KR20110114476A - 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법 - Google Patents

티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법 Download PDF

Info

Publication number
KR20110114476A
KR20110114476A KR1020110033626A KR20110033626A KR20110114476A KR 20110114476 A KR20110114476 A KR 20110114476A KR 1020110033626 A KR1020110033626 A KR 1020110033626A KR 20110033626 A KR20110033626 A KR 20110033626A KR 20110114476 A KR20110114476 A KR 20110114476A
Authority
KR
South Korea
Prior art keywords
formula
transition metal
polypropylene
ketal
acetal
Prior art date
Application number
KR1020110033626A
Other languages
English (en)
Other versions
KR101384412B1 (ko
Inventor
이분열
박지혜
도승현
김화규
박재영
윤승웅
Original Assignee
호남석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100057102A external-priority patent/KR100986301B1/ko
Application filed by 호남석유화학 주식회사 filed Critical 호남석유화학 주식회사
Publication of KR20110114476A publication Critical patent/KR20110114476A/ko
Application granted granted Critical
Publication of KR101384412B1 publication Critical patent/KR101384412B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 새로운 구조의 전이금속 화합물을 포함하는 촉매의 존재 하에 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법에 관한 것이다.
본 발명에 따른 폴리프로필렌의 제조방법은 새로운 구조의 전이금속 화합물을 촉매로 사용함에 따라, 중합 활성이 높아 공정 효율이 우수할 뿐만 아니라, 중합체의 미세 구조를 쉽게 제어할 수 있어, 원하는 물성을 갖는 폴리프로필렌을 용이하게 제조할 수 있다.

Description

티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법{PROCESS FOR PREPARING POLYPROPYLENE USING TRANSITION METAL COMPOUND COMPRISING THIOPHENE-FUSED CYCLOPENTADIENYL LIGAND}
본 발명은 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용하여 폴리프로필렌을 제조하는 방법에 관한 것이다.
폴리프로필렌은 입체 구조에 따라 아이소탁틱 폴리프로필렌(Isotactic Polypropylene, 이하 'iPP'라 함), 신디오탁틱 폴리프로필렌(Syndiotactic Polypropylene, 이하 'sPP'라 함) 및 아택틱 폴리프로필렌(Atactic Polypropylene, 이하 'aPP'라 함)으로 분류될 수 있다.
그 중 상기 iPP와 sPP는 우수한 기계적 물성과 열적 특성으로 인해, 이에 대한 연구가 진행되어 온 것에 비하여, 상기 aPP는 무질서한 입체규칙성으로 인한 물성 향상의 한계로 인해 상대적으로 상업적 개발이 활발히 이루어지지 못하고 있다.
이러한 aPP는 iPP를 제조하는 슬러리 공정에서 부산물로 지방족 용매의 회수과정에서 분리되거나, 변성 염화티타늄(Ⅲ)과 공촉매 또는 활성화제로서 디에틸 알루미늄 클로라이드와 같은 유기알루미늄 화합물을 사용한 불균일 촉매를 사용하여 제조될 수 있다. 하지만, 입체규칙도가 개선된 iPP공정에서는 비결정성의 aPP가 더 이상 부산물로 생성되지 않으며, 목적에 따라 결정도가 낮은 PP가 생산되더라도, 공단량체를 추가함으로써 얻을 수 있는 한계가 있다.
한편, 최근 다양한 구조의 메탈로센 촉매계를 이용하여 분자량 분포가 좁은 aPP를 제조하는 방법이 제안되고 있으며, 이러한 방법에 이용될 수 있는 메탈로센 촉매계로는 1) Achiral, unbridged metallocene, stereorigid C2v대칭성의 메탈로센 촉매, 2) Meso-이성질체의 ansa메탈로센 촉매, 3) 인데닐고리의 2,2'-위치에 연결다리를 가지는 ansa-C2 대칭성의 메탈로센 촉매, 4) monoCp화합물의 촉매 등을 예로 들 수 있다.
이러한 aPP는 분자량에 따라 물성이 크게 달라지는데, 예를 들어, 중량평균분자량이 15,000 미만인 aPP는 상온에서도 끈적한 상태이기 때문에 사용에 한계가 있어 고분자 재료로의 활용도가 떨어지는 문제점이 있다.
그런데, 앞서 예시한 이전의 메탈로센 촉매계를 이용할 경우 폴리프로필렌에 대한 중합활성이 낮고, 높은 분자량을 갖는 aPP를 얻기 위해서는 비교적 낮은 온도(예를 들면, 20 ℃ 이하)에서 중합을 진행해야 하는 한계가 있다.
이에 본 발명은 촉매 활성이 우수하면서도 고분자량의 aPP를 제조할 수 있는 촉매를 사용하여 폴리프로필렌을 제조하는 방법을 제공하기 위한 것이다.
본 발명은
하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법을 제공한다:
[화학식 1]
Figure pat00001
상기 화학식 1에서,
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이고;
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있으며, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
R11, R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)실릴; (C1-C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12 또는 R12와 R13은 서로 연결되어 고리를 형성할 수 있다.
이때, 상기 화학식 1로 표시되는 전이금속 화합물에서,
상기 M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고; 상기 Q1 및 Q2 는 각각 독립적으로 메틸 또는 염소이며; 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸이고; 상기 R6, R7, R8, R9, R10, R11, R12 및 R13 은 각각 수소인 것이 바람직하다.
한편, 상기 촉매는 하기 화학식 6, 화학식 7 및 화학식 8로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매 화합물을 더 포함할 수 있다:
[화학식 6]
-[Al(R61)-O]a-
상기 화학식 6에서,
R61은 각각 독립적으로 할로겐 라디칼, (C1-C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C1-C20)하이드로카르빌 라디칼이며;
a는 2 이상의 정수이다;
[화학식 7]
D(R71)3
상기 화학식 7에서,
D는 알루미늄 또는 보론이며;
R71은 각각 독립적으로 할로겐 라디칼, (C1-C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C1-C20)하이드로카르빌 라디칼이고;
[화학식 8]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 화학식 8에서,
L은 중성 또는 양이온성 루이스 산이며;
Z는 13족 원소이고;
A는 각각 독립적으로 1 이상의 수소 원자가 할로겐, (C1-C20)하이드로카르빌, (C1-C20)알콕시 또는 (C6-C20)아릴옥시 라디칼로 치환된 (C6-C20)아릴 또는 (C1-C20)알킬 라디칼이다.
상기 조촉매 화합물에 있어서, 상기 화학식 6의 R61은 메틸, 에틸, n-부틸 또는 이소부틸이고; 상기 화학식 7의 D는 알루미늄이고 R71은 메틸 또는 이소부틸이고, 또는 D는 보론이고 R71은 펜타플루오로페닐이며; 상기 화학식 8에서 [L-H]+는 디메틸아닐리늄 양이온이고; [Z(A)4]-는 [B(C6F5)4]-이고; [L]+는 [(C6H5)3C]+일 수 있다.
이때, 상기 조촉매 화합물의 함량은 상기 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여 조촉매 화합물에 함유된 금속의 몰비를 기준으로 1:1~100,000일 수 있다.
또한, 상기 촉매는 화학식 1로 표시되는 전이금속 화합물이 SiO2, Al2O3 , MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-CrO2O3, SiO2-TiO2-MgO, 보오크사이트, 제올라이트, starch 및 cyclodextrine으로 이루어진 군에서 선택되는 1종 이상의 담체에 담지된 것일 수 있다.
