the discharge voltage is pressed, the buck control circuit 23 is activated, and when the discharge voltage is less than the constant voltage, the boost control circuit is activated. Furthermore, in order to protect the magnetic capacitance (group) in the magnetic capacitor unit u, the output/input current is not excessively burnt, as shown in FIG. 12, in addition to the magnetic capacitor (group) in the magnetic capacitor unit 11 of the present embodiment. In addition to 111, an overcurrent protection circuit 112 is also included. The overcurrent protection circuit 112 includes a fuse (1) between the = terminal of the magnetic capacitor (group) m and the voltage (four) unit 12, a protection circuit 114 connected to the positive terminal of the magnetic coupling (group) 1U, - serially connected Between the magnetic capacitor (group) iu #negative terminal and the voltage regulating unit 12, the switch 115 controlled by the path 114 is connected to the negative terminal of the protection circuit 116 and the magnetic capacitor (group) 111 by ' The resistance 116 between. The ten fuse 113 is overheated and blown when the current flowing through the magnetic capacitor (group) lu is excessively charged/discharged to protect the magnetic capacitor. (1); The resistor 116 measures the discharge current of the magnetic capacitor (8) 111 and sends it to the protection circuit 114, so that the protection circuit 114 can immediately cut off the _115 when the output current suddenly becomes large, so that the magnetic capacitor (group) (1) stops supplying power. To protect the magnetic capacitor (group) 111 from burning due to excessive output current. As described above, the above embodiment utilizes a magnetic capacitor as an energy storage element, and the voltage-regulating unit 12 is adapted to the buck-boost conversion of the discharge voltage of the magnetic capacitor, that is, the discharge of the magnetic capacitor unit u can be replaced by: Constant voltage output, and can reduce the volume, weight and manufacturing cost of the overall 16 201004085 magnetic storage energy storage device, and improve energy storage efficiency, storage capacity and service life, improve the energy storage of conventional batteries, capacitors or super capacitors Disadvantages of components. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a circuit of a magnetic capacitor energy storage device according to a preferred embodiment of the present invention; FIG. 2 is a schematic diagram showing a comparison between a magnetic capacitor of the present embodiment and other conventional energy storage media; 3 is a schematic structural view of a magnetic capacitor in the embodiment; FIG. 4 is a schematic structural view of a first magnetic electrode in another embodiment of the magnetic capacitor of the embodiment; FIG. 5 is a schematic view showing a magnetic capacitor in another embodiment of the present invention; FIG. 6 is a schematic diagram showing the charging and discharging characteristics of the magnetic capacitor unit of the embodiment; FIG. 7 is a detailed circuit diagram of the voltage adjusting unit of the embodiment; and FIG. 8 to FIG. 11 are diagrams showing the voltage adjusting unit of the embodiment. The control signal waveform diagram in different operation modes; and FIG. 12 shows the detailed circuit diagram of the overcurrent protection circuit of this embodiment. 17 201004085 [Description of main component symbols] 1 Magnetic capacitor energy storage device 11 Magnetic capacitor unit 12 Voltage adjustment unit 110 Young magnetic electrode 112 First magnetic layer 114 Isolation layer 132 Interface 115, 125, 113, 117 Magnetic dipole 116 Second Magnetic layer 120 Di magnetic electrode 130 Dielectric layer P1 First end P2 Second end 400 Magnetic capacitor 500 Magnetic capacitor group 111 Magnetic capacitor group 112 Overcurrent protection circuit 113 Fuse 114 Protection circuit 115 Switch 116 Resistor 231 Buck control circuit 232 Filter circuit 233 boost control circuit L inductor Q1 first transistor switch Q2 second transistor switch Q3 third transistor switch Q4 fourth transistor switch 18

Claims (1)

