TW201019561A - Power system - Google Patents

Power system Download PDF

Info

Publication number
TW201019561A
TW201019561A TW97143322A TW97143322A TW201019561A TW 201019561 A TW201019561 A TW 201019561A TW 97143322 A TW97143322 A TW 97143322A TW 97143322 A TW97143322 A TW 97143322A TW 201019561 A TW201019561 A TW 201019561A
Authority
TW
Taiwan
Prior art keywords
magnetic
energy storage
unit
charging
power supply
Prior art date
Application number
TW97143322A
Other languages
Chinese (zh)
Inventor
yu-chun Cheng
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97143322A priority Critical patent/TW201019561A/en
Publication of TW201019561A publication Critical patent/TW201019561A/en

Links

Abstract

A power system comprises a plenty of energy-storaged units, a charging unit charging unit, a discharging unit. The energy-storaged units could be recharged or discharged respectively. The charging unit is connected to each energy-storaged unit, and could charge for at least an energy-storaged unit. The discharging unit connects to each energy-storaged unit, and when the charging unit is charging for at least an energy-storaged unit, the discharging unit could discharge for at least an energy-storaged unit. The power system could simultaneously be charged and discharged. Although voltage fell gradually, the power system could immediately be charged to continuingly provide power, to reach the goal of continuing usage and time-saving.

