TW201023475A - A power supply device having various voltage outputs - Google Patents

A power supply device having various voltage outputs Download PDF

Info

Publication number
TW201023475A
TW201023475A TW97147128A TW97147128A TW201023475A TW 201023475 A TW201023475 A TW 201023475A TW 97147128 A TW97147128 A TW 97147128A TW 97147128 A TW97147128 A TW 97147128A TW 201023475 A TW201023475 A TW 201023475A
Authority
TW
Taiwan
Prior art keywords
magnetic
power supply
capacitor
switch
supply device
Prior art date
Application number
TW97147128A
Other languages
Chinese (zh)
Inventor
Jiin-Cheng Jow
Ching-Feng Cheng
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97147128A priority Critical patent/TW201023475A/en
Publication of TW201023475A publication Critical patent/TW201023475A/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power supply device having various voltage outputs, can output at least one power supply and include a plurality of magnetic capacitor units and a control module. Each of magnetic capacitor unit includes a magnetic capacitor having a first end and a second end and use for storage power energy, and a bypass switch, which connects the first end and the second end of the magnetic capacitor. The magnetic capacitor units are connected parallelly to compose at least one magnetic capacitor set. The control module couples the magnetic capacitor sets and controls the bypass switches opening or closing to change the voltage of the power supply. The bypass switches control the magnetic capacitor is shorted or not according to it's opening or closing to change the voltage the bypass switch outputted.

Description

201023475 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種供電裝置,特別是指一種多電壓 輸出的供電裝置。 【先前技術】 現今儲能元件廣泛運用於家電設備、手持式裝置(例如 :行動電話(Mobile Phone)、PDA等)及交通工具等產品,以 滿足人們對獨立能源系統的需求。現今應用上大都利用電 池、電容或超級電容(Super capacit〇r)作為能量儲存的元件 〇 電容雖然在製程上較為簡單,但因其儲存容量小,只 能當做短暫儲能使用。而傳統電池,主要是利用化學能的 方式來進行能量儲存,因此其能量儲存密度明顯優於一般 電容,而可應用於各種電力供應裝置,但是,缺點是:其 所能產生之瞬間電力輸出會受限於化學反應速率,而無法 陕速的充放電或進行高功率輸出,且充放電次數有限,過 度充放時易滋生各種問題;例如:目前所使用的蓄電池, 雖然標榜著可重複使用’但還是有其壽命之限制。在多 次充放電或長時間不使用的情況下,蓄電池的容量會下降 ’且容易才員S,原因在☆蓄電、池{利用化學能轉換為電能 ’化學物質要常保其活性,才不至於失效變f,當原來的 化°物活性都作用完或將近用完時,便無法再進行新的化 學反應,進而導致蓄電池老化而宣告壽終。 超級電容是一種介於電池與電容間的元件,又稱雙電 201023475 層電容(Electrical Double-Layer Capacitor),因同時透過部分 物理儲能、部分化學儲能架構,故其具有比普通電容更大的 容量,但其缺點是··因有化學材料而具化學特性,而易有 如電池的漏電缺點,又加上因還有部份是物理特性之放電 速度快的現象,如此一來就產生很快就會沒電的現象無 法達到有效蓄電功能。甚至,超級電容的耐壓度不高,内 阻較大’因科可以用於交流電路,且如果使用不當會造 成電解質泄漏等現象。201023475 VI. Description of the Invention: [Technical Field] The present invention relates to a power supply device, and more particularly to a power supply device with multiple voltage outputs. [Prior Art] Today's energy storage components are widely used in home appliances, handheld devices (such as mobile phones, PDAs, etc.) and vehicles to meet the demand for independent energy systems. Most of today's applications use batteries, capacitors or supercapacitors as energy storage components. 〇 Capacitors are simple in process, but because of their small storage capacity, they can only be used for short-term energy storage. The traditional battery, mainly using chemical energy for energy storage, so its energy storage density is significantly better than the general capacitance, but can be applied to various power supply devices, but the disadvantage is: the instantaneous power output that it can produce Limited by the chemical reaction rate, but unable to speed up the discharge or high power output, and the number of charge and discharge is limited, it is easy to breed various problems when overcharged; for example: the battery currently used, although it is marked as reusable' But there are still limits to their longevity. In the case of multiple times of charging and discharging or not using for a long time, the capacity of the battery will drop 'and it will be easy to be S. The reason is that the storage of electricity, the use of chemical energy into the electric energy, and the chemical substances must be kept in a constant manner. When the failure is changed to f, when the original activity of the material is used or nearly used up, a new chemical reaction can no longer be performed, which leads to the aging of the battery and the end of life. The supercapacitor is a component between the battery and the capacitor. It is also called the 2010 Double-Layer Capacitor. It has a larger physical energy storage structure and a part of the chemical energy storage structure. The capacity, but the disadvantage is that it has chemical properties due to chemical materials, and it is easy to have the shortcomings of battery leakage, and because of the fact that some of them are physical characteristics, the discharge speed is fast, so that it is very The phenomenon that there will be no electricity will not reach the effective power storage function. Even the supercapacitor has a low withstand voltage and a large internal resistance. 'Inco can be used for AC circuits, and if it is used improperly, it will cause electrolyte leakage.

