TW201010240A - Power apparatus with self-protection function - Google Patents
Power apparatus with self-protection function Download PDFInfo
- Publication number
- TW201010240A TW201010240A TW97131721A TW97131721A TW201010240A TW 201010240 A TW201010240 A TW 201010240A TW 97131721 A TW97131721 A TW 97131721A TW 97131721 A TW97131721 A TW 97131721A TW 201010240 A TW201010240 A TW 201010240A
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic
- switch
- test
- capacitor unit
- node
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
201010240 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種具保護功能的電源裝置,特別是 才曰一種以磁性電容單元作為電源且當一磁性電容發生故障 時,可隔離該故障磁性電容以保護其他電路元件的電源 置。 … 【先前技術】 現今儲能元件廣泛運用於家電設備、手持式裝置(例 ❹ 如.行動電話(Mobile Phone)、PDA等)及交通工具等產 乂滿足人們對獨立能源系統的需求。狹義的儲能元件 主要指電池,包含一次電池及二次電池產品;而廣義的儲 能元件則泛指所有具備儲能功能的元件,包括暫時性储能 的電容及電感’還有一種介於電池與電容間的超級電容( Super capacitor)也包括在内。 電容是以物理反應之電位能形式來儲能,在製作上較 >簡單’且具有充放電速度快、高功率密度的特性,但是 物理㈣的效果卻不佳(即難容量較小),故只能被當做 短暫儲能使用。 電池可分為一次電池及二次電池。—次電池僅能使用 一次’無法透過充電的方式再補充已被轉化掉的化學能。 而二次電池主要是利用化學能的方式來進行能量儲存,因 此其能量儲存密度將會明顯優於一般電容,而可應用於各 種電力供應裝置,但在此同時,其所能產生之瞬間電力輸 出會受限於化學反應速率,因此無法快速的充放電或進行 201010240 同功率輪出,且在多次充放電後容量會下降 不使用’也會有容量下降問題。 長時間 ,級電容是一種介於電池與電容間的元件,又稱雙電 層電谷(Electrical Double-Layer Capacitor),透過部分物理201010240 IX. Description of the Invention: [Technical Field] The present invention relates to a power supply device with a protection function, in particular, a magnetic capacitor unit is used as a power source, and when a magnetic capacitor fails, the fault can be isolated. Magnetic capacitors protect the power supply of other circuit components. ... [Prior Art] Today's energy storage components are widely used in home appliances, handheld devices (such as mobile phones, PDAs, etc.) and vehicles to meet the demand for independent energy systems. The narrowly defined energy storage components mainly refer to batteries, including primary batteries and secondary battery products; while the generalized energy storage components refer to all components with energy storage functions, including capacitors and inductors for temporary energy storage. A super capacitor between the battery and the capacitor is also included. The capacitor is stored in the form of potential energy of the physical reaction. It is simpler in production and has the characteristics of fast charge and discharge speed and high power density, but the effect of physics (4) is not good (ie, the capacity is small). Therefore, it can only be used as a short-term storage. The battery can be divided into a primary battery and a secondary battery. - The secondary battery can only be used once and can't be recharged to replenish the converted chemical energy. The secondary battery is mainly used for energy storage by means of chemical energy, so its energy storage density will be significantly better than general capacitance, and can be applied to various power supply devices, but at the same time, it can generate instantaneous power. The output will be limited by the chemical reaction rate, so it is not possible to quickly charge and discharge or perform the same power rotation in 201010240, and the capacity will drop after multiple charge and discharge without using 'and there will be capacity drop. For a long time, the grade capacitor is a component between the battery and the capacitor, also known as the Electrical Double-Layer Capacitor.
儲能、部分化學儲能架構,其功率密度及能量密度介於電 池與電容間。但是,超級電容因具有化學材料而具化學特 性’而易有4電現象,X加上因還有部份是物理特性之放 電速度快的現象’前述兩種因素下很快就會沒電,且受限 於電解質的分解電壓(水系電解# lv、有機電解質約=5v )’所以其耐電壓低,再加上受到電極材料的成本影響,超 級電容具有比其他電容、電池高的價格能量比。Energy storage, part of the chemical energy storage architecture, whose power density and energy density are between the battery and the capacitor. However, supercapacitors have chemical properties due to their chemical properties, and there are four electrical phenomena. X plus, because some of them are physical phenomena, the discharge speed is fast. It is also limited by the decomposition voltage of the electrolyte (aqueous electrolyte # lv, organic electrolyte about = 5v)', so its low withstand voltage, coupled with the cost of the electrode material, the super capacitor has a higher price-energy ratio than other capacitors and batteries. .
%知储能元件的技術,皆無法同時達到壽命長(高充 放電次數)、高能量儲存密度、瞬間高功率的輸出、快速充 放電等優點,且目前的二次電池及超級電容皆需要電解液 以化學的方式儲存電能,並無法在一般現今的半導體製程 下製造,因此一但在封裝完成後,其儲存電能的容量較不 易改變’且週邊相關的電路在規劃上也較不彈性,故習知 技術仍有改良精進之處。 【發明内容】 因此,本發明之目的,即在提供一種具保護功能的電 源裝置,包含: 一磁性電容單元,用以儲存電能且具有一第一端和一 第二端; 一第一工作開關,可切換地將一第一節點電連接到該 6 201010240 磁性電容單元的第一端; 一第一工作開關,可切換地將一第二節點電連接到該 磁性電容單元的第二端;及 一隔離開關’可切換地將該第一節點電連接到該第二 節點; 當該磁性電容單元於一工作模式下且故障時,該隔離 開關導通且該第一工作開關和該第二工作開關不導通,使 該第一節點電連接到該第二節點。 本發明之另一目的為’提供一種具保護功能的電源裝 置,包含: 一磁性電容單元’用以儲存電能且具有一第一端和一 第二端; 一第一測試開關,可切換地將一第三節點電連接到該 磁性電容單元的第一端;及 一第二測試開關,可切換地將一第四節點電連接到該 磁性電容單元的第二端; 虽該磁性電容單元於一測試模式下時,該第一測試開 關和該第二測試開關導通。 本發明之另-目的為,提供一種具保護功能的電源裝 置,包含: -磁性電容單t,用以儲存電能且具有一第一端和一 第二端; 第開關,可切換地將一第一節點電連接到該磁性 電容單元的第一端; 201010240 一第二開關,可切換地將一第二節點電連接到該磁性 電容單元的第二端; 第二開關,可切換地將該第一節點電連接到該第二 節點; 一第四開關,可切換地將一第三節點電連接到該磁性 電容單元的第一端; 一第五開關,可切換地將一第四節點電連接到該磁性 電容單元的第二端;及 一第六開關,可切換地將該第三節點電連接到該第四 節點。 本發明之磁性電容更具有一第一磁性電極、一第二磁 性電極以及位於其間之一介電層,其中第一磁性電極與第 二磁性電極係由具磁性的導電材料構成,且第一磁性電極 的磁耦極方向相同,而第二磁性電極的磁耦極方向相同, 但第二磁性電極可與第一磁性電極的磁耦極方向相反。再 者,第一磁性電極與第二磁性電極中的至少一者具有一第 磁性層、一第二磁性層與一夾置於第一磁性層與第二磁 性層間且非磁性材質的隔離層。 較佳地,本發明之第一磁性電極與第二磁性電極的材 質為稀土元素,而介電層的材質為氧化鈦(Ti〇3)或氧化鋇 敘(BaTi〇3 )或一半導體材質。本發明之功效在於,可以 達到可規劃且具有壽命長、高能量儲存密度、瞬間高功率 的輸出、快速充放電等優點的儲能元件。 【實施方式】 201010240 - 有關本發明之前述及其他技術内容、特點與功效,在 . 以下配合參考圖式之三個較佳實施例的詳細說明中,將可 清楚的呈現》 在本發明被詳細描述之前,要注意的是,在以下的咬 明内容辛,類似的元件是以相同的編號來表示。 第一較佳訾施例 參閱圖1,本實施例之具保護功能的電源裝置,主要包 括:一磁性電容單元1、第一開關〜第六開關U〜16、_控 © 制器17、一工作匯流排及一測試匯流排。且值得注意的是 ,在本實施例中為了方便說明,稱該第一開關〜第六開關分 別是一第一工作開關11、一第二工作開關12、一隔離開關 13、一第一測試開關14、一第二測試開關Η及一第三測試 開關16。但實質上這些開關的名稱並未限定這六個開關的 種類或限定了這六個開關是不同類型的開關,反之,這六 個開關11〜16可以是同一類型的開關,且當該磁性電容單 元1以半導體製程製作時,這些開關u〜16亦可隨之以半 © 導體製程製作。 因為本發明中的磁性電容單元丨是一種新穎的儲能元 件,且較習知的電池、電容、超級電容具有許多優點因 此以下先對磁性電容單元丨作一介紹,之後再詳述控制器 17和該等開關11〜16是如何測試磁性電容單元丨是否故障 ,且如何於故障時執行隔離。 磁性電容蕈元介紹 磁性電容單元1可以是單一個磁性電容或是由複數磁 201010240 性電谷以串聯、並聯或混合串並聯方式組成的一磁性電容 組。本實施例應用之磁性電容是一種以矽半導體為原料, 在一定的磁場作用下透過物理儲能方式實現高密度、大容 -量儲存電能的儲能元件。且磁性電容具有輸出電流大、體 積小、重量輕、超長使用壽命、充放電能力佳以及沒有充 電記憶效應等特性,因此拿來做為備用電源裝置2〇〇的蓄 電元件以取代習知鉛酸蓄電池組,除了可以減少備用電源 裝置200的體積、重量和製造成本,而且可以實現系統免 維護以及提高系統使用壽命等優點。 參閱圖2,由於習知能量儲存媒介(例如:傳統電池或 超級電容)主要是利用化學能的方式來進行能量儲存,因 此其能量儲存密度將會明顯優於一般電容,而可應用於各 種電力供應裝置,但在此同時,其所能產生之瞬間電力輸 出亦會党限於化學反應速率,而無法快速的充放電或進行 高功率輸出,且充放電次數有限,過度充放時易滋生各種 問題。相較於此,由於磁性電容中儲存的能量全部係以電 位能的方式進行儲存,因此’除了具有可與一般電池或超參 級電容匹配的能量儲存密度外’更因充分保有電容的特性 ,而具有壽命長(高充放電次數)、無記憶效應、可進行高 功率輸出、快速充放電等特點,故可有效解決當前電池所 遇到的各種問題。