201015834 九、發明說明: 【發明所屬之技術領域】 本發明係有關於-種具有可輪出龍的直流電路,尤指 -種可以用於-魏電容裝置並且具有可調整輪出電壓的直 路。 ❹ 【先前技術】 現今應用上大都利用電池、電容或超級電容(Super :paC_作魏量儲存的元件。電轉然在製程上較 二但因其,存容量小’只能當做短暫儲能使用。而傳統 a主要疋彻化學能的方式來進行能量儲存,因此其 ❹=存”明顯優於一般電容’而可應用於各種電力供 ^置’但疋’缺點是:其所能產生之瞬間電力輸出會受 +於化學錢速率,㈣純㈣纽電麵行高功率輸 ’且充放電錢有限,過度充放時易滋生各種問題;例 =·目前所使用的蓄電池,雖然標榜著可重複使用,但還 疋有其壽命之限制。在多次充放電或長時間不使用的情況 y ’蓄電池的容量會下降,且容易損壞,原因在於蓄電池 疋利用化學能轉換為電能,化學物質要常保其活性,才不 ,至於失效變質,當原來的化合物活性都作用完或將近用完 201015834 時,便無法再進行新的化學反應,進而導致蓄電池老化而 宣告壽終。超級電容是一種介於電池與電容間的元件,又 稱雙電層電容(Electrical Double-Layer Capacitor),因同時 透過部分物理儲能、部分化學儲能架構,故其具有比普通 電容更大的容量’但其缺點是:因有化學材料而具化學特 性’而易有如電池的漏電缺點,又加上因還有部份是物理 特性之放電速度快的現象,如此一來就產生有很快就會沒 電的現象’無法達到有效蓄電功能。甚至’超級電容的耐 壓度不高,内阻較大,因而不可以用於交流電路,且如果 使用不當會造成電解質泄漏等現象。是以,上述習知儲能 元件並無法同時達到各種電子產品所要求之壽命長(高充 放電次數)、局能量儲存密度、瞬間高功率輸出及快速充放 電等優點。 【發明内容】 有鑑於此本發明的目的之一在於提供一種可以用於一磁性 電谷裝置並^具有可調整輸出電壓的直流電路,以解決上述的問 之!:!利範圍:其係揭露一種具有可調整輸出201015834 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a DC circuit having a wheel that can be used as a wheel, and more particularly to a circuit that can be used in a capacitor device and has an adjustable wheel-out voltage. ❹ 【Prior Art】 Most of today's applications use batteries, capacitors or supercapacitors (Super: paC_ for the storage of components. The electricity is second in the process, but because of its small capacity) can only be used as a short-term storage. While the traditional a is mainly used to carry out energy storage in the way of chemical energy, it is obviously superior to the general capacitance and can be applied to various power supply settings. However, the disadvantage is that it can generate moments. The power output will be subject to the rate of chemical money, (4) pure (four) new power line high power transmission 'and charge and discharge money is limited, easy to breed various problems when overcharged; example = · the battery currently used, although advertised as repeatable It is used, but it has its life limit. In the case of multiple charge and discharge or not used for a long time, the capacity of the battery will decrease and it will be easily damaged. The reason is that the battery is converted into electric energy by chemical energy, and the chemical is always protected. Its activity is not, as for failure and deterioration, when the original compound activity is used or nearly used up 201015834, no new chemical reaction can be carried out, resulting in electricity storage. The aging is the end of life. The supercapacitor is a component between the battery and the capacitor, also known as the Electrical Double-Layer Capacitor. Because it also transmits part of the physical energy storage and part of the chemical energy storage structure, it has A larger capacity than a conventional capacitor 'but its disadvantage is that it has chemical properties due to chemical materials', and it is easy to have the shortcomings of battery leakage, and because some of them are physical characteristics, the discharge speed is fast. There is a phenomenon that there will be no electricity soon. 'Unable to achieve effective power storage function. Even the super capacitor has low pressure resistance and large internal resistance, so it can not be used in AC circuits, and if it is used improperly, it will cause electrolyte. Leakage and the like. Therefore, the above-mentioned conventional energy storage components cannot simultaneously achieve the advantages of long life (high charge and discharge times), local energy storage density, instantaneous high power output, and rapid charge and discharge required by various electronic products. In view of the above, one of the objects of the present invention is to provide a magnetic grid device and an adjustable output voltage. DC circuit to solve the above problem!:! Range: it reveals an adjustable output