習知儲能元件的技術,皆無法同時達到壽命長(高充放 電次數)、高能量儲存密度、瞬間高功率的輸出、快速充放 電等優點。另外,現今的供電裝置是應用上述這些儲能元 件來當作主要的供電來源,通常藉由一個可輸入直流電壓 的電壓轉換H來轉換*同的供應電壓,以供應電子裝置中 不同的内部it件使用。而本案是提出另—種具有多電壓輸 出的供電裝置’利用多數個可以滿足上述優點的儲能元件 的串/並聯,仍可達到多電壓輸出之功效。 【發明内容】 因此’本發明之一目的,即力接 刃即在扣供一種可提供不同電 壓的供應電力的具有可變電缝出的供電裝置。 本發明之另一目的,即在提供一種可提供多數個供應 電力之具有可變電壓輸出的供電裝置,每一個供應電力的 電壓依需要而相同/不同。 於是,本發明具有可變電壓輸出的供電裝置,可輸出 至少-供應電力’並包含多數個磁性電容單元及一控制模 5 201023475 組,其中,每一個磁性電容單元包括一個具有一第一端及 一第二端且用以儲存電能的磁性電容,及一個與該磁性電 谷第一端與第二端連接的旁路開關,而控制模組則是耦接 於每一磁性電容組,且控制每一個旁路開關的開啟/關閉決 定各個磁性電容的所儲存的電力輸出與否。 較佳地’多數個磁性電容單元相互串聯組成一組或多 組磁性電容組,且控制模組可控制每一磁性電容組中的旁 路開關的開啟/關閉,來改變該組輸出的供應電力之電壓值 〇 此外’供電裝置更包含一輸入模組及一輸出模組,其 中,輸入模組會接收一外部電源,並將該外部電源轉換成 磁性電容可接受的電壓後,再對磁性電容進行充電。輸出 模組耦接於每一磁性電容組,並將每一磁性電容組所輸出 的供應電力穩廢後輸出’且會配合磁性電容組的數量決定 是以單電壓還是以多電壓的方式輸出。 本發明之磁性電容更具有一第一磁性電極、一第二磁 性電極以及位於其間之一介電層,其中第一磁性電極與第 一磁性電極係由具磁性的導電材料構成,且第一磁性電極 的磁耗極方向相同,而第二磁性電極的磁輕極方向相同, 但第二磁性電極可與第一磁性電極的磁耦極方向相反。再 者,第一磁性電極與第二磁性電極中的至少一者具有一第 一磁性層、一第二磁性層與一夾置於第一磁性層與第二磁 性層間且非磁性材質的隔離層。 較佳地’本發明之第一磁性電極與第二磁性電極的材 201023475 質為稀土元素,而介電層的材質為氧化鈦或氧化鋇鈦或一 半導體材質。本發明之功效在於,可以同時提供多組的供 應電力且每一的供應電力皆可被改變其輸出的電壓值,以 達到提供多組可變電壓之功效。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖1,為本發明具有可變電壓輸出的供電裝置之較 佳實施例,該供電裝置丨可應用於各種電子裝置,例如筆 記型電腦(notebook)、手機等等,主要是提供電子裝置的供 應電力,並包含多數個磁性電容單元2及一個控制模組3, 其中,每一個磁性電容單元2都包括一個具有一第一端211 及一第二端212且用以儲存電能的磁性電容21,及一個與 該磁性電容第一端211與第二端212連接的旁路開關22, 而控制模組3會控制每一個磁性電容單元2中的旁路開關 22的開啟/關閉來決定該磁性電容21中的電壓輸出與否。 在本實施例中,多數個磁性電容單元2會相互串聯組 成多數組磁性電容組20,且每一磁性電容組2〇皆可輸出一 個供應電力,而控制模組3會耦接於每一磁性電容組2〇, 並控制其中的旁路開關22的開啟/關閉來改變該磁性電容組 20供應電力的電壓值。配合參閱圖2,以圖2中的三組並 列的磁性電容組20來說明,其中,每一組都分別具有三個 彼此相互串聯的磁性電容單元2。為方便描述,設定由左而 201023475 右的第一行的磁性電容組20為第一磁性電容組20、第二行 的磁性電谷組20為第二磁性電容組、第三行的磁性電容組 20為第三磁性電容組,且每一個磁性電容單元2以一個座 標位置表示’例如第一列第一行的磁性電容單元2的座標 位置為(Rowl,Coll)。此外,座標位置為(R〇w3,c〇ll)、 (Row3,Col2)及(R〇w3,Col3)的磁性電容單元2中的磁性電 容21的第二端212皆與地連接。 換言之,供電裝置1最多可以輸出三組的供應電力, 且每一組都可以藉由旁路開關22的開啟/關閉來改變其輸出 供應電力的電壓值。此外,為了能夠有效的隔離每一磁性 電容組20,本實施例之供電裝置丨更包含多數個第一開關 4 ’在兩相鄰磁性電容組2〇的每一個磁性電容21的第一端 211之間皆連接一個第一開關4,而控制模組3可控制這些 第一開關4的開啟/關閉,可以使各個磁性電容組2〇之間相 互隔離或並聯。當然,也可以只有在兩相鄰磁性電容組2〇 中第一列(Rowl)的磁性電容21之間連接一個第一開關4, 亦可達到兩相鄰磁性電容組20相互並聯,故不以本實施例 為限。 —若控制模組3將所有的第一開關4開啟(〇pen/〇ff),而 母一磁性電容組20中有一個或多個旁路開關22關閉 (:此/㈣’則供電裝置i可有三組可輸出供應電力的磁性 電容組20,且每一磁性電容組2〇彼此相互不干擾。 如圖3’舉例來說,若控制模組3將每路開關22 開啟’而座標位置為(Rowl,c〇11)及座標位置為(R〇wi, 201023475 C〇12)的磁性電容單元2之間的第一開關4關閉,而其餘所 有第一開關4開啟時,供電裝置1則可有兩組可輸出的供 應電力,其中,有一組是由第一磁性電容組20(C〇11)及第二 磁性電容組20(C〇12)並聯輸出。當然,第一開關4開啟/關 閉皆是由控制模組3所控制,其所對應磁性電容組2〇的連 接關係,並不以上述為限,例如圖4所示,若將第一磁性 電容組20(C〇11)及第二磁性電容組2〇(c〇12)之間的三個第一 開關4關閉,即可達到兩組中的磁性電容21兩兩相互並聯 後再串聯輸出之態樣。 參閱圖1,當控制模組3控制磁性電容單元2中的旁路 開關22關閉時,表示該磁性電容21會被短路,意即該磁 性電容21將不會輸出電力。因此,為了確保被短路的磁性 電容21不會影響磁性電容組2〇所輸出的供應電力,故本 實施例之供電裝置1更包含多數個由控制模組3所控制的 第二開關23,分別串聯在每一個磁性電容單元2中磁性電 容21與旁路開關22之間,於本實施例中,第二開關23是 串聯在磁性電容21的第二端212與旁路開關22之間,當 然也可以是串聯在磁性電容21的第一端211與旁路開關22 之間’故不以本實施例為限。再者,以單一個磁性電容單 元2來說’當控制模組3控制旁路開關22關閉時,亦會將 第二開關23開啟,使得磁性電容21的一端會呈現浮接 (floating)狀態’以致於電流只能從旁路開關22流過·,反之 ,當控制模組3控制旁路開關22開啟時,會將第二開關23 關閉’使得電流會從磁性電容21流過,也就是說,每一個 201023475 磁诖電容單元2中,旁路開關22與第二開關23不會有同 時關閉或開啟的情形。 此外,本實施例之控制模組3具有一控制單元31及一 耦接於控制單元31的開關選擇器32,其中,控制單元31 會控制所有的旁路開關22、第一開關4及第二開關23的開 啟或關閉’以決定供電裝置1會有多少組可輸出供應電力 的磁性電容組20,且調整每一磁性電容組2〇所輸出的供電 電力的電壓值,並於決定後,控制單元31會驅使開關選擇 器32發出對應這些被選擇的旁路開關22、第一開關4及第❿ 二開關23的驅動電壓。 參閲圖5,假設每一個磁性電容21中皆儲存丨乂的電壓 ,且所有的第一開關4皆開啟,由上述可知,供電裝置1 可輸出三組的供應電力。以第—磁性電容組(Coll)2〇而言, 控制單元31將座標位置為(R〇w2, 〇〇11}的磁性電容單元2 中的旁路開關22關閉與第二開關23開啟,並將其餘的旁 如1關22開啟,將各個第二開關23對應地開啟或關閉, 來’供電裝置1的第—磁性電容組(C。1⑽供應電力❹ 的電壓為2V,甘 其中疋由座標位置為(Rowl,Coll)及(Rowl,The technology of conventional energy storage components cannot simultaneously achieve the advantages of long life (high charge and discharge times), high energy storage density, instantaneous high power output, fast charge and discharge, and the like. In addition, today's power supply devices use these energy storage components as the main source of power supply, usually by a voltage conversion H that can input a DC voltage to convert * the same supply voltage to supply different internal it in the electronic device. Use. In the present case, another type of power supply device having a multi-voltage output is proposed to utilize a plurality of series/parallel connection of energy storage elements that can satisfy the above advantages, and the multi-voltage output can still be achieved. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a power supply device with variable electrical slits that is supplied with a supply voltage that provides different voltages. Another object of the present invention is to provide a power supply unit having a variable voltage output that can provide a plurality of power supplies, each of which supplies the same or different voltage as needed. Therefore, the present invention has a variable voltage output power supply device that can output at least - supply power 'and includes a plurality of magnetic capacitor units and a control module 5 201023475 group, wherein each of the magnetic capacitor units includes a first end and a second end and a magnetic capacitor for storing electrical energy, and a bypass switch connected to the first end and the second end of the magnetic electric valley, and the control module is coupled to each magnetic capacitor group and controlled The on/off of each bypass switch determines whether the stored power output of each magnetic capacitor is or not. Preferably, a plurality of magnetic capacitor units are connected in series to form one or more sets of magnetic capacitors, and the control module can control the opening/closing of the bypass switches in each of the magnetic capacitor groups to change the supply power of the set of outputs. In addition, the power supply device further includes an input module and an output module, wherein the input module receives an external power supply and converts the external power source into a voltage acceptable for the magnetic capacitor, and then the magnetic capacitor Charge it. The output module is coupled to each of the magnetic capacitor groups, and the output power outputted by each of the magnetic capacitor groups is stabilized and outputted, and is determined by the number of the magnetic capacitor groups to be output as a single voltage or a multiple voltage. The magnetic capacitor of the present invention further has a first magnetic electrode, a second magnetic electrode and a dielectric layer therebetween, wherein the first magnetic electrode and the first magnetic electrode are made of a magnetic conductive material, and the first magnetic The magnetic expulsion poles of the electrodes have the same direction, and the magnetic poles of the second magnetic electrodes have the same direction, but the second magnetic electrodes may be opposite to the magnetic couplings of the first magnetic electrodes. Furthermore, at least one of the first magnetic electrode and the second magnetic electrode has a first magnetic layer, a second magnetic layer and a non-magnetic material isolation layer sandwiched between the first magnetic layer and the second magnetic layer. . Preferably, the material of the first magnetic electrode and the second magnetic electrode of the present invention 201023475 is a rare earth element, and the material of the dielectric layer is titanium oxide or titanium oxynitride or a semiconductor material. The effect of the present invention is that multiple sets of supply power can be simultaneously provided and each supplied power can be changed by the voltage value of its output to achieve the effect of providing multiple sets of variable voltages. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. 1 is a preferred embodiment of a power supply device having a variable voltage output according to the present invention. The power supply device can be applied to various electronic devices, such as a notebook, a mobile phone, etc., mainly providing electronic devices. The power supply includes a plurality of magnetic capacitor units 2 and a control module 3, wherein each of the magnetic capacitor units 2 includes a magnetic capacitor 21 having a first end 211 and a second end 212 for storing electrical energy. And a bypass switch 22 connected to the first end 211 and the second end 212 of the magnetic capacitor, and the control module 3 controls the on/off of the bypass switch 22 in each magnetic capacitor unit 2 to determine the magnetic The voltage in the capacitor 21 is output or not. In this embodiment, a plurality of magnetic capacitor units 2 are connected in series to form a multi-array magnetic capacitor group 20, and each of the magnetic capacitor groups 2 输出 can output a supply power, and the control module 3 is coupled to each of the magnets. The capacitor group 2 is controlled, and the on/off of the bypass switch 22 therein is controlled to change the voltage value of the power supplied by the magnetic capacitor group 20. Referring to Fig. 2, the three sets of magnetic capacitor groups 20 in parallel are illustrated in Fig. 2, wherein each group has three magnetic capacitor units 2 connected in series with each other. For convenience of description, the magnetic capacitor group 20 of the first row from the left and 201023475 is set as the first magnetic capacitor group 20, and the magnetic grid group 20 of the second row is the second magnetic capacitor group and the magnetic capacitor group of the third row. 20 is a third magnetic capacitor group, and each of the magnetic capacitor units 2 is represented by a coordinate position. For example, the coordinate position of the magnetic capacitor unit 2 of the first row of the first column is (Rowl, Coll). Further, the second ends 212 of the magnetic capacitors 21 in the magnetic capacitor unit 2 whose coordinates are (R〇w3, c〇ll), (Row3, Col2) and (R〇w3, Col3) are connected to the ground. In other words, the power supply device 1 can output up to three sets of supply power, and each group can change the voltage value of its output supply power by turning on/off the bypass switch 22. In addition, in order to effectively isolate each of the magnetic capacitor groups 20, the power supply device of the present embodiment further includes a plurality of first switches 4' at a first end 211 of each of the magnetic capacitors 21 of the two adjacent magnetic capacitor groups 2A. A first switch 4 is connected between them, and the control module 3 can control the opening/closing of the first switches 4, so that the respective magnetic capacitor groups 2〇 can be isolated or connected to each other. Of course, only one first switch 4 can be connected between the magnetic capacitors 21 of the first column (Rowl) of the two adjacent magnetic capacitor groups 2, and the two adjacent magnetic capacitor groups 20 can be connected in parallel with each other. This embodiment is limited. - If the control module 3 turns on all of the first switches 4 (〇pen/〇ff), and one or more bypass switches 22 in the parent-magnetic capacitor group 20 are turned off (: this / (four)' then the power supply device i There may be three sets of magnetic capacitor groups 20 that can output power, and each magnetic capacitor group 2〇 does not interfere with each other. As shown in FIG. 3', for example, if the control module 3 turns on each switch 22, the coordinate position is (Rowl, c〇11) and the first switch 4 between the magnetic capacitor units 2 of the coordinate position (R〇wi, 201023475 C〇12) are turned off, and when all the other first switches 4 are turned on, the power supply device 1 can be There are two sets of supply power that can be outputted, one of which is output in parallel by the first magnetic capacitor group 20 (C〇11) and the second magnetic capacitor group 20 (C〇12). Of course, the first switch 4 is turned on/off. All are controlled by the control module 3, and the connection relationship of the corresponding magnetic capacitor group 2〇 is not limited to the above. For example, as shown in FIG. 4, if the first magnetic capacitor group 20 (C〇11) and the first The three first switches 4 between the two magnetic capacitor groups 2〇(c〇12) are turned off, and the magnetic capacitors 21 in the two groups can be achieved. Referring to FIG. 1, when the control module 3 controls the bypass switch 22 in the magnetic capacitor unit 2 to be turned off, it indicates that the magnetic capacitor 21 is short-circuited, that is, the magnetic capacitor 21 will not be The power supply device 1 of the present embodiment further includes a plurality of second controls controlled by the control module 3, in order to ensure that the shorted magnetic capacitor 21 does not affect the supply power output by the magnetic capacitor group 2〇. The switch 23 is connected in series between the magnetic capacitor 21 and the bypass switch 22 in each of the magnetic capacitor units 2, and in the embodiment, the second switch 23 is connected in series to the second end 212 of the magnetic capacitor 21 and the bypass switch 22 Between the first end 211 of the magnetic capacitor 21 and the bypass switch 22, it may of course not be limited to this embodiment. Furthermore, when a single magnetic capacitor unit 2 is used, When the group 3 control bypass switch 22 is turned off, the second switch 23 is also turned on, so that one end of the magnetic capacitor 21 will be in a floating state so that current can only flow through the bypass switch 22, and vice versa. When the control module 3 controls When the bypass switch 22 is turned on, the second switch 23 is turned off 'so that current will flow from the magnetic capacitor 21, that is, in each of the 201023475 magnetic capacitor units 2, the bypass switch 22 and the second switch 23 will not In addition, the control module 3 of the present embodiment has a control unit 31 and a switch selector 32 coupled to the control unit 31. The control unit 31 controls all the bypass switches 22 The first switch 4 and the second switch 23 are turned on or off to determine how many sets of the magnetic capacitor group 20 of the power supply device 1 can output the supplied power, and adjust the voltage of the power supply output by each of the magnetic capacitor groups 2 After the decision, the control unit 31 drives the switch selector 32 to issue the drive voltages corresponding to the selected bypass switch 22, the first switch 4, and the second switch 23. Referring to FIG. 5, it is assumed that the voltage of 丨乂 is stored in each of the magnetic capacitors 21, and all of the first switches 4 are turned on. From the above, the power supply device 1 can output three sets of supplied power. In the case of the first magnetic capacitor group (Coll) 2〇, the control unit 31 turns off the bypass switch 22 in the magnetic capacitor unit 2 whose coordinate position is (R〇w2, 〇〇11} and turns on the second switch 23, and Turning the remaining side as 1 off 22, and turning on or off each of the second switches 23 correspondingly to the first magnetic capacitor group of the power supply device 1 (the voltage of the power supply ❹ of the C. 1 (10) is 2V, and the voltage is 2V. The location is (Rowl, Coll) and (Rowl,