한편, 상기 중합 단계는 -50 내지 500 ℃의 온도 및 1 내지 3000 기압의 압력 하에서 수행될 수 있다.
또한, 상기 폴리프로필렌은 중량평균분자량이 20,000 내지 1,000,000이고; 밀도가 0.8 내지 0.9 g/ml일 수 있다.
또한, 상기 폴리프로필렌은 입체규칙도(isotactisity, Pentad I.I, mmmm)가 5 내지 20 %일 수 있다.
본 발명에 따른 폴리프로필렌의 제조방법은 새로운 구조의 전이금속 화합물을 촉매로 사용함에 따라, 중합 활성이 높아 공정 효율이 우수할 뿐만 아니라, 중합체의 미세 구조를 쉽게 제어할 수 있어, 원하는 물성을 갖는 폴리프로필렌을 용이하게 제조할 수 있다.
이하, 본 발명의 구현예에 따른 폴리프로필렌의 제조방법에 대하여 설명하기로 한다.
본 발명자들은 올레핀 중합용 촉매에 대한 연구를 거듭하는 과정에서, 아미도 리간드와 오르소-페닐렌이 축합 고리를 형성하고 오르소-페닐렌에 결합한 5각 고리 파이-리간드가 티오펜 헤테로 고리에 의해 융합된 새로운 구조의 리간드를 발견하였다. 또한, 상기 리간드를 포함하는 전이금속 화합물은 티오펜헤테로 고리가 융합되지 않은 전이금속 화합물에 비하여 더 높은 촉매 활성을 나타내고, 분자량이 큰 고분자를 제조할 수 있음을 확인하였다.
특히, 상기 새로운 구조의 리간드를 포함하는 전이금속 화합물을 폴리프로필렌(바람직하게는, aPP)의 제조에 사용할 경우, 공중합체의 미세 구조를 쉽게 제어할 수 있어, 분자량이 큰 폴리프로필렌을 제조할 수 있음을 확인하여, 본 발명을 완성하였다.
이와 같은, 본 발명은 일 구현예에 따라,
하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법을 제공한다:
[화학식 1]
Figure pat00002
상기 화학식 1에서,
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이고;
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있으며, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
R11, R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)실릴; (C1-C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12 또는 R12와 R13은 서로 연결되어 고리를 형성할 수 있다.
먼저, 본 발명의 제조방법에 사용되는 상기 촉매에 대하여 설명한다.
상기 촉매는 화학식 1로 표시되는 전이금속 화합물을 포함한다.
상기 화학식 1의 전이금속 화합물은 후술할 조촉매 화합물에 의해 활성화되어 프로필렌의 중합 반응에 활성을 부여하게 된다.
상기 화학식 1로 표시되는 전이금속 화합물은 아미도 리간드와 오르소-페닐렌이 축합 고리를 형성하고, 상기 오르소-페닐렌에 결합한 5각 고리 파이-리간드가 티오펜 헤테로 고리에 의해 융합된 새로운 구조의 리간드를 포함한다. 그에 따라, 상기 전이금속 화합물은 티오펜 헤테로 고리가 융합되지 않은 전이금속 화합물에 비하여 프로필렌의 중합 활성이 높은 장점이 있다.
본 발명에 따르면, 상기 화학식 1로 표시되는 화합물에 있어서, 상기 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 독립적으로 아세탈, 케탈 또는 에테르기를 포함하는 치환기로 치환된 것일 수 있는데, 상기와 같은 치환기로 치환될 경우 담체의 표면에 담지시키는데 보다 유리할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물에 있어서, 상기 M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)인 것이 바람직하다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 Q1 및 Q2 는 각각 독립적으로 할로겐 또는 (C1-C20)알킬인 것이 바람직하고, 보다 바람직하게는 염소 또는 메틸일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 (C1-C20)알킬일 수 있고, 바람직하게는 각각 독립적으로 수소 또는 메틸일 수 있다. 보다 바람직하게는, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸일 수 있고, 다만 R3 및 R4 중 적어도 하나는 메틸이고, R5는 메틸일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R6, R7, R8, R9, R10, R11, R12 및 R13 은 각각 수소인 것이 바람직하다.
상기 화학식 1로 표시되는 전이금속 화합물은 상기와 같은 치환기들을 포함하는 것이 금속 주위의 전자적, 입체적 환경 제어를 위해 선호된다.
한편, 상기 화학식 1로 표시되는 전이금속 화합물은 하기 화학식 2로 표시되는 전구체 화합물로부터 얻을 수 있다:
[화학식 2]
Figure pat00003
상기 화학식 2에서, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 상기 화학식 1에서 정의한 바와 같다.
여기서, 상기 화학식 2로 표시되는 전구체 화합물은 (a) 하기 화학식 3으로 표시되는 테트라하이드로퀴놀린 유도체를 알킬리튬과 반응시킨 후 이산화탄소를 첨가하여 화학식 4로 표시되는 화합물을 제조하는 단계; 및 (b) 상기 화학식 4로 표시되는 화합물과 알킬리튬을 반응시킨 후, 하기 화학식 5로 표시되는 화합물을 첨가하고 산 처리하는 단계를 포함하는 방법으로 제조될 수 있다:
[화학식 3]
Figure pat00004
[화학식 4]
Figure pat00005
[화학식 5]
Figure pat00006
상기 화학식 3, 화학식 4 및 화학식 5에서, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 상기 화학식 1에서 정의한 바와 같다.
다만, 상기 화학식 3, 화학식 4 및 화학식 5에서, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 (C1-C20)알킬일 수 있고, 바람직하게는 각각 독립적으로 수소 또는 메틸일 수 있다. 보다 바람직하게는, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸일 수 있고, 다만 R3 및 R4 중 적어도 하나는 메틸이고, R5 는 메틸일 수 있다. 또한, 상기 R6, R7, R8, R9, R10, R11, R12 및 R13 은 각각 수소인 것이 바람직하다. 이를 통해 출발 물질의 접근성 및 반응성을 확보할 수 있고, 제조될 화학식 1의 전이금속 화합물의 전자적 및 입체적 환경을 제어하는데 유리하다.
상기 (a)단계는 상기 화학식 3으로 표시되는 테트라하이드로퀴놀린 유도체를 알킬리튬과 반응시킨 후 이산화탄소를 첨가하여 상기 화학식 4로 표시되는 화합물로 전환하는 반응으로, 이는 공지된 문헌에 기술된 방법에 따라 수행할 수 있다(Tetrahedron Lett. 1985, 26, 5935; Tetrahedron1986,42,2571; J.Chem.SC.Perkin Trans. 1989,16.).
또한, 상기 (b)단계에서 상기 화학식 4로 표시되는 화합물에 알킬리튬을 반응시킴으로써 탈양성자 반응을 유발하여 오르소-리튬 화합물을 생성하며 이에 화학식 5로 표시되는 화합물을 반응시키고 산을 처리함으로써 상기 화학식 2로 표시되는 전이금속 화합물 전구체를 얻을 수 있다.
상기 화학식 4로 표시되는 화합물에 알킬리튬을 반응시켜 오르소-리튬 화합물을 생성하는 반응은 공지된 문헌을 통해 파악할 수 있으며(Organometallics 2007, 27,6685; 대한민국 공개특허 제2008-0065868호), 본 발명에서는 이에 상기 화학식 5로 표시되는 화합물을 반응시키고 산을 처리함으로써 상기 화학식 2로 표시되는 전이금속 화합물 전구체를 얻을 수 있다.
