TW201010224A - Fault protection apparatus - Google Patents

Fault protection apparatus Download PDF

Info

Publication number
TW201010224A
TW201010224A TW97131720A TW97131720A TW201010224A TW 201010224 A TW201010224 A TW 201010224A TW 97131720 A TW97131720 A TW 97131720A TW 97131720 A TW97131720 A TW 97131720A TW 201010224 A TW201010224 A TW 201010224A
Authority
TW
Taiwan
Prior art keywords
magnetic
capacitor unit
magnetic capacitor
protection device
fault protection
Prior art date
Application number
TW97131720A
Other languages
Chinese (zh)
Inventor
Ching-Feng Cheng
Jiin-Cheng Jow
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97131720A priority Critical patent/TW201010224A/en
Publication of TW201010224A publication Critical patent/TW201010224A/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

This invention provides a fault protection apparatus thereof that isolates the faulty magnetic capacitor unit to protect others elements in the circuit while a certain magnetic capacitor unit is fault. The fault protection apparatus comprises a magnetic capacitor unit that stores energy and has a first terminal and a second terminal, and an isolating switch that selectively connects the first terminal to the second terminal of the magnetic capacitor unit. When the magnetic capacitor unit is fault during the normal mode, the isolating switch will be turned on. Also, it will induce a short path between the first terminal and the second terminal of the magnetic capacitor unit for isolating the faulty magnetic capacitor.

Description

201010224 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種故障保護裝置,特別是指一種當 一磁性電容發生故障時,可隔離該故障磁性電容以保護其 他電路元件之故障保護裝置。 【先前技術】 現今儲能元件廣泛運用於家電設備、手持式裝置(例201010224 IX. Description of the Invention: [Technical Field] The present invention relates to a fault protection device, and more particularly to a fault protection device capable of isolating the faulty magnetic capacitor to protect other circuit components when a magnetic capacitor fails. . [Prior Art] Today's energy storage components are widely used in home appliances and handheld devices (examples)

如:行動電話(Mobile Phone)、PDA等)及交通工具等產 品’以滿;1人們對獨立能源系統的需求。狹義的儲能元件 主要指電池,包含一次電池及二次電池產品;而廣義的儲 能元件則泛指所有具備儲能功能的元件,包括暫時性儲能 的電容及電感’還有一種介於電池與電容間的超級電容( Super capacitor)也包括在内。 電容是以物理反應之電位能形式來儲能,在製作上較 為簡單,且具有充放電速度快、高功率密度的特性,但是 物理儲能的效果卻不佳(即儲能容量較 短暫館能❹。 故八能破當做 ㈣1刀馬一二人冤池及二次電池。一次電池僅能使用 -次’無法透過充電的方式再補充已被轉化掉的化學能。 而二次電池主要是利用化學能的方式來進行能量儲存因 量儲存㈣將會明顯優於—般電容1可應用於各 供應裝置,但在此同時,其所能產生之_ =會受限於化學反應速率,因此無法快速的充放電或進^ 尚功率輸出’且在多次充放電後容量會下降甚至長時間 201010224 不使用’也會有容量下降問題。 ,級電容是-種介於電池與電容間的元件,又稱雙電 層電容(Electdcal Double_Layer Capacit〇r),透過部分物 透過部分物理For example, mobile phones (Mobile Phones, PDAs, etc.) and vehicles and other products are full; 1 people's demand for independent energy systems. The narrowly defined energy storage components mainly refer to batteries, including primary batteries and secondary battery products; while the generalized energy storage components refer to all components with energy storage functions, including capacitors and inductors for temporary energy storage. A super capacitor between the battery and the capacitor is also included. Capacitor is stored in the form of potential energy of physical reaction. It is simple in production and has the characteristics of fast charge and discharge speed and high power density. However, the effect of physical energy storage is not good (ie, the energy storage capacity is shorter than that of the museum. ❹ 故 故 故 故 故 故 故 故 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八The way of chemical energy for energy storage factor storage (4) will be significantly better than the general capacitor 1 can be applied to each supply device, but at the same time, the _ = can be limited by the chemical reaction rate, so it can not Rapid charge and discharge or power output 'and the capacity will drop after multiple charge and discharge, even for a long time 201010224 not used ' will also have capacity drop problem. The grade capacitor is a kind of component between the battery and the capacitor, Also known as electric double layer capacitor (Electdcal Double_Layer Capacit〇r), through some parts through part of the physics

),所以其耐電壓低, 水系電解質IV、有機電解質約2.5V 再加上受到電極材料的成本影響,超 級電容具有比其他電容、電池高的價格能量比。 習知儲能元件的技術,皆無法同時達到壽命長(高充 放電次數)、高能量儲存密度、瞬間高功率的輸出、快速充 放電等優點,且目前的二次電池及超級電容皆需要電解液 以化學的方式儲存電能,並無法在一般現今的半導體製程 下製造,因此一但在封裝完成後,其儲存電能的容量較不 易改變,且週邊相關的電路在規劃上也較不彈性,故習知 技術仍有改良精進之處。 【發明内容】 因此,本發明之目的,即在提供一種故障保護裝置, 適用於當一磁性電容發生故障時,可隔離該故障磁性電容 以保護其他電路元件,其包括: 一磁性電容單元,用以儲存電能且具有一第一端和一 第二端;及 一隔離開關,可切換地將該磁性電容單元的第一端電 201010224 .端 連接到該磁性電容單元的第 當於-卫作模式下該磁性電容單元故障時,該隔 關導通’使該磁性電容簞开筮 ° 幵’ 路路徑。 喁間產生一短 轉明之磁性電容更具有—第_磁性電極、—第二磁 性電極以及位於其間之-介電層,其令第-磁性電極與第 一磁性電極係由具磁性的導電材料構成,且第-磁性電極Therefore, the withstand voltage is low, the water-based electrolyte IV, the organic electrolyte is about 2.5V, and the cost of the electrode material is affected. The super capacitor has a higher price-energy ratio than other capacitors and batteries. The technology of conventional energy storage components cannot simultaneously achieve the advantages of long life (high charge and discharge times), high energy storage density, instantaneous high power output, fast charge and discharge, etc., and current secondary batteries and super capacitors require electrolysis. The liquid chemically stores electrical energy and cannot be fabricated in the current semiconductor manufacturing process. Therefore, once the package is completed, the capacity of the stored electrical energy is less likely to change, and the peripheral related circuits are less flexible in planning. There are still improvements in the well-known techniques. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a fault protection device that is adapted to isolate a faulty magnetic capacitor to protect other circuit components when a magnetic capacitor fails, including: a magnetic capacitor unit, To store electrical energy and have a first end and a second end; and an isolating switch, switchably connect the first end of the magnetic capacitor unit to the 201010224 terminal to the first mode of the magnetic capacitor unit When the magnetic capacitor unit fails, the isolation turns on 'to make the magnetic capacitor open 筮° 幵' path. The magnetic capacitor that generates a short turn between the turns has a - a magnetic electrode, a second magnetic electrode, and a dielectric layer therebetween, wherein the first magnetic electrode and the first magnetic electrode are made of a magnetic conductive material. And magnetic-electrode