Col3)的磁性雷玄里_ 元31將g 單 互串聯所得;㈣地,若控制單 ,且將所有二磁性電容組(C〇12)2〇中所有的旁路開關22開啟、 供應電壓為第23關閉’第二磁性電容組(c〇11)2〇的-電壓是lv,,:第三磁性電容組(C〇13)2〇的供應電力的 單元2所輪其中疋由座標位置為(R〇w3, Co13)的磁性電容 3出,其餘磁性電容單元2中的磁性電容21皆不 10 201023475 輸出電壓。 參閲圖1、圖6及圖7,在本實施例中,供電裝置1更 包含一輛接於每·一磁性電容組20的輸入模組5及輸出模組 6,其中,輸入模組5會接收一外部電源,且將外部電源轉 換成各個磁性電容21可接收的電壓,並對每一個欲使用的 磁性電容21進行充電,而該外部電源可以來自於一個電池 所供應的電力,亦可以是從外部所供應的直流電壓。此外 ,輸入模組5中具有一保護電路51及一電壓轉換電路52, 其中’保護電路51是包含一與外部電源連接的保險絲511 及一保護器512、一串接在外部電源的負極端(地端)並受保 護器512控制的開關513,以及一連接在保護器512與外部 電源的負極端(地端)之間的電阻514。其中保險絲511在外 部電源充電過程中流經電流過大時會過熱燒斷;電阻514 偵測外部電源的輸出(充電)電流並送給保護器5丨2 ,使保護 器512發現輸入電流突然變大時可以立即切斷開關5丨3,使 外部電源停止供電以保護内部磁性電容21不致因輸入電流 過大而燒燬。而電壓轉換電路52則是用於將外部電源升壓 或降壓成各個磁性電容21可接收的電壓。 輸出模組6是用以將每-磁性電容組2()所輸出的供應 電力穩壓後輸出,且根據控制單元31決定以單電壓或多電 壓的方式輸出,也就是說’輸出模組6所輸出電壓的數量 會對應磁性電容組20的數量,例如有三組可供應電力的磁 電合組2G ’輸出模組6則會切換成多電麼輸出的方式, 將三組供應電力同時輸出。此外,輸出模、组6中具有對應 11 201023475 每-組供應電力的i護電路61及—直流/直流轉換器(dc_ to-DC C〇nverter)62,其中,輸出模組6的保護電路61是包 含一與磁性電容組20的輪出端連接的保險絲611及一保護 器612、-串接在磁性電容組2〇的負極端(地端)並受保護器 612控制的開g 613 ’卩及-連接在保護器612與磁性電容 組20的負極端(地端)之間的電阻614。其中保險絲6ιι在磁 性電容組2G放電過程中流經電流過大時會過熱燒斷,以保 護磁性電容組20;電阻614偵測磁性電容組2〇的輸出(放 電)電流並送給保護器612,使保護器612發現輸出電流突〇 然變大時可以立即切斷開關613,使磁性電容組2〇停止供 電以保護磁性電容組2G不致因輸出電流過大而燒燦。而直 流/直流轉換器62則用以將每一磁性電容組2〇所輸出的供 應電力穩壓後輸出。 ❹ 值得一提的是,由於透過第一開關4可使每一磁性電 容組20相互分離而不會彼此干擾,故在本實施例之供電裝 置1中會同時有幾組的磁性電容組2G在輸出供應電力且 有另幾組的磁性電容組2G則是湘輸人模組5所收到一個 來自於外部的直流電力來進行充電,當輸出供應電力的磁 性電容組2G中的磁性電容21電力不㈣,則控制模組3 會切換成利用原先在充電的那幾組磁性電容組2〇輸出如 此一來’供電裝置1可輸出持續且穩定的供應電力。當然 ’也可以使用兩組本發明之供電裝置i,其中一組的供電裝 中所有磁性電容組20全部輸出供應電力,同時,另一 組中的所有磁性電容組2G全部進行充電,如此透過兩組供 12 201023475 電裝置 之功效 相互切換,亦可達到輸出持續且穩定的供應電力 故不以本實施例為限。 '、了又上供電裝置!之外,本發明之另一特徵在於使 用师電容21作為能量儲存裝置以及電力來源。值得注意 的疋相較於一般電容,磁性電容21可藉由於上下電極 處形成之磁場,來抑_電流,並大幅提升能量儲存密度 故可作為-極佳之能量儲存裝置或電力供應來源。 月參考圖8,圖8為本實施例之磁性電容21與其他習 知能量儲存媒介之比較示意圖。如圖8所示,由於習知能 量儲存媒介(例如傳統電池或超級電容)主要是利用化學能的Col3) magnetic Lei Xuoli _ yuan 31 will be g single series in series; (4) ground, if the control unit, and all the two magnetic capacitor group (C〇12) 2 所有 all the bypass switches 22 open, the supply voltage is The 23rd closing 'second magnetic capacitor group (c〇11) 2〇-voltage is lv,,: the third magnetic capacitor group (C〇13) 2〇 is supplied by the power unit 2, where the coordinate position is The magnetic capacitance of (R〇w3, Co13) is 3, and the magnetic capacitance 21 of the remaining magnetic capacitor unit 2 is not 10 201023475 output voltage. Referring to FIG. 1 , FIG. 6 and FIG. 7 , in the embodiment, the power supply device 1 further includes an input module 5 and an output module 6 connected to each magnetic capacitor group 20 , wherein the input module 5 Receiving an external power source, converting the external power source into a voltage that can be received by each of the magnetic capacitors 21, and charging each of the magnetic capacitors 21 to be used, and the external power source can be derived from the power supplied by one battery, or It is the DC voltage supplied from the outside. In addition, the input module 5 has a protection circuit 51 and a voltage conversion circuit 52, wherein the protection circuit 51 includes a fuse 511 and a protector 512 connected to an external power source, and a negative terminal connected in series to the external power source ( The switch 513, which is controlled by the protector 512, and a resistor 514 connected between the protector 512 and the negative terminal (ground) of the external power supply. The fuse 511 is overheated when the current flowing through the external power source is excessively charged; the resistor 514 detects the output (charging) current of the external power source and sends it to the protector 5丨2, so that the protector 512 finds that the input current suddenly becomes large. The switch 5丨3 can be immediately turned off to stop the external power supply from supplying power to protect the internal magnetic capacitor 21 from being burnt due to excessive input current. The voltage conversion circuit 52 is for boosting or stepping down the external power supply to a voltage that can be received by each of the magnetic capacitors 21. The output module 6 is configured to stabilize the output power outputted by each of the magnetic capacitor groups 2(), and output according to the control unit 31 to output in a single voltage or multiple voltages, that is, the output module 6 The number of output voltages corresponds to the number of magnetic capacitor groups 20. For example, there are three sets of magnetoelectric group 2G 'output modules 6 that can supply electric power, and then switch to multiple electric outputs, and simultaneously output three sets of supplied electric power. In addition, the output mode and the group 6 have an i-protection circuit 61 corresponding to each of the 11 201023475 supply power and a DC/DC converter (dc_to-DC C〇nverter) 62, wherein the protection circuit 61 of the output module 6 It is a fuse 611 and a protector 612 connected to the wheel terminal of the magnetic capacitor group 20, and is connected to the negative terminal (ground terminal) of the magnetic capacitor group 2〇 and controlled by the protector 612. And a resistor 614 connected between the protector 612 and the negative terminal (ground) of the magnetic capacitor group 20. The fuse 6 ιι is overheated and blown when the current flowing through the magnetic capacitor group 2G is excessively large to protect the magnetic capacitor group 20; the resistor 614 detects the output (discharge) current of the magnetic capacitor group 2〇 and sends it to the protector 612, so that The protector 612 can immediately cut off the switch 613 when the output current suddenly becomes large, so that the magnetic capacitor group 2〇 stops supplying power to protect the magnetic capacitor group 2G from being burnt due to excessive output current. The DC/DC converter 62 is used to regulate the output power of each of the magnetic capacitor groups 2〇 and output the voltage.值得 It is worth mentioning that, since each of the magnetic capacitor groups 20 can be separated from each other through the first switch 4, there is a plurality of sets of magnetic capacitor groups 2G in the power supply device 1 of the embodiment. The output of the power supply and the other groups of the magnetic capacitor group 2G is that the Xiangshen module 5 receives a DC power from the outside for charging, and outputs the magnetic capacitor 21 power in the magnetic capacitor group 2G that supplies the power. If not (4), the control module 3 will switch to output the magnetic capacitor group 2 that was originally charged, so that the power supply device 1 can output continuous and stable supply power. Of course, it is also possible to use two sets of power supply devices i of the present invention, wherein all of the magnetic capacitor groups 20 in one set of power supply devices output power supply, and at the same time, all magnetic capacitor groups 2G in the other group are charged, so that two The power supply of 12 201023475 electrical devices is switched to each other, and the continuous and stable supply of power can be achieved, so it is not limited to this embodiment. 'And the power supply device! In addition, another feature of the present invention resides in the use of the teacher capacitor 21 as an energy storage device and a source of electrical power. It is worth noting that compared to the general capacitance, the magnetic capacitor 21 can suppress the current by the magnetic field formed at the upper and lower electrodes and greatly increase the energy storage density, so it can be used as an excellent energy storage device or a power supply source. Referring to Fig. 8, Fig. 8 is a schematic view showing the comparison of the magnetic capacitor 21 of the present embodiment with other conventional energy storage media. As shown in Figure 8, since conventional energy storage media (such as conventional batteries or supercapacitors) are mainly utilizing chemical energy