201004085 十、申請專利範圍: 1. 一種磁性電容儲能装置,包括: 一磁性電容單元,用以儲存電能;及 一電壓調節單元,與該磁性電容單元電性連接並 ,減該則生電容的纟電電壓產生一具有一個定電壓的輪: ,電源,當該磁性電容單元的放電電壓大於該定電壓時/該 電壓調節單元對該放電電壓進行降壓,當該磁性電容單= 的放電電壓小於該定電壓時,該電壓調節單元對該放電$ 壓進行升壓。 2. 依申叫專利範圍第丨項所述之磁性電容儲能裝置,其中 該磁性電容單元是一磁性電容或由複數個磁性電容以串 聯、並聯或串並聯方式組成的—磁性電容組。 3. 依申請專利範圍第2項所述之磁性電容儲能裳置,其中 該磁性電容包含有一第一磁性電極、一第二磁性電極以 及設於其間之一介電層,其中該第一磁性電極與第二磁 ( 性電極内具有磁偶極以抑制該磁性電容之漏電流。 4. 依申請專利範圍第3項所述之磁性電容儲能裝置,其中 該第一磁性電極包含有: 一第一磁性層,具有排列成第一方向之磁偶極; 一第二磁性層,具有排列成第二方向之磁偶極;以及 一隔離層,包含有非磁性材料,設於該第—磁性層與 該第二磁性層之間; 其中該第一方向與該第二方向互為反向,以抑制該磁 19 201004085 性電容之漏電流。 5.依申請專利笳H货 = 、 圍第3項所述之磁性電容儲能裝置,其中 。第磁I·生电極與第二磁性電極係包含有稀土元素,該 1電層係由氧化鈦(Tl〇3)、氧化鎖銥(BaTi03)或-半導體 層所構成。 6 ·依申請專利範圍笛 祀圍第5項所述之磁性電容儲能裝置,其中 該半導體層為氧化矽。 依U利圍第!項所述之磁性電容儲能裝置,其中 及电麼3周即單元包括—電感,-與電感之-端及該 磁性電谷單疋的一正極端連接的第一開關,一與該電感 之。亥第端連接的第二開關,一控制該第一開關及第二 開關,以對该磁性電容單元的放電電壓進行降壓的降壓 控制電路,與電感之一第二端連接的一第三開關及一第 四開關,一控制該第三開關及第四開關,以對磁性電容 單元的放電電壓進行升壓的升壓控制電路,以及一對該 電感之輸出電流進行濾、波整流的據波電路。 8. 依申請專利範圍第7項所述之磁性電容儲能裝置,其中 虽該放電電壓大於該定電壓時,該降壓控制電路被啟動 ’當該放電電壓小於該定電壓時,該升壓控制電路被啟 動。 9. 依申請專利範圍第8項所述之磁性電容儲能裝置,其中 該放電電壓介於該定電壓與一接近但大於該定電壓的值 之間,或該放電電壓介於該定電壓與一接近但小於該定 電壓的值之間時,該降壓控制電路及該升壓控制電路被 20 201004085 依序啟動。 !〇.依申請專利範圍第7項所述之磁性電容儲能裝置,其中 該第一、第二、第三及第四開關皆為金氧半場效電晶體 11.依申請專利範圍第2項所述之磁性電容儲能裝置,其中 該磁性電容單元更包括一過電流保護電路,其連接在該 巨磁電容組之正、負極兩端之間,用以保護該巨磁電容 組不致因充/放電電流過大而燒燬。 依申請專利範圍第u項所述之磁性電容儲能裝置,其中 忒過電流保護電路包含一串接在該磁性電容組的正極端 與該電壓調節單元之間的保險絲,一與該磁性電容組的 正極端連接的保護電路,—串接在該磁性電容組的負極 端與該電壓調節單元之間,並受該保護電路控制的開關 H連接在該保護電路與該磁性電容組的負極端之 阻,該電阻摘測該磁性電容組的輪出電流並送給 電路,使該保護電路根據該輸出電流決定是否切 斷開關,使該磁性電容組停止放電。 21201004085 X. Patent application scope: 1. A magnetic capacitor energy storage device, comprising: a magnetic capacitor unit for storing electrical energy; and a voltage regulating unit electrically connected with the magnetic capacitor unit and reducing the generating capacitor The electric voltage generates a wheel having a constant voltage: a power source, when the discharge voltage of the magnetic capacitor unit is greater than the constant voltage, the voltage regulating unit steps down the discharge voltage, and when the magnetic capacitor is single = the discharge voltage When the voltage is less than the predetermined voltage, the voltage regulating unit boosts the discharge voltage. 2. The magnetic capacitor energy storage device according to the invention, wherein the magnetic capacitor unit is a magnetic capacitor or a magnetic capacitor group composed of a plurality of magnetic capacitors in series, parallel or series-parallel. 3. The magnetic capacitor storage device according to claim 2, wherein the magnetic capacitor comprises a first magnetic electrode, a second magnetic electrode, and a dielectric layer disposed therebetween, wherein the first magnetic The magnetic capacitor storage device according to the third aspect of the invention, wherein the first magnetic electrode comprises: a first magnetic layer having magnetic dipoles arranged in a first direction; a second magnetic layer having magnetic dipoles arranged in a second direction; and an isolation layer comprising a non-magnetic material disposed on the first magnetic Between the layer and the second magnetic layer; wherein the first direction and the second direction are opposite to each other to suppress leakage current of the magnetic capacitor 19 201004085. 5. According to the patent application 笳H goods =, circumference 3 The magnetic capacitor energy storage device according to the invention, wherein the magnetic I and the second magnetic electrode system comprise a rare earth element, and the first electrical layer is composed of titanium oxide (Tl〇3) and oxidized lock (BaTi03). Or - a semiconductor layer. 6 · The magnetic capacitor energy storage device according to the fifth aspect of the patent application, wherein the semiconductor layer is yttrium oxide. The magnetic capacitor energy storage device according to the item of Uliwei, wherein the unit is 3 weeks Including an inductor, a first switch connected to the end of the inductor and a positive terminal of the magnetic cell, and a second switch connected to the first end of the inductor, the first switch and the first switch a second switch, a buck control circuit for stepping down a discharge voltage of the magnetic capacitor unit, a third switch and a fourth switch connected to the second end of the inductor, and controlling the third switch and the fourth switch a boosting control circuit for boosting a discharge voltage of a magnetic capacitor unit, and a wave circuit for filtering and rectifying an output current of the inductor. 8. The magnetic capacitor according to claim 7 An energy storage device, wherein the buck control circuit is activated when the discharge voltage is greater than the constant voltage. When the discharge voltage is less than the constant voltage, the boost control circuit is activated. 9. According to claim 8 The magnetic capacitor energy storage device, wherein the discharge voltage is between the constant voltage and a value close to but greater than the constant voltage, or the discharge voltage is close to the constant voltage and less than the constant voltage In the meantime, the buck control circuit and the boost control circuit are sequentially activated by 20 201004085. The magnetic capacitor energy storage device according to claim 7 of the patent application scope, wherein the first, second, and The magnetic capacitor energy storage device according to claim 2, wherein the magnetic capacitor unit further comprises an overcurrent protection circuit connected to the giant magnetic field. The positive and negative ends of the capacitor group are used to protect the giant magnetic capacitor group from being burnt due to excessive charging/discharging current. The magnetic capacitor energy storage device according to the invention of claim 5, wherein the 忒 overcurrent protection circuit comprises a fuse connected in series between the positive terminal of the magnetic capacitor group and the voltage regulating unit, and the magnetic capacitor group a protection circuit connected to the positive terminal, connected in series between the negative terminal of the magnetic capacitor group and the voltage regulating unit, and the switch H controlled by the protection circuit is connected to the protection circuit and the negative terminal of the magnetic capacitor group The resistor extracts the current of the magnetic capacitor group and sends it to the circuit, so that the protection circuit determines whether to cut off the switch according to the output current, so that the magnetic capacitor group stops discharging. twenty one
TW97126631A 2008-07-14 2008-07-14 Magnetic capacitor device for storing energy TW201004085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97126631A TW201004085A (en) 2008-07-14 2008-07-14 Magnetic capacitor device for storing energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97126631A TW201004085A (en) 2008-07-14 2008-07-14 Magnetic capacitor device for storing energy