的磁麵極方向㈣,而第二磁性電極的帅極方向相同, 但第二磁性電極可與第—磁性電極的帅極方向相反。再 者,第一磁性電極與第二磁性電極中的至少一者具有一第 -磁性層、—第二磁性層與—夾置於第—磁性層與第二磁 性層間且非磁性材質的隔離層。 較佳地,本發明之第一磁性電極與第二磁性電極的材 質為稀土兀素,而介電層的材質為氧化鈦(Ti〇3)或氧化鋇 鈦(BaTiOO或一半導體材質。 本發明之功效在於,可以達到可規劃且具有壽命長、 尚能量儲存密度、瞬間高功率的輸出、快速充放電等優點 的儲能元件。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之三個較佳實施例的詳細說明中,將可 清楚的呈現。 t 一較佳實施例 參閱圖1 ’本實施例之故障保護裝置包括:一磁性電容 201010224 單7L 1、一第一工作開關U、一第二工作開關12、一隔離 開關13及一控制器14。且值得注意的是,這些開關u〜n 的名稱並未限定這三個開關的種類或限定了這三個開關是 不同類型的開關,反之,這三個開關丨丨〜丨3可以是同一類 型的開關,且當該磁性電容單元1以半導體製程製作時, 這些開關11〜13亦可隨之以半導體製程製作。 因為本發明中的磁性電容單元丨是一種新穎的儲能元 件,且較習知的電池、電容、超級電容具有許多優點,因 此以下先對磁性電容單元1作一介紹,之後再詳述控制器 14和該等開關11〜π是如何測試磁性電容單元i是否故障 ’且如何於故障時執行隔離。 磔性電容蕈元介<8 該磁性電容單元i可以是單一個磁性電容或是由複數 磁性電容以串聯、並聯或混合串並聯方式組成的一磁性電 容組。本實施例應用之磁性電容是一種以石夕半導體為原料 ,在一定的磁場作用下透過物理儲能方式實現高密度大 容量儲存電能的儲能元件。且磁性電容具有輸出電流大、 體積小、重量輕、超長使用壽命、充放電能力佳以及沒有 充電記憶效應等特性,因此拿來做為備用電源裝置的 蓄電元件以取代習知錯酸蓄電池組1 了可以減少備用電 源裝置的體積 '重量和製造成本,而且可以實現系統 免維護以及提高系統使用壽命等優點。 參閱圖2’由於習知能量儲存媒介(例如: 超級電容以要是利用化學能的方式來進行能量館存:因 201010224 此量儲存密度將會明顯優於一般電容,而可應用於各 冑電力供應裝置,但在此同時,其所能產生之瞬間電力輸 出亦會kP艮於化學反應速率,而無法快速的充放電或進行 同功率輸出,且充放電次數有限,過度充放時易滋生各種 問題。相較於此,由於磁性電容中儲存的能量全部係以電 位能的方式進行儲存,因此,除了具有可與一般電池或超 級電容匹配的能量儲存密度外,更因充分保有電容的特性 ’而具有壽命長(高充放電次數)、無記憶效應、可進行高 θ率輸出、快速充放電等特點,故可有效解決當前電池所 遇到的各種問題。參閱圖3 ’磁性電容6〇〇係包含有一第一 磁電極61G、-第二磁性電極62Q,以及位於其間之一介 電層630。其中第-磁性電極61〇與第二磁性電極㈣係由 具磁性的導電材料所構成,並藉由適當的外加電場進行磁 化,使第-磁性電極610與第二磁性電極62〇内分別形成 磁偶極(Magenetic Dip〇ie) 615與625,以於磁性電容_ ㈣構成-磁場,對帶電粒子的移動造成影響,從而抑制 顯磁性電容600之漏電流。 所需要特別強調的是,圖3中的磁偶極615與6乃的 箭頭方向僅為一示意圖。對熟習該項技藝者而言,應可瞭 解到磁偶極615肖625實際上係由多個整齊排列的微小磁 偶極所疊加而成,且在本發明中,磁偶極615與625最後 形成的方向並無限定,例如可指向同一方向或不同方向。 介電層630則係用來分隔第一磁性電極61〇與第二磁性電 極620,以於第一磁性電極61〇與第二磁性電極620處累積 201010224 電荷,儲存電位能。在本發明之一實施例中,第一磁性電 極610與第二磁性電極62〇係包含有磁性導電材質,例如 稀土元素,介電層63G則係由氧化鈦(Ti〇3)、氧化鎖欽(The direction of the magnetic surface pole (four), and the direction of the handsome pole of the second magnetic electrode are the same, but the second magnetic electrode can be opposite to the direction of the handsome pole of the first magnetic electrode. Furthermore, at least one of the first magnetic electrode and the second magnetic electrode has a first magnetic layer, a second magnetic layer, and a non-magnetic insulating layer interposed between the first magnetic layer and the second magnetic layer. . Preferably, the first magnetic electrode and the second magnetic electrode of the present invention are made of rare earth halogen, and the dielectric layer is made of titanium oxide (Ti〇3) or titanium oxynitride (BaTiOO or a semiconductor material. The utility model has the advantages that the energy storage component which can be planned and has the advantages of long life, energy storage density, instantaneous high power output, rapid charge and discharge, etc. can be achieved. [Embodiment] The foregoing and other technical contents and features of the present invention are related to The following is a detailed description of the three preferred embodiments of the reference drawings. The preferred embodiment is described with reference to FIG. 1. The fault protection device of the present embodiment includes: a magnetic capacitor 201010224 7L 1. A first working switch U, a second working switch 12, an isolating switch 13 and a controller 14. It is also worth noting that the names of the switches u~n do not limit the types of the three switches or The three switches are defined as different types of switches. Conversely, the three switches 丨丨~丨3 can be the same type of switches, and when the magnetic capacitor unit 1 is fabricated by a semiconductor process The switches 11 to 13 can also be fabricated in a semiconductor process. Since the magnetic capacitor unit 本 in the present invention is a novel energy storage device, and the conventional battery, capacitor, and super capacitor have many advantages, the following First, the magnetic capacitor unit 1 will be introduced, and then the controller 14 and the switches 11 to π will be tested for whether the magnetic capacitor unit i is faulty and how to perform isolation in the event of a fault. 8 The magnetic capacitor unit i can be a single magnetic capacitor or a magnetic capacitor group composed of a plurality of magnetic capacitors connected in series, parallel or mixed series and parallel. The magnetic capacitor used in the embodiment is a material of the Shixi semiconductor. The energy storage element of high-density and large-capacity storage energy is realized by physical energy storage under a certain magnetic field, and the magnetic capacitor has large output current, small volume, light weight, long service life, good charge and discharge capability and no charging memory. Characteristics such as effects, so it is used as a storage element for the backup power supply unit to replace the conventional acid-acid battery pack 1 Less volume of power supply unit's weight and manufacturing cost, and can achieve system maintenance-free and improve system life. See Figure 2 'Because of the conventional energy storage medium (for example: super capacitor to use chemical energy) Energy Museum: Because 201010224, the storage density will be significantly better than the general capacitance, and can be applied to various power supply devices, but at the same time, the instantaneous power output that can be generated will also be kP at the chemical reaction rate. However, it is not possible to quickly charge and discharge or perform the same power output, and the number of times of charge and discharge is limited, and it is easy to breed various problems when overcharge and discharge. Compared with this, since all the energy stored in the magnetic capacitor is stored in the form of potential energy, In addition to having an energy storage density that can be matched with a general battery or a super capacitor, it has a long life (high charge and discharge times), no memory effect, high θ rate output, fast charge and discharge, because of sufficient capacitance characteristics. And so on, it can effectively solve the various problems encountered in the current battery. Referring to Fig. 3, the magnetic capacitor 6 includes a first magnetic electrode 61G, a second magnetic electrode 62Q, and a dielectric layer 630 therebetween. The first magnetic electrode 61〇 and the second magnetic electrode (4) are made of a magnetic conductive material, and are magnetized by a suitable applied electric field to form a magnetic body in the first magnetic electrode 610 and the second magnetic electrode 62, respectively. Magenetic Dip〇ie 615 and 625, so that the magnetic capacitance _ (four) constitutes a magnetic field, which affects the movement of charged particles, thereby suppressing the leakage current of the dynode 600. It is particularly emphasized that the directions of the arrows of the magnetic dipoles 615 and 6 in Fig. 3 are only a schematic view. For those skilled in the art, it should be understood that the magnetic dipole 615 625 is actually superposed by a plurality of closely arranged micro magnetic dipoles, and in the present invention, the magnetic dipoles 615 and 625 are finally The direction of formation is not limited, for example, it may point in the same direction or in different directions. The dielectric layer 630 is used to separate the first magnetic electrode 61 and the second magnetic electrode 620 to accumulate a charge of 201010224 at the first magnetic electrode 61 and the second magnetic electrode 620 to store potential energy. In an embodiment of the invention, the first magnetic electrode 610 and the second magnetic electrode 62 are made of a magnetic conductive material, such as a rare earth element, and the dielectric layer 63G is made of titanium oxide (Ti〇3), Oxygen Locks. (