式來進行&量健存,因此其能量儲存密度將會明顯優於 一般電容,而可應用於各種電力供應裝置但在此同時, 其所此產生之瞬間電力輸出亦會受限於化學反應速率,而 無法快速的充放電或進行高功率輸出,且充放電次數有限 過度充放時易滋生各種問題。 相較於此,由於磁性電容21中儲存的能量全部係以電 位能的方式進行儲存,因此,除了具有可與一般電池或超 級電容匹配的能量儲存密度外,更因充分保有電容的特性 ,而具有壽命長(高充放電次數)、無記憶效應、可進行高功 率輸出、快速充放電等特點,故可有效解決當前電池所遇 到的各種問題。 請參考圖9,圖9為本發明之磁性電容21的結構示意 圖。如圖9所示,磁性電容21係包含有一第一磁性電極 no、一第二磁性電極ι20,以及位於兩者間之一介電層 13 201023475 。第-磁性電極no與第二磁性電極12〇係由具磁性的導電 材料所構成,並藉由適當的外加電場進行磁化,使第一磁 性電極uo與第二磁性電# 120内分別形成磁偶極- (magenetic dipole)115與125,以於磁性電容^内部構成一 磁場,對帶電粒子的移動造成影響,從而抑制磁性電容η 之漏電流》 所需要特別強調的是,圖9中的磁偶極115與125的箭 頭方向僅為一*意、圖熟習該項技藝者^,應可瞭解 到磁偶極115肖125實際上係由多個整齊排列的微小磁偶極❹ 所疊加而成,且在本發明中,磁偶極115與125最後形成的 方向並無限定,例如可指向同一方向或不同方向。介電層 130則係用來分隔第一磁性電極11〇與第二磁性電極, 以於第-磁性電極11G與第二磁性電極m處累積電荷儲· 存電位能。在本發明之一實施例中,第一磁性電極ιι〇與第 二磁性電極120係包含有磁性導電材質,例如稀土元素, 介電層130係由氧化鈦(Ti〇3)、氧化鋇鈦(BaTi〇3)或一半導 體層,例如氧化矽(silicon oxide)所構成,然而本發明並不〇 限於此,第一磁性電極110、第二磁性電極12〇與介電層 130均可視產品之需求而選用適當之其他材料。 比喻說明本發明磁性電容21之操作原理如下。物質在 一定磁場下電阻改變的現象,稱為「磁阻效應」,磁性金屬 和合金材料一般都有這種磁電阻現象,通常情況下,物質 * 的電阻率在磁場中僅產生輕微的減小;在某種條件下,電 阻率減小的幅度相當大,比通常磁性金屬與合金材料的磁 14 201023475 電阻值尚出10倍以上’而能夠產生很龐大的磁阻效應。若 是進一步結合Maxwell-Wagner電路模型,磁性顆粒複合介 質t也可能會產生很龐大的磁電容效應。 在習知電容中,電容值C係由電容之面積a、介電層 之介電常數及厚度d決定’如下式。然而在本發明中, 磁性電容21主要利用第一磁性電極no與第二磁性電極 120中整齊排列的磁偶極來形成磁場來,使内部儲存的電子 朝同一自旋方向轉動,進行整齊的排列,故可在同樣條件 下,容納更多的電荷,進而增加能量的儲存密度。類比於 習知電容,磁性電容21之運作原理相當於藉由磁場之作用 來改變介電層130之介電常數,故而造成電容值之大幅提 升0In order to perform & mass storage, the energy storage density will be significantly better than the general capacitance, but can be applied to various power supply devices. At the same time, the instantaneous power output generated by this will be limited by the chemical reaction. The rate is not fast charging and discharging or high power output, and the number of times of charging and discharging is limited, and it is easy to breed various problems when it is overcharged. In contrast, since all the energy stored in the magnetic capacitor 21 is stored in the form of potential energy, in addition to having an energy storage density that can be matched with a general battery or a super capacitor, the capacity of the capacitor is sufficiently retained. It has long life (high charge and discharge times), no memory effect, high power output, fast charge and discharge, etc., so it can effectively solve various problems encountered in current batteries. Please refer to FIG. 9. FIG. 9 is a schematic structural view of the magnetic capacitor 21 of the present invention. As shown in FIG. 9, the magnetic capacitor 21 includes a first magnetic electrode no, a second magnetic electrode ι20, and a dielectric layer 13 201023475 therebetween. The first magnetic electrode no and the second magnetic electrode 12 are made of a magnetic conductive material and magnetized by an appropriate applied electric field to form a magnetic couple in the first magnetic electrode uo and the second magnetic electric # 120, respectively. The pole- (magenetic dipole) 115 and 125, in order to form a magnetic field inside the magnetic capacitor, affecting the movement of the charged particles, thereby suppressing the leakage current of the magnetic capacitor η. It is particularly emphasized that the magnetic couple in Fig. 9 The direction of the arrows of the poles 115 and 125 is only one meaning, and the figure is familiar to the skilled person. It should be understood that the magnetic dipole 115 is actually superposed by a plurality of neatly arranged tiny magnetic dipoles. Moreover, in the present invention, the direction in which the magnetic dipoles 115 and 125 are finally formed is not limited, and may be, for example, directed in the same direction or in different directions. The dielectric layer 130 is used to separate the first magnetic electrode 11 and the second magnetic electrode to accumulate charge storage potential energy at the first magnetic electrode 11G and the second magnetic electrode m. In an embodiment of the invention, the first magnetic electrode ι and the second magnetic electrode 120 comprise a magnetic conductive material, such as a rare earth element, and the dielectric layer 130 is made of titanium oxide (Ti〇3) or titanium ruthenium oxide (Titanium Oxide). BaTi〇3) or a semiconductor layer, such as silicon oxide, however, the present invention is not limited thereto, and the first magnetic electrode 110, the second magnetic electrode 12, and the dielectric layer 130 may be visually required by the product. Use other materials as appropriate. The analogy shows that the operating principle of the magnetic capacitor 21 of the present invention is as follows. The phenomenon that the resistance of a substance changes under a certain magnetic field is called the "magnetoresistive effect". Magnetic metal and alloy materials generally have such a magnetoresistance. Generally, the resistivity of the substance* is only slightly reduced in the magnetic field. Under certain conditions, the range of resistivity reduction is quite large, which is more than 10 times higher than that of magnetic 14 and metal alloys of magnetic materials and alloy materials, respectively, and can produce a very large magnetoresistance effect. If combined with the Maxwell-Wagner circuit model, the magnetic particle composite medium t may also have a very large magnetic capacitance effect. In the conventional capacitor, the capacitance value C is determined by the area a of the capacitor, the dielectric constant of the dielectric layer, and the thickness d. However, in the present invention, the magnetic capacitor 21 mainly uses the magnetic poles arranged in the first magnetic electrode no and the second magnetic electrode 120 to form a magnetic field, and the internally stored electrons are rotated in the same spin direction to be arranged neatly. Therefore, under the same conditions, more charge can be accommodated, thereby increasing the storage density of energy. Analogous to conventional capacitors, the principle of operation of the magnetic capacitor 21 is equivalent to changing the dielectric constant of the dielectric layer 130 by the action of a magnetic field, thereby causing a substantial increase in the capacitance value.