Publications (1)

Publication Number Publication Date
TW201004085A true TW201004085A (en) 2010-01-16

Family

ID=44825780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126631A TW201004085A (en) 2008-07-14 2008-07-14 Magnetic capacitor device for storing energy

Country Status (1)

Country Link
TW (1) TW201004085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422114B (en) * 2011-01-26 2014-01-01 Univ Nat Taiwan Normal A self powered feed forward charging circuit and design methodology for the protection of electrical energy storage devices
TWI450487B (en) * 2010-04-19 2014-08-21 Linear Techn Inc Switching system for step up-step down converters using fixed frequency current-mode control and the method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450487B (en) * 2010-04-19 2014-08-21 Linear Techn Inc Switching system for step up-step down converters using fixed frequency current-mode control and the method for the same
TWI422114B (en) * 2011-01-26 2014-01-01 Univ Nat Taiwan Normal A self powered feed forward charging circuit and design methodology for the protection of electrical energy storage devices

Similar Documents

Publication Publication Date Title
TWI666846B (en) Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system
TW200908523A (en) Solar energy charging/discharging system and charging/dischar method thereof
CN101043181A (en) Electric power supply circuit and electronic device having the same
FR2851091A1 (en) Fuel cell electrical converter for motor vehicle e.g. car, has control unit delivering control signal to voltage clipper so that under influence of signal average voltage at input of current inverter is lowered to threshold voltage
CN101752910A (en) Power supply device with variable voltage output
CN101674008A (en) Discharge control device capable of regulating output current
TW201004110A (en) Backup power device
TW201004085A (en) Magnetic capacitor device for storing energy
CN101626166A (en) Standby power supply device
CN114172374B (en) Cross flying capacitor hybrid boost-buck DC-DC converter based on double inductors
CN114900029A (en) Single-phase single-stage coupling inductance type split source boost inverter and method thereof
TW201019566A (en) Balance module for power and method thereof
TW201011514A (en) Discharging control device for adjusting output current
TW201015818A (en) Power supply system
CN109936114A (en) Semiconductor subassembly and its control method
TW201023475A (en) A power supply device having various voltage outputs
CN101667751A (en) Power supply device and power control module
CN101673971A (en) Magnetic capacitor array and power supply system and control method using the same
CN101639025A (en) Starting system for starting engine
CN209170227U (en) A kind of Sofe Switch booster circuit, power supply circuit, vehicle and charging pile
CN101626171A (en) Magnetic capacitive energy storage device
CN2775909Y (en) Compensating type power factor correcting circuit
TW201015834A (en) DC circuit with adjustable output voltage
TW201006085A (en) Solar charger system
TW201022878A (en) A constant current source circuit