여기서, 상기 화학식 5로 표시되는 화합물은 공지된 다양한 방법을 통해 제조될 수 있다. 하기 반응식 1은 그 중 한 예를 보여주는 것으로, 한 단계의 반응만으로 제조할 수 있을 뿐만 아니라, 가격이 저렴한 출발물질이 사용되어 본 발명의 전이금속 화합물 전구체를 쉽고 경제적으로 제조할 수 있게 해준다(J. Organomet. Chem., 2005, 690,4213).
[반응식 1]
Figure pat00007
한편, 상기 방법을 통해 얻어진 상기 화학식 2로 표시되는 전구체 화합물로부터 상기 화학식 1로 표시되는 전이금속 화합물을 합성하기 위해서는 공지된 다양한 방법들을 이용할 수 있다. 본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 전구체 화합물에 약 2당량의 알킬리튬을 첨가하여 탈양성자 반응을 유도함으로써, 사이클로펜타디에닐 음이온과 아마이드 음이온의 다이리튬 화합물을 제조한 후, 여기에 (Q1)(Q2)MCl2를 투입하여 약 2당량의 LiCl를 제거하는 방법으로 제조할 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 상기 화학식 2로 표시되는 화합물과 M(NMe2)4 화합물을 반응시켜 약 2 당량의 HNME2를 제거하여 Q1과 Q2가 동시에 NMe2인 화학식 1로 표시되는 전이금속 화합물을 얻고, 여기에 Me3SiCl 또는 Me2SiCl2를 반응시켜 NMe2 리간드를 염소 리간드로 바꿀 수 있다.
한편, 본 발명의 제조방법에 사용되는 상기 촉매는 조촉매 화합물을 더욱 포함할 수 있다.
상기 조촉매 화합물은 전술한 화학식 1로 표시되는 전이금속 화합물을 활성화시키는 역할을 한다. 따라서, 본 발명에 따른 촉매의 활성을 저하시키지 않으면서도 상기 전이금속 화합물을 활성화시킬 수 있는 화합물이라면 그 구성에 제한 없이 사용될 수 있다.
다만, 본 발명의 일 구현예에 따르면, 상기 조촉매 화합물은 하기 화학식 6, 화학식 7 및 화학식 8로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다:
[화학식 6]
-[Al(R61)-O]a-
상기 화학식 6에서,
R61은 각각 독립적으로 할로겐 라디칼, (C1-C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C1-C20)하이드로카르빌 라디칼이며;
a는 2 이상의 정수이다;
[화학식 7]
D(R71)3
상기 화학식 7에서,
D는 알루미늄 또는 보론이며;
R71은 각각 독립적으로 할로겐 라디칼, (C1-C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C1-C20)하이드로카르빌 라디칼이고;
[화학식 8]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 화학식 8에서,
L은 중성 또는 양이온성 루이스 산이고;
Z는 13족 원소이고;
A는 각각 독립적으로 1 이상의 수소 원자가 할로겐, (C1-C20)하이드로카르빌, (C1-C20)알콕시 또는 (C6-C20)아릴옥시 라디칼로 치환된 (C6-C20)아릴 또는 (C1-C20)알킬 라디칼이다.
여기서, 상기 화학식 6으로 표시되는 조촉매 화합물은 알킬알루미녹산이라면 그 구성이 특별히 제한되지 않으나, 바람직하게는 메틸알루미녹산(Methylaluminoxane), 에틸알루미녹산(Ethylaluminoxane), 부틸알루미녹산(Butylaluminoxane), 헥실알루미녹산(Hexylaluminoxane), 옥틸알루미녹산(Octylaluminoxane), 데실알루미녹산(Decylaluminoxane) 등일 수 있다.
또한, 상기 화학식 7로 표시되는 조촉매 화합물은 트리메틸알루미늄(Trimethylaluminum), 트리에틸알루미늄(Triethylaluminum), 트리부틸알루미늄(Tributylaluminum), 트리헥실알루미늄(Trihexylaluminum), 트리옥틸알루미늄(Trioctylaluminum), 트리데실알루미늄(Tridecylaluminum) 등의 트리알킬알루미늄; 디메틸알루미늄 메톡사이드(Dimethylaluminum methoxide), 디에틸알루미늄 메톡사이드(Diethylaluminum methoxide), 디부틸알루미늄 메톡사이드(Dibutylaluminum methoxide)와 같은 디알킬알루미늄 알콕사이드(Dialkylaluminum alkoxide); 디메틸알루미늄 클로라이드(Dimethylaluminum chloride), 디에틸알루미늄 클로라이드(Diethylaluminum chloride), 디부틸알루미늄 클로라이드(Dibutylaluminum chloride)와 같은 디알킬알루미늄 할라이드(Dialkylaluminum alkoxide); 메틸알루미늄 디메톡사이드(Methylaluminum dimethoxide), 에틸알루미늄 디메톡사이드(Ethylaluminum dimethoxide), 부틸알루미늄 디메톡사이드(Butylaluminum dimethoxide)와 같은 알킬알루미늄 디알콕사이드(Alkylaluminum dialkoxide); 메틸알루미늄 디클로라이드(Methylaluminum dichloride), 에틸알루미늄 디클로라이드(Ethylaluminum dichloride), 부틸알루미늄 디클로라이드(Butylaluminum dichloride)와 같은 알킬알루미늄 디할라이드(Alkylaluminum dihalide); 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론과 같은 트리알킬보론; 트리스펜타플루오로페닐보론 등일 수 있다.
또한, 상기 화학식 8로 표시되는 조촉매 화합물은 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트(Trimethylammonium tetrakis(pentafluorophenyl)borate), 트리에틸암모늄 테트라키스(펜타플루오로페닐) 보레이트(Triethylammonium tetrakis(pentafluorophenyl)borate), 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트(Tripropylammonium tetrakis(pentafluorophenyl)borate), 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트(Ttri(n-butyl)ammonium tetrakis(pentafluorophenyl)borate), 트리(sec-부틸) 암모늄 테트라키스(펜타플루오로페닐)보레이트(Tri(sec-butyl)ammonium tetrakis(pentafluorophenyl)borate), N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate), N,N-디메틸아닐리늄 n-부틸트리스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium n-butyltris(pentafluorophenyl)borate), N,N-디메틸아닐리늄 벤질트리스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium benzyltris(pentafluorophenyl)borate), N,N-디메틸아닐리늄 테트라키스(4-(t-부틸디메틸실릴)-2,3,5,6-테트라플루오로페닐)보레이트(N,N-dimethylanilinium tetrakis(4-(t-butyldimethylsiiyl)-2,3,5 6-tetrafluorophenyl)borate), N,N-디메틸아닐리늄 테트라키스(4-(t-트리이소프로필실릴)-2,3,5,6-테트라플루오로페닐)보레이트(N,N-dimethylanilinium tetrakis(4-(triisopropysilyl)-2,3,5,6-tetrafluorophenyl)borate), N,N-디메틸아닐리늄 펜타플루오로페녹시트리스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium pentafluorophenoxytris(pentafluorphenyl)borate), N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트(N,N-diethylanilinium tetrakis(pentafluorphenyl)borate), N,N-디메틸-2,4,6-트리메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트(N,N-dimethyl-2,4,6-trimethylanilinium tetrakis(pentafluorophenyl)borate), N,N-디메틸암모늄 테트라키스(2,3,5,6-테트라플루오로페닐)보레이트(trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl)borate), N,N-디에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트(triethylammonium tetrakis (2,3,4,6-tetrafluorophenyl)borate), 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트(tripropylammonium tetrakis (2,3,4,6-tetrafluorophcnyl)borate), 트리(n-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트(tri(n-butyl)ammonium tetrakis (2,3,4,6-tetrafluorophenyl)borate), 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트(dimethyl(t-butyl)ammonium tetrakis (2,3,4,6-tetrafluorophenyl)borate), N,N-디메틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트(N,N-dimethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl)borate), N,N-디에틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트(N,N-diethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl)borate), N,N-디메틸2,4,6-트리메틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트(N,N-dimethyl-2,4,6-trimethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl)borate) 등일 수 있다.