此外,在本實施例中,第一磁性電極110與介電層 之間的介面131以及第二磁性電極12〇與介電層13〇之間 的介面132均為-不平坦的表面,以藉由增加表面積a的 方式,進一步提升磁性電容21之電容值c。 請參考圖1G,圖1G為本發明之磁性電容21的第一磁 性電極110另一種之結構示意圖。如圖1〇所示第一磁性 電極uo係為-多層結構,包含有一第一磁性層u2、一隔 離廣114以及帛一磁性層116。其中隔離層…係由非磁 性的導電材料所構成,而第—磁性層112與第二磁性層ιΐ6 含有具磁㈣導電#料,並在磁化時,藉由適當的外 15 201023475 加電場或磁場’使得第一磁性膚112與第二磁性層ιΐ4中的 磁偶極113與117分別具有不同的方肖,例如在本發明之-較佳實施例中,磁偶極113與117的方向係為反向而能進 一步抑制磁性電容21之漏電流。 此外,需要強調的是,第一磁性電極11〇之結構並不限 於前述之三層結構,而可以類似之方式’以複數個磁性層 非磁14層不斷交錯堆疊,再藉由各磁性層内磁偶極方向 的調整來進•步抑制磁性電容21之漏電流。同樣地,第二 磁f生電極12G内亦可設有相似的結構,以降低磁性電容21❿ 之漏電流,甚至達到幾乎無漏電流的效果。 此外,由於習知儲能元件多半以化學能的方式進行儲 存因此都需要有-定的尺寸,否則往往會造成效率的大 幅下降。相較於此,本發明之磁性電容21係以電位能的方 式進行儲存’且因所使用之材料可適用於半導體製程故 可藉由適當的半導體製程來形成磁性電容21以及周邊電路 連接,進而縮小磁性電容之體積與重量,由於此製作方〇 法可使用-般半導體製程,其應為熟習該項技藝者所熟知 ,故在此不予贅述。 、 综上所述,本發明之具有可變電壓輸出的供電裝置藉 由開關的切換來改變輸出電應電力的電壓值,可達到提供. 夕數個供應電力之具有可變電麼輸出的供電裝置,且每— 個供應電力的電壓依需要而相同或不同,另外,本發明之 磁法電令除了具有可與一般電池或超級電容匹配的能量儲 16 201023475 存密度外’更因充分保有電容的特性,故亦可有效解決當 前電池所遇到的各種問題。 惟以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一電路示意圖’說明本發明具有可變電壓輸出 的供電裝置之較佳實施例; 圖2是一電路示意圖,說明本發明之供電裝置具有三 組磁性電容組的元件關係; 圖3是一等效電路圖’說明圖2中三組磁性電容組可 輸出兩組供應電力’其中一組供應電力是利用兩組磁性電 容組並聯輸出; 圖4是一等效電路圖,說明圖2中三組磁性電容組可 輸出兩組供應電力’其中一組供應電力是利用兩組磁性電 容組中兩兩磁性電容相互並聯再_聯輸出; 圖5是一電路示意圖,說明圖2中三組磁性電容組的 三種供應電力; 圖6是一電路示意圖,說明本實施例之輸入模組的元 件關係; 圖7是一電路示意圖,說明本實施例之輸出模組的元 件關係; 圖8是一比較示意圖,說明本發明之磁性電容與其他 17 201023475 習知能量儲存媒介之比較; 圖9是一結構示意圖,說明本發明之磁性電容的結構 ;及 圖10是一結構示意圖,說明為本發明之磁性電容的第 一磁性電極另一種之結構。 201023475In addition, in the embodiment, the interface 131 between the first magnetic electrode 110 and the dielectric layer and the interface 132 between the second magnetic electrode 12 and the dielectric layer 13 are both - uneven surfaces. The capacitance value c of the magnetic capacitor 21 is further increased by increasing the surface area a. Referring to FIG. 1G, FIG. 1G is a schematic structural view of another type of the first magnetic electrode 110 of the magnetic capacitor 21 of the present invention. As shown in FIG. 1A, the first magnetic electrode uo is a multi-layer structure including a first magnetic layer u2, a spacer 114, and a first magnetic layer 116. Wherein the isolation layer is composed of a non-magnetic conductive material, and the first magnetic layer 112 and the second magnetic layer ι 6 contain a magnetic (tetra) conductive material, and when magnetized, an electric field or a magnetic field is applied by a suitable outer layer 15 201023475 'Making the magnetic dipoles 113 and 117 in the first magnetic layer 112 and the second magnetic layer ι 4 respectively have different squares. For example, in the preferred embodiment of the present invention, the directions of the magnetic dipoles 113 and 117 are In the reverse direction, the leakage current of the magnetic capacitor 21 can be further suppressed. In addition, it should be emphasized that the structure of the first magnetic electrode 11 is not limited to the foregoing three-layer structure, but can be continuously stacked in a plurality of magnetic layers and non-magnetic layers in a similar manner, and then in each magnetic layer. The adjustment of the magnetic dipole direction further suppresses the leakage current of the magnetic capacitor 21. Similarly, a similar structure can be provided in the second magnetic f-electrode 12G to reduce the leakage current of the magnetic capacitor 21 , even to achieve almost no leakage current. In addition, since conventional energy storage components are mostly stored in a chemical energy manner, they all need to have a certain size, otherwise it will often cause a large drop in efficiency. In contrast, the magnetic capacitor 21 of the present invention is stored in a potential energy manner, and since the material used can be applied to a semiconductor process, the magnetic capacitor 21 and the peripheral circuit connection can be formed by a suitable semiconductor process. The volume and weight of the magnetic capacitor are reduced. Since the fabrication method can use a semiconductor process, it should be well known to those skilled in the art, and therefore will not be described herein. In summary, the power supply device with variable voltage output of the present invention changes the voltage value of the output electrical power by switching the switch, and can provide the power supply with variable output of the power supply. The voltage of each of the supplied powers is the same or different as needed. In addition, the magnetic method of the present invention has a storage capacity that can be matched with a general battery or a super capacitor. The characteristics of the battery can also effectively solve various problems encountered in the current battery. However, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention, All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram illustrating a preferred embodiment of a power supply device having a variable voltage output according to the present invention; FIG. 2 is a circuit diagram illustrating a power supply device of the present invention having three sets of magnetic capacitors. Figure 3 is an equivalent circuit diagram 'Description of the three sets of magnetic capacitors in Figure 2 can output two sets of power supply', one set of supply power is output in parallel using two sets of magnetic capacitors; Figure 4 is an equivalent circuit diagram, It can be seen that the three sets of magnetic capacitors in Figure 2 can output two sets of supply power. One of the sets of supply power is obtained by using two sets of magnetic capacitors in parallel and then connected in parallel. Figure 5 is a circuit diagram illustrating Figure 2 FIG. 6 is a circuit diagram illustrating the component relationship of the input module of the present embodiment; FIG. 7 is a circuit diagram illustrating the component relationship of the output module of the embodiment; 8 is a comparative diagram illustrating the comparison of the magnetic capacitor of the present invention with other conventional energy storage media of 17 201023475; FIG. 9 is a schematic structural diagram illustrating The magnetic capacitor structure of the invention; and FIG. 10 is a structural schematic view illustrating another magnetic electrode of the first capacitor of the magnetic structure of the present invention. 201023475