參閱圖3,磁性電容4〇〇係包含有一第一 磁性電極410、-第二磁性電極·,以及位於其間之一介 電層430。其中第-磁性電極彻與第二磁性電極係由 具磁性的導電材料所構成,並藉由適當的外加電場進行磁 10 201010240 化使第一磁性電極410與第二磁性電極420内分別形成 • 磁偶極(Magenetlc DiP〇le) 415與425,以於磁性電容4〇〇 内部構成-磁場,對帶電粒子的移動造成影響,從而抑制 磁性電容400之漏電流。 所需要特別強調的是,圖3中的磁偶極 415與425的 刖頭方向僅為一示意圖。對熟習該項技藝者而言應可瞭 解到磁偶極415肖425實際上係由多個整齊排列的微小磁 偶極所疊加而成,且在本發明中,磁偶極415與425最後 〇 ¥成的方向並無限定,例如可指向同一方向或不同方向。 介電層430貝Ij係用來分隔第一磁性電極4【〇與第二磁性電 極420,以於第一磁性電極41〇與第二磁性電極42()處累積 電荷,儲存電位能。在本發明之一實施例十,第一磁性電 極410與帛二磁性電極42〇係包含有磁性導電材質,例如 稀土 X*素,介電層430則係由氧化鈦(Ti〇3)、氧化鋇鈦(% knowing the technology of energy storage components can not achieve the advantages of long life (high charge and discharge times), high energy storage density, instantaneous high power output, fast charge and discharge, etc., and current secondary batteries and super capacitors require electrolysis. The liquid chemically stores electrical energy and cannot be fabricated in the current semiconductor manufacturing process. Therefore, once the package is completed, the capacity of the stored electrical energy is less likely to change, and the peripheral related circuits are less flexible in planning. There are still improvements in the well-known techniques. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a power supply device with a protection function, comprising: a magnetic capacitor unit for storing electrical energy and having a first end and a second end; a first working switch Switchingly connecting a first node to the first end of the 6 201010240 magnetic capacitor unit; a first working switch switchably connecting a second node to the second end of the magnetic capacitor unit; An isolating switch 'switchably connects the first node to the second node; when the magnetic capacitor unit is in an operating mode and fails, the isolating switch is turned on and the first working switch and the second working switch are Not conducting, causing the first node to be electrically connected to the second node. Another object of the present invention is to provide a power supply device with a protection function, comprising: a magnetic capacitor unit for storing electrical energy and having a first end and a second end; a first test switch switchably a third node is electrically connected to the first end of the magnetic capacitor unit; and a second test switch is configured to electrically connect a fourth node to the second end of the magnetic capacitor unit; In the test mode, the first test switch and the second test switch are turned on. Another object of the present invention is to provide a power supply device with a protection function, comprising: - a magnetic capacitor single t for storing electrical energy and having a first end and a second end; and a switch that can switchably a node electrically connected to the first end of the magnetic capacitor unit; 201010240 a second switch electrically switching a second node to the second end of the magnetic capacitor unit; the second switch switchably a node is electrically connected to the second node; a fourth switch electrically connects a third node to the first end of the magnetic capacitor unit; and a fifth switch electrically switches a fourth node To the second end of the magnetic capacitor unit; and a sixth switch, the third node is switchably electrically connected to the fourth node. The magnetic capacitor of the present invention further has a first magnetic electrode, a second magnetic electrode and a dielectric layer therebetween, wherein the first magnetic electrode and the second magnetic electrode are made of a magnetic conductive material, and the first magnetic The magnetic coupling directions of the electrodes are the same, and the magnetic coupling directions of the second magnetic electrodes are the same, but the second magnetic electrodes may be opposite to the magnetic coupling directions of the first magnetic electrodes. Furthermore, at least one of the first magnetic electrode and the second magnetic electrode has a first magnetic layer, a second magnetic layer and a non-magnetic material isolation layer interposed between the first magnetic layer and the second magnetic layer. Preferably, the material of the first magnetic electrode and the second magnetic electrode of the present invention is a rare earth element, and the material of the dielectric layer is titanium oxide (Ti〇3) or yttrium oxide (BaTi〇3) or a semiconductor material. The effect of the present invention is that energy storage components that are programmable and have advantages of long life, high energy storage density, instantaneous high power output, fast charge and discharge, and the like can be achieved. [Embodiment] 201010240 - The foregoing and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the three preferred embodiments of the drawings. Before the description, it should be noted that in the following description, similar components are denoted by the same reference numerals. The first preferred embodiment is shown in FIG. 1. The power supply device with protection function of the present embodiment mainly includes: a magnetic capacitor unit 1, a first switch to a sixth switch U~16, a control device 17, and a first Work bus and a test bus. It should be noted that, in the embodiment, for the convenience of description, the first to sixth switches are respectively referred to as a first working switch 11, a second working switch 12, an isolating switch 13, and a first test switch. 14. A second test switch and a third test switch 16. However, the names of these switches are not limited to the types of the six switches or the six switches are different types of switches. Conversely, the six switches 11 to 16 can be the same type of switches, and when the magnetic capacitor When the unit 1 is fabricated in a semiconductor process, the switches u to 16 can also be fabricated in a semi-guided manner. Since the magnetic capacitor unit 本 in the present invention is a novel energy storage element, and the conventional battery, capacitor, and super capacitor have many advantages, the magnetic capacitor unit will be described first, and then the controller 17 will be described in detail. And how the switches 11 to 16 test whether the magnetic capacitor unit 故障 is malfunctioning, and how to perform isolation at the time of failure. Introduction to Magnetic Capacitor Unit The magnetic capacitor unit 1 can be a single magnetic capacitor or a magnetic capacitor group consisting of a series