,包含有:一電容式充電泵、一可變電容以及一 δ亥電谷式充電絲接於—電麟,用於依據—電容值 之第一電壓來產生-第二電壓;該可變電容具有一 201015834 輸入端耦接於該電容式充電泵鱼一 * 供-可調整電容值,以奸驗―接於—負載’用於提 入=該第二電壓轉換為該輸出端之, 胸輸jr:r該輸出端,用於偵測該第二電 整該可變電容所輸出之該輸料壓魏㈣該可触電容值來調 其包含 ❹ 在一較佳實施例中,該電壓源係為-磁性電容裝置, 有至少一磁性電容。 在-較佳實施例中,該磁性電容裝置包含至少一個磁性電 容’或包含由複數個磁性電容(Mcap)以串聯、並聯或串並聯方式 組成的:雜電容組。崎另—較佳實施射,雜電容包含有 第磁性電極、-第二磁性電極以及設於其間之一介電層其 ❹ 中第-磁性電極與第二磁性電極内具有磁偶極以抑制該磁性電容 之漏電流。 在另一較佳實施例中,第一磁性電極包含有:一第一磁性層 具有排列成第-方向之磁偶極;—第二磁性層,具有排列成第二 方向之磁偶極;以及一隔離層,包含有非磁性材料,設於第一磁 性層與第二磁性層之間;其中第一方向與第二方向互為反向,以 抑制磁性電容之漏電流。此外,在另一較佳實施例中,第一磁性 電極與第二磁性電極係包含有稀土元素等,介電層係由氧化鈦 201015834 (細)、氧化鋇鈦(BaTi〇3)或一半導體層所構成,此半導體層之其 如上所述’本發明之具有可調整輸出電壓的直流電路可以使 得一磁性電容裝置具有一固定的輸出電壓。 【實施方式】 ❹匕,縣朗書以及後續的ΐ請專利翻當中使用了某些詞彙來 稱特定的元件’而所屬領域中具有通常知識者應可理解,硬體 製造商可齡科_糊來稱侧—個元件,本制書及後續 的申請專利範圍並不以名稱的差異來作為區分讀的方式,而是 κ牛在功%上的差異來作為區分的㈣,在通篇說明書及後續 的請求項當中所提及的「包含有」係為―鼠式的聽,故應解 釋成「包含有但不限定於」,此外,「耦接」—詞在此係包含有任 何直接及間接的電氣連接手段,因此,若文中描述—第—裝置轉 接於第—裝置’則代表該第—裝置可以直接電氣連接於該第二 襄置或透過其他裝置錢接手段間接地電氣連接至該第二裝置。 本發月所揭示之磁性電容裝置係包含有至少—磁性電容,其 =徵在於制磁性電容作為能量儲存裝置以及電力來源。值得 皮思的疋,她於—般電容,磁性電容可藉由於上、下電極處形 -成之磁場’來抑制漏電流,並大幅提升能量儲存密度,故可作為 201015834 -極佳之能量储存裝置或電力供應來源。 -月參考第1圖’第!圖為本發明之磁性電容與其他習知能量 儲存媒介之比較示意圖。相較於主要以化學能方式進行能量儲存 的其他習知能量儲存媒介(例如傳統電池或超級電容),其所能產生 之瞬間電力輸出亦會受限於化學反應速率,而無法快速的充放電 或f行南功率輸出,且充放電次數有限,過度充放時易滋生各種 ❹陶。反觀’由於磁性電容中儲存的能量全部係以電位能的方式 進行儲存,雜電容除了具有可匹_高能量齡密度外,更因 充刀保有電讀雜,而具有壽命長(高紐電讀卜無記憶效 w可進行冋功率輸出、快速充放電等特點,故可有效解決當前 電池所遇到的各種問題。 «月參考第2圖’第2圖為本發明一實施例中^^性電容⑽之 、结構不意圖。如第2圖所示,磁性電容100係包含有-第-磁性 電極110、-第二磁性電極12〇,以及位於其間之一介電層H 其中第:磁性電極110與第二磁性電極120係由具磁性的導電材 料所構成,並藉由適當的外加電場進行磁化,使第一磁性電極110 '、第一磁性電極120内分別形成磁偶極(magenetic 與 25以於磁性電谷!⑻内部構成一磁場對帶電粒子的移動造成 影響,從而抑制磁性電容1〇〇之漏電流。 所需要特別強調的是,第2圖中磁偶極115與125的箭頭方 201015834 向僅為一示意圖。對熟習該項技藝者而言,應可瞭解到磁偶極115 與125實際上係由多個整齊排列的微小磁偶極所疊加而成,且在 本發明中,磁偶極115與125最後形成的方向並無限定,例如可 指向同一方向或不同方向。介電層130則係用來分隔第一磁性電 極110與第二磁性電極120,以於第一磁性電極ho與第二磁性電 極120處累積電荷,儲存電位能。 在本發明之一實施例中,第一磁性電極11〇與第二磁性電極 120係包含有磁性導電材質,例如稀土元素,介電層係由氧化 鈦(T1O3)、氧化鋇鈦(BaTi〇3)或一半導體層,例如氧化矽(s出c〇n oxide)所構成’然而本發明並不限於此,第一磁性電極no、第二 磁性電極120與介電層130均可視產品之需求而選用適當之其他 材料。 ❹ 進-步說明雜電容之操作原理如下。物質在一定磁場下電 阻改變的現象,稱為「磁阻效應」,磁性金屬和合金材料一般都有 這種磁電阻現象’通常情況下,物f的電阻率在磁場中僅產生輕 微的減小;在某種條件下,電阻率減小的幅度相當大,比通常磁 性金屬與合金材料的磁電阻值高幻Q倍以上,而能 鹿 的磁阻效應。若進一步结合M 忒龐大 口 MaXWell—Wa卽er電路模型,磁性顆粒 複合介質中也可能會產生很魔大的磁電容效應。 在習知電容中’電容值“由電容之面積A、介電層之介電 201015834 常數从及厚度d決定,如下式。然而在本發明中,磁性電容⑽ 主要利用第-磁性電極11G與第二磁性電極I2G中整齊排列的磁 偶極來形成磁場,使内部儲存的電子朝同-自旋方向轉動,進行 f齊的排列,故可在同樣條件下,容納更多的電荷,進而增加能 董的儲存密度。類比於習知電容,磁性電容1〇〇之運作原理相當 於藉由磁場之作时改變介電層13G之介電常數,故而造成電^ 值之大幅提升。 ❹ C = d 此外,在本實施例中,第一雜電極11〇與介電層i3〇之間 的介面131以及第二磁性電極12〇與介電層13〇之間的介面⑴ 均為-不平坦的表面’以藉由增加表面積A的方式,進一步提升 磁性電容1〇〇之電容值C。 ❹ 請參考第3圖,第3圖為本發明之另-實施例中第一磁性電 極110之結構示意圖。如第3圖所示,第一磁时極11〇係為一 多層結構,包含有-第-磁性層112、一隔離層114以及一第二磁 性層116。其中隔離層114係、由非磁性材料所構成,而第一磁性層 112與第二磁性層116顺含有具磁性的導電材料,並在磁化時, 藉由不同的外加電場,使得第一磁性層112與第二磁性層ιΐ4中 的磁偶極113與117分別具有不同的方向,例如在本發明之一較 佳實施例中,磁偶極U3與117的方向係為反肖,而能進一步抑 12 201015834 制磁陡電各100之漏電流。此外,需要強調的是,磁性電極no 之結構並不限於前述之三層結構,而可以類似之方式,以複數個 磁性層與非磁性層不斷交錯堆疊,再藉由各磁性層内磁偶極方向 的調整來進-步抑制磁性電容1〇〇之漏電流甚至達到幾乎無漏 電流的效果。 ' ^外’由於習知舰元件多半靴學能的方式進行儲存,因 ❹此都$要有疋的尺寸,否則往往會造成效率的大幅下降。嫌 於此’本發明之磁性電容100係以電位能的方式進行儲存,且因 所使用之材料可適麟半__,故可藉由射的半導體製程 來形成磁性電容⑽以及周邊電路連接,進而縮小磁性電容100 之體積與重量,由於此製作方法可使用—般半導體製程,其應為 熟習該項技藝者所熟知,故在此不予贅述。 請參考第4圖,第4圖為本發明另一實施例中一磁性電容組 ❹朋之示意圖。