Description

201019561 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電源系統,特別是指一種可同時 分群進行充電與放電,使供電不間斷之電源系統。 【先前技術】 現今儲能元件廣泛運用於家電設備、手持式裝置(例 如:行動電話(Mobile Phone)、個人數位助理等)、或不斷 電系統(UPS)以及交通工具等產品,以滿足人們對獨立能源 © 系統的需求。狹義的儲能元件主要指電池,包含一次電池 及二次電池產品;而廣義的儲能元件則泛指所有具備儲能 功能的元件,包括暫時性儲能的電容及電感’還有一種介 於電池與電容間的超級電容(SUper capacitor )也包括在内 電容是以物理反應之電位能形式來儲能,在製作上較 為簡單,且具有充放電速度快、高功帛密度的特性,但是 物理儲能的效果卻不佳(即储能容量較小),故只能被當做 短暫儲能使用。 電池可刀為_人電池及二次電池。一次電池僅能使用 一次,無法透過充電的方式再補充已被轉化掉的化學能。 而二次電池主要是要是利用化學能的方式來進行能量儲存 ’因此其能量儲存密度將會明顯優於-般電容,而可應用 力供應裝置,但在此同時,其所能產生之瞬間電 =輸限於化學反應速率,因此無法快速的充放 進仃南功率輸出,且在多次充放電後容量會下降,甚至長 201019561 時間不使用,也會有容量下降問題。 超級電容是一種介於電池與電容間的元件,又稱雙電 層電各(Electrical Double-Layer Capacitor),透過部分物理 儲能、部分化學儲能架構,其功率密度及能量密度介於電 池與電容間。但是,超級電容因具有化學材料而具化學特 性,而易有漏電現象,又加上因還有部份是物理特性之放 電速度快的現象,前述兩種因素下很快就會沒電,且受限 於電解質的分解電壓(水系電解f lv、有機電解質約2 5v )’所以其耐電壓低’再加上受到電極材料的成本影響,超 級電容具有比其他電容、電池高的價格能量比。 習知儲能元件的技術,皆無法同時達到壽命長(高充 放電次數)、高能量儲存密度、瞬間高功率的輸出、快速充 放電等優點’ 1目前的二次電池及超級電容皆需要電解液 以化學的方式儲存電能,並無法在-般現今的半導體製程 下製造’因此-旦在封裝完成後,其儲存電能的容量較不 易改變’且周邊相關的電路在規劃上也較不彈性 知 技術仍有改良精進之處。 其中以傳統車用或不斷電系統(ups)是需要大電能給負 載使用,因此所用的儲能元件組,為了提供大電流給負載 以及延長供電時間’通常由多個儲能元件並聯-起所組成 μ仏的嚷溽系統雖然可能包含多個儲能 但因為無法在同—時間點使部讀能it件進行充電且其 201019561 儲能元件進行放電,所以在使用的過程中,隨著電壓逐漸 下降而不能有效利用時間補充,導致無法連續使用又浪費 時間。 【發明内容】 因此,本發明之目的,即在解決習知技術不能同時間 充放電的缺失,且提供一種電源系統,該電源系統包含: 複數個儲能單元’可分別進行充電或放電; 一充電單元,電連接於每一儲能單元,可對至少一個 儲能單元進行充電;及 一放電單元,電連接於每一儲能單元,當該充電單元 正對至少一個儲能單元進行充電時,該放電單元可對剩下 儲能單元中的至少一個進行放電。 本發明之功效在於可在同一時間點,使部分儲能單元 進行充電、而其他儲能單元進行放電,所以在使用的過程 中可同時分群進行充電與放電,雖然電壓逐漸下降卻可有 效利用時間補充’使提供電力不間斷,達到可連續使用又 節省時間的目的。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二個較佳實施例的詳細說明中,將可 清楚的呈現。 隹實施彻 如圖1所示,本實施例之電源系統包含:n個儲能單元 一充電單元11、一放電單元12、一控制單元4、一電壓 201019561 量測單元5,且η 2 2。 儲能單元1,可對至少一 η個充電開關2及一輸入 該充電單元11電連接於每一 個儲能單元1進行充電,且包括 轉換器6。 該放電單7L 12電連接於每—儲能單元i,當該充電單 元11正對至少一個儲能單元1進行充電時’該放電單元12 可對剩下儲能單元i中的至少—個進行放電,且包括n個 放電開關3’ 一輸出轉換器了。 在本實施例中,每一儲能單元1為-種磁性電容單元 。因為磁性電容單元是—種新_儲能㈣,且較習知的 電A。電☆ 級電谷具有許多優點,因此以下先對磁性 電容單元作一介紹’之後再詳述如何在同一時間點,使部 分儲能單元進行充電且其他儲能單元進行放電。 磔性電容單元介妲 該磁性電谷單元可以是單一個磁性電容或是由複數磁 性電谷以串聯、並聯或混合串並聯方式組成的一磁性電容 組。本實施例應用之磁性電容是—種㈣半導體為原料, 在一定的磁場作用下透過物理儲能方式實現高密度、大容 量儲存電能的儲能it件。且磁性電容具有輸出電流大、體 積小、重量輕、超長使用壽命、充放電能力佳以及沒有充 電記憶效應等特性,因此拿來做為備用電源系統2〇〇的蓄 電兀件以取代習知鉛酸蓄電池組,除了可以減少備用電源 系統200的體積、重量和製造成本,而且可以實現系統免 維護以及提高系統使用壽命等優點。 201019561 ❹ 參閱圖2,由於習知能量儲存媒介(例如:傳統電池或 超級電容)主要是利用化學能的方式來進行能量儲存,因 “能量儲存密度將會明顯優於一般電容,而可應用於各 ㈣力供應裝置’但在此同時,其所能產生之瞬間電力輸 出亦會受限於化學反應速率,而無法快速的充放電或進行 高功率輸出,且充放電次數有限,過度充放時易滋生各種 問題。相較於此,由於磁性電容中儲存的能量全部是以電 位能的方式進行储存,因此,除了具有可與一般電池或超 級電容匹配的能量儲存密度外,更因充分保有電容的特性 ,而具有壽命長(高充放電次數)、無記憶效應、可進行高 功率輸出、快速充放電等特點,故可有效解決當前電池所 遇到的各種問題。參閱圖3,磁性電容_是包含有一第一 磁性電極6H)、-第二磁性電極_,以及位於其間之一介 ^層63G°其中第—磁性電極610與第二磁性電極620是由 :磁:的導電材料所構成,並藉由適當的外加電場進行磁 磁偶極610與第二磁性電極㈣内分別形成 内邻槿# g軸°叫。10 615與625,以於磁性電容600 ==磁場,對帶電粒子的移動造成影響,從而抑制 磁性電容000之漏電流。 刊 所需要特別強調的是,圖 箭頭方向僅為-示意圖。餅孰,中的磁偶極615與625的 解到磁偶極615與62厂%該項技藝者而言,應可瞭 , 、 實際上是由多個整齊排列的微小磁 =方Γ/’且在本發明中,磁偏極™最後 無限定,例如可指向同一方向或不同方向。 201019561 介電層630則是用來分隔第一磁性電極61〇與第二磁性電 極620,以於第一磁性電極61〇與第二磁性電極62〇處累積 電荷,儲存電位能。在本發明之一實施例中,第一磁性電 極610與第二磁性電極62〇是包含有磁性導電材質例如 稀土元素,介電層630則是由氧化鈦(Ti〇3)、氧化鋇鈦( 如们〇3)或一半導體層,例如氧化矽(Silicon 〇xide)所構 成,然而本發明並不限於此,因此第一磁性電極6i〇、第二 磁性電極620與介電層630均可視產品之需求而選用適當 之其他材料。 ◎ 比喻說明本發明磁性電容之操作原理如下。物質在一 定磁場下電阻改變的現象,稱為「磁阻效應」,磁性金屬和 合金材料一般都有這種磁電阻現象,通常情況下,物質的 電阻率在磁場中僅產生輕微的減小;在某種條件下,電阻 率減土的幅度相當大’比通常磁性金屬與合金材料的磁電 阻10倍以上’而能夠產生很龐大的磁阻效應。若是 進一步結合麥斯威爾-華格納(MaxweU-Wagner)電路模型, 磁性顆粒複合介質巾也可能會產錄魔大的磁電容效應。❹ 之介電容中電容值C是由電容之面積A、介電層 %、A及厚度d決定,如下式所示。 d 然而在本發明中,磁性電容600主要利用笫—磁祕费 極610與第二王要利用第磁性電 場來,使㈣…“2〇中整齊排列的磁偶極來形成磁 吏内錢存的電子朝同__自旋方向轉動, 10 201019561 的排列,故可在同樣條件下,容納更多的電荷,進而增加 能量的儲存密度。類比於習知電容,磁性電容_之運作 原理相當於藉由磁場之作用來改變介電層63〇之介電常數 ,故而造成電容值之大幅提升。 此外,在本實施例中,第一磁性電極61〇與介電層63〇 之間的介面631以及第二磁性電極62〇與介電層63〇之間 的介面632均為一不平坦的表面,使得介面631與介面632201019561 IX. Description of the Invention: [Technical Field] The present invention relates to a power supply system, and more particularly to a power supply system capable of simultaneously charging and discharging in groups to make power supply uninterrupted. [Prior Art] Today's energy storage components are widely used in home appliances, handheld devices (such as mobile phones, personal digital assistants, etc.), or uninterruptible power systems (UPS) and vehicles to meet people. The need for an independent energy © system. The narrowly defined energy storage components mainly refer to batteries, including primary batteries and secondary battery products; while the generalized energy storage components refer to all components with energy storage functions, including capacitors and inductors for temporary energy storage. The supercapacitor between the battery and the capacitor also includes the internal capacitor, which is stored in the form of potential energy of the physical reaction. It is simple in fabrication and has the characteristics of fast charge and discharge speed and high power density, but physical. The effect of energy storage is not good (ie, the energy storage capacity is small), so it can only be used as a short-term energy storage. The battery can be a knife and a secondary battery. The primary battery can only be used once, and the chemical energy that has been converted can not be replenished by charging. The secondary battery is mainly based on the use of chemical energy for energy storage' so its energy storage density will be significantly better than the general capacitance, but the force supply device can be applied, but at the same time, it can generate instantaneous electricity. = The