of parallel or parallel hybrid or hybrid series. The magnetic capacitor applied in this embodiment is an energy storage component that uses a germanium semiconductor as a raw material to realize high-density, large-capacity-quantity storage of electrical energy through a physical energy storage method under a certain magnetic field. Moreover, the magnetic capacitor has the characteristics of large output current, small volume, light weight, long service life, good charge and discharge capability, and no charge memory effect, so it is used as a backup power supply device to replace the conventional lead. The acid battery pack can reduce the size, weight and manufacturing cost of the backup power supply device 200, and can realize the maintenance-free system and the system life. Referring to FIG. 2, since conventional energy storage media (for example, conventional batteries or supercapacitors) mainly use chemical energy for energy storage, their energy storage density will be significantly better than general capacitance, and can be applied to various electric powers. Supply device, but at the same time, the instantaneous power output that can be generated by the party is limited to the chemical reaction rate, but can not be quickly charged and discharged or high power output, and the number of charge and discharge is limited, and it is easy to breed various problems when overcharge and discharge. . In contrast, since all the energy stored in the magnetic capacitor is stored in the form of potential energy, 'in addition to having an energy storage density that can be matched with a general battery or a super-parameter capacitor, the characteristics of the capacitor are sufficiently retained. It has long life (high charge and discharge times), no memory effect, high power output, fast charge and discharge, etc., so it can effectively solve various problems encountered in current batteries. Referring to Fig. 3, the magnetic capacitor 4 includes a first magnetic electrode 410, a second magnetic electrode, and a dielectric layer 430 therebetween. The first magnetic electrode and the second magnetic electrode are made of a magnetic conductive material, and the magnetic field 10 201010240 is formed by a suitable applied electric field to form a magnetic body in the first magnetic electrode 410 and the second magnetic electrode 420 respectively. The dipoles (Magenetlc DiP〇le) 415 and 425 are used to form a magnetic field inside the magnetic capacitor 4, which affects the movement of the charged particles, thereby suppressing the leakage current of the magnetic capacitor 400. It is particularly emphasized that the direction of the heads of the magnetic dipoles 415 and 425 in Fig. 3 is only a schematic view. It will be appreciated by those skilled in the art that the magnetic dipole 415 425 is actually superposed by a plurality of closely arranged micro magnetic dipoles, and in the present invention, the magnetic dipoles 415 and 425 are finally 〇 The direction of the ¥ is not limited, for example, it can point to the same direction or different directions. The dielectric layer 430 is used to separate the first magnetic electrode 4 [the second magnetic electrode 420] to accumulate charges at the first magnetic electrode 41 and the second magnetic electrode 42 () to store potential energy. In a tenth embodiment of the present invention, the first magnetic electrode 410 and the second magnetic electrode 42 are made of a magnetic conductive material, such as a rare earth X*, and the dielectric layer 430 is made of titanium oxide (Ti〇3). Titanium
BaTi〇3)或一半導體層’例如氧化梦(仙帽㈣和)所構 成,然而本發明並不限於此,因此第一磁性電極4i〇、第二 ⑩ 磁性電極420與介電層430均可視產品之需求而選用適當 之其他材料。 比喻說明本發明磁性電容之操作原理如下。物質在一 定磁場下電阻改變的現象,稱為「磁阻效應」,磁性金屬和 合金材料一般都有這種磁電阻現象,通常情況下,物質的 電阻率在磁場中僅產生輕微的減小;在某種條件下,電阻 率減小的幅度相當大,比通常磁性金屬與合金材料的磁電 阻值高出10倍以上,而能夠產生很龐大的磁阻效應。若是 11 201010240 進一步結合Maxwell-Wagner電路模型,磁性顆粒複合介質 中也可能會產生很龐大的磁電容效應。 · 在習知電容中’電容值C係由電容之面積a、介電層 · 之介電$數f。、及厚度d決定’如下式所示。 Q __ £〇£r^ ^~d~ 然而在本發明中’磁性電容400主要利用第一磁性電 極410與第二磁性電極420中整齊排列的磁偶極來形成磁 场來’使内部儲存的電子朝同一自旋方向轉動,進行整 的排列’故可在同樣條件下’容納更多的電荷,進而增加 能量的儲存密度。類比於習知電容,磁性電容400之運作 原理相當於藉由磁場之作用來改變介電層43〇之介電常數 ’故而造成電容值之大幅提升。 此外,在本實施例中,第一磁性電極41〇與介電層43〇 之間的介面431以及第二磁性電極420與介電層430之間 的介面432均為一不平坦的表面,使得介面431與介面432 的面積相較於一般平坦的表面其表面積A更大,而能進一❹ 步提升磁性電容400之電容值〇 請參考圖4,本發明之另一實施例中第一磁性電極41〇 之結構示意圖。如圖4所示,第一磁性電極41〇係為一多 層結構,包含有一第一磁性層412、一隔離層414以及一第 二磁性層416。其中隔離層414係由非磁性材料所構成而 第-磁性層412與第二磁性層416則包含有具磁性的導電 材料,並在磁化時,藉由不同的外加電場,使得第一磁性 12BaTi〇3) or a semiconductor layer such as oxidized dream (Fan (4) and), however, the present invention is not limited thereto, and thus the first magnetic electrode 4i, the second 10 magnetic electrode 420, and the dielectric layer 430 are both visible. Use other materials as appropriate for the product's needs. The analogy shows that the operating principle of the magnetic capacitor of the present invention is as follows. The phenomenon that the resistance of a substance changes under a certain magnetic field is called the "magnetoresistive effect". Magnetic metal and alloy materials generally have such a magnetoresistance phenomenon. Generally, the resistivity of a substance is only slightly reduced in a magnetic field; Under certain conditions, the magnitude of the decrease in resistivity is quite large, which is more than 10 times higher than the magnetic resistance of conventional magnetic metals and alloy materials, and can produce a very large magnetoresistance effect. If 11 201010240 is further combined with the Maxwell-Wagner circuit model, a large magnetic capacitance effect may also occur in the magnetic particle composite medium. · In the conventional capacitor, the capacitance value C is the area a of the capacitor and the dielectric number f of the dielectric layer. And the thickness d is determined as shown in the following formula. Q __ £〇£r^ ^~d~ However, in the present invention, the magnetic capacitor 400 mainly uses the magnetic dipoles arranged in the first magnetic electrode 410 and the second magnetic electrode 420 to form a magnetic field to 'make the internally stored electrons. Rotating in the same direction of rotation, the entire arrangement 'so that under the same conditions' can accommodate more charge, thereby increasing the storage density of energy. Analogous to conventional capacitors, the principle of operation of the magnetic capacitor 400 is equivalent to changing the dielectric constant of the dielectric layer 43 by the action of a