承前所述,在本實施例中,係利用半導體製程於一 矽基板上製作複數個小尺寸的磁性電容1〇〇,並藉由適當的金屬化 製程’於該複數個磁性電容1〇〇間形成電連接,從而構成一個包 含有多個雜電容娜的磁性電容組2⑻,再以磁性電容組2〇〇 作為能量儲存裝置或外部裝置的電力供絲源。在本實施例中, 磁性電容組200内的複數個磁性電容1〇〇係以類似陣列的方式電 連接,然而本發明並不限於此,而可根據不同的電壓或電容值需 求’進行適當的串聯或並聯,以滿跡種不同裝置的電力供應需 13 201015834 求。 使用一磁性電容裝置作為儲能元件的電位能電池,相較於習 知化學能電池,具有高雛密度、長使料命、體積小且重量輕 薄的優勢。然而,在磁性電容裝置開始供電後,其 壓會不斷将,因此,本㈣在缺供—種仰餘=== 裝置並且具有可調整輸出電壓的直流電路來解決電壓下降的問 ❹ 5月參考第5圖,3^圖崎示的係為本發明之—實施例的一 具有可調整輸出電壓的直流電路300之簡化方塊圖。如第5圖所 示’直流電路300包含有:—電容式充電泉31〇、一可變電容似 以及-處理單元33〇。電容式充電泵31〇 _於一電壓源3仙,用 於依據-電容值(例如C)與電壓源34〇之一第一電壓νι來產生 第一電壓V2,可變電容32〇具有一輸入端輕接於電容式充電系 310與-輸出輪接於-負載35〇,用於提供一可調整電容值(例 如0>♦以及於該輸人端接受第二電壓%,並將該輸入端 二電壓V2機域輸㈣之—触賴偏;錢触單元现 耦接於可變電容320的該輪入端與該輸出端用於偵測第二電壓 V2與輸出電壓V〇ut ’並據以調整可變電容32()的可調整電容值來 調整可變電容32〇所輸出之輸出電壓VGut,也就是%㈣(c,The method includes: a capacitive charging pump, a variable capacitor, and a δH electric valley charging wire connected to the electric cymbal for generating a second voltage according to a first voltage of the capacitance value; the variable capacitor Having a 201015834 input coupled to the capacitive charging pump, the fish-available-adjustable capacitance value is used to detect the "connected-load" for the push-in = the second voltage is converted to the output, the chest is lost The output of the jr:r is used to detect the second output of the variable capacitor, and the output voltage of the variable capacitor is adjusted to include the 可. In a preferred embodiment, the voltage source It is a magnetic capacitor device with at least one magnetic capacitor. In a preferred embodiment, the magnetic capacitor device comprises at least one magnetic capacitor or comprises a series of capacitors consisting of a plurality of magnetic capacitors (Mcap) in series, parallel or series-parallel. Preferably, the impurity capacitor includes a first magnetic electrode, a second magnetic electrode, and a dielectric layer disposed therebetween, wherein the first magnetic electrode and the second magnetic electrode have magnetic dipoles therein to suppress the The leakage current of the magnetic capacitor. In another preferred embodiment, the first magnetic electrode includes: a first magnetic layer having magnetic dipoles arranged in a first direction; and a second magnetic layer having magnetic dipoles arranged in a second direction; An isolation layer includes a non-magnetic material disposed between the first magnetic layer and the second magnetic layer; wherein the first direction and the second direction are opposite to each other to suppress leakage current of the magnetic capacitor. In addition, in another preferred embodiment, the first magnetic electrode and the second magnetic electrode system comprise a rare earth element or the like, and the dielectric layer is composed of titanium oxide 201015834 (fine), titanium ruthenium oxide (BaTi〇3) or a semiconductor. The layer is constructed as described above. The DC circuit of the present invention having an adjustable output voltage allows a magnetic capacitor device to have a fixed output voltage. [Embodiment] ❹匕, County Langshu and subsequent ΐ patents use certain words to refer to specific components' and those with ordinary knowledge in the field should be understandable, hardware manufacturers can To refer to the side-component, the scope of the patent application and the subsequent patent application does not use the difference of the name as the way of distinguishing the reading, but the