transmission is limited to the chemical reaction rate, so it cannot be quickly charged and discharged into the power output of Weinan, and the capacity will decrease after multiple times of charging and discharging. Even if the time is not used for 201019561, there will be a problem of capacity drop. A supercapacitor is a component between a battery and a capacitor. It is also called an Electrical Double-Layer Capacitor. It passes through part of the physical energy storage and part of the chemical energy storage structure. Its power density and energy density are between the battery and the battery. Between capacitors. However, supercapacitors have chemical properties due to their chemical properties, and are prone to leakage. In addition, due to the fact that some of them are physically characterized by a high discharge rate, the above two factors will soon be out of power. It is limited by the decomposition voltage of the electrolyte (water-based electrolysis f lv, organic electrolyte is about 25 V), so its low withstand voltage is affected by the cost of the electrode material, and the supercapacitor has a higher price-energy ratio than other capacitors and batteries. The technology of conventional energy storage components cannot achieve the advantages of long life (high charge and discharge times), high energy storage density, instantaneous high power output, fast charge and discharge, etc. 1 Current secondary batteries and super capacitors require electrolysis. The liquid chemically stores electrical energy and cannot be fabricated in the current semiconductor manufacturing process. Therefore, the capacity of the stored electrical energy is less likely to change after the package is completed, and the peripheral related circuits are less flexible in planning. There is still room for improvement in technology. In the case of conventional vehicles or unpowered systems (ups), large amounts of electrical energy are required for the load, so the energy storage component group used, in order to provide a large current to the load and to extend the power supply time, is usually connected in parallel by a plurality of energy storage components. Although the 嚷溽 system composed of μ仏 may contain multiple energy storage, because the part can not be charged at the same time point and its 201019561 energy storage element is discharged, in the process of using, with the voltage Gradually falling and unable to effectively use time to replenish, resulting in the inability to use continuously and wasted time. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to solve the problem that the conventional technology cannot simultaneously charge and discharge, and to provide a power supply system, the power supply system comprising: a plurality of energy storage units capable of charging or discharging separately; a charging unit electrically connected to each energy storage unit to charge at least one energy storage unit; and a discharge unit electrically connected to each energy storage unit, when the charging unit is charging at least one energy storage unit The discharge unit can discharge at least one of the remaining energy storage units. The effect of the invention is that at the same time point, some of the energy storage units can be charged, and other energy storage units can be discharged, so that charging and discharging can be performed in groups at the same time in use, although the voltage is gradually decreased, the time can be effectively utilized. Supplement 'to make the power supply uninterrupted, to achieve continuous use and save time. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. As shown in FIG. 1, the power supply system of this embodiment includes: n energy storage units, a charging unit 11, a discharge unit 12, a control unit 4, a voltage 201019561 measuring unit 5, and η 2 2 . The energy storage unit 1 can charge at least one of the n charging switches 2 and an input charging unit 11 electrically connected to each of the energy storage units 1, and includes a converter 6. The discharge unit 7L 12 is electrically connected to each of the energy storage units i. When the charging unit 11 is charging the at least one energy storage unit 1, the discharge unit 12 can perform at least one of the remaining energy storage units i. Discharge, and includes n discharge switches 3' an output converter. In this embodiment, each energy storage unit 1 is a magnetic capacitor unit. Because the magnetic capacitor unit is a new type of energy storage (4), and the conventional electric A. The electric ☆ grade electric valley has many advantages, so the following is an introduction to the magnetic capacitor unit. Then, how to charge some of the energy storage units and discharge the other energy storage units at the same time point will be described. Inertial Capacitor Unit The magnetic cell unit can be a single magnetic capacitor or a magnetic capacitor group consisting of a series of magnetic parallel valleys in series, parallel or mixed series. The magnetic capacitor used in this embodiment is a kind of (four) semiconductor as a raw material, and realizes a high-density and large-capacity energy storage energy storage device through a physical energy storage method under a certain magnetic field. The magnetic capacitor has the characteristics