magnetic field, thereby causing a substantial increase in the capacitance value. In addition, in the embodiment, the interface 431 between the first magnetic electrode 41 and the dielectric layer 43 and the interface 432 between the second magnetic electrode 420 and the dielectric layer 430 are both uneven surfaces, so that The area of the interface 431 and the interface 432 is larger than the surface area of the generally flat surface, and the capacitance of the magnetic capacitor 400 can be further increased. Referring to FIG. 4, the first magnetic electrode in another embodiment of the present invention. A schematic diagram of the structure of 41〇. As shown in FIG. 4, the first magnetic electrode 41 is a multi-layer structure including a first magnetic layer 412, an isolation layer 414, and a second magnetic layer 416. The isolation layer 414 is made of a non-magnetic material, and the first magnetic layer 412 and the second magnetic layer 416 comprise a magnetic conductive material, and the magnetism is made by a different applied electric field to make the first magnetic 12
201010240 層412與第二磁性層414中的磁偶極413與417分 不同的方向,例如在本發明之—較 4具有 較佳實施例中,磁偶極413 、古、肖係為反向’而能進一步抑制磁性電容之 漏電流。此外,f要_較,磁性電極41G之結構並不 =述之三層結構,而可以類似之方式,以複數個磁性 d磁f生層不斷交錯堆疊,再藉由各磁性層内磁偶極方 向的調整來進一步抑制磁性電容_ <漏電流,甚至達到 幾乎無漏電流的效果。 此外,由於習知儲能元件多半以化學能的方式進行储 存’因此都需要有一定的尺寸,否則往往會造成储量效率 的大t田下降。相較於此’本發明之磁性電容侧係以電位 能的方式進行儲存,且因所使用之材料可適用於半導體製 程,故可藉由適當的半導體製程來形成磁性電容4〇〇以及 周邊電路連接,進而縮小磁性電容4〇〇之體積與重量,由 於此製作方法可使用一般半導體製程達成的,故在此不予 贅述。 請參考圖5,圖5為本發明另一實施例中一磁性電容組 5〇〇之不意圖。承前所述,在本實施例中,係利用半導體製 程於一矽基板上製作複數個小尺寸的磁性電容4〇〇,並藉由 適^的金屬化製程,於該複數個磁性電容4〇〇間形成電連 接’從而構成一個包含有多個磁性電容4〇〇的磁性電容組 500 ’再以磁性電容組500作為能量儲存裝置或外部裝置的 電力供應來源。在本實施例中,磁性電容組5〇〇内的複數 個磁性電容400係以類似陣列的方式電連接,然而本發明 13 201010240 並不限於此,而可根據不同的電壓或電容值需求,進行適 當的串聯、並聯或串並聯方式組成,以滿足各種不同裝置 的電力供應需求。 測試典故障保謹 回歸參閱圖1,每一磁性電容單元1具有一第一端和一 第二端’且該第一工作開關11可切換地將一第一節點\1電 連接到該磁性電容單元1的第一端,該第二工作開關12可 切換地將一第二節點x2電連接到該磁性電容單元1的第二 端’該隔離開關13可切換地將該第一節點xl電連接到該❿ 第二節點x2。且該第一節點χΐ和該第二節點χ2分別電連 接至該工作匯流排上,並分別接收工作電壓ν+和ν_。 而該第一測試開關14可切換地將一第三節點yl電連 接到該磁性電容單元1的第一端,該第二測試開關15可切 換地將一第四節點y2電連接到該磁性電容單元1的第二端 ’第二測式開關1 6可切換地將該第三節點y 1電連接到該 第四節點y2 »且該第三節點yi和該第四節點y2分別電連 接至該測試匯流排上,並接收測試電壓VT+和γτ_。 1.離線測試(Off-line Testing)棋式 參閱圖1’當該磁性電容單元1於一離線測試模式時, 該控制器17控制該隔離開關13、第一測試開關14、第二 測試開關15為導通狀態,而第一工作開關丨丨、第二工作開 關12與該第二測试開關16為不導通狀態。因此該磁性電 容單元11可經由第一測試開關14和第二測試開關丨5接收 由該測試匯流排傳來的測試訊號,以用於測試該磁性電容 14 201010240 單^1疋否故障,且也經由第―測試開關和第二測試開關 將測得的輸出訊號輸出至該測試匯流排。詳細實施方式可 為丄該測試訊號為一種參寺電壓,並經過一段足以令磁性 電容單元1充電完成的時間之後’―外部測試裝置經由該 測試匯流排測得該磁性電容單元i之輸出訊號(如:充電電 壓值)’若充電電壓實質上等於該參考電壓或是差距在一誤 差範圍内’則判斷該磁性電容單A1正常,否則,則為故 障。 ΟThe 201010240 layer 412 and the magnetic dipoles 413 and 417 in the second magnetic layer 414 are in different directions. For example, in the preferred embodiment of the present invention, the magnetic dipole 413, the ancient and the Xiao system are reversed. The leakage current of the magnetic capacitor can be further suppressed. In addition, the structure of the magnetic electrode 41G is not the three-layer structure described above, but in a similar manner, a plurality of magnetic d-magnetic layers are continuously staggered and stacked, and magnetic dipoles in each magnetic layer are further The direction is adjusted to further suppress the magnetic capacitance _ < leakage current, even to achieve almost no leakage current effect. In addition, since conventional energy storage components are mostly stored in a chemical energy manner, they all need to have a certain size, otherwise the large-scale field of the storage efficiency tends to decrease. The magnetic capacitor side of the present invention is stored in a potential energy manner, and since the material used can be applied to a semiconductor process, the magnetic capacitor 4 〇〇 and the peripheral circuit can be formed by a suitable semiconductor process. The connection and the reduction of the volume and weight of the magnetic capacitor 4 , are achieved because the manufacturing method can be achieved using a general semiconductor process, and thus will not be described herein. Please refer to FIG. 5. FIG. 5 is a schematic diagram of a magnetic capacitor group according to another embodiment of the present invention. As described above, in the present embodiment, a plurality of small-sized magnetic capacitors 4 are fabricated on a substrate by a semiconductor process, and the plurality of magnetic capacitors are used in the plurality of magnetic capacitors by a suitable metallization process. An electrical connection is formed to form a magnetic capacitor group 500' including a plurality of magnetic capacitors 4', and the magnetic capacitor group 500 is used as a power supply source for the energy storage device or the external device. In this embodiment, the plurality of magnetic capacitors 400 in the magnetic capacitor group 5 are electrically connected in an array-like manner. However, the present invention 13 201010240 is not limited thereto, and may be performed according to different voltage or capacitance values. It is composed of appropriate series, parallel or series-parallel to meet the power supply requirements of various devices. Test Code Fault Recovery Referring to Figure 1, each magnetic capacitor unit 1 has a first end and a second end ' and the first working switch 11 switchably electrically connects a first node \1 to the magnetic capacitor a first end of the unit 1, the second working switch 12 is switchably electrically connected to a second node x2 to the second end of the magnetic capacitor unit 1. The isolating switch 13 is switchably electrically connected to the first node x1 Go to the second node x2. And the first node χΐ and the second node χ2 are electrically connected to the working bus, respectively, and receive the working voltages ν+ and ν_, respectively. The first test switch 14 can switchably electrically connect a third node yl to the first end of the magnetic capacitor unit 1. The second test switch 15 can switchably electrically connect a fourth node y2 to the magnetic capacitor. The second end of the unit 1 'the second mode switch 16 is switchably electrically connected to the third node y 1 to the fourth node y2 » and the third node yi and the fourth node y2 are electrically connected to the Test the bus and receive the test voltages VT+ and γτ_. 