difference in the merit of the κ cattle in the difference (4), in the overall specification and The "included" mentioned in the subsequent request items is a "rat", so it should be interpreted as "including but not limited to". In addition, "coupling" - the word contains any direct and Indirect electrical connection means, therefore, if the description herein - the first means is transferred to the first means, the means may be electrically connected directly to the second means or indirectly via other means The second device. The magnetic capacitor device disclosed in this publication includes at least a magnetic capacitor, which is characterized by a magnetic capacitor as an energy storage device and a power source. It is worthy of Pisi's embarrassment. She can use the magnetic capacitance of the upper and lower electrodes to suppress leakage current and greatly increase the energy storage density. Therefore, it can be used as 201015834 - excellent energy storage. Device or source of electricity supply. - month reference to Figure 1 '! The figure is a schematic diagram comparing the magnetic capacitor of the present invention with other conventional energy storage media. Compared to other conventional energy storage media (such as conventional batteries or supercapacitors) that primarily store energy in a chemical energy manner, the instantaneous power output that can be generated is limited by the chemical reaction rate, and cannot be quickly charged and discharged. Or f line south power output, and the number of charge and discharge is limited, it is easy to breed all kinds of pottery when overcharged. In contrast, since all the energy stored in the magnetic capacitor is stored in the form of potential energy, the hybrid capacitor has a high lifetime density, and has a long life due to the filling of the electric knife. Bu memory effect w can be used for power output, fast charge and discharge, etc., so it can effectively solve various problems encountered by current batteries. «月月第图2图' Fig. 2 is an embodiment of the present invention The structure of the capacitor (10) is not intended. As shown in Fig. 2, the magnetic capacitor 100 includes a -first-magnetic electrode 110, a second magnetic electrode 12A, and a dielectric layer H therebetween: a magnetic electrode The first magnetic electrode 120 and the second magnetic electrode 120 are made of a magnetic conductive material and magnetized by a suitable applied electric field to form magnetic dipoles in the first magnetic electrode 110' and the first magnetic electrode 120 respectively (magenetic and 25) In the magnetic electric valley! (8), a magnetic field is formed to affect the movement of the charged particles, thereby suppressing the leakage current of the magnetic capacitor 1 。. It is particularly emphasized that the arrow sides of the magnetic dipoles 115 and 125 in Fig. 2 20101583 4 is only a schematic diagram. For those skilled in the art, it should be understood that the magnetic dipoles 115 and 125 are actually superposed by a plurality of neatly arranged micro magnetic dipoles, and in the present invention, The direction in which the magnetic dipoles 115 and 125 are finally formed is not limited, for example, may be directed in the same direction or in different directions. The dielectric layer 130 is used to separate the first magnetic electrode 110 from the second magnetic electrode 120 