of large output current, small volume, light weight, long service life, good charge and discharge capability, and no charging memory effect. Therefore, it is used as a backup power supply system to replace the conventional power storage device. The lead-acid battery pack can reduce the size, weight and manufacturing cost of the backup power system 200, and can realize the maintenance-free system and the system life. 201019561 参阅 Referring to Figure 2, since conventional energy storage media (such as traditional batteries or supercapacitors) mainly use chemical energy for energy storage, "the energy storage density will be significantly better than the general capacitance, but can be applied Each (four) force supply device 'but at the same time, the instantaneous power output that can be generated is also limited by the chemical reaction rate, and can not be quickly charged and discharged or high power output, and the number of charge and discharge times is limited, when overcharge and discharge It is easy to breed various problems. Compared with this, since the energy stored in the magnetic capacitor is stored in the form of potential energy, in addition to having an energy storage density that can be matched with a general battery or a super capacitor, the capacitor is sufficiently retained. The characteristics, long life (high charge and discharge times), no memory effect, high power output, fast charge and discharge, etc., can effectively solve various problems encountered in current batteries. See Figure 3, magnetic capacitor _ Is comprised of a first magnetic electrode 6H), a second magnetic electrode _, and a layer 63G in between The magnetic electrode 610 and the second magnetic electrode 620 are made of a magnetic: conductive material, and the magnetic magnetic dipole 610 and the second magnetic electrode (4) respectively form an inner neighbor 槿#g axis by a suitable applied electric field. 10 615 and 625, so that the magnetic capacitor 600 == magnetic field, affecting the movement of charged particles, thereby suppressing the leakage current of the magnetic capacitor 000. The magazine needs to emphasize that the direction of the arrow is only - schematic. , the magnetic dipoles 615 and 625 in the solution to the magnetic dipole 615 and 62% of the factory, it should be, in fact, is a plurality of neatly arranged tiny magnetic = square / ' and in In the present invention, the magnetic polarization TM is not limited at the end, for example, may be directed in the same direction or in different directions. The dielectric layer 630 is used to separate the first magnetic electrode 61 and the second magnetic electrode 620 for the first magnetic electrode. 61〇 and the second magnetic electrode 62〇 accumulate charge to store potential energy. In one embodiment of the invention, the first magnetic electrode 610 and the second magnetic electrode 62〇 comprise a magnetic conductive material such as a rare earth element, dielectric Layer 630 is made of titanium oxide Ti〇3), titanium ruthenium oxide (such as 〇3) or a semiconductor layer, such as yttrium oxide (Silicon 〇xide), however, the invention is not limited thereto, so the first magnetic electrode 6i 〇, the second magnetic electrode Both the 620 and the dielectric layer 630 can select other suitable materials according to the requirements of the product. ◎ The metaphor shows that the operation principle of the magnetic capacitor of the present invention is as follows: the phenomenon that the resistance of the substance changes under a certain magnetic field is called "magnetoresistance effect", magnetic metal And alloy materials generally have this magnetoresistance phenomenon. Under normal circumstances, the resistivity of a substance only slightly decreases in a magnetic field; under certain conditions, the resistivity reduces the magnitude of the soil quite large 'than the usual magnetic metal and The magnetic resistance of the alloy material is more than 10 times' and can generate a very large magnetoresistance effect. If the MaxweU-Wagner circuit model is further combined, the magnetic particle composite media towel may also produce the magnetic capacitance effect of the magic. The capacitance value C of the capacitor is determined by the area A of the capacitor, the dielectric layer %, A, and the thickness d, as shown in the following equation. d However, in the present invention, the magnetic capacitor 600 mainly utilizes the magnetic field of the magnetic pole 610 and the second king to use the magnetic field to make the magnetic dipoles arranged in two rows to form a magnetic memory. The electrons rotate in the same direction as the __ spin, 10 201019561, so that under the same conditions, more charge can be charged, thereby increasing the storage density of energy. Analogous to the conventional capacitor, the magnetic capacitor _ works as equivalent The dielectric constant of the dielectric layer 63 is changed by the action of the magnetic field, so that the capacitance value is greatly increased. Further, in the present embodiment, the interface 631 between the first magnetic electrode 61 and the dielectric layer 63? And the interface 632 between the second magnetic electrode 62 〇 and the dielectric layer 63 均为 is an uneven surface, such that the interface 631 and the interface 632