1. Off-line Testing FIG. 1 'When the magnetic capacitor unit 1 is in an offline test mode, the controller 17 controls the isolating switch 13, the first test switch 14, and the second test switch 15. In the on state, the first working switch 丨丨, the second working switch 12 and the second test switch 16 are in a non-conducting state. Therefore, the magnetic capacitor unit 11 can receive the test signal transmitted from the test bus via the first test switch 14 and the second test switch 丨 5 for testing whether the magnetic capacitor 14 201010240 is faulty, and The measured output signal is output to the test bus via the first test switch and the second test switch. The detailed implementation may be that the test signal is a voltage of a temple and after a period of time sufficient for the magnetic capacitor unit 1 to be completed, the external test device detects the output signal of the magnetic capacitor unit i via the test bus ( For example: charging voltage value) 'If the charging voltage is substantially equal to the reference voltage or the gap is within an error range', then the magnetic capacitor single A1 is judged to be normal, otherwise, it is a fault. Ο
…當此磁性電容單元1與其他電路元件(如:其他磁性電 谷單元1)一起使用時,因為該隔離開關123為導通狀態, 因此^田該磁性電容單元丨i在測試模式時,測試中的磁性 電容單元1可以被隔離於其他電路元件的迴路之外,亦即 其他電路元件將不會受到影響而仍可以進行其他工作。第 二實施例將會對此再舉實例說明。 2·連線測試(On-line Testing)棋式 參閲圖6,除了可採取上述的離線測試模式外,也可採 用連線賴的方式。於連線測試時,該控制H 17控制第一 工作開關11、第二卫作開關12、第一測試開關14、第二測 試開關15為導通,且控制隔離開關13及第三測試開關16 不導通。 因此該工作匯流排之工作電壓可傳至該磁性電容單元1 上,而可由該測試匯流排測得該磁性電容單元1的電壓變 化情形’進一步判定該磁性電容單元1是否發生故障。 離線測試與連線測試最大的不同點在於,測試時是否 15 201010240 有將該待測磁性電容單 外部測試裝置為一個電 :匯流排上脫離,如果該 此時需要將該磁性電容單磁性電容測試裝置,則 線測試的方式進行測試,二作匯流排脫離,以離 .. 避免工作匯流排上面的電源對兮 卜。P測試裝置回沖導致該卜 測試裝置為…“ 置知毁,而當該外部 > 自動化測試設備(ATE Machine)或是—可在 高電壓條件下崎量敎電㈣時,料,可錢用連線 測<4方式朴測試。所以,本發明將匯流排分心工作匯 流排及-測試匯流排的主要目的,就是用來確保測試電路 與工作電路不會互相干擾,纟中,最大的原因還是避免工 作匯流排將高電壓輸出到無法耐高壓的外部測試裝置上, 導致該外部測試裝置毀損。 3·工作棋式 參閱圖7,當該磁性電容單元丨於一工作模式下且該磁 性電容單元1沒有故障時,該控制器17控制第一工作開關 11和第二工作開關12導通,且控制該隔離開關13、第一測 試開關14和第二測試開關15不導通,因此磁性電容單元1 ◎ 可正常工作。 參閱圖8,當該磁性電容單元1於一工作模式下但該磁 性電容單元1故障時,該控制器17控制隔離開關13導通, 且控制第一工作開關11、第二工作開關12、第一測試開關 14、第二測試開關15不導通。此時’該隔離開關13會在第 一節點xl與第二節點x2間形成一短路路徑。當此磁性電容 單元1與其他電路元件(如:其他磁性電容單元1) 一起使 16 201010240 用時,故障的磁性電容單元丨可以有效的被隔離於其他電路 元件的迴路之外,進而保護其他電路元件,也就是說其他電 路元件將不會受到故障的磁性電容單元丨影響,以下將會對 此再詳細說明。 笫二敕佳膏施例 第二較佳實施例與第一實施例類似,不同的地方在於 將第一實施例中所述之電路模組組合多個一起使用。在本 實施例,以組合三個為例,但實際應用上並不限於此。 參閱圖9,第二實施例之具保護功能的電源裝置包括: 三個磁性電容單元91、92、93、三個第一工作開關911、 921、931、二個第二工作開關912、922、932、三個隔離開 關913、923、933、三個第一測試開關914、924、934、三 個第二測試開關915、925、935、三個第三測試開關916、 926、936及一控制器,且為了清楚說明,圖中省略不畫出 控制器。 第一工作開關911可切換地將節點χΐ電連接到該磁性 電容單元1的第一端’第二工作開關912可切換地將節點 x2電連接到該磁性電容單元91的第二端;第一工作開關 921可切換地將節點χ2電連接到該磁性電容單元92的第一 端’第二工作開關922可切換地將節點χ3電連接到該磁性 電容單元92的第二端;第一工作開關931可切換地將節點 x3電連接到該磁性電容單元93的第一端,第二工作開關 932可切換地將節點X4電連接到該磁性電容單元2的第二 端。該隔離開關913可切換地將節點xl電連接到節點χ2, 17 201010240 該隔離開關923可切換地將節點χ2電連接到節點χ3,該隔 離開關933可切換地將節點χ3電連接到節點χ4。且該等節 點X1和x4分別電連接至該工作匯流排並接收工作電壓 和V-0When the magnetic capacitor unit 1 is used together with other circuit components (such as other magnetic grid cells 1), since the isolation switch 123 is in an on state, the magnetic capacitor unit 丨i is in the test mode during the test. The magnetic capacitor unit 1 can be isolated from the loop of other circuit components, that is, other circuit components will not be affected and other operations can be performed. The second embodiment will be described again by way of example. 2. On-line Testing Chess Refer to Figure 6. In addition to the above-mentioned offline test mode, you can also use the connection method. During the connection test, the control H 17 controls the first working switch 11 , the second working switch 12 , the first test switch 14 , and the second test switch 15 to be turned on, and the control isolating switch 13 and the third test switch 16 are not Turn on. Therefore, the operating voltage of the working bus can be transmitted to the magnetic capacitor unit 1, and the voltage change of the magnetic capacitor unit 1 can be measured by the test busbar to further determine whether the magnetic capacitor unit 1 has failed. The biggest difference between the offline test and the connection test is whether the test is performed on the 15 201010240. The external test device for the magnetic capacitor to be tested is one electric: the bus bar is separated, if the magnetic capacitor single magnetic capacitor test is required at this time. The device is tested in the form of line test, and the second is used to separate the bus bar to avoid the power supply on the work bus. The P test device backflush causes the test device to be "destroyed, and when the external > ATE Machine or - can be used under high voltage conditions (4), it can be used for money. The connection test is <4 mode test. Therefore, the main purpose of the present invention is to separate the busbar work bus and the test busbar to ensure that the test circuit and the work circuit do not interfere with each other, the largest, The reason is to prevent the working bus from outputting high voltage to an external test device that cannot withstand high voltage, which causes the external test device to be damaged. 3. Working chess type Referring to Fig. 7, when the magnetic capacitor unit is in a working mode and the magnetic When the capacitor unit 1 has no fault, the controller 17 controls the first working switch 11 and the second working switch 12 to be turned on, and controls the isolating switch 13, the first test switch 14 and the second test switch 15 to be non-conducting, so the magnetic capacitor unit 1 ◎ can work normally. Referring to FIG. 8, when the magnetic capacitor unit 1 is in an operation mode but the magnetic capacitor unit 1 is faulty, the controller 17 controls the isolation switch 13 to be turned on. And controlling the first working switch 11, the second working switch 12, the first test switch 14, and the second test switch 15 to be non-conducting. At this time, the isolation switch 13 forms a gap between the first node x1 and the second node x2. Short circuit path. When the magnetic capacitor unit 1 is used with other circuit components (such as other magnetic capacitor unit 1) for 16 201010240, the faulty magnetic capacitor unit 有效 can be effectively isolated from the loop of other circuit components, and further Protecting other circuit components, that is, other circuit components will not be affected by the faulty magnetic capacitor unit, as will be described in more detail below. 