for the first magnetic electrode. The charge is accumulated in the ho and the second magnetic electrode 120, and the potential energy is stored. In an embodiment of the invention, the first magnetic electrode 11 and the second magnetic electrode 120 comprise a magnetic conductive material, such as a rare earth element, a dielectric layer. It is composed of titanium oxide (T1O3), titanium strontium oxide (BaTi〇3) or a semiconductor layer, such as yttrium oxide (s). However, the present invention is not limited thereto, and the first magnetic electrode no, Both the magnetic electrode 120 and the dielectric layer 130 may select other suitable materials according to the requirements of the product. ❹ The step-by-step description of the operation principle of the impurity capacitor is as follows: the phenomenon that the resistance of the substance changes under a certain magnetic field is called "magnetoresistive effect". Magnetic metal and Gold materials generally have this magnetoresistance phenomenon. [Normally, the resistivity of the material f is only slightly reduced in the magnetic field; under certain conditions, the resistivity is reduced by a considerable amount, compared with the usual magnetic metal. The magnetoresistance value of the alloy material is higher than Q times, and can resist the magnetoresistance effect of the deer. If the M忒Well-Wa卽er circuit model is further combined with the M忒 bulky MaXWell-Wa卽er circuit model, the magnetic particle composite medium may also produce a very large magnetic capacitor. In the conventional capacitor, the 'capacitance value' is determined by the area A of the capacitor, the dielectric constant of the dielectric layer 201015834, and the thickness d, as shown in the following equation. However, in the present invention, the magnetic capacitor (10) mainly utilizes the first magnetic electrode 11G. Forming a magnetic field with the magnetic dipoles arranged neatly in the second magnetic electrode I2G, causing the internally stored electrons to rotate in the same-spin direction, and performing f-alignment, so that more charges can be accommodated under the same conditions, and further Increase the storage density of energy. Analogous to the conventional capacitor, the operation principle of the magnetic capacitor 1〇〇 is equivalent to changing the dielectric constant of the dielectric layer 13G by the magnetic field, so that the electrical value is greatly improved. ❹ C = d Further, in the present embodiment, the interface 131 between the first impurity electrode 11 〇 and the dielectric layer i3 以及 and the interface (1) between the second magnetic electrode 12 〇 and the dielectric layer 13 均为 are both - The uneven surface 'furrows the capacitance value C of the magnetic capacitor 1 藉 by increasing the surface area A. ❹ Please refer to FIG. 3, which is a schematic structural view of the first magnetic electrode 110 in another embodiment of the present invention. As shown in Fig. 3, the first magnetic time period 11 is a multilayer structure including a -first magnetic layer 112, an isolation layer 114, and a second magnetic layer 116. The isolation layer 114 is composed of a non-magnetic material, and the first magnetic layer 112 and the second magnetic layer 116 contain a magnetic conductive material, and when magnetized, the first magnetic layer is caused by different applied electric fields. The magnetic