的面積相較於一般平坦的表面其表面積A更大,而能進一 步提升磁性電容600之電容值c。 請參考圖4,本發明之另—實_中第—雜電極61〇 之結構示意圖。如圖4所示’第一磁性電極6ι〇是為一多 層結構’包含有一第一磁性層612、一隔離層614以及一第 -磁性層616。其中隔離層614是由非磁性材料所構成而 第-磁㈣612與第二磁性層616則包含有具磁性的導電 材料,並在磁化時,藉由不同的外加電場,使得第一磁性 層612與第二磁性層616中的磁偶極613肖617分別且有 不同的方向,例如在本發明之—較佳實施财,磁偶極⑴ 與617的方向是為反向’而能進一步抑制磁性電容_之 漏電流。此外’需要強調的是’磁性電極6ig之結構並不 限於前述之三層結構,而可以類似之方式,以複數個磁性 層與非磁性層不斷交錯堆疊,再藉由各磁性層内磁偶極方 向的調整來進-步抑制磁性電容_之漏電流甚至達到 幾乎無漏電流的效果。 此外,由於習知儲能元件多半以化學能的方式進行儲 201019561 存,因此都需要有一定的尺寸,否則往往會造成儲量效率 的大幅下降。相較於此,本發明之磁性電容6〇〇是以電位 忐的方式進行儲存,且因所使用之材料可適用於半導體製 程,故可藉由適當的半導體製程來形成磁性電容6〇〇以及 周邊電路連接,進而縮小磁性電容600之體積與重量,由 於此製作方法可使用一般半導體製程達成的,故在此不予 贅述。 請參考圖5,圖5為本發明另一實施例中一磁性電容組 500之示意圖。承前所述,在本實施例中,是利用半導體製❹ 程於一梦基板上製作複數個小尺寸的磁性電容6〇〇,並藉由 適當的金屬化製程,於該複數個磁性電容6〇〇間形成電連 接’從而構成一個包含有多個磁性電容6〇〇的磁性電容組 500,再以磁性電容組5〇〇作為能量儲存裝置或外部裝置的 電力供應來源。在本實施例中,磁性電容組5〇〇内的複數 個磁性電容600是以類似陣列的方式電連接,然而本發明 並不限於此,而可根據不同的電壓或電容值需求,進行適 當的串聯或並聯,以滿足各種不同裝置的電力供應需求。 ⑬ 同時充放曾拢伟: 在本實施例’以4個儲能單元1、4個充電開關2,及 4個放電開關3為例’但實際應用上並不限於此。 且值得注意的是,上述開關2、3的名稱並未限定這些 開關2、3的種類或限定了這些開關2、3是不同類型的開 關,反之,這些開關2、3可以是同一類型的開關,且當該 儲能單元1以半導髏製程製作時,這些開關2、3亦可隨之 12 201019561 以半導體製程製作。 如圖 I、6 ώί·- , = 不,且為了清楚說明,圖6中省略不畫出 】單704和該電愿量測單元5,該等充電開關2分別可 切換的將該等儲能單元1電連接到輸人轉換器6,而該等放 電開關3分別可切換的將該等儲能單元1電連接到輸出轉 、器7該電虔量測單元5分別彳貞測每—儲能單元1的一電 麼值’並提供給該控制單元4,然後該控制單元4將收到的 •值與參考值比較,並將電壓值低於參考值的儲能單 元=1所對應到的充電開關2導通和放電開關3不導通,以 使該儲能單元1被充電,且該控制單元4使其餘電壓值高 於參考值的错能單元i所對應到的充電開關2不導通和放 電開關3導通,以使其餘儲能單元1開始放電。圖6即是 其中儲&單儿i正進行充電,而剩餘三個储能單元】正 進行放電的例子。 該控制單元4依據所需充電的儲能單元丨數目,控制 .該輸入轉換H 6將一外部電源轉換成適合的充電電源,並 經由導通的充電開關2以轉換後的電源對單一個該儲能單 元1或多個該等儲能單元1充電。 該輸出轉換器7經由放電開關3接收儲能單元丨所釋 放的電能,並基於負載的大小進行適當轉換,以供負載使 用。 第二較佳訾施例 如圖7所示,第二較佳實施例與第一實施例類似,不 同的地方在於第一實施例中所有儲能單元1是共用一個輸 13 201019561 入轉換器6 ’但在第二實施例中,則該充電單元u包括n 個輸入轉換器6 ’以使每一個儲能單元1配置一個輪入轉換 器6,因此在對儲能單元1充電時,能視各自儲能單元丨所 需的電量分別充電,在本實施例,以配置4個輸入轉換器6 為例,但實際應用上並不限於此,且為了清楚說明,圖中 省略不畫出該控制單元4和該電壓量測單元5。 综上所述,本發明電源系統可在同一時間點對部分的 儲能單元1進行充電,而對其餘的儲能單元1進行放電, 所以在使用的過程中,當某些進行放電的儲能單元i隨著◎ 電壓逐漸下降至一參考值以下時,該控制單元4偵測到此 情況便可自動地即時充電,且改用已充好電的儲能單元i 來進行放電,如此即可在不必中斷整個電源系統的供電下 ’達到有效率地利用時間又可連續使用的目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 φ 【圖式簡單說明】 圖1是本發明電源系統之第一較佳實施例的電路圖; 圖2是本實施例之磁性電容與其他習知能量儲存媒介 之比較示意圖; 圖3是本實施例中磁性電容之結構示意圖; 圖4是本實施例之磁性電容另一實施例中第一磁性電 極之結構示意圖; 14 201019561 圖5是本發明另一 圖; 例令一磁性電容單元組之示意 圖6是本發明之兮筮— X弟一較佳實施例的電路圖,說明多 個儲能單元共用-個輸入轉換器;及 圖7疋本發明之第二較佳實施例的電路圖說明每一 個儲能單元配置一個輪入轉換器。The area of the surface is larger than that of the generally flat surface, and the capacitance c of the magnetic capacitor 600 can be further increased. Please refer to FIG. 4, which is a schematic structural view of the other embodiment of the present invention. As shown in Fig. 4, the first magnetic electrode 6 is a multi-layer structure, and includes a first magnetic layer 612, an isolation layer 614, and a first magnetic layer 616. The isolation layer 614 is made of a non-magnetic material, and the first-magnetic (four) 612 and the second magnetic layer 616 comprise a magnetic conductive material, and when magnetized, the first magnetic layer 612 is caused by a different applied electric field. The magnetic dipoles 613 in the second magnetic layer 616 have different directions, respectively. For example, in the present invention, the magnetic dipoles (1) and 617 are in the opposite direction to further suppress the magnetic capacitance. _ leakage current. In addition, it should be emphasized that the structure of the magnetic electrode 6ig is not limited to the above three-layer structure, but in a similar manner, a plurality of magnetic layers and non-magnetic layers are continuously staggered and stacked, and magnetic dipoles in each magnetic layer are further The adjustment of the direction to further suppress the leakage current of the magnetic capacitor _ even achieves almost no leakage current. In addition, since most of the conventional energy storage components are stored in a chemical energy manner, they need to have a certain size, otherwise the storage efficiency will be greatly reduced. In contrast, the magnetic capacitor 6 本 of the present invention is stored in a potential 忐 manner, and since the material used can be applied to a semiconductor process, the magnetic capacitor 6 〇〇 can be formed by a suitable semiconductor process. The peripheral circuit is connected to further reduce the volume and weight of the magnetic capacitor 600. Since the manufacturing method can be achieved by using a general semiconductor process, it will not be described here. Please refer to FIG. 5. FIG. 5 is a schematic diagram of a magnetic capacitor group 500 according to another embodiment of the present invention. As described above, in the present embodiment, a plurality of small-sized magnetic capacitors 6 制作 are fabricated on a dream substrate by using a semiconductor process, and the plurality of magnetic capacitors 6 藉 are formed by a suitable metallization process. An electrical connection is formed between the turns to form a magnetic capacitor group 500 including a plurality of magnetic capacitors 6 ,, and the magnetic capacitor group 5 〇〇 is used as a power supply source for the energy storage device or the external device. In this embodiment, the plurality of magnetic capacitors 600 in the magnetic capacitor group 5 are electrically connected in a similar array manner. However, the present invention is not limited thereto, and may be appropriately configured according to different voltage or capacitance values. Series or parallel to meet the power supply needs of a variety of different devices. 13 Simultaneous charging and discharging: In the present embodiment, 'four energy storage units 1, four charging switches 2, and four discharging switches 3 are taken as an example', but the practical application is not limited thereto. It should be noted that the names of the above switches 2 and 3 do not limit the types of the switches 2 and 3 or define that the switches 2 and 3 are different types of switches. Conversely, the switches 2 and 3 may be the same type of switches. And when the energy storage unit 1 is fabricated by a semi-conducting process, the switches 2, 3 can also be fabricated in a semiconductor process with 12 201019561. As shown in Fig. I, 6 ώί·-, = no, and for the sake of clarity, the single 704 and the electric measuring unit 5 are omitted in Fig. 6, and the charging switches 2 can respectively switch the energy storage. The unit 1 is electrically connected to the input converter 6, and the discharge switches 3 are respectively switchably connected to the energy storage unit 1 to the output converter 7. The electric energy measurement unit 5 respectively measures each storage The energy value of the energy unit 1 is supplied to the control unit 4, and then the control unit 4 compares the received value with the reference value, and the energy storage unit with the voltage value lower than the reference value corresponds to The charging switch 2 is turned on and the discharging switch 3 is not turned on, so that the energy storage unit 1 is charged, and the control unit 4 makes the charging switch 2 corresponding to the wrong energy unit i whose remaining voltage value is higher than the reference value non-conducting and The discharge switch 3 is turned on to cause the remaining energy storage unit 1 to start discharging. Fig. 6 is an example in which the storage & single is charging, and the remaining three energy storage units are discharging. The control unit 4 controls according to the number of energy storage units to be charged. The input conversion H 6 converts an external power source into a suitable charging power source, and the converted power source pair is turned on via the turned-on charging switch 2 The energy unit 1 or a plurality of the energy storage units 1 are charged. The output converter 7 receives the electric energy discharged from the energy storage unit 经由 via the discharge switch 3, and performs appropriate conversion based on the magnitude of the load for the load to use. The second preferred embodiment is shown in FIG. 7. The second preferred embodiment is similar to the first embodiment. The difference is that all the energy storage units 1 in the first embodiment share a single input 13 201019561 into the converter 6 ' However, in the second embodiment, the charging unit u includes n input converters 6' such that each of the energy storage units 1 is provided with one wheel-in converter 6, so that when the energy storage unit 1 is charged, it can be regarded as The power storage unit 充电 is charged separately. In this embodiment, four input converters 6 are configured as an example, but the actual application is not limited thereto, and the control unit is omitted in the figure for clarity of description. 4 and the voltage measuring unit 5. In summary, the power supply system of the present invention can charge part of the energy storage unit 1 at the same time point, and discharge the remaining energy storage unit 1, so during the use, when some of the stored energy is discharged When the voltage of the unit i gradually drops below a reference value, the control unit 4 detects the situation and automatically charges it immediately, and uses the charged energy storage unit i to discharge. It can achieve efficient use of time and continuous use without interrupting the power supply of the entire power system. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a first preferred embodiment of a power supply system of the present invention; FIG. 2 is a schematic diagram of comparison between a magnetic capacitor of the present embodiment and other conventional energy storage media; FIG. 4 is a schematic structural view of a first magnetic electrode in another embodiment of the magnetic capacitor of the embodiment; 14 201019561 FIG. 5 is another diagram of the present invention; FIG. 5 is a schematic diagram of a magnetic capacitor unit group Is a circuit diagram of a preferred embodiment of the present invention, illustrating that a plurality of energy storage units share an input converter; and FIG. 7 is a circuit diagram of a second preferred embodiment of the present invention illustrating each energy storage. The unit is configured with a wheeled converter.