笫二敕佳膏 Example Second Preferred Embodiment and First Embodiment Similarly, the difference is that the circuit modules described in the first embodiment are combined and used in combination. In the embodiment, three are combined, but the practical application is not limited thereto. Referring to FIG. 9, the first The power supply device with the protection function of the second embodiment includes: three magnetic capacitor units 91, 92, 93, three first working switches 911, 921, 931, and two second working switches 912, 922. 932, three isolation switches 913, 923, 933, three first test switches 914, 924, 934, three second test switches 915, 925, 935, three third test switches 916, 926, 936 and a control For the sake of clarity, the controller is omitted from the drawing. The first working switch 911 can switchably connect the node χΐ to the first end of the magnetic capacitor unit 1 'the second working switch 912 can switch the node X2 is electrically connected to the second end of the magnetic capacitor unit 91; the first working switch 921 is switchably electrically connected to the first end of the magnetic capacitor unit 92. The second working switch 922 can switch the node χ3 electrically. Connected to the second end of the magnetic capacitor unit 92; the first working switch 931 can switchably electrically connect the node x3 to the first end of the magnetic capacitor unit 93, and the second working switch 932 can switchably electrically connect the node X4 to The second end of the magnetic capacitor unit 2. The isolating switch 913 can switchably electrically connect the node x1 to the node χ2, 17 201010240. The isolating switch 923 can switchably electrically connect the node χ2 to the node χ3, which can switchably electrically connect the node χ3 to the node χ4. And the nodes X1 and x4 are electrically connected to the working bus and receive the working voltage and V-0, respectively.
而第一測試開關914可切換地將節點yl電連接到該磁 性電容單元91的第一端,第二測試開關915可切換地將節 點y2電連接到該磁性電容單元91的第二端。而第一測試 開關924可切換地將節點y2電連接到該磁性電容單元92 的第一端,第二測試開關925可切換地將節點y3電連接到 @ 該磁性電容單元92的第二端。而第一測試開關934可切換 地將節點y3電連接到該磁性電容單元93蝻第一端,第二 測試開關93 5可切換地將節點y4電連接到該磁性電容單元 93的第二端《且第三測試開關916可切換地將節點yl電連 接到節點y2,第三測試開關926可切換地將節點y2電連接 到節點y3,第三測試開關936可切換地將節點y3電連接到 節點y4。且該等節點y 1和y4分別電連接至該測試匯流排 並接收測試電壓Vt+和VT-。 Q 參閲圖10’當該磁性電容單元92進行離線測試模式, 且磁性電容單元91和93仍維持正常工作模式下時,該控 制器控制第一工作開關911、931、第二工作開關912、932 、隔離開關923、第三測試開關916、936導通,且控制第 一工作開關921、第二工作開關922、隔離開關913、933、 第一測試開關914、934、第二測試開關915、935、第三測 試開關926不導通。 18 201010240 -· 因此,磁性電容單元92可被隔離於工作匯流排的迴路 . 之外,以利用測試匯流排來進行是否故障的測試,且測試 的方式如第一實施例所述。而同時,磁性電容單元91、93 仍可經由工作匯流排正常工作,而不會受到影響。 參閱圖11,當該磁性電容單元92進行連線測試模式, 且磁性電容單元9丨和93仍維持正常工作模式下時,該控 制器控制第一工作開關911、921、931、第二工作開關912 922、932、第三測試開關916、936、第一測試開關924 ❿ 、第一測試開關925導通。且控制隔離開關913、923、933 、第一測試開關914、934、第二測試開關915、935、第三 測試開關926不導通。 測域中的磁性電容單元經由工作匯流排接收工作電壓 以作為測試用,且經由第一測試開關924和第二測試開關 925輸出訊號到測試匯流排,以進行是否故障的測試,且測 试的方式如第一實施例所述。而同時,磁性電容單元91、 93仍可經由工作匯流排正常工作不會受到影響。 ® 參閱圖12,當磁性電容單元91-93都於工作模式,但 已判斷出磁性電容單元92故障,且磁性電容單元91、93 沒有故障時’該控制器控制第一工作開關911、931、第二 工作開關912、932、隔離開關923導通。且控制第一工作 開關921、第二工作開關922、隔離開關913、933、所有測 試開關都不導通914〜916、924〜926、934~936不導通。 因此故障的磁性電容單元92可被隔離於工作匯流排的 迴路之外以保護其他電路元件,且沒有故障的磁性電容單 19 201010240 元91、93仍可透過工作匯流排正常工作。 第三較倕f爐你| 參閱圖13、14,第三實施例的電路連接關係與第二實’ 施例類似,不同的地方在於該等開關的導通狀態。當該等 磁性電容單元91〜93都操作於工作狀態時,該控制器可藉 由控制該等開關的導通與否,來改變該等磁性電容單元 91〜93之串並聯關係,因此可在原有電路結構下,輕易完成 磁性電谷單元串聯或並聯,以利在同一架構的大量生產下 仍可達到多樣化的應用。 參閲圖13中的開關導通狀態,該磁性電容單元91之 第一端,經由該等開關911、913、921的導通而與該磁性電 容單元92之第一端電連接,而該磁性電容單元91之第二 端,經由該等開關915、926、925的導通而與該磁性電容 單元92之第二端電連接,因此該磁性電容單元91、92為 並聯關係,同時,該磁性電容單元92之第二端經由該等開 關922、931的導通,與該磁性電容單元93之第一端電連 接,因此,該磁性電容單元93與並聯後的該等磁性電容單❿ 元91、92電連接。 參閱圖14中的開關導通狀態,該磁性電容單元91之 第一端,經由該等開關911、913、921的導通,與該磁性電 容單元92之第一端電連接,同時,經由該等開關911913 、923、931的導通,與該磁性電容單元93之第一端電連接 ,此外,該磁性電容單元91之第二端,經由該等開關915 、926、925的導通,與該磁性電容單元92之第二端電連接 20 201010240 :同時,經由該等開關915、926、936、935的導通,與該 磁性電容單it 93之第二端電連接,因此,該等磁性電 元91〜93為並聯關係。 綜上所述,本發明利用磁性電容單元做為儲能元件, 取代傳統電源裝置’不但可以減少電源裝置的整體體積、 重量,並提咼忐量儲存效率、儲存容量和使用壽命,實現 免維遵,避免化學儲能存在的記憶效應和污染問題;同時 配合數個開關,即可以有效率的進行測試,且當其他一磁 性電容單元於測試狀態時,其他電路元件(如:其他磁性電 路單元)仍可正常工作,同時,本發明也可於故障發生時快 速切換以隔離故障的磁性電容單元,使得其餘正常的磁性 電谷單仍可持續工作,因此可以大幅降低生產及維護成 本此外,配合一工作匯流排及一測試匯流排的設計,在 進打測試時,可以根據各種不同的外部測試裝置,以連線 測試或是離線測試的方式,完成該磁性電容單元的測試, 當該磁性電容單元以半導體製程製作時,本發明中的其他 儿件(如:開關)亦可隨之以半導體製程製作,因而在生 產更有效率。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是本發明之具保護功能的電源裝置之電路圖; 21 201010240 圖2是本實施例之磁性電容與其他習知能量儲存媒介 之比較示意圖; 圖3是本實施例中磁性電容之結構示意圖; 圖4是本實施例之磁性電容另一實施例中第一磁性電 極之結構示意圖; 圖5是本發明另一實施例中一磁性電容單元組之示竟 圖; 圖6是本發明之第一較佳實施例之連線測試模式電路 圃,The first test switch 914 can switchably electrically connect the node yl to the first end of the magnetic capacitor unit 91, and the second test switch 915 can switchably electrically connect the node y2 to the second end of the magnetic capacitor unit 91. The first test switch 924 can switchably electrically connect the node y2 to the first end of the magnetic capacitor unit 92, and the second test switch 925 can switchably connect the node y3 to the second end of the magnetic capacitor unit 92. The first test switch 934 can switchably electrically connect the node y3 to the first end of the magnetic capacitor unit 93, and the second test switch 935 can switchably connect the node y4 to the second end of the magnetic capacitor unit 93. And the third test switch 916 can switchably electrically connect the node y to the node y2, the third test switch 926 can switchably electrically connect the node y2 to the node y3, and the third test switch 936 can switchably connect the node y3 to the node Y4. And the nodes y 1 and y4 are electrically connected to the test bus and receive test voltages Vt+ and VT-, respectively. Q Referring to FIG. 10', when the magnetic capacitor unit 92 performs the offline test mode, and the magnetic capacitor units 91 and 93 remain in the normal operation mode, the controller controls the first work switches 911, 931, the second work switch 912, 932, the isolation switch 923, the third test switch 916, 936 are turned on, and control the first working switch 921, the second working switch 922, the isolating switch 913, 933, the first test switch 914, 934, the second test switch 915, 935 The third test switch 926 is not turned on. 18 201010240 - Therefore, the magnetic capacitor unit 92 can be isolated from the circuit of the working busbar. In addition, the test is performed by using the test busbar, and the test is performed as described in the first embodiment. At the same time, the magnetic capacitor units 91, 93 can still work normally through the working busbar without being affected. Referring to FIG. 11, when the magnetic capacitor unit 92 performs the connection test mode, and the magnetic capacitor units 9A and 93 remain in the normal operation mode, the controller controls the first work switches 911, 921, 931, and the second work switch. 