dipoles 113 and 117 in the second magnetic layer ι 4 have different directions, for example, in a preferred embodiment of the present invention, the directions of the magnetic dipoles U3 and 117 are opposite, which can further suppress 12 201015834 Magnetic leakage of 100 current leakage. In addition, it should be emphasized that the structure of the magnetic electrode no is not limited to the foregoing three-layer structure, but in a similar manner, a plurality of magnetic layers and non-magnetic layers are continuously staggered and stacked, and magnetic dipoles in each magnetic layer are further The adjustment of the direction further suppresses the leakage current of the magnetic capacitor 1 甚至 even to achieve almost no leakage current. 'External' is stored in the way that the conventional ship's components are more than half-boots. Because of this, it is necessary to have a flawed size, otherwise it will cause a significant drop in efficiency. It is said that the magnetic capacitor 100 of the present invention is stored in the form of potential energy, and since the material used can be used for a half-length, the magnetic capacitor (10) and the peripheral circuit connection can be formed by the semiconductor process of the shot. Further, the volume and weight of the magnetic capacitor 100 are reduced. Since the manufacturing method can use a general semiconductor process, it should be well known to those skilled in the art, and thus will not be described herein. Please refer to FIG. 4, which is a schematic diagram of a magnetic capacitor group according to another embodiment of the present invention. As described above, in the present embodiment, a plurality of small-sized magnetic capacitors 1 制作 are fabricated on a substrate by a semiconductor process, and an appropriate metallization process is performed between the plurality of magnetic capacitors. An electrical connection is formed to form a magnetic capacitor group 2 (8) including a plurality of impurity capacitors, and the magnetic capacitor group 2 is used as an energy supply source for an energy storage device or an external device. In this embodiment, the plurality of magnetic capacitors 1 in the magnetic capacitor group 200 are electrically connected in an array-like manner. However, the present invention is not limited thereto, and may be appropriately configured according to different voltage or capacitance value requirements. In series or parallel, the power supply for the different devices is required to be 13 201015834. A potential energy battery using a magnetic capacitor device as an energy storage element has the advantages of high density, long life, small volume, and light weight compared to conventional chemical energy batteries. However, after the magnetic capacitor device starts to supply power, its pressure will continue to be constant. Therefore, this (4) is in the absence of supply - the type of tilt === device and has a DC circuit with adjustable output voltage to solve the voltage drop problem. Figure 5, which is a simplified block diagram of a DC circuit 300 having an adjustable output voltage, is an embodiment of the present invention. As shown in Fig. 5, the DC circuit 300 includes: a capacitive charging spring 31, a variable capacitance, and a processing unit 33A. The capacitive charging pump 31〇 is used for generating a first voltage V2 according to a -capacitance value (for example, C) and a voltage source 34 第一, and the variable capacitor 32 〇 has an input. The terminal is connected to the capacitive charging system 310 and the output wheel is connected to the -load 35A for providing an adjustable capacitance value (for example, 0 > ♦ and accepting the second voltage % at the input end, and the input end The voltage V2 is connected to the wheeled end of the variable capacitor 320 and is used to detect the second voltage V2 and the output voltage V〇ut ' Adjusting the adjustable capacitor value of the variable capacitor 32 () to adjust the output voltage VGut output by the variable capacitor 32 ,, that is, % (four) (c,
Cout)V2在此叫/主忍’上述的實施例僅作為本發明的舉 而不是本發明的限制條件,接著,本朗書將在以下郷中舉例 201015834 說明關於本發明之可以用於一磁性電容裝置的直流電路300之操 作方式。 請參考第6圖,第6圖所繪示的係為依據第5圖中的直流電 路300之一實施例的方塊示意圖。如第6圖所示,電容式充電泵 310包含有一第一開關元件312、一第二開關元件314以及一電容 316,其中電容式充電泵31〇之電容值係為一定值c,亦即電容316 ^ 之電容值係為定值C。可變電容320以及電壓源340分別為一磁 性電容裝置,其中可變電容320之電容值係為一可調整值c〇ut。 首先’假設電壓源340 —開始供電之一第一電壓係等於vqd 以及第二電壓V2係等於2VDD ’但是由於磁性電容裝置所提供的 第一電壓VI會不斷下降’所以本發明欲將直流電路3〇〇中可變電 容320之一輸出電壓v〇ut調整為固定等於vdd,亦即處理單元 330會偵測電容式充電泵31〇所產生之第二電壓V2與可變電容 320之輸出電壓Vout,並據以調整可變電容32〇的可調整電容值 © Com來調整可變電容320所輸出之輸出電壓v〇ut,也就是 V_2VDD*C/(C+CGUt)。錢容歧電泵在充電的過程中, 第-開關7L件312以及第二開關元件314的連接狀態係如第7圖 所示’ #電容式充電泉310充電完成後,第-開關元件312以及 第二開關元件314的連接狀態係如第8圖所示,而此時電容式充 電果310所產生之第二電壓V2係等於2v〇d,所以處理單元別 就會將可變電容320的可調整電容值㈤調整等於c,使得 -/咖獅。假設過了—段時間後,電壓源34G之第—電壓V1下 15 201015834 降為VDD/2時’電容式充電泵310所產生之第二電壓V2會等於 VDD’所以處理單元330就會將可變電容320的可調整電容值c〇ut 調整等於0,使得Vout=VDD。此外,在此請注意,上述的實施例 僅作為本發明的舉例說明,而不是本發明的限制條件,舉例來說, 在另一實施例中,本發明之具有可調整輸出電壓的直流電路也可 以用於一般具有固定輸出電壓的一電壓源。 如上所述,本發明之具有可調整輸出電壓的直流電路可以使 得一磁性電容裝置具有一固定的輸出電壓。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 r © 第1圖為本發明之磁性電容與其他習知能量儲存媒介之比較示意 圖。 第2圖為本發明一實施例中磁性電容之結構示意圖。 第3圖為本發明之另一實施例中第一磁性電極之結構示意圖。 第4圖為本發明另一實施例中一磁性電容組之示意圖。 第5圖所纟會示的係為本發明之一實施例的一具有可調整輸出電壓 的直流電路之簡化方塊圖。 第6圖所繪示的係為依據第5圖中的直流電路之一實施例的方塊 16 201015834 示意圖。 第7圖所繪示的係為依據第5圖中的直流電路之一實施例的方塊 示意圖。 第8圖所繪示的係為依據第5圖中的直流電路之一實施例的方塊 示意圖。 【主要元件符號說明】 ® 100 :磁性電容 110、120 :磁性電極 115、125、113、117 :磁偶極 130 :介電層 112、116 :磁性層 114 :隔離層 200 :磁性電容組 β 300 :直流電路 310 :電容式充電泵 320 :可變電容 330 :處理單元 340 :電壓源 350 :負載 312 :第一開關元件 314 :第二開關元件 17 201015834 316 :電容Cout) V2 is hereby referred to as the above-mentioned embodiment only as a limitation of the present invention and not as a limitation of the present invention. Next, the book will be exemplified in the following paragraph 201015834. The present invention can be applied to a magnetic capacitor. The mode of operation of the DC circuit 300 of the device. Please refer to FIG. 6 , which is a block diagram of an embodiment of the DC circuit 300 according to FIG. 5 . As shown in FIG. 6, the capacitive charging pump 310 includes a first switching element 312, a second switching element 314, and a capacitor 316. The capacitance of the capacitive charging pump 31 is a certain value c, that is, a capacitance. The capacitance value of 316 ^ is the fixed value C. The variable capacitor 320 and the voltage source 340 are respectively a magnetic capacitor device, wherein the capacitance value of the variable capacitor 320 is an adjustable value c〇ut. First, it is assumed that the voltage source 340 starts to supply power. One of the first voltages is equal to vqd and the second voltage V2 is equal to 2VDD'. However, since the first voltage VI provided by the magnetic capacitor device is continuously decreased, the present invention intends to apply the DC