15 201019561 【主要元件符號說明】 1…… •…儲能單元 610 ·· .....第 磁性電極 11 •… •…充電單元 612 ·· .....第 磁性層 12·..·· •…放電單元 613 .· ••…磁偶極 2…… •…充電開關 614 .· ••…隔離層 3…… 放電開關 615 ·· .....磁偶極 4…… •…控制單元 616 ·· .....第二磁性層 5…… •…電壓量測單元 617 ••…磁偶極 6…… …·輸入轉換器 620 ·· .....第二磁性電極 7…… …·輸出轉換器 625 ·· .....磁偶極 500… …·磁性電容組 630 ·· ••…介電層 600… •…磁性電容 631 ' 632介面 1615 201019561 [Description of main component symbols] 1... •... Energy storage unit 610 ····. Magnetic electrode 11 •... •...Charging unit 612 ···.. Magnetic layer 12·..· · •...Discharge unit 613 .·••...Magnetic dipole 2...•...Charge switch 614 .·••...Isolation layer 3... Discharge switch 615 ···.. Magnetic dipole 4... •... Control unit 616 ···..second magnetic layer 5...•...voltage measuring unit 617 ••...magnetic dipole 6.........input converter 620 ··.....second magnetic electrode 7...... ...·output converter 625 ···..magnetic dipole 500...··magnetic capacitor group 630 ·· ••...dielectric layer 600... •...magnetic capacitor 631 ' 632 interface 16