또한, 상기 화학식 8로 표시되는 조촉매 화합물은 디-(i-프로필)암모늄 테트라키스(펜타플루오로페닐)보레이트(di-(i-propyl)ammonium tetrakis(pentafluorophenyl)borate), 디사이클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트(dicyclohexylammonium tetrakis(pentafluorophenyl)borate)와 같은 디알킬암모늄; 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트(Triphenylphosphonium tetrakis(pentafluorophenyl)borate), 트리(o-톨릴포스포늄 테트라키스(펜타플루오로페닐)보레이트(tri(o-tolylphosphonium tetrakis(pentafluorophenyl)borate), 트리(2,6-디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트(Tri(2,6-dimethylphenyl)phosphonium tetrakis(pentafluorophenyl)borate)와 같은 트리알킬포스포늄; 디페닐옥소늄 테트라키스(펜타플루오로페닐)보레이트(diphenyloxonium tetrakis(pentafluorophenyl)borate), 디(o-톨릴)옥소늄 테트라키스(펜타플루오로페닐)보레이트(di(o-tolyl)oxonium tetrakis(pentafluororphenyl)borate), 디(2,6-디메틸페닐 옥소늄 테트라키스(펜타플루오로페닐)보레이트(di(2,6-dimethylphenyl oxonium tetrakis (pentafluorophenyl)borate)와 같은 디알킬옥소늄; 디페닐술포늄 테트라키스(펜타플루오로페닐)보레이트(diphenylsulfonium tetrakis(pentafluorophenyl)borate), 디(o-톨릴)술포늄 테트라키스(펜타플루오로페닐)보레이트(di(o-tolyl)sulfonium tetrakis(pentafluorophenyl)borate), 비스(2,6-디메틸페닐)술포늄 테트라키스(펜타플루오로페닐)보레이트(bis(2,6-dimethylphenyl)sulfonium tetrakis(pentafluorophenyl)borate)와 같은 디알킬술포늄; 및 트로필륨 테트라키스(펜타플루오로페닐)보레이트(tropylium tetrakis(pentafluorophenyl)borate), 트리페닐메틸 카르베늄 테트라키스(펜타플루오로페닐)보레이트(triphenylmethylcarbenium tetrakis(pentafluorophenyl)borate), 벤젠(디아조늄)테트라키스(펜타플루오로페닐)보레이트 (benzene(diazonium) tetrakis(pentafluorophenyl)borate)와 같은 카르보늄염 등일 수 있다.
특히, 본 발명에 따르면, 상기 조촉매 화합물이 보다 우수한 활성화 효과를 나타낼 수 있도록 하기 위하여, 상기 화학식 6에서 R61은 메틸, 에틸, n-부틸 또는 이소부틸인 것이 바람직하고; 상기 화학식 7에서 D는 알루미늄이고 R71은 메틸 또는 이소부틸이거나, 또는 D는 보론이고 R71은 펜타플루오로페닐인 것이 바람직하며; 상기 화학식 8에서 [L-H]+는 디메틸아닐리늄 양이온이고, [Z(A)4]-는 [B(C6F5)4]-이고, [L]+는 [(C6H5)3C]+인 것이 바람직하다.
한편, 상기 조촉매 화합물의 첨가량은 상기 화학식 1로 표시되는 전이금속 화합물의 첨가량 및 상기 전이금속 화합물을 충분히 활성화시키는데 필요한 양 등을 고려하여 결정할 수 있다.
본 발명에 따르면, 상기 조촉매 화합물의 함량은, 상기 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여, 조촉매 화합물에 함유된 금속의 몰비를 기준으로 1:1~100,000, 바람직하게는 1:1~10,000, 보다 바람직하게는 1:1~5,000일수 있다.
보다 구체적으로, 상기 화학식 6으로 표시되는 조촉매 화합물은 상기 화학식 1로 표시되는 전이금속 화합물에 대하여 1:1~1:100,000, 바람직하게는 1:5~50,000, 보다 바람직하게는 1:10~20,000의 몰비로 포함될 수 있다.
또한, 상기 화학식 7로 표시되는 조촉매 화합물에서 D가 보론인 경우에는, 상기 전이금속 화합물들에 대하여 1:1~100, 바람직하게는 1:1~10, 보다 바람직하게는 1:1~3의 몰비로 포함될 수 있다.
그리고, 상기 화학식 7로 표시되는 조촉매 화합물에서 D가 알루미늄인 경우에는 중합 시스템 내의 물의 양에 따라 달라질 수 있으나, 상기 전이금속 화합물들에 대하여 1:1~1,000, 바람직하게는 1:1~500, 보다 바람직하게는 1:1~100의 몰비로 포함될 수 있다.
또한, 상기 화학식 8로 표시되는 조촉매 화합물은 상기 전이금속 화합물들에 대하여 1:1~100, 바람직하게는 1:1~10, 보다 바람직하게는 1:1~4의 몰비로 포함될 수 있다.
한편, 본 발명의 제조방법에 사용되는 상기 촉매는 상기 화학식 1로 표시되는 전이금속 화합물, 또는 상기 전이금속 화합물과 조촉매 화합물이 담체 상에 담지된 것일 수 있다.
여기서, 상기 담체로는 본 발명이 속하는 기술분야에서 촉매의 제조에 사용되는 무기 또는 유기 소재의 담체가 제한 없이 사용될 수 있다.
다만, 본 발명의 일 실시예에 따르면, 상기 담체는 SiO2, Al2O3 , MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-CrO2O3, SiO2-TiO2-MgO, 보오크사이트, 제올라이트, starch, cyclodextrine 또는 합성고분자일 수 있다.
바람직하게는, 상기 담체는 표면에 히드록시기를 포함하는 것으로서, 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1종 이상의 담체일 수 있다.
상기와 같은 담체에 상기 전이금속 화합물 및 조촉매 화합물을 담지시키는 방법은 수분이 제거된(dehydrated) 담체에 상기 전이금속 화합물을 직접 담지시키는 방법; 상기 담체를 상기 조촉매 화합물로 전처리한 후 전이금속 화합물을 담지시키는 방법; 상기 담체에 상기 전이금속 화합물을 담지시킨 후 조촉매 화합물로 후처리하는 방법; 상기 전이금속 화합물과 조촉매 화합물을 반응시킨 후 담체를 첨가하여 반응시키는 방법 등이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기와 같은 담지 방법에 사용 가능한 용매로는 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 운데칸(Undecane), 도데칸(Dodecane) 등의 지방족 탄화수소계 용매; 벤젠(Benzene), 모노클로로벤젠(Monochlorobenzene), 디클로로벤젠(Dichlorobenzene), 트리클로로벤젠(Trichlorobenzene), 톨루엔(Toluene) 등의 방향족 탄화수소계 용매; 디클로로메탄(Dichloromethane), 트리클로로메탄(Trichloromethane), 디클로로에탄(Dichloroethane), 트리클로로에탄(Trichloroethane) 등의 할로겐화 지방족 탄화수소계 용매; 또는 이들의 혼합물을 예로 들 수 있다.