BaTl〇3)或一半導體層,例如氧化石夕(Silicon 〇xide)所構 成’然而本發明並不限於此,因此第—磁性電極6i〇、第二 磁性電極620與介電層㈣均可視產品之需求而選用適當 之其他材料。 比喻說明本發明磁性電容之操作原理如下。物質在—BaTl〇3) or a semiconductor layer, such as 氧化 夕 S (Silicon 〇xide) □ However, the invention is not limited thereto, so the first magnetic electrode 6i 〇, the second magnetic electrode 620 and the dielectric layer (four) are visible products Use appropriate materials in order to meet the needs. The analogy shows that the operating principle of the magnetic capacitor of the present invention is as follows. Substance in —

定磁場下電阻改變的現象,稱為「磁阻效應」,磁性金屬和 合金材料-般都有這種磁電阻現象,通常情況下物質的 電阻率在磁場中僅產生輕微的減小;在某種條件下,電阻 率減小的幅度相當大,比通常磁性金屬與合金材料的磁電 H)倍以上’而能夠產生很龐大的磁阻效應。若是 進一步結♦ MaXwell_Wagner電路模型,磁性顆粒複合介質 中也可能會產生很龐大的磁電容效應。 ,知電容中,電容值 叩w电谷i甶積 之介電常數…,及厚度d決定,如下式所示The phenomenon of resistance change under a fixed magnetic field is called "magnetoresistive effect". Magnetic metal and alloy materials generally have such a magnetoresistance phenomenon. Generally, the resistivity of a substance only slightly decreases in a magnetic field; Under such conditions, the magnitude of the decrease in resistivity is quite large, and it can produce a very large magnetoresistance effect than the magnetic charge of the magnetic metal and the alloy material by more than H). If the MaXwell_Wagner circuit model is further developed, a large magnetic capacitance effect may also occur in the magnetic particle composite medium. In the known capacitance, the capacitance value 叩w electric valley i is the dielectric constant... and the thickness d is determined as shown in the following equation