circuit 3 The output voltage v〇ut of one of the variable capacitors 320 is adjusted to be equal to vdd, that is, the processing unit 330 detects the output voltage Vout of the second voltage V2 generated by the capacitive charging pump 31〇 and the variable capacitor 320. And adjusting the variable capacitance 32 〇 of the adjustable capacitance value © Com to adjust the output voltage v 〇ut of the variable capacitor 320, that is, V_2VDD*C/(C+CGUt). During the charging process of the Qianrong electric pump, the connection state of the first switch 7L member 312 and the second switching element 314 is as shown in FIG. 7 ' After the charging of the capacitive charging spring 310 is completed, the first switching element 312 and The connection state of the second switching element 314 is as shown in FIG. 8, and the second voltage V2 generated by the capacitive charging fruit 310 is equal to 2v〇d, so the processing unit may change the variable capacitor 320. Adjust the capacitance value (five) to adjust equal to c, so that - / lion. It is assumed that after a period of time, when the first voltage V1 of the voltage source 34G is lowered to VDD/2, the second voltage V2 generated by the capacitive charging pump 310 will be equal to VDD', so the processing unit 330 will be available. The adjustable capacitance value c〇ut of the variable capacitor 320 is adjusted to be equal to 0 such that Vout = VDD. In addition, it should be noted that the above-described embodiments are merely illustrative of the present invention, and are not limitations of the present invention. For example, in another embodiment, the DC circuit of the present invention having an adjustable output voltage is also It can be used for a voltage source that typically has a fixed output voltage. As described above, the DC circuit of the present invention having an adjustable output voltage allows a magnetic capacitor device to have a fixed output voltage. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. [Simple diagram of the diagram] r © Fig. 1 is a schematic diagram showing the comparison of the magnetic capacitor of the present invention with other conventional energy storage media. FIG. 2 is a schematic structural view of a magnetic capacitor according to an embodiment of the present invention. Figure 3 is a schematic view showing the structure of a first magnetic electrode in another embodiment of the present invention. Figure 4 is a schematic diagram of a magnetic capacitor group in another embodiment of the present invention. Figure 5 is a simplified block diagram of a DC circuit having an adjustable output voltage, in accordance with one embodiment of the present invention. Figure 6 is a block diagram of a block 16 201015834 in accordance with one embodiment of the DC circuit of Figure 5. Fig. 7 is a block diagram showing an embodiment of a DC circuit according to Fig. 5. Figure 8 is a block diagram showing an embodiment of the DC circuit according to Figure 5. [Major component symbol description] ® 100 : Magnetic capacitors 110, 120: Magnetic electrodes 115, 125, 113, 117: Magnetic dipole 130: Dielectric layer 112, 116: Magnetic layer 114: Isolation layer 200: Magnetic capacitor group β 300 DC circuit 310: Capacitive charge pump 320: Variable capacitor 330: Processing unit 340: Voltage source 350: Load 312: First switching element 314: Second switching element 17 201015834 316: Capacitance