【主要元件符號說明】 1 ···.· ••…供電裝置 110 ·· ••…第一磁性電極 112 ·· …·.第一磁性層 113、 117 .....磁偶極 114 ·· .....隔離層 115、 125 .....磁偶極 116 .. ••…第二磁性層 120 ·· ••…第二磁性電極 130 ·· .....介電層 131、 132 .....介面 2…… ••…磁性電容單元 20·..· ••…磁性電容組 21··.· ••…磁性電容 211 · ••…第端 212… ••…第二端 22 •…旁路開關 23· 3 ·· 31 _ 32· 4 _· 5 ·· 51 · 511 512 513 514 52·. 6 ... 61 ·· 611 612 613 614 62·· 第二開關 控制模組 控制單元 開關選擇器 第一開關 輸入模組 保護電路 保險絲 保護器 開關 電阻 電壓轉換電路 輸出模組 保護電路 保險絲 保護器 開關 電阻 直流/直流轉換器 19[Description of main component symbols] 1 ·····••...Power supply device 110··••...first magnetic electrode 112 ····.first magnetic layer 113, 117 ..... magnetic dipole 114 · · ..... isolation layer 115, 125 ..... magnetic dipole 116 .. ••...second magnetic layer 120 ··••...second magnetic electrode 130 ··.....dielectric layer 131, 132 .....Interface 2... ••...Magnetic Capacitor Unit 20·..·••...Magnetic Capacitor Group 21···· ••...Magnetic Capacitor 211 · ••...End 212... •• ...the second end 22 •...bypass switch 23· 3 ·· 31 _ 32· 4 _· 5 ·· 51 · 511 512 513 514 52·. 6 ... 61 ·· 611 612 613 614 62·· Second Switch Control Module Control Unit Switch Selector First Switch Input Module Protection Circuit Fuse Protector Switch Resistance Voltage Conversion Circuit Output Module Protection Circuit Fuse Protector Switch Resistance DC/DC Converter 19

Claims (1)