C = £s£di d …而在本發明中,磁性電容_主要利用第一磁性電 肖第—磁性電極62G巾㈣排列的磁偶極來形成磁 1 來’使内部儲存的電子朝同—自旋方向轉動,進行整齊 的排列,故可在同檨彳备杜 樣條件下,容納更多的電荷,進而增加 儲存雄、度。類比於習知電容,磁性電容_之運作 10 201010224 原理相當於藉由磁場之作用來改變介電I㈣之介電常數 ,故而造成電容值之大幅提升。 此外,在本實施例中,第-磁性電極㈣與介電層63〇 之間的介面631以及第二磁性電極62〇與介電層63〇之間 的介面632均為一不平坦的表面,使得介面631與介面 的面積相較於一般平坦的表面其表面積A更大,而能進一 步提升磁性電容600之電容值c。 請參考圖4’本發日月之另―實_中第—磁性電極61〇 之結構示意圖。如圖4所示,第一磁性電極61〇係為一多 層結構,包含有一第一磁性層612、一隔離層614以及一第 7㈣616° Μ隔離層614係由非磁性材料所構成,而 =磁性層612與第二磁性層616則包含有具磁性的導電 料’並在磁化時,藉由不同的外加電場,使得第-磁性 層612與第二磁性層614中的磁偶極⑴與617分別具有 :同的方向,❹在本發明之—較佳實施财,磁偶極⑴ :、617的方向係為反向,而能進一步抑制磁性電容6〇〇之 漏電流。此外,需要強調的 ΒΒ ^ ^ 』疋磁性電極610之結構並不 限於前述之三層結構,而 類似之方式,以複數個磁性 ^磁性層不斷交錯堆疊,再藉由各磁性層内磁偶極方 向的調整來進一步抑制磁性 幾乎無漏電流的效果。之漏電流,甚至達到 卜知儲能$件多半以化學能的方式進行儲 存,因此都需要有—定 尺寸,否則在往會造成儲量效率 ^ 。相較於此,本發明之磁性電容6GG係以電位 201010224 能的方式進行儲存’且因所使用之材料可適用於半導體製 程,故可藉由適當的半導體製程來形成磁性電纟_以及 周邊電路連接’進而縮小磁性電纟6〇〇之體積與重量,由 於此製作方法可使用-般半導體製程達成的故在此不予 贅述。 請參考圖5’圖5為本發明另一實施例中一磁性電容組 5〇〇之示意圖。承前所述,在本實施例中,係利用半導體製 程於-碎I板上製作複數個小尺寸的磁性電纟6〇〇,並藉由 適當的金屬化製程,於該複數個磁性電容6〇〇間形成電連鲁 接,從而構成一個包含有多個磁性電容6〇〇的磁性電容組 500,再以磁性電容組5〇〇作為能量儲存裝置或外部裝置的 電力供應來源。在本實施例中,磁性電容組5〇〇内的複數 個磁性電容600係以類似陣列的方式電連接,然而本發明 並不限於此,而可根據不同的電壓或電容值需求進行適 當的串聯或並聯或串並聯方式組成,以滿足各種不同裝置 的電力供應需求。 回歸參閱圖1 ’每一磁性電容單元1具有一第一端和一 第二端,且第一工作開關11可切換地將該磁性電容單元i 的第一端電連接到一第一節點’且在本實施例中該第一節 點接收一電源電壓V+,而第二工作開關12可切換地將該 磁性電容單元1的第二端電連接到一第二節點,且在本實 施例中該第二節點接收一電源電壓V-。而隔離開關13可切 換地將該磁性電容單元1的第一端電連接到該磁性電容單 12 201010224 元1的第二端。 該控制器14用以控制該等開關u〜n是 否導通。 疋 *於’則減模式下時,該控制器14控制 11-13 Φ m: ^ J m 、 通,且該磁性電容單元1的第一端與第二端電 連接·夕卜部測試裝置(如:-自動測試設備機台(ateC = £s£di d ... and in the present invention, the magnetic capacitor _ mainly uses the magnetic dipoles arranged by the first magnetic galvanic-magnetic electrode 62G (four) to form the magnetic 1 to make the internally stored electrons face the same - Rotating in the direction of rotation, neatly arranged, so that more charge can be accommodated under the same conditions as the preparation of the sample, thereby increasing the storage maleness and degree. Analogous to the conventional capacitor, the operation of the magnetic capacitor _ 201010224 The principle is equivalent to changing the dielectric constant of the dielectric I (4) by the action of the magnetic field, thus causing a substantial increase in the capacitance value. In addition, in the embodiment, the interface 631 between the first magnetic electrode (four) and the dielectric layer 63 以及 and the interface 632 between the second magnetic electrode 62 〇 and the dielectric layer 63 均为 are both an uneven surface. The surface area of the interface 631 and the interface is made larger than the surface area of the generally flat surface, and the capacitance value c of the magnetic capacitor 600 can be further increased. Please refer to FIG. 4' for a schematic view of the structure of the magnetic electrode 61A. As shown in FIG. 4, the first magnetic electrode 61 is a multi-layer structure including a first magnetic layer 612, an isolation layer 614, and a 7th (four) 616° Μ isolation layer 614 composed of a non-magnetic material, and = The magnetic layer 612 and the second magnetic layer 616 comprise a magnetic conductive material 'and, when magnetized, the magnetic dipoles (1) and 617 in the first magnetic layer 612 and the second magnetic layer 614 by different applied electric fields. Each has the same direction, and is preferably implemented in the present invention. The direction of the magnetic dipoles (1): 617 is reversed, and the leakage current of the magnetic capacitor 6 能 can be further suppressed. In addition, the structure of the magnetic electrode 610 to be emphasized is not limited to the above-described three-layer structure, but in a similar manner, a plurality of magnetic magnetic layers are continuously staggered and stacked, and magnetic dipoles in each magnetic layer are further The adjustment of the direction further suppresses the effect of magnetic leakage with almost no leakage current. The leakage current, even if it is reached, is mostly stored in chemical energy. Therefore, it is necessary to have a certain size, otherwise it will cause reserves efficiency in the past. In contrast, the magnetic capacitor 6GG of the present invention is stored in the manner of the potential 201010224's and the material used can be applied to the semiconductor process, so that the magnetic circuit can be formed by a suitable semiconductor process and the peripheral circuit. The connection 'and further reduces the volume and weight of the magnetic battery 6 ,, because this manufacturing method can be achieved using a general semiconductor process, therefore will not be described here. Please refer to FIG. 5'. FIG. 5 is a schematic diagram of a magnetic capacitor group 5〇〇 according to another embodiment of the present invention. As described above, in the present embodiment, a plurality of small-sized magnetic electrodes 6 制作 are fabricated on a -I board using a semiconductor process, and the plurality of magnetic capacitors are disposed by a suitable metallization process. The electrical connection is formed between the turns to form a magnetic capacitor group 500 including a plurality of magnetic capacitors 6〇〇, and the magnetic capacitor group 5 is used as a power supply source for the energy storage device or the external device. In this embodiment, the plurality of magnetic capacitors 600 in the magnetic capacitor group 5 are electrically connected in an array-like manner. However, the present invention is not limited thereto, and may be appropriately connected according to different voltage or capacitance value requirements. They can be combined in parallel or in series and parallel to meet the power supply requirements of various devices. Regression Referring to FIG. 1 'Each magnetic capacitor unit 1 has a first end and a second end, and the first working switch 11 switchably electrically connects the first end of the magnetic capacitor unit i to a first node' and In this embodiment, the first node receives a power voltage V+, and the second working switch 12 switchesably electrically connects the second end of the magnetic capacitor unit 1 to a second node, and in this embodiment The two nodes receive a power supply voltage V-. The isolating switch 13 is operative to electrically connect the first end of the magnetic capacitor unit 1 to the second end of the magnetic capacitor unit 12 201010224. The controller 14 is configured to control whether the switches u~n are turned on. When the 则* is in the minus mode, the controller 14 controls 11-13 Φ m: ^ J m , and the first end and the second end of the magnetic capacitor unit 1 are electrically connected to each other. :-Automatic test equipment machine (ate