또한, 상기 전이금속 화합물과 조촉매 화합물을 담체 상에 담지시키는 공정은 -70 내지 200 ℃, 바람직하게는 -50 내지 150 ℃, 보다 바람직하게는 0 내지 100 ℃의 온도 하에서 수행되는 것이 담지 공정의 효율면에서 유리하다.
한편, 본 발명에 따른 폴리프로필렌의 제조방법은, 전술한 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함한다.
여기서, 상기 프로필렌은 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로, 그 구성을 특별히 한정하지 않는다.
그리고, 상기 중합 단계는 슬러리상(Slurry Phase), 액상(Solution Phase), 기상(Gas Phase) 또는 괴상(Bulk Phase)에서 실시될 수 있다.
상기 중합 단계가 액상 또는 슬러리상에서 실시될 경우에는 용매 또는 올레핀계 단량체 자체를 매질로 사용할 수 있다.
또한, 상기 중합 단계에 사용 가능한 용매는 부탄(Butane), 이소부탄(Isobutane), 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 운데칸(Undecane), 도데칸(Dodecane), 시클로펜탄(Cyclopentane), 메틸시클로펜탄(Methylcyclopentane), 시클로헥산(Cyclohexane) 등의 지방족 탄화수소계 용매; 벤젠(Benzene), 모노클로로벤젠(Monochlorobenzene), 디클로로벤젠(Dichlorobenzene), 트리클로로벤젠(Trichlorobenzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로벤젠(Chlorobenzene) 등의 방향족 탄화수소계 용매; 디클로로메탄(Dichloromethane), 트리클로로메탄(Trichloromethane), 클로로에탄(Chloroethane), 디클로로에탄(Dichloroethane), 트리클로로에탄(Trichloroethane), 1,2-디클로로에탄(1,2-Dichloroethane) 등의 할로겐화 지방족 탄화수소 용매; 또는 이들의 혼합물일 수 있다.
한편, 상기 중합 단계에서, 상기 촉매의 첨가량은 슬러리상, 액상, 기상 또는 괴상 공정에서 따라 단량체의 중합 반응이 충분히 일어날 수 있는 범위 내에서 결정될 수 있으므로, 특별히 제한하지 않는다.
다만, 본 발명에 따르면, 상기 촉매의 첨가량은 단량체의 단위 부피(L)당 상기 전이금속 화합물의 중심금속(M)의 농도를 기준으로 10-8 mol/L 내지 1 mol/L, 바람직하게는 10-7 mol/L 내지 10-1 mol/L, 보다 바람직하게는 바람직하게는 10-7 mol/L 내지 10-2 mol/L일 수 있다.
또한, 상기 중합 단계는 배치식(Batch Type), 반연속식(Semi-continuous Type) 또는 연속식(Continuous Type) 반응으로 수행할 수 있다.
한편, 상기 중합 단계의 온도 및 압력 조건은 적용하고자 하는 반응의 종류 및 반응기의 종류에 따라 중합 반응의 효율을 고려하여 결정할 수 있으므로, 특별히 제한하지 않는다.
다만, 본 발명에 따르면, 상기 중합 단계는 -50 내지 500 ℃, 바람직하게는 0 내지 400 ℃, 보다 바람직하게는 0 내지 300 ℃의 온도 하에서 수행할 수 있다. 또한, 본 발명에 따르면, 상기 중합 단계는 1 내지 3000 기압, 바람직하게는 1 내지 1000 기압, 보다 바람직하게는 1 내지 500 기압의 압력 하에서 수행할 수 있다.
한편, 본 발명에 따른 폴리프로필렌의 제조방법은 전술한 촉매를 사용함에 따라, 공중합체의 미세 구조를 쉽게 제어할 수 있어, 분자량이 크고 밀도가 낮은 폴리프로필렌을 제조할 수 있다.
즉, 상기 폴리프로필렌은 중량평균분자량(Mw)이 20,000 내지 1,000,000, 바람직하게는 50,000 내지 900,000, 보다 바람직하게는 50,000 내지 800,000일 수 있다.
또한, 상기 폴리프로필렌은 밀도가 0.8 내지 0.9 g/ml, 바람직하게는 0.82 내지 0.9 g/ml, 보다 바람직하게는 0.82 내지 0.89 g/ml일 수 있다.
또한, 상기 폴리프로필렌은 입체규칙도(isotactisity, Pentad I.I, mmmm)가 5 내지 20 %, 바람직하게는 5 내지 18 %, 보다 바람직하게는 5 내지 15 %일 수 있다.
그리고, 상기 폴리프로필렌은 분자량 분포(Mw/Mn)가 1 내지 10, 바람직하게는 1.5 내지 8, 보다 바람직하게는 2 내지 6일 수 있다.
한편, 본 발명에 따른 공중합체의 제조방법은 전술한 단계 이외에도, 상기 단계의 이전 또는 이후에 당업계에서 통상적으로 수행될 수 있는 단계를 더욱 포함하여 수행될 수 있으며, 상술한 단계들에 의해 본 발명의 제조방법이 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
하기 ⅰ) 전구체 화합물의 합성 및 ii) 전이금속 화합물의 합성 과정은 하기 반응식 2 및 반응식 3에 따라, 질소 또는 아르곤 등의 비활성 분위기 하에서 진행되었고, 표준 쉴렌크(Standard Schlenk) 기술과 글러브 박스(Glove Box) 기술이 이용되었다.
하기 반응식 2에서 각 화합물은 치환기의 종류를 달리하는 것으로서, 각 치환기의 종류는 해당 화합물의 하단에 표로 정리하였다(예를 들면, 하기 화합물 D-2는 Ra의 위치가 수소, Rb 및 Rc의 위치가 메틸기로 치환된 화합물을 의미한다.).
또한, 하기 반응식 2에서, 화합물 C(C-1, C-2 및 C-3)는 공지된 방법을 참고하여 합성하였다(J. Organomet. Chem., 2005, 690, 4213).
[반응식 2]
Figure pat00008

ⅰ) 전구체 화합물의 합성
( 실시예 ⅰ-1: 전구체 화합물 D-1의 합성)
1,2,3,4-테트라히드로퀴놀린(1.00 g, 7.51 mmol)과 디에틸에테르(16 mL) 용액이 들어 있는 쉴렝크 플라스크를 -78 ℃ 저온조에 담궈 온도를 낮춘 후, 교반하에 n-뷰틸리튬(3.0 mL, 7.5 mmol, 2.5 M 헥산 용액)을 질소 분위기 하에 천천히 주입하였다. -78 ℃에서 약 한 시간 교반한 후, 상온으로 천천히 온도를 올렸다. 연한 노란색의 고체가 침전되었고, 생성된 부탄가스는 버블러를 통해 제거하였다. 온도를 다시 -78 ℃로 낮춘 후 이산화탄소를 주입하였다. 이산화탄소를 주입하자마자 슬러리 상태의 용액이 투명한 균일한 용액이 되었다. -78 ℃에서 한 시간 교반한 후, -20 ℃로 온도를 천천히 올려주면서 여분의 이산화탄소를 버블러를 통해 제거하였다. 흰 색의 고체가 다시 침전되었다.