201023475 七、申請專利範圍: 可輸出一供應電力 1. 一種具有可變電壓輸出的供電裝置 ,並包含: 他,土电谷哗列,用以 ,a中具右"伽 ㈣電能並輸出該供應電; ,、中具有多數個以一矩陣排列的磁性電 性電容具有一第一端及一筮__ 且谷该々 端及第二端,且於該矩陣的同一子 中’該等磁性電容相互串聯, ψm 而於該矩陣的同一列中, 該等磁性電容的第一端相互連接;201023475 VII. Patent application scope: It can output a power supply 1. A power supply device with variable voltage output, and includes: He, earth and electricity valley column, for a, with right " gamma (four) power and output a plurality of magnetic capacitors arranged in a matrix having a first end and a 筮__ and a valley and a second end, and in the same sub-matrix of the matrix Capacitors are connected in series with each other, ψm and in the same column of the matrix, the first ends of the magnetic capacitors are connected to each other; 多數個旁路開關,每—個磁性電容的第—端及第: 端之間連接一個旁路開關;及 -控制模組’㈣於該磁性電容陣列,該控制模組 控制該等旁路開關的開啟或關閉以改變該供應電力的電 壓值。 2·依據申請專利範圍第丨項所述之具有可變電壓輸出的供 電裝置’更包括彡數個受該控制模組控制開啟/關閉的第 一開關,於矩陣的每一列中,兩相鄰磁性電容的第一端 間連接一個第一開關,該控制模組控制該等第一開關中 n 至少一部份開啟將該磁性電容陣列區隔成多組磁性電容 組,且每一磁性電容組具有至少一行的磁性電容。 3.依據申請專利範圍第1項所述之具有可變電壓輸出的供 電裝置,更包括多數個受該控制模組控制開啟/關閉的第 二開關’每一個磁性電容與和該磁性電容連接的旁路開 關間連接一個第二開關,且該第二開關與該磁性電容串 聯並與該磁性電容連接的旁路開關並聯,該控制模組控 20 201023475 制與各該磁性電容連接的旁路開關與第二開關中的一者 開啟與另一者關閉。 4. 依據申請專利範圍第2項所述之具有可變電壓輸出的供 電裝置’更包括多數個受該控制模組控制開啟/關閉的第 二開關’每一個磁性電容與和該磁性電容連接的旁路開 關間連接一個第二開關,且該第二開關與該磁性電容串 聯並與該磁性電容連接的旁路開關並聯,該控制模組控 制與各該磁性電容連接的旁路開關與第二開關中的一者 開啟與另一者關閉。 5. 依據申請專利範圍第1項所述之具有可變電壓輸出的供 電裝置,其中,該控制模組包括一控制單元及一耦接於 該控制單元的開關選擇器,該控制單元會驅使該開關選 擇器控制該等旁路開關的開啟/關閉以改變該供應電力的 電壓值。 6. 依據申請專利範圍第4項所述之具有可變電壓輸出的供 電裝置,其中,該控制模組包括一控制單元及一耦接於 該控制單70的開關選擇器,該控制單元會驅使該開關選 擇器控制該等旁路開關的開啟/關閉以改變該供應電力的 電壓值。 7. 依據申請專利範圍第6項所述之具有可變電壓輸出的供 電裝置,更包含一耦接於該磁性電容陣列的輸出模組, 用以將該磁性電容陣列所輸出的供應電力穩壓後輸出。 8. 依據申請專利範圍第7項所述之具有可變電壓輸出的供 電裝置,更包含一耦接於該磁性電容陣列的輸入模組, 21 201023475 並接收外部電源,該輸入模組會將該外部電源轉換成 該等磁性電容可接收的電壓以供該等磁性電容充電用。 9. 依據申研專利範圍第丨項所述之具有可變電壓輸出的供 電裝置’其中,該等磁性電容更具有一第一磁性電極、 一第二磁性電極以及位於其間之一介電層,其中該第一 磁性電極與第二磁性電極係由具磁性的導電材料構成。 10. 依據申請專利範圍帛9項所述之具有可變電壓輸出的供 電裝置’其中’該第__磁性電極與該第二磁性電極中的 至少一者具有一第一磁性層、一第二磁性層與一夾置於 ❹ 該第磁性層與該第二磁性層間且可導電之非磁性材質 的隔離層’該[磁性層的磁祕方向相反於該第二磁 性層的磁耦極方向。 11. 依據巾請專利範圍第1Q項所述之具有可變電壓輸出的供 電裝置,其中,該第一磁性電極與第二磁性電極的材質 為稀土元素,該介電層的材質為氧化鈦或氧化鋇鈦或一 半導體材質。 12. —種具有可變電壓輸出的供電裝置,可輸出至少一供應 ◎ 電力,並包含: 多數個磁性電容單元,每一個磁性電容單元皆包括 個具有第端及一第一端且用以储存電能的磁性電 · 容,及一個與該磁性電容第一端與第二端連接的旁路開 關’且該等磁性電容單元相互串聯組成至少一組磁性電 · 容組;及 一控制模組,耦接於該等磁性電容組,該控制模組 22 201023475 控制該等旁路開關的開啟/關閉以改變該供應電力的電壓 值。 13·依據申請專利範圍第12項所述之具有可變電壓輸出的供 電裝置,其中,該等磁性電容單元相互串聯組成多數組 磁性電容組’且該供電裝置更包含多數個第一開關,第 一個兩相鄰磁性電容組中兩相鄰磁性電容的第一端分別 連接一個第一開關,該控制模組控制該等第一開關的關 閉可將該等磁性電容組並聯輸出。 14. 依據申請專利範圍第13項所述之具有可變電壓輸出的供 電裝置’其中,每一磁性電容單元更包括一個第二開關 ,該第二開關連接於該旁路開關與該磁性電容之間,且 該第二開關與該磁性電容串聯並與該旁路開關並聯。 15. 依據申請專利範圍帛12項所述之具有可變電壓輸出的供 電裝置’其中’該控制模組包括_控制單元及—耗接於 該控制單元_關選擇器,該控制單元會驅使該開關選 擇器控制該等旁路開關的開啟/關閉以改變該供應電力的 電壓值。 16. 依據巾請專利範圍第14項所述之具有可變電壓輸出的供 電裝置’其中’該控制模組包括一控制單元及一耦接於 ο控制單元的開關選擇器,該控制單元會驅使該開關選 擇器控制該等旁路開關的開啟/關閉以改變該供應電力的 電壓值。 17. 依據中4專利範圍第16項所述之具有可變電壓輸出的供 電裝置’更包含-耦接於該磁性電容陣列的輸出模組, 23 201023475 用以將該磁性電容陣列所輸出的供應電力穩壓後輸出, 且根據控制單元決定以單電壓及多電壓其中之一者的方 式輸出。 ^ 18·依據申凊專利範圍第17項所述之具有可變電壓輸出的供 電裝置,更包含一耦接於該磁性電容陣列的輸入模組, 並接收外部電源,該輸入模組會將該外部電源轉換成 i等磁性電谷可接收的電壓以供該等磁性電容充電用。 K依據中凊專利範圍第12所述之具有可變電壓輸出的供冑 裝置,其中,該等磁性電容更具有一第一磁性電極、一 _ . 第二磁性電極以及位於其間之一介電層,其中該第一磁 眭電極與第二磁性電極係由具磁性的導電材料構成該 第一磁性電極包含有複數個成第一方向排列的磁偶極, 而該第一磁性層包含有複數個成第二方向排列的磁偶極 ’該第一方向與該第二方向相反。 . 2〇·依據中請專利範圍第19項所述之具有可變電壓輸出的供 電裝置,其中,該第一磁性電極與該第二磁性電極中的 至少一者具有一第一磁性層、一第二磁性層與一夾置於 ◎ 令第磁性層與該第一磁性層間且非磁性材質的隔離層 ’該第一磁性層的磁耦極方向相反於該第二磁性層的磁 輕極方向。 Ο *1 , .依據申請專利範圍第20項所述之具有可變電壓輸出的供 電農置,其中,該第一磁性電極與第二磁性電極的材質 為稀土元素,該介電層的材質為氧化鈦或氧化鋇鈇或一 半導體材質。 24a plurality of bypass switches, each of which is connected to a bypass switch between the first end and the first end; and - a control module '(4) in the magnetic capacitor array, the control module controls the bypass switches Turning on or off to change the voltage value of the supplied power. 2. The power supply device with variable voltage output according to the scope of the patent application scope includes a plurality of first switches controlled by the control module to be turned on/off, in each column of the matrix, two adjacent A first switch is connected between the first ends of the magnetic capacitors, and the control module controls at least a part of the first switches to open the magnetic capacitor array into a plurality of magnetic capacitor groups, and each magnetic capacitor group There are at least one row of magnetic capacitors. 3. The power supply device with variable voltage output according to claim 1 of the patent application scope, further comprising a plurality of second switches that are controlled to be turned on/off by the control module, and each magnetic capacitor is connected to the magnetic capacitor. A second switch is connected between the bypass switch, and the second switch is connected in series with the magnetic capacitor and is connected in parallel with the bypass switch connected to the magnetic capacitor. The control module controls 20 201023475 to form a bypass switch connected to each of the magnetic capacitors. One of the second switches is turned on and the other is turned off. 4. The power supply device with variable voltage output according to item 2 of the patent application scope further includes a plurality of second switches that are controlled to be turned on/off by the control module. Each magnetic capacitor is connected to the magnetic capacitor. A second switch is connected between the bypass switch, and the second switch is connected in series with the magnetic capacitor and is connected in parallel with the bypass switch connected to the magnetic capacitor. The control module controls the bypass switch connected to each of the magnetic capacitors and the second switch. One of the switches is turned on and the other is turned off. 5. The power supply device with a variable voltage output according to claim 1, wherein the control module includes a control unit and a switch selector coupled to the control unit, the control unit drives the A switch selector controls the on/off of the bypass switches to change the voltage value of the supplied power. 6. The power supply device with variable voltage output according to claim 4, wherein the control module includes a control unit and a switch selector coupled to the control unit 70, the control unit drives The switch selector controls the on/off of the bypass switches to change the voltage value of the supplied power. 7. The power supply device with a variable voltage output according to claim 6 further includes an output module coupled to the magnetic capacitor array for regulating the supply power output by the magnetic capacitor array. After the output. 8. The power supply device with variable voltage output according to claim 7 further includes an input module coupled to the magnetic capacitor array, 21 201023475 and receiving an external power supply, and the input module will The external power source is converted to a voltage receivable by the magnetic capacitors for charging the magnetic capacitors. 9. The power supply device having a variable voltage output according to the scope of the patent application scope of the invention, wherein the magnetic capacitor further has a first magnetic electrode, a second magnetic electrode and a dielectric layer therebetween. The first magnetic electrode and the second magnetic electrode are made of a magnetic conductive material. 10. The power supply device having a variable voltage output according to claim 9 of the invention, wherein at least one of the first magnetic electrode and the second magnetic electrode has a first magnetic layer and a second The magnetic layer and a spacer layer sandwiched between the first magnetic layer and the second magnetic layer and electrically conductive and non-magnetic material. The magnetic direction of the magnetic layer is opposite to the magnetic coupling direction of the second magnetic layer. 11. The power supply device having a variable voltage output according to the scope of claim 1Q, wherein the first magnetic electrode and the second magnetic electrode are made of a rare earth element, and the dielectric layer is made of titanium oxide or Titanium oxide or a semiconductor material. 12. A power supply device having a variable voltage output, capable of outputting at least one supply of ◎ power, and comprising: a plurality of magnetic capacitor units, each of the magnetic capacitor units including a first end and a first end for storing a magnetic capacitor of the electrical energy, and a bypass switch connected to the first end and the second end of the magnetic capacitor and the magnetic capacitor units are connected in series to form at least one set of magnetic power and capacity; and a control module Coupled in the magnetic capacitor groups, the control module 22 201023475 controls the on/off of the bypass switches to change the voltage value of the supplied power. 13. The power supply device having a variable voltage output according to claim 12, wherein the magnetic capacitor units are connected in series to form a multi-array magnetic capacitor group' and the power supply device further comprises a plurality of first switches, A first end of two adjacent magnetic capacitors in a two adjacent magnetic capacitor group is respectively connected to a first switch, and the control module controls the closing of the first switches to output the magnetic capacitor groups in parallel. 14. The power supply device having a variable voltage output according to claim 13 wherein each magnetic capacitor unit further comprises a second switch, the second switch being connected to the bypass switch and the magnetic capacitor And the second switch is connected in series with the magnetic capacitor and in parallel with the bypass switch. 15. The power supply device having a variable voltage output according to claim 12, wherein the control module includes a control unit and is deducted from the control unit_off selector, the control unit drives the A switch selector controls the on/off of the bypass switches to change the voltage value of the supplied power. 16. The power supply device having a variable voltage output according to claim 14, wherein the control module includes a control unit and a switch selector coupled to the control unit, the control unit drives The switch selector controls the on/off of the bypass switches to change the voltage value of the supplied power. 17. The power supply device having a variable voltage output according to item 16 of the scope of the fourth patent includes 'an output module coupled to the magnetic capacitor array, 23 201023475 for supplying the output of the magnetic capacitor array The power is regulated and output, and is output according to one of a single voltage and a multi-voltage according to the control unit. The power supply device with variable voltage output according to claim 17 further includes an input module coupled to the magnetic capacitor array and receiving an external power source, and the input module will The external power source is converted into a voltage that can be received by a magnetic battery such as i for charging the magnetic capacitors. K according to the ninth aspect of the patent, wherein the magnetic capacitor further has a first magnetic electrode, a _. a second magnetic electrode, and a dielectric layer therebetween The first magnetic electrode and the second magnetic electrode are made of a magnetic conductive material. The first magnetic electrode includes a plurality of magnetic dipoles arranged in a first direction, and the first magnetic layer includes a plurality of The magnetic dipoles arranged in the second direction 'the first direction is opposite to the second direction. The power supply device having a variable voltage output according to claim 19, wherein at least one of the first magnetic electrode and the second magnetic electrode has a first magnetic layer and a a second magnetic layer and a spacer layer interposed between the magnetic layer and the first magnetic layer and having a non-magnetic material. The magnetic coupling direction of the first magnetic layer is opposite to the magnetic light polarity of the second magnetic layer. . Ο *1, . The power supply having a variable voltage output according to claim 20, wherein the first magnetic electrode and the second magnetic electrode are made of a rare earth element, and the dielectric layer is made of a material Titanium oxide or yttrium oxide or a semiconductor material. twenty four
TW97147128A 2008-12-04 2008-12-04 A power supply device having various voltage outputs TW201023475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97147128A TW201023475A (en) 2008-12-04 2008-12-04 A power supply device having various voltage outputs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97147128A TW201023475A (en) 2008-12-04 2008-12-04 A power supply device having various voltage outputs