Claims (1)

201019561 十、申請專利範圍: 1,一種電源系統,包含: 複數個儲能單元,可分別進行充電或放電; 充電單it,電連接於每—儲能單元,可對至少一 個儲能單元進行充電;及 放電單元’電連接於每一儲能單元,當該充電單 凡正對至少-個儲能單元進行充電冑,㈣電單元可對 剩下儲此單元中的至少一個進行放電。 ® 2·依據中請專利範圍第i項所述之電源系統,其中,每一 儲能早元是一磁性電容單元。 3. 依據申請專利範圍第2項所述之電源系統,其中,該充 電單兀*包括複數個充電開關,分別電連接該等儲能單元 且可在導通和不導通狀態間切換,當呈導通時,與該呈 導通的充電開關電連接的儲能單元被充電,該放電單元 包括複數個放電開關,分別電連接該等儲能單元且可在 導通和不導通狀態間切換,當呈導通時,與該呈導通的 ® 放電開關電連接的儲能單元進行放電。 4. 依據申請專利範圍第3項所述之電源系統,其中,與同 一儲能單元電連接的充電開關和放電開關不會同時導通 〇 5. 依據申請專利範圍第4項所述之電源系統,更包括__控 制單元,該控制單元控制每一充電開關和每—放電開關 的導通或不導通。 6. 依據申請專利範圍第5項所述之電源系統,更包含一^電 17 201019561 連接於每一儲能單元的電壓量測單元,該電壓量測單元 偵測每一儲能單元的一電壓值,並提供給該控制單元, 該控制單元將該電壓值低於一參考值的儲能單元所對應 到的充電開關導通,且該控制單元將該電壓值高於該參 考值的儲能單元所對應到的放電開關導通。 7. 依據申請專利範圍第5項所述之電源系統,其中,該充 電單元更包括一輸入轉換器,該控制單元依據所需充電 的儲能單元數目,控制該輸入轉換器將一外部電源轉換 成適合的充電電源,並經由導通的充電開關以轉換後的 ❿ 電源對該儲能單元或該等儲能單元充電。 8. 依據申請專利範圍第5項所述之電源系統,其中,該放 電單兀更包括一輸出轉換器,該輸出轉換器經由導通的 放電開關接收儲能單元所釋放的電能,並進行適當的轉 換’且將轉換後的電能輸出。 9. 依據申請專利範圍第5項所述之電源系統,其中,該充 電單元更包括複數個輸入轉換器,該等輸入轉換器將一 外部電源分別轉換成適合的充電電源,並經由導通的充 ❹ 電開關以轉換後的電源分別對該等儲能單元充電。 10. 依據申請專利範圍第2項所述之電源系統,其中,該磁 性電容單元是單一個磁性電容或是由複數磁性電容以串 聯、並聯或混合串並聯方式組成的一磁性電容組。 11. 依射請專利範圍第1G項所述之電源系統,其中,該磁 性電容包含有-第一磁性電極、一第二磁性電極以及設 於其間之—介電層’其中該第-磁性電極與第二磁性電 18 201019561 極内具有磁偶極以抑制該磁性電容之漏電流。 12_依據申請專利範圍第η項所述之電源系統,其中該第一 磁性電極包含有: 一第一磁性層,具有排列成第一方向之磁偶極; 一第二磁性層’具有排列成第二方向之磁偶極;及 一隔離層’包含有非磁性材料,設於該第一磁性層 與該第二磁性層之間; φ 其中該第一方向與該第二方向互為反向,以抑制該 磁性電容之漏電流。 13.依據申。月專利範圍第η項所述之電源系統,其中該第一 ,丨生,極與第二磁性電極是包含有稀土元素,該介電層 是由氧化欽、氧化鋇鈦或一半導體層所構成。 依據申咕專利範圍第13項所述之電源系統,其中該半導 體層為氧化妙。 19201019561 X. Patent application scope: 1. A power supply system comprising: a plurality of energy storage units for charging or discharging respectively; a charging unit, electrically connected to each energy storage unit, capable of charging at least one energy storage unit And the discharge unit is electrically connected to each of the energy storage units, and when the charging unit is charging at least one of the energy storage units, the (four) electric unit can discharge at least one of the remaining storage units. ® 2. The power supply system according to item i of the patent application, wherein each energy storage element is a magnetic capacitor unit. 3. The power supply system according to claim 2, wherein the charging unit* comprises a plurality of charging switches electrically connected to the energy storage units and switchable between a conducting state and a non-conducting state. The energy storage unit electrically connected to the conductive switch is electrically charged, and the discharge unit includes a plurality of discharge switches electrically connected to the energy storage units and switchable between a conductive state and a non-conductive state. The energy storage unit electrically connected to the conductive discharge switch is discharged. 4. The power supply system according to claim 3, wherein the charging switch and the discharging switch electrically connected to the same energy storage unit are not simultaneously turned on. 5. According to the power supply system of claim 4, Further comprising a __ control unit, the control unit controls the conduction or non-conduction of each of the charging switches and each of the discharging switches. 6. The power supply system according to claim 5, further comprising a voltage measuring unit connected to each energy storage unit, the voltage measuring unit detecting a voltage of each energy storage unit a value is provided to the control unit, the control unit turns on the charging switch corresponding to the energy storage unit whose voltage value is lower than a reference value, and the control unit uses the energy storage unit whose voltage value is higher than the reference value The corresponding discharge switch is turned on. 7. The power supply system of claim 5, wherein the charging unit further comprises an input converter that controls the input converter to convert an external power source according to the number of energy storage units required to be charged. A suitable charging power source is used to charge the energy storage unit or the energy storage units via the turned-on charging switch with the converted power. 8. The power supply system of claim 5, wherein the discharge unit further comprises an output converter that receives the electrical energy released by the energy storage unit via the turned-on discharge switch and performs appropriate Convert 'and output the converted power. 9. The power supply system of claim 5, wherein the charging unit further comprises a plurality of input converters that respectively convert an external power source into a suitable charging power source and conduct the charging through the conduction. ❹ The electric switch charges the energy storage units separately with the converted power supply. 10. The power supply system according to claim 2, wherein the magnetic capacitor unit is a single magnetic capacitor or a magnetic capacitor group consisting of a plurality of magnetic capacitors in series, parallel or hybrid series-parallel. 11. The power supply system of claim 1G, wherein the magnetic capacitor comprises a first magnetic electrode, a second magnetic electrode, and a dielectric layer disposed therebetween, wherein the first magnetic electrode And the second magnetic power 18 201019561 has a magnetic dipole in the pole to suppress the leakage current of the magnetic capacitor. The power supply system of claim n, wherein the first magnetic electrode comprises: a first magnetic layer having magnetic dipoles arranged in a first direction; and a second magnetic layer a magnetic dipole in a second direction; and an isolation layer 'containing a non-magnetic material disposed between the first magnetic layer and the second magnetic layer; φ wherein the first direction and the second direction are opposite to each other To suppress the leakage current of the magnetic capacitor. 13. According to the application. The power supply system of clause [n], wherein the first, twin, and second magnetic electrodes comprise a rare earth element, and the dielectric layer is composed of oxidized bismuth, titanium ruthenium oxide or a semiconductor layer. . The power supply system of claim 13, wherein the semiconductor layer is oxidized. 19
TW97143322A 2008-11-10 2008-11-10 Power system TW201019561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97143322A TW201019561A (en) 2008-11-10 2008-11-10 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97143322A TW201019561A (en) 2008-11-10 2008-11-10 Power system