-20 ℃에서 테트라히드로퓨란 (0.60 g, 8.3 mmol)과 t-뷰틸리튬 (4.9 mL, 8.3 mmol, 1.7 M 펜탄 용액)을 차례로 질소 분위기 하에서 주입하고 약 두 시간 동안 교반하였다. 이어서 염화리튬과 상기 화합물 C-1(1.06 g, 6.38 mmol)이 녹아 있는 테트라히드로퓨란 용액(19 mL)을 질소 분위기 하에 주입하였다. -20 ℃에서 한 시간 교반한 후 상온으로 온도를 천천히 올렸다. 상온에서 한 시간 동안 교반한 후, 물(15 mL)을 주입하여 반응을 종결하였다. 용액을 분별 깔때기로 옮겨 유기층을 추출하였다. 추출한 유기층을 분별 깔때기에 다시 넣은 후, 추가로 염산(2 N, 40 mL)을 넣었다. 약 2분간 흔들어준 후, 탄산수소나트륨 수용액(60 mL)을 천천히 넣어 중화하였다. 유기층을 취하여 무수 황산마그네슘으로 습기를 제거한 후 용매를 제거하여 점액성의 물질을 얻었다. 헥산과 에틸아세테이트의 혼합 용매(v/v, 50:1)을 이용하여 실리카 겔 컬럼 크로마토그래피 방법으로 화합물을 정제하여 77.2 mg의 화합물을 얻었다(수율 43 %).
1H NMR분석 결과 두 개의 시그널 세트가 1:1로 관찰되었고 이는 페닐렌과 사이클로펜타디엔을 엮어 주는 탄소-탄소 결합(상기 반응식 2의 굵게 마크한 결합)에 대한 회전이 용이하지 않음에 기인한다. 하기 13C NMR 데이터에서 괄호 안의 값은 상기 회전이 용이하지 않음에 의하여 갈라진 시그널의 케미컬 쉬프트 값이다.
1H NMR(C6D6) : δ 7.22 and 7.17 (br d, J = 7.2Hz, 1H), 6.88 (s, 2H), 6.93 (d, J = 7.2Hz, 1H), 6.73 (br t, J = 7.2Hz, 1H), 3.84 and 3.80 (s, 1H, NH), 3.09 and 2.98 (q, J = 8.0Hz, 1H, CHMe), 2.90 - 2.75 (br, 2H, CH2), 2.65 - 2.55 (br, 2H, CH2), 1.87 (s, 3H, CH3), 1.70 - 1.50 (m, 2H, CH2), 1.16 (d, J = 8.0Hz, 3H, CH3) ppm.
13C NMR(C6D6) : 151.64 (151.60), 147.74 (147.61), 146.68, 143.06, 132.60, 132.30, 129.85, 125.02, 121.85, 121.72, 119.74, 116.87, 45.86, 42.54, 28.39, 22.89, 16.32, 14.21 ppm.
( 실시예 ⅰ-2: 전구체 화합물 D-2의 합성)
상기 화합물 C-1 대신 화합물 C-2를 사용한 것을 제외하고, 상기 실시예 i-1과 동일한 조건 및 방법으로 전구체 화합물 D-2를 합성하였다(수율 53 %).
1H NMR 분석 결과 두 개의 시그널 세트가 1:1로 관찰되었고, 이는 페닐렌과 사이클로펜타디엔을 엮어 주는 탄소-탄소 결합(반응식 2의 굵게 마크한 결합)에 대한 회전이 용이하지 않음에 기인한다.
1H NMR(C6D6) : δ 7.23 (d, J = 7.2Hz, 1H), 6.93 (d, J = 7.2Hz, 1H), 6.74 (br t, J = 7.2Hz, 1H), 4.00 and 3.93 (s, 1H, NH), 3.05 (br q, J = 8.0Hz, 1H, CHMe), 3.00 - 2.80 (br, 2H, CH2), 2.70 - 2.50 (br, 2H, CH2), 2.16 (s, 3H, CH3), 2.04 (br s, 3H, CH3), 1.91 (s, 3H, CH3), 1.75 - 1.50 (m, 2H, CH2), 1.21 (d, J = 8.0Hz, 3H, CH3) ppm.
13C NMR(C6D6) : 151.60 (151.43), 145.56 (145.36), 143.08, 141.43, 132.90, 132.68, 132.43, 129.70, 121.63, 120.01, 116.77, 46.13, 42.58, 28.42, 22.97, 15.06, 14.19, 14.08, 12.70 ppm.
( 실시예 ⅰ-3: 전구체 화합물 D-3의 합성)
1,2,3,4-테트라히드로퀴놀린 대신 Tetrahydroquinaline을 사용한 것을 제외하고, 상기 실시예 i-1과 동일한 조건 및 방법으로 전구체 화합물 D-3을 합성하였다(수율 63 %).
1H NMR 분석 결과 어떤 시그널의 경우 1:1:1:1비의 4개의 시그널로 분리되어 관찰되었고, 이는 페닐렌과 사이클로펜타디엔을 엮어 주는 탄소-탄소 결합(상기 반응식 2의 굵게 마크한 결합)에 대한 회전이 용이하지 않음과 두 개의 카이랄 센터의 존재로 인한 아이조머리즘에 기인한다.
1H NMR(C6D6) : δ 7.33, 7.29, 7.22, and 7.17 (d, J = 7.2Hz, 1H), 6.97 (d, J = 7.2Hz, 1H), 6.88 (s, 2H), 6.80 - 6.70 (m, 1H), 3.93 and 3.86 (s, 1H, NH), 3.20 - 2.90 (m, 2H, NCHMe, CHMe), 2.90 - 2.50 (m, 2H, CH2), 1.91, 1.89, and 1.86 (s, 3H, CH3), 1.67 - 1.50 (m, 1H, CH2), 1.50 - 1.33 (m, 1H, CH2), 1.18, 1.16, and 1.14 (s, 3H, CH3), 0.86, 0.85, and 0.80 (d, J = 8.0Hz, 3H, CH3) ppm.
13C NMR(C6D6) : 151.67, 147.68 (147.56, 147.38), 147.06 (146.83, 146.28, 146.10), 143.01 (142.88), 132.99 (132.59), 132.36 (131.92), 129.69, 125.26 (125.08, 124.92, 124.83), 122.03, 121.69 (121.60, 121.28), 119.74 (119.68, 119.46), 117.13 (117.07, 116.79, 116.72), 47.90 (47.73), 46.04 (45.85), 31.00 (30.92, 30.50), 28.00 (27.83, 27.64), 23.25 (23.00), 16.38 (16.30), 14.63 (14.52, 14.18) ppm.
( 실시예 ⅰ-4: 전구체 화합물 D-4의 합성)
1,2,3,4-테트라히드로퀴놀린 대신 tetrahydroquinaline을 사용하고, 상기 화합물 C-1 대신 화합물 C-2를 사용한 것을 제외하고, 상기 실시예 i-1과 동일한 조건 및 방법으로 전구체 화합물 D-4를 합성하였다(수율 63 %)
1H NMR 분석 결과 어떤 시그널의 경우 1:1:1:1비의 4개의 시그널로 분리되어 관찰되었고, 이는 페닐렌과 사이클로펜타디엔을 엮어주는 탄소-탄소 결합(상기 반응식 2의 굵게 마크한 결합)에 대한 회전이 용이하지 않음과 두 개의 카이랄 센터의 존재로 인한 아이조머리즘에 기인한다.