912 922, 932, third test switch 916, 936, first test switch 924 ❿, first test switch 925 are turned on. And the control disconnecting switches 913, 923, 933, the first test switches 914, 934, the second test switches 915, 935, and the third test switch 926 are not turned on. The magnetic capacitor unit in the measurement domain receives the working voltage via the working bus bar for testing, and outputs a signal to the test bus via the first test switch 924 and the second test switch 925 to perform a test for failure, and the test The mode is as described in the first embodiment. At the same time, the magnetic capacitor units 91, 93 can still operate normally via the working busbar without being affected. ® Referring to FIG. 12, when the magnetic capacitor units 91-93 are in the operating mode, but it has been determined that the magnetic capacitor unit 92 is faulty, and the magnetic capacitor units 91, 93 are not faulty, the controller controls the first working switches 911, 931, The second working switches 912, 932 and the isolating switch 923 are turned on. And the first working switch 921, the second working switch 922, the isolating switches 913, 933, and all the test switches are not turned on 914~916, 924~926, 934~936 are not turned on. Therefore, the faulty magnetic capacitor unit 92 can be isolated from the circuit of the working busbar to protect other circuit components, and the faultless magnetic capacitor can still operate normally through the working busbar. Third, the furnace is similar to the second embodiment, with the exception of the conduction state of the switches. Referring to Figures 13 and 14, the circuit connection relationship of the third embodiment is similar to that of the second embodiment. When the magnetic capacitor units 91 to 93 are all operated, the controller can change the parallel connection relationship of the magnetic capacitor units 91 to 93 by controlling whether the switches are turned on or off. Under the circuit structure, the magnetic electric valley cells can be easily connected in series or in parallel, so that various applications can be achieved under the mass production of the same architecture. Referring to the switch on state of FIG. 13, the first end of the magnetic capacitor unit 91 is electrically connected to the first end of the magnetic capacitor unit 92 via the conduction of the switches 911, 913, and 921, and the magnetic capacitor unit The second end of the 91 is electrically connected to the second end of the magnetic capacitor unit 92 via the conduction of the switches 915, 926, and 925. Therefore, the magnetic capacitor units 91 and 92 are in a parallel relationship, and the magnetic capacitor unit 92 is simultaneously The second end is electrically connected to the first end of the magnetic capacitor unit 93 via the switches 922 and 931. Therefore, the magnetic capacitor unit 93 is electrically connected to the parallel magnetic capacitor units 91 and 92. . Referring to the switch on state of FIG. 14, the first end of the magnetic capacitor unit 91 is electrically connected to the first end of the magnetic capacitor unit 92 via the switches 911, 913, and 921, and simultaneously through the switches. The conduction of 911913, 923, and 931 is electrically connected to the first end of the magnetic capacitor unit 93, and the second end of the magnetic capacitor unit 91 is electrically connected to the magnetic capacitor unit via the switches 915, 926, and 925. The second end of the 92 is electrically connected to the second terminal of the magnetic capacitor unit it 93. Therefore, the magnetic terminals 91 to 93 are electrically connected to each other through the conduction of the switches 915, 926, 936 and 935. It is a parallel relationship. In summary, the present invention utilizes a magnetic capacitor unit as an energy storage component, replacing the conventional power supply device, which not only reduces the overall volume and weight of the power supply device, but also improves the storage efficiency, storage capacity, and service life. Compliance, avoiding the memory effect and pollution problem of chemical energy storage; at the same time, with several switches, it can be tested efficiently, and when other magnetic capacitor units are in the test state, other circuit components (such as other magnetic circuit units) It can still work normally. At the same time, the invention can also quickly switch to isolate the faulty magnetic capacitor unit when the fault occurs, so that the rest of the normal magnetic electric grid can still work continuously, so the production and maintenance costs can be greatly reduced. The design of a working bus and a test bus can be completed in the test of the magnetic capacitor unit according to various external test devices according to various external test devices, when the magnetic capacitor is tested. When the unit is fabricated in a semiconductor process, other parts of the invention (eg, open It can also be produced in a semiconductor process, which makes it more efficient in production. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a power supply device with a protection function according to the present invention; 21 201010240 FIG. 2 is a schematic diagram of comparison between a magnetic capacitor of the present embodiment and other conventional energy storage media; FIG. 3 is a schematic view of the present embodiment. FIG. 4 is a schematic structural view of a first magnetic electrode in another embodiment of the magnetic capacitor of the embodiment; FIG. 5 is a schematic diagram of a magnetic capacitor unit in another embodiment of the present invention; Is a connection test mode circuit of the first preferred embodiment of the present invention,
圖7是本發明之第一較佳實施例之工作模式電路圖; 圖8是本發明之第一較佳實施例在工作模式下隔離故 障磁性電容單元之電路圖; 圖9是本發明之第二較佳實施例之電路圖; 圖10是本發明之第二較佳實施例進行離線測試模式之 電路圖;Figure 7 is a circuit diagram showing the operation mode of the first preferred embodiment of the present invention; Figure 8 is a circuit diagram of the isolated magnetic capacitor unit in the operating mode according to the first preferred embodiment of the present invention; Figure 9 is a second comparison of the present invention. FIG. 10 is a circuit diagram of an offline test mode according to a second preferred embodiment of the present invention; FIG.