Publications (1)

Publication Number Publication Date
TW201019561A true TW201019561A (en) 2010-05-16

Family

ID=44831792

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97143322A TW201019561A (en) 2008-11-10 2008-11-10 Power system

Country Status (1)

Country Link
TW (1) TW201019561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403074B (en) * 2010-12-22 2013-07-21 Univ Nat Taiwan Battery grouping system and grouping method thereof
TWI556546B (en) * 2011-08-30 2016-11-01 Electric car battery parallel protection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403074B (en) * 2010-12-22 2013-07-21 Univ Nat Taiwan Battery grouping system and grouping method thereof
TWI556546B (en) * 2011-08-30 2016-11-01 Electric car battery parallel protection device

Similar Documents

Publication Publication Date Title
Burke Ultracapacitors: why, how, and where is the technology
Shukla et al. Electrochemical capacitors: Technical challenges and prognosis for future markets
US8863363B2 (en) Method for fabricating a supercapacitor electronic battery
JP5085651B2 (en) Capacitor-battery hybrid electrode assembly
EP1987561A1 (en) Hybrid battery
JP2006287174A (en) High-voltage electric double-layer capacitor
US20160087460A1 (en) Ultra-capacitor structures with multiple ultra-capacitor cells and methods thereof
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
CN101656433A (en) Fault protection device
EP2926434A1 (en) Thin film microbattery charge and output control
US9461483B1 (en) Electrical energy storage device with damping function
Holm et al. A comparison of energy storage technologies as energy buffer in renewable energy sources with respect to power capability
TW201004110A (en) Backup power device
TW201019561A (en) Power system
CN101741105A (en) Power system and detection method thereof
TW201019566A (en) Balance module for power and method thereof
CN117296225A (en) Energy storage system for maintaining short-term and long-term power delivery peaks for an electrically powered device or machine
CN101741104A (en) Power system
TW201015818A (en) Power supply system
TW201018932A (en) Power system and detecting method thereof
KR101211667B1 (en) Super capacitor type of pouch and manufacturing method
CN101728845A (en) Power supply system with control mechanism
TW201023475A (en) A power supply device having various voltage outputs
CN101639025A (en) Starting system for starting engine
TW201010224A (en) Fault protection apparatus