Publications (1)

Publication Number Publication Date
TW201023475A true TW201023475A (en) 2010-06-16

Family

ID=44833400

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97147128A TW201023475A (en) 2008-12-04 2008-12-04 A power supply device having various voltage outputs

Country Status (1)

Country Link
TW (1) TW201023475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134445A (en) * 2017-12-28 2018-06-08 东本电气科技(苏州)有限公司 Farad capacitor drives valving under low pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134445A (en) * 2017-12-28 2018-06-08 东本电气科技(苏州)有限公司 Farad capacitor drives valving under low pressure

Similar Documents

Publication Publication Date Title
US20160087460A1 (en) Ultra-capacitor structures with multiple ultra-capacitor cells and methods thereof
TWI305076B (en) High-efficiency signle-stage bidirectional converter with multi-input power sources
CN112467811A (en) Double-battery voltage balancing method and double-battery voltage balancing circuit
US20100046122A1 (en) Fault protection device
CN101752910A (en) Power supply device with variable voltage output
KR101490740B1 (en) Ballancing control circuit for battery cell module using series resonant circuit
US9461483B1 (en) Electrical energy storage device with damping function
KR101210951B1 (en) Cell balancing circuit for energy storage module
TW201004110A (en) Backup power device
US20130162214A1 (en) Capacitor active balancing device with high-voltage differential and method thereof
CN101626166A (en) Standby power supply device
TW201023475A (en) A power supply device having various voltage outputs
CN103972877B (en) Disconnect switch in direct current power system
TW201019566A (en) Balance module for power and method thereof
Reema et al. A novel coupled inductor based active balancing technique for ultracapacitors
TW201019561A (en) Power system
TW201015818A (en) Power supply system
Baek et al. Modularized battery cell voltage equalization circuit using extended multi-winding transformer
JP5317884B2 (en) Piezoelectric power converter
TW201023217A (en) An energy storage element having programmable magnetic capacitor
CN101667751A (en) Power supply device and power control module
TW201012027A (en) Magnetic capacitor array and its control method and power supply system applied the magnetic capacitor array
CN101741104A (en) Power system
CN215580509U (en) UPS uninterrupted power supply system
CN101741147A (en) Power supply device