MaChine)或疋—自我測試電路(BIST Circuit)),以接收用 於測§式該磁性雷交置;t t 电谷早7L 1疋否故障的測試訊號,且判斷是 e ,故障的方式是根據該磁性電容單元1所對應產生之訊號 疋否正常^細實施方式可為:料的測試訊號是-參考 電壓’並經過一段足以人τ从& & ,^ 奴足以令磁性電容單元1充電完成的時間 之後忒外部測試裝置將根據磁性電容單元〗之充電電壓 值來判定故障與否,若充電電壓實質上等於該參考電壓或 疋差距在誤差範圍内,則判斷磁性電容單元丨正常,否 則’則為故障。 參閱圖6’ f於一工作模式下且該磁性電容單it 1沒有 故障時,該控制器14控制該等工作開關η、12導通,且控 制該隔離開關13不導通,因此磁性電容單元1可正常工作 參閱圖7,當於工作模式下但該磁性電容單元丨卻故障 時,該控制器14控制該等開關導通,此時,該隔離 開關13會在該磁性電容單元丨之第一端與第二端間形成一 紐路路徑,也就是說,該磁性電容單元丨將被視為等效短 路。當此磁性電容單元1與其他電路元件(如:其他磁性電 容單元1) 一起使用時,故障的磁性電容單元1可以有效的 13 201010224 被隔離於其他電路兀件的迴路之外’進而保護其他電路元 件,也就是說其他電路元件將不會受到故障的磁性電容單 元1影響,以下將會對此再詳細說明。 弟二較佳實施例 第二較佳實施例與第一實施例類似,不同的地方在於 將第一實施例中所述之電路模組組合多個一起使用。在本 實施例,以組合四個為例,但實際應用上並不限於此。 參閲圖8 ’第二實施例之故障保護裝置包括:四個磁性 電容單元卜之+卜四個第一工作開關^卜以、“· 、四個第二工作關12、22、32、42、四個隔離開關13、 23、33、43 ’及一控制器,且為了清楚說明,圖中省略不 畫出控制器。 該等隔離開關13、23、33、43分別可切換地將該磁性 電容單元1、2、3、4之第-端電連接於第二端。且第一工 作開關11、31可切換地將磁性電容單元丨、3之第一端電連 接至節點XI;第-工作„ 21可切換地將磁性電容單元2 之第一端電連接至節點X2;第二工作開關12可切換地將磁n 性電容單元1之第二端電連接至節點χ2;第二工作開關22 、42可切換地將磁性電容單元2、4之第二端電連接至節點 χ3 ;第二工作開關32可切換地將磁性電容單元3之第二端 電連接至節點χ4’第-工作開關41可切換地將磁性電容單 兀4之第一端電連接至節點χ4。且節點χΐ接收一電壓源 V+,而節點χ3接收一電壓源v_。 參閱圖8 ^進行測試模式時,該控制器控制所有開關 14 201010224 11〜13、21〜23、31〜33都不導通,且每一磁性電容單元1〜4 的第一端與第二端分別電連接至一外部測試裝置,以接收 用於測試磁性電容單元1〜4是否故障的測試訊號(如:一 參考電壓)。MaChine) or 疋—BIST Circuit) to receive the test signal for measuring the magnetic crossover; tt electric valley early 7L 1疋 failure, and judged to be e, the way of failure is based on Whether the signal generated by the magnetic capacitor unit 1 is normal or not can be: the test signal of the material is - the reference voltage 'and after a period of sufficient τ from && & ^, the slave is sufficient to charge the magnetic capacitor unit 1 After the completion time, the external test device will determine the fault according to the charging voltage value of the magnetic capacitor unit. If the charging voltage is substantially equal to the reference voltage or the gap is within the error range, it is determined that the magnetic capacitor unit is normal, otherwise 'It is a malfunction. Referring to FIG. 6'f in a working mode and the magnetic capacitor unit it1 has no fault, the controller 14 controls the working switches η, 12 to be turned on, and controls the isolating switch 13 to be non-conducting, so the magnetic capacitor unit 1 can For normal operation, referring to FIG. 7, when the magnetic capacitor unit fails in the working mode, the controller 14 controls the switches to be turned on. At this time, the isolating switch 13 is at the first end of the magnetic capacitor unit. A new path is formed between the second ends, that is, the magnetic capacitor unit 丨 will be regarded as an equivalent short circuit. When the magnetic capacitor unit 1 is used together with other circuit components (such as other magnetic capacitor units 1), the faulty magnetic capacitor unit 1 can be effectively separated from the loops of other circuit components by the 20101022424, thereby protecting other circuits. The components, that is to say the other circuit components, will not be affected by the faulty magnetic capacitor unit 1, as will be explained in more detail below. BEST MODE FOR CARRYING OUT THE INVENTION The second preferred embodiment is similar to the first embodiment except that a plurality of circuit modules described in the first embodiment are used in combination. In the embodiment, four are combined, but the practical application is not limited thereto. Referring to FIG. 8 , the fault protection device of the second embodiment includes: four magnetic capacitor units, and four first working switches, "·, four second working switches 12, 22, 32, 42 Four isolating switches 13, 23, 33, 43' and a controller, and for the sake of clarity, the controller is omitted from the drawing. The isolating switches 13, 23, 33, 43 respectively switchably magnetically The first ends of the capacitor units 1, 2, 3, 4 are electrically connected to the second end, and the first working switches 11, 31 switchably electrically connect the first ends of the magnetic capacitor units 丨, 3 to the node XI; The operation 21 electrically switches the first end of the magnetic capacitor unit 2 to the node X2; the second working switch 12 switchesably connects the second end of the magnetic n-type capacitor unit 1 to the node χ2; the second working switch 22, 42 switchably electrically connect the second ends of the magnetic capacitor units 2, 4 to the node χ3; the second working switch 32 switchably electrically connects the second end of the magnetic capacitor unit 3 to the node χ 4' first-working switch 41 switchably connects the first end of the magnetic capacitor unit 4 to the node χ4. And node χΐ receives a voltage source V+, and node χ3 receives a voltage source v_. Referring to FIG. 8 ^ when the test mode is performed, the controller controls all the switches 14 201010224 11~13, 21~23, 31~33 to be non-conducting, and the first end and the second end of each magnetic capacitor unit 1~4 are respectively Electrically connected to an external test device to receive a test signal (eg, a reference voltage) for testing whether the magnetic capacitor units 1 to 4 are faulty.