圖11是本發明之第二較佳實施例進行連線測試模式之 電路圖; 圖12是本發明之第二較佳實施例隔離故障磁性電容單 元之電路圖; 圖13是本發明之第三較佳實施例於工作模式下時改 變該等磁性電容單元串、並聯組態之範例;及 圖14是本發明之第三較佳實施例於工作模式下時,改 變該等磁性電容單元串、並聯組態之另一範例。 22 201010240Figure 11 is a circuit diagram of a connection test mode according to a second preferred embodiment of the present invention; Figure 12 is a circuit diagram of an isolated faulty magnetic capacitor unit according to a second preferred embodiment of the present invention; and Figure 13 is a third preferred embodiment of the present invention. The embodiment changes the string and parallel configuration of the magnetic capacitor units in the working mode; and FIG. 14 is a third and preferred embodiment of the present invention, when the operating mode is changed, the magnetic capacitor unit strings and parallel groups are changed. Another example of the state. 22 201010240
【主要元件符號說明】 1 ····. ••…磁性電容單元 91…… •…磁性電容單元 11 ···· ••…第一工作開關 911… •…第一工作開關 12···· ••…第二工作開關 912… •…第二工作開關 13···· ••…隔離開關 913… •…隔離開關 14···. ••…第一測試開關 914… •…第一測試開關 15···· ••…第二測試開關 915… …·第二測試開關 16.··· ••…第三測試開關 916… •…第三測試開關 17··.· …·.控制器 92····. •…磁性電容單元 400 ·· ……磁性電容 921 ··· •…第一工作開關 410 .· ••…第一磁性電極 922… •…第二工作開關 412 ·· .....第 磁性層 923… •…隔離開關 413 ·· .....磁偶極 924… •…第一測試開關 414 ·· ••…隔離層 925… •…第二測試開關 415 *· …··磁偶極 926… …·第三測試開關 416 .· .....第二磁性層 93…… •…磁性電容單元 417 .· .....磁偶極 931… •…第一工作開關 420 ·· .....第 >一磁性電極 932… •…第二工作開關 425 .· .....磁偶極 933… •…隔離開關 430 ·. ••…介電層 934… •…第一測試開關 431、 432介面 935… •…第二測試開關 500 ·. .....磁性電容單元組 936… •…第三測試開關 23[Description of main component symbols] 1 ·····••... Magnetic capacitor unit 91... • Magnetic capacitor unit 11 ···· ••...First work switch 911... •...First work switch 12··· · ••...Second work switch 912... •...Second work switch 13···· ••...Isolation switch 913... •...Isolation switch 14···.••...First test switch 914... •...first Test switch 15···· ••...second test switch 915...the second test switch 16.···••...the third test switch 916...•...the third test switch 17··.·...·. Controller 92·····.... Magnetic Capacitor Unit 400··... Magnetic Capacitor 921 ····...First Work Switch 410.·••...First Magnetic Electrode 922...•...Second Work Switch 412· · ..... Magnetic layer 923... •...Isolation switch 413 ···.. Magnetic dipole 924... •...First test switch 414 ·· ••...Isolation layer 925... •...Second test switch 415 *· ...··Magnetic dipole 926...·The third test switch 416.......Second magnetic layer 93... Capacitance unit 417 . . . .. magnetic dipole 931... •...first working switch 420 ····..> a magnetic electrode 932... •...second working switch 425 .... ... ..Magnetic dipole 933... •...Isolation switch 430 ·. ••...Dielectric layer 934... •...First test switch 431, 432 interface 935... •...Second test switch 500 ·..... Magnetic capacitor Unit group 936... •... third test switch 23
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97131721A TW201010240A (en) | 2008-08-20 | 2008-08-20 | Power apparatus with self-protection function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97131721A TW201010240A (en) | 2008-08-20 | 2008-08-20 | Power apparatus with self-protection function |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201010240A true TW201010240A (en) | 2010-03-01 |
Family
ID=44828104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97131721A TW201010240A (en) | 2008-08-20 | 2008-08-20 | Power apparatus with self-protection function |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201010240A (en) |
-
2008
- 2008-08-20 TW TW97131721A patent/TW201010240A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101227104B (en) | Apparatus to store electrical energy | |
JP2004080984A (en) | Battery-containing load leveling | |
US20100046122A1 (en) | Fault protection device | |
US20160197496A1 (en) | Energy devices with ultra-capacitor structures and methods thereof | |
CN101752910A (en) | Power supply device with variable voltage output | |
TW201004110A (en) | Backup power device | |
Monteiro et al. | Efficient supercapacitor energy usage in mobile phones | |
TWI780392B (en) | energy storage system | |
Vasile et al. | EDLC hybrid system with increased lifespan for supplying an UPS | |
WO2013024555A1 (en) | Thin-film capacitor device | |
CN101741105A (en) | Power system and detection method thereof | |
JPWO2005025029A1 (en) | Power storage device and wiring pattern | |
TW201010240A (en) | Power apparatus with self-protection function | |
CN215580553U (en) | High-energy quantum battery | |
KR20140055011A (en) | Capacitor charge and discharge management device and method thereof | |
TW201019561A (en) | Power system | |
TW201019566A (en) | Balance module for power and method thereof | |
WO2022240367A1 (en) | Energy storage system for sustaining power delivery peaks of short and of prolonged duration to electrically driven equipments or machines | |
TW201010224A (en) | Fault protection apparatus | |
TW201018932A (en) | Power system and detecting method thereof | |
CN215580509U (en) | UPS uninterrupted power supply system | |
TW201011319A (en) | Power apparatus and testing method of power array | |
CN101728845A (en) | Power supply system with control mechanism | |
TW201015818A (en) | Power supply system | |
CN101656434A (en) | Power supply device with protective function |