1H NMR(C6D6) : δ 7.32, 7.30, 7.22, and 7.19 (d, J = 7.2Hz, 1H), 6.97 (d, J = 7.2Hz, 1H), 6.85 - 6.65 (m, 1H), 4.10 - 3.90 (s, 1H, NH), 3.30 - 2.85 (m, 2H, NCHMe, CHMe), 2.85 - 2.50 (m, 2H, CH2), 2.15 (s, 3H, CH3), 2.02 (s, 3H, CH3), 1.94, 1.92, and 1.91 (s, 3H, CH3), 1.65 - 1.50 (m, 1H, CH2), 1.50 - 1.33 (m, 1H, CH2), 1.22, 1.21, 1.20, and 1.19 (s, 3H, CH3), 1.10 - 0.75 (m, 3H, CH3) ppm.
13C NMR(C6D6) : 151.67 (151.57), 145.58 (145.33, 145.20), 143.10 (143.00, 142.89), 141.62 (141.12), 134.08 (133.04), 132.84 (132.70, 136.60), 132.50 (132.08), 129.54, 121.52 (121.16), 119.96 (119.71), 117.04 (116.71), 47.90 (47.78), 46.29 (46.10), 31.05 (30.53), 28.02 (28.67), 23.37 (23.07), 15.22 (15.04), 14.87 (14.02, 14.21), 12.72 (12.67) ppm.
( 실시예 ⅰ-5: 전구체 화합물 D-5의 합성)
1,2,3,4-테트라히드로퀴놀린 대신 tetrahydroquinaline을 사용하고, 상기 화합물 C-1 대신 화합물 C-3을 사용한 것을 제외하고, 상기 실시예 i-1과 동일한 조건 및 방법으로 전구체 화합물 D-5를 합성하였다(수율 48 %).
1H NMR 분석 결과 어떤 시그널의 경우 1:1:1:1비의 4개의 시그널로 분리되어 관찰되었고, 이는 페닐렌과 사이클로펜타디엔을 엮어주는 탄소-탄소 결합(상기 반응식 2의 굵게 마크한 결합)에 대한 회전이 용이하지 않음과 두 개의 카이랄 센터의 존재로 인한 아이조머리즘에 기인한다.
1H NMR(C6D6) : δ 7.32, 7.29, 7.22 and 7.18 (d, J = 7.2 Hz, 1H), 6.96(d, J = 7.2 Hz, 1H), 6.84-6.68 (m, 1H), 6.60 (d, J = 7.2 Hz, 1H), 4.00-3.92(s, 1H, NH), 3.30-2.90 (m, 2H, NCHMe, CHMe), 2.90-2.55 (m, 2H, CH2), 2.27 (s, 3H, CH3), 1.94, 1.91 and 1.89 (s, 3H, CH3), 1.65-1.54 (m, 1H, CH2), 1.54-1.38(m, 1H, CH2), 1.23, 1.22, and 1.20 (s, 3H, CH3), 1.00-0.75 (m, 3H, CH3) ppm.
13C NMR(C6D6) : 151.51, 145.80, 145.64, 145.45, 144.40, 144.22, 143.76, 143.03, 142.91, 139.78, 139.69, 139.52, 133.12, 132.74, 132.52, 132.11, 129.59, 121.52, 121.19, 120.75, 120.47, 119.87, 119.69, 116.99, 116.76, 47.90, 47.77, 46.43, 46.23, 32.55, 30.98, 30.51, 27.95, 27.67, 23.67, 23.31, 23.06, 16.52, 15.01, 14.44, 14.05 ppm.
ii ) 전이금속 화합물의 합성
( 실시예 ii -1: 전이금속 화합물 E-1의 합성)
드라이 박스 안에서 상기 실시예 i-1에서 합성한 화합물 D-1(0.10 g, 0.36 mmol)과 디에틸에테르를 둥근바닥 플라스크에 넣은 후, -30 ℃로 온도를 낮추었다. 플라스크를 교반하면서 n-뷰틸리튬(2.5 M 헥산 용액, 0.2 g, 0.71 mmol)을 천천히 주입하고 -30 ℃온도에서 두 시간 반응시켰다. 온도를 상온으로 올리면서 세 시간 더 교반하며 반응시켰다. 다시 -30 ℃ 온도로 낮춘 후, 메틸리튬(1.6 M 디에틸에테르 용액, 0.33 g, 0.71 mmol)을 주입하고, 연이어 TiCl4·DME (DME; 다이메톡시에탄, 0.10 g, 0.36 mmol)를 넣었다. 온도를 상온으로 올리면서 세 시간 교반한 후에 진공라인을 이용하여 용매를 제거하였다. 펜탄을 이용하여 화합물을 추출했다. 용매를 제거하여 갈색 분말의 화합물 0.085 g을 얻었다(수율 60 %).
1H NMR (C6D6) : δ 7.09 (d, J = 7.2Hz, 1H), 6.91 (d, J = 7.2Hz, 1H), 6.81 (t, J = 7.2Hz, 1H), 6.74 (s, 2H), 4.55 (dt, J = 14, 5.2Hz, 1H, NCH2), 4.38 (dt, J = 14, 5.2Hz, 1H, NCH2), 2.50 - 2.30 (m, 2H, CH2), 2.20 (s, 3H), 1.68 (s, 3H), 1.68 (quintet, J = 5.2Hz, CH2), 0.72 (s, 3H, TiMe), 0.38 (s, 3H, TiMe) ppm.
13C{1H} NMR (C6D6): 161.46, 142.43, 140.10, 133.03, 130.41, 129.78, 127.57, 127.34, 121.37, 120.54, 120.51, 120.34, 112.52, 58.50, 53.73, 49.11, 27.59, 23.27, 13.19, 13.14 ppm.
( 실시예 ii -2: 전이금속 화합물 E-2의 합성)
상기 화합물 D-1 대신 화합물 D-2를 사용한 것을 제외하고, 상기 실시예 ii-1과 동일한 조건 및 방법으로 전이금속 화합물 E-2를 합성하였다(수율 53 %).
1H NMR (C6D6): δ 7.10 (d, J = 7.2Hz, 1H), 6.91 (d, J = 7.2Hz, 1H), 6.81 (t, J = 7.2Hz, 1H), 4.58 (dt, J = 14, 5.2Hz, 1H, NCH2), 4.42 (dt, J = 14, 5.2Hz, 1H, NCH2), 2.50 - 2.38 (m, 2H, CH2), 2.32 (s, 3H), 2.11 (s, 3H), 2.00 (s, 3H), 1.71 (s, 3H), 1.67 (quintet, J = 5.2Hz, CH2), 0.72 (s, 3H, TiMe), 0.38 (s, 3H, TiMe) ppm.
13C{1H} NMR (C6D6): 161.58, 141.36, 138.41, 137.20, 132.96, 129.70, 127.53, 127.39, 126.87, 121.48, 120.37, 120.30, 113.23, 56.50, 53.13, 49.03, 27.64, 23.34, 14.21, 13.40, 12.99, 12.94 ppm. Anal. Calc. (C22H27NSTi): C, 68.56; H, 7.06; N, 3.63. Found: C, 68.35 H, 7.37 N, 3.34%.
( 실시예 ii -3: 전이금속 화합물 E-3의 합성)
상기 화합물 D-1 대신 화합물 D-3을 사용한 것을 제외하고, 상기 실시예 ii-1과 동일한 조건 및 방법으로 전이금속 화합물 E-3을 합성하였다(수율 51 %). 티오펜 고리의 방향과 테트라하이드로퀴놀린에 붙은 메틸기의 방향에 의한 1:1 비율의 혼합물로 얻어졌다.