參閱圖9,假設已判斷出磁性電容單元丨故障,且其餘 磁性電容單元2、3、4都正常,則於卫作模式下時,為了 維持整個電路仍正常卫作’最好的方式是將故障的磁性電 容單元1隔離,而使其他電路能繼續正常運作。因此該控 制器控制對應到故障磁性電容單元i的開關u、12、 導通,此時,該隔離開關13會在該磁性電容單元1之第一 端與第二端間形成-短路轉。且_时使對應到正常 之磁性電容單元2、3、4的工作開關21、22、31、32、〇 、42導通,但隔離開關23、33、43不導通。 第三較佳會施裥 參閲圖10,本實施例與第二實施例類似,不同的地方 在於將兩實質上串聯之磁性電容單元間的工作開二 實施例的二個減少為一個,如此仍可達到測試或隔離的目 的,且可節省製造成本。因此位於磁性電容單元1 ★ 端和磁性電容單元2之第一迪門沾丁从之第一 弟端間的工作開關僅為一個工作 開關12。 # 综上所述,本發明利用磁性電容單元丨〜4做為儲能元 件’取代傳統電源裝置’不但可以減少電源裝置的整 積、重量’並提高能量儲存效率、储存容量和使 實現免維護,避免化學料存在的記憶效應和污染問題;’ 15 201010224 同時配合數個開關,即可以有效率的進行測試,並於故障 發生時可以快速切換以隔離故障的磁性電容單元,進而保 護其他電路元件,使得其餘正常的磁性電容單元仍可持續 工作’因此可以大幅降低生產及維護成本。此外當該磁 性電容單元以半導體製程製作時,本發明中的其他元件( 如:開關)亦可隨之以半導體製程製作,因而在生產更有 效率。 惟以上所述者,僅為本發明之較佳實施例而已,告不 能以此限定本發明實施之範圍,即大凡依本發对請:利 範圍及發明說明内容所作之簡單的等效變化與修飾皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是本發明之故障保護裝置之電路圖; 圖2是本實施例之磁性電容與其他習知能量儲存 之比較示意圖; 、 圖3是本實施例中磁性電容之結構示意圖; 圖4是本實施例之磁性電容另一實施例中第一磁 極之結構示意圖; 圖 圖5疋本發明另一實施例中一磁性電容單元組之示竟 圖6是本發明之故障保護裝置之工作料電路圖; 圖7是本發明之故障保護裝置在工作模式下隔離 磁性電容單元之電路圖; 圖8是本發明之第二較佳實施例之電路圖; 16 201010224 圖9是本發明之第二較佳實施例在工作模式下隔離故 障磁性電容單元之電路圖;及 圖10本發明之第三較佳實施例之電路圖。Referring to FIG. 9, it is assumed that the magnetic capacitor unit 丨 is faulty, and the remaining magnetic capacitor units 2, 3, and 4 are all normal. In the maintenance mode, in order to maintain the entire circuit, the best way is to The faulty magnetic capacitor unit 1 is isolated, allowing other circuits to continue to operate normally. Therefore, the controller controls the switches u, 12 corresponding to the faulty magnetic capacitor unit i, and is turned on. At this time, the isolating switch 13 forms a short-circuit between the first end and the second end of the magnetic capacitor unit 1. At the same time, the operation switches 21, 22, 31, 32, 〇, 42 corresponding to the normal magnetic capacitor units 2, 3, 4 are turned on, but the isolation switches 23, 33, 43 are not turned on. The third preferred embodiment is similar to the second embodiment. The difference is that the two working between the two magnetic capacitor units in series are reduced to one. Test or isolation can still be achieved and manufacturing costs can be saved. Therefore, the working switch between the first terminal of the magnetic capacitor unit 1 and the first capacitive component of the magnetic capacitor unit 2 is only one working switch 12. # In summary, the present invention utilizes a magnetic capacitor unit 丨~4 as an energy storage component to replace a conventional power supply device, which not only reduces the overall power and weight of the power supply device, but also improves energy storage efficiency, storage capacity, and maintenance-free operation. To avoid the memory effect and pollution problem of chemical materials; ' 15 201010224 At the same time, several switches can be tested efficiently, and can quickly switch to isolate the faulty magnetic capacitor unit when the fault occurs, thus protecting other circuit components. So that the rest of the normal magnetic capacitor unit can still work continuously', so the production and maintenance costs can be greatly reduced. Further, when the magnetic capacitor unit is fabricated in a semiconductor process, other components (e.g., switches) in the present invention can also be fabricated in a semiconductor process, thereby being more efficient in production. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent change of the scope and the description of the invention is Modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a fault protection device of the present invention; FIG. 2 is a schematic diagram of comparison between a magnetic capacitor of the present embodiment and other conventional energy storages; and FIG. 3 is a schematic structural view of a magnetic capacitor in the present embodiment. 4 is a schematic structural view of a first magnetic pole in another embodiment of the magnetic capacitor of the embodiment; FIG. 5 is a schematic diagram of a magnetic capacitor unit in another embodiment of the present invention; FIG. 6 is a fault protection device of the present invention. FIG. 7 is a circuit diagram of the magnetic capacitor unit in the operating mode of the fault protection device of the present invention; FIG. 8 is a circuit diagram of a second preferred embodiment of the present invention; 16 201010224 FIG. 9 is a second embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A circuit diagram for isolating a faulty magnetic capacitor unit in an operational mode; and FIG. 10 is a circuit diagram of a third preferred embodiment of the present invention.

17 20101022417 201010224

【主要元件符號說明】 1…… •…磁性電容單元 42 .… ···.第二工作開關 11 ·.··· •…第一工作開關 43 ···· •…隔離開關 12····. •…第二工作開關 500··· •…磁性電容單元組 13···.· •…隔離開關 600··· •…磁性電容 14 •…控制器 610··· •…第一磁性電極 2…… •…磁性電容單元 612··· •…第 磁性層 21••… •…第一工作開關 613··· •…磁偶極 22··· •…第二工作開關 614··· .....隔離層 23···. …··隔離開關 615··· •…磁偶極 3…… •…磁性電容單元 616.·· -----第二磁性層 31…. ••…第一工作開關 617··. •…磁偶極 32••… ••…第二工作開關 620·· ……第二磁性電極 33·_··. ••…隔離開關 625·· ••…磁偶極 4…… ••…磁性電容單元 630.· ••…介電層 41 •… • ·…第一工作開關 631、 632介面[Description of main component symbols] 1... •... Magnetic capacitor unit 42 .... ···.Second work switch 11 ····· •...First work switch 43 ···· •...Isolation switch 12··· ·. •...Second work switch 500··· •...Magnetic capacitor unit group 13······...Isolation switch 600···•...Magnetic capacitor 14 •...Controller 610···•...First magnetic Electrode 2... • Magnetic Capacitor Unit 612···•...Magnetic Layer 21••...•...First Working Switch 613···•...Magnetic Dipole 22···•...Second Working Switch 614·· · ..... Isolation layer 23···....·Isolation switch 615···•...Magnetic dipole 3...•...Magnetic capacitor unit 616.··--Second magnetic layer 31... ••...first work switch 617··.•...magnetic dipole 32••... ••...second work switch 620··...second magnetic electrode 33·_··.••...isolation switch 625· · ••...Magnetic dipole 4... ••...Magnetic capacitor unit 630.·••...Dielectric layer 41 •... • ·...first working switch 631, 632 interface

1818

Claims (1)

201010224 十、申請專利範面: 1. 一種故障保護裝置,包括:201010224 X. Applying for patents: 1. A fault protection device, including: 2. 一磁性電容單元 一第二端;及 用以儲存電能且 具有一第一端和 一隔離開關,可切換地將該磁性電容單元的第一端 電連接到該磁性電容單元的第二端; 當於-工作模式下該磁性電容單元故障時,該隔離 開關導通,使該磁性電容單元的第—端和第二端間產生 一短路路徑。 依據申請專利範圍第1項所述之故障保 工作模式下該磁性電容單元沒有故障時 導通。 護裝置,當於該 ’該隔離開關不 參 3·依據中請專利範圍冑2項所述之故障保護裝置,更包含 一第一工作開關和一第二工作開關,#坌 , m通第一工作開關可 切換地將該磁性電容單元的第一端電連接到—第一節點 ,且該第二工作開關可切換地將該磁性電容單元的第二 端電連接到一第二節點。 * — 4.依據申請專利範圍第3項所述之故障保護裝置,其中, 當於該工作模式下時,該第一工作開關和該 關導通 工作開 5·依據申請專利範圍第3項所述之故障保護裝置,其中 當於一測試模式下時,該磁性電容單元之第—端和第一 端接收一用於測試該磁性電容單元是否故障的測試訊號 ,且該隔離開W、該帛一工作開關和該第二 關招 7開關都 19 201010224 不導通。 6. 依據申請專利範圍第丨項所述之故障保護裝置,其中, 忒磁性電容單元是單一個磁性電容或是由複數磁性電容 以串聯並聯或混合串並聯方式組成的一磁性電容組。 7. 依據申請專利範圍第6項所述之故障保護裝置,其中該 磁性電容包含有一第一磁性電極、一第二磁性電極以及 叹於其間之一介電層,其中該第一磁性電極與第二磁性 電極内具有磁偶極以抑制該磁性電容之漏電流。 8. 依據申請專利範圍第7項所述之故障保護裝置其中該鲁 第一磁性電極包含有: 一第一磁性層,具有排列成第一方向之磁偶極; 第一磁性層,具有排列成第二方向之磁偶極;及 一隔離層,包含有非磁性材料,設於該第一磁性層 與該第二磁性層之間; 其中該第一方向與該第二方向互為反向,以抑制該 磁性電容之漏電流。 依據申請專利範圍第7項所述之故障保護裝置,其中該 第磁14電極與第二磁性電極係包含有稀土元素,該介 電層係由氧化銥(Ti〇3)、氧化鋇鈦(BaTi〇3)或一半導 體層所構成。 1〇·依據申請專利範圍第9項所述之故障保護裝置其中該 半導體層為氧化矽。 H. —種故障保護裝置,包括: 一磁性電容單元,用以儲存電能且具有一第一端和 20 201010224 一第二端;及 1離« ’可切換地將該磁性f 電連接到該磁性電容單元的第二端; ^的第-端 當該磁性電容單元於一測試模 不導通,且該磁性電容單元的第-端和第二開關 用於測試該磁性電容單开β $ #略 一編間接收一 〜磁/·生電*單疋疋否故障的測試訊號。 12.依據申請專利範圍第u項所述之故障保護裝置,其令2. a magnetic capacitor unit having a second end; and for storing electrical energy and having a first end and an isolating switch, switchably electrically connecting the first end of the magnetic capacitor unit to the second end of the magnetic capacitor unit When the magnetic capacitor unit fails in the -operating mode, the isolating switch is turned on to generate a short circuit path between the first end and the second end of the magnetic capacitor unit. The magnetic capacitor unit is turned on when there is no fault in the fault protection mode according to the first application of the patent application. The protection device, when the 'isolation switch does not refer to 3 · According to the patent scope 胄 2 item, the fault protection device further includes a first working switch and a second working switch, #坌, m通 first The working switch is switchably electrically connected to the first end of the magnetic capacitor unit to the first node, and the second working switch is switchably electrically connected to the second end of the magnetic capacitor unit to a second node. The fault protection device according to claim 3, wherein, in the working mode, the first working switch and the off-conducting work are opened. 5. According to claim 3 The fault protection device, wherein when in a test mode, the first end and the first end of the magnetic capacitor unit receive a test signal for testing whether the magnetic capacitor unit is faulty, and the isolation is opened The work switch and the second switch 7 switch are both 19 201010224 non-conducting. 6. The fault protection device according to claim </ RTI> wherein the neodymium magnetic capacitor unit is a single magnetic capacitor or a magnetic capacitor group consisting of a plurality of magnetic capacitors connected in series or in series and in parallel. 7. The fault protection device of claim 6, wherein the magnetic capacitor comprises a first magnetic electrode, a second magnetic electrode, and a dielectric layer interposed therebetween, wherein the first magnetic electrode and the first magnetic electrode The magnetic poles in the two magnetic electrodes have a leakage current to suppress the magnetic capacitance. 8. The fault protection device of claim 7, wherein the first magnetic electrode comprises: a first magnetic layer having magnetic dipoles arranged in a first direction; and a first magnetic layer having an arrangement a magnetic dipole in a second direction; and an isolation layer comprising a non-magnetic material disposed between the first magnetic layer and the second magnetic layer; wherein the first direction and the second direction are opposite to each other To suppress the leakage current of the magnetic capacitor. The fault protection device according to claim 7, wherein the magnetic 14 electrode and the second magnetic electrode system comprise a rare earth element, the dielectric layer is made of lanthanum oxide (Ti〇3), yttrium titanium oxide (BaTi). 〇3) or a semiconductor layer. The fault protection device according to claim 9, wherein the semiconductor layer is ruthenium oxide. H. A fault protection device comprising: a magnetic capacitor unit for storing electrical energy and having a first end and 20 201010224 a second end; and 1 electrically switching the magnetic f to the magnetic The second end of the capacitor unit; the first end of the ^ when the magnetic capacitor unit is not turned on in a test mode, and the first end of the magnetic capacitor unit and the second switch are used to test the magnetic capacitor single open β $ # slightly The test signal receives a ~ magnetic / · power generation * single 疋疋 no fault test signal. 12. According to the fault protection device described in the scope of claim patent, 該磁性,容單元之第-端和第二端分別輸❹於判斷該 磁性電各單元是否故障的測試訊號。 13.依據申請專利範圍帛u項所述之故障保護裝置其中, 該磁性電容單元是單一個磁性電容或是由複數磁性電容 以串聯並聯或混合串並聯方式組成的一磁性電容組。The magnetic, the first end and the second end of the capacitive unit are respectively input to test signals for determining whether the magnetic units are faulty. 13. A fault protection device according to the scope of the patent application, wherein the magnetic capacitor unit is a single magnetic capacitor or a magnetic capacitor group consisting of a plurality of magnetic capacitors connected in series or in series and in parallel. 21twenty one
TW97131720A 2008-08-20 2008-08-20 Fault protection apparatus TW201010224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97131720A TW201010224A (en) 2008-08-20 2008-08-20 Fault protection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97131720A TW201010224A (en) 2008-08-20 2008-08-20 Fault protection apparatus

Publications (1)

Publication Number Publication Date
TW201010224A true TW201010224A (en) 2010-03-01

Family

ID=44828099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97131720A TW201010224A (en) 2008-08-20 2008-08-20 Fault protection apparatus

Country Status (1)

Country Link
TW (1) TW201010224A (en)

Similar Documents

Publication Publication Date Title
CN101227104B (en) Apparatus to store electrical energy
US10312028B2 (en) Electrochemical energy storage devices and manufacturing methods
WO2011155078A1 (en) Electrical energy storage device
JP2006287174A (en) High-voltage electric double-layer capacitor
US20100046122A1 (en) Fault protection device
CN101752910A (en) Power supply device with variable voltage output
JP2011249669A (en) Electric energy storage device
TW201004110A (en) Backup power device
JP4996775B1 (en) Thin film capacitor device
CN101741105A (en) Power system and detection method thereof
TW201010224A (en) Fault protection apparatus
TW201019566A (en) Balance module for power and method thereof
TW201019561A (en) Power system
TW201018932A (en) Power system and detecting method thereof
TW201011319A (en) Power apparatus and testing method of power array
TW201010240A (en) Power apparatus with self-protection function
TW201015818A (en) Power supply system
CN101728845A (en) Power supply system with control mechanism
CN101667751A (en) Power supply device and power control module
TW201023217A (en) An energy storage element having programmable magnetic capacitor
CN215580509U (en) UPS uninterrupted power supply system
TW201015834A (en) DC circuit with adjustable output voltage
CN101656434A (en) Power supply device with protective function
CN101639025A (en) Starting system for starting engine
TW201023475A (en) A power supply device having various voltage outputs