1H NMR (C6D6) : δ 7.11 and 7.08 (d, J = 7.2Hz, 1H), 6.96 and 6.95 (d, J = 7.2Hz, 1H), 6.82 and 6.81 (t, J = 7.2Hz, 1H), 6.77 and 6.76 (d, J = 7.2Hz, 1H), 6.74 and 6.73 (d, J = 7.2Hz, 1H), 5.42 (m, 1H, NCH), 2.75 - 2.60 (m, 1H, CH2), 2.45 - 2.25 (m, 1H, CH2), 2.24 and 2.18 (s, 3H), 1.73 and 1.63 (s, 3H), 1.85 - 1.50 (m, 2H, CH2), 1.17 and 1.15 (d, J = 4.8Hz, 3H), 0.76 and 0.70 (s, 3H, TiMe), 0.42 and 0.32 (s, 3H, TiMe) ppm.
13C{1H} NMR (C6D6): 159.58, 159.28, 141.88, 141.00, 139.63, 138.98, 134.45, 130.85, 130.50, 129.59, 129.50, 129.47, 127.23, 127.20, 127.17, 127.11, 120.77, 120.70, 120.40, 120.00, 119.96, 119.91, 118.76, 118.57, 113.90, 110.48, 59.61, 56.42, 55.75, 51.96, 50.11, 49.98, 27.41, 27.11, 21.89, 20.09, 19.67, 12.94, 12.91, 12.65 ppm.
( 실시예 ii -4: 전이금속 화합물 E-4의 합성)
상기 화합물 D-1 대신 화합물 D-4를 사용한 것을 제외하고, 상기 실시예 ii-1과 동일한 조건 및 방법으로 전이금속 화합물 E-4를 합성하였다(수율 57 %). 티오펜 고리의 방향과 테트라하이드로퀴놀린에 붙은 메틸기의 방향에 의한 1:1 비율의 혼합물로 얻어졌다.
1H NMR (C6D6) : δ 7.12 and 7.10 (d, J = 7.2Hz, 1H), 6.96 and 6.94 (d, J = 7.2Hz, 1H), 6.82 and 6.81 (t, J = 7.2Hz, 1H), 5.45 (m, 1H, NCH), 2.75 - 2.60 (m, 1H, CH2), 2.45 - 2.20 (m, 1H, CH2), 2.34 and 2.30 (s, 3H), 2.10 (s, 3H), 1.97 (s, 3H), 1.75 and 1.66 (s, 3H), 1.85 - 1.50 (m, 2H, CH2), 1.20 (d, J = 6.8Hz, 3H), 0.76 and 0.72 (s, 3H, TiMe), 0.44 and 0.35 (s, 3H, TiMe) ppm.
13C{1H} NMR (C6D6): 160.13, 159.86, 141.33, 140.46, 138.39, 137.67, 136.74, 134.83, 131.48, 129.90, 129.78, 127.69, 127.65, 127.60, 127.45, 126.87, 126.81, 121.34, 121.23, 120.21, 120.15, 119.15, 118.93, 114.77, 111.60, 57.54, 55.55, 55.23, 51.73, 50.43, 50.36, 27.83, 27.67, 22.37, 22.31, 20.53, 20.26, 14.29, 13.51, 13.42, 13.06, 12.80 ppm.
( 실시예 ii -5: 전이금속 화합물 E-5의 합성)
상기 화합물 D-1 대신 화합물 D-5를 사용한 것을 제외하고, 상기 실시예 ii-1과 동일한 조건 및 방법으로 전이금속 화합물 E-5를 합성하였다(수율 57 %). 티오펜 고리의 방향과 테트라하이드로퀴놀린에 붙은 메틸기의 방향에 의한 1:1 비율의 혼합물로 얻어졌다.
1H NMR (C6D6) : δ 7.12 and 7.09 (d, J = 7.2 Hz, 1H), 6.96 and 6.94 (d, J = 7.2 Hz, 1H), 6.82 and 6.80 (t, J = 7.2 Hz, 1H), 6.47 and 6.46 (d, J = 7.2 Hz, 1H), 6.45 and 6.44 (d, J = 7.2 Hz, 1H), 5.44 (m, 1H, NCH), 2.76-2.60 (m, 1H, CH2), 2.44-2.18 (m, 1H, CH2), 2.28 and 2.22 (s, 3H), 2.09 (s, 3H), 1.74 and 1.65 (s, 3H), 1.88-1.48 (m, 2H, CH2), 1.20 and 1.18 (d, J = 7.2 Hz, 3H), 0.77 and 0.71(s, 3H, TiMe), 0.49 and 0.40 (s, 3H, TiMe) ppm.
13C{1H} NMR (C6D6): 159.83, 159.52, 145.93, 144.90, 140.78, 139.93, 139.21, 138.86, 135.26, 131.56, 129.69, 129.57, 127.50, 127.46, 127.38, 127.24, 121.29, 121.16, 120.05, 119.96, 118.90, 118.74, 117.99, 117.74, 113.87, 110.38, 57.91, 55.31, 54.87, 51.68, 50.27, 50.12, 34.77, 27.58, 27.27, 23.10, 22.05, 20.31, 19.90, 16.66, 14.70, 13.11, 12.98, 12.68 ppm.
( 실시예 ii -6: 전이금속 화합물 E-6의 합성)
하기 반응식 3에 의하여 전이금속 화합물 E-6을 합성하였다.
[반응식 3]
Figure pat00009
메틸리튬(1.63 g, 3.55 mmol, 1.6 M 디에틸에테르 용액)을 -30 ℃에서 화합물 D-4(0.58 g, 1.79 mmol)가 녹아 있는 디에틸에테르 용액(10 mL)에 적가하였다. 용액을 밤샘 상온에서 교반한 후 -30 ℃로 온도를 낮춘 후 Ti(NMe2)2Cl2 (0.37 g, 1.79 mmol)을 한꺼번에 첨가하였다. 용액을 3시간 교반한 후 모든 용매를 진공 펌프를 이용하여 제거하였다. 생성된 고체를 톨루엔(8 mL) 에 녹인 후 Me2SiCl2(1.16 g, 8.96 mmol)를 가하였다. 용액을 80 ℃에서 3일간 교반한 후 용매를 진공 펌프를 이용하여 제거하였다. 빨간색 고체화합물이 얻어졌다 (0.59 g, 수율 75%). 1H NMR 스펙트럼에서 두 개의 입체화합물이 2:1로 존재함을 확인하였다.
1H NMR (C6D6): δ 7.10 (t, J = 4.4 Hz, 1H), 6.90 (d, J = 4.4 Hz, 2H), 5.27 and 5.22 (m, 1H, NCH), 2.54-2.38 (m, 1H, CH2), 2.20-2.08 (m, 1H, CH2), 2.36 and 2.35 (s, 3H), 2.05 and 2.03 (s, 3H), 1.94 and 1.93 (s, 3H), 1.89 and 1.84 (s, 3H), 1.72-1.58 (m, 2H, CH2), 1.36-1.28 (m, 2H, CH2), 1.17 and 1.14 (d, J = 6.4, 3H, CH3) ppm.
13C{1H} NMR (C6D6): 162.78, 147.91, 142.45, 142.03, 136.91, 131.12, 130.70, 130.10, 128.90, 127.17, 123.39, 121.33, 119.87, 54.18, 26.48, 21.74, 17.28, 14.46, 14.28, 13.80, 13.27 ppm.
iii ) 폴리프로필렌의 제조
하기 모든 중합반응은 외부 공기와 완전히 차단된 고압 반응기(Autoclave) 내에서 필요량의 용매, 조촉매 화합물, 중합하고자 하는 단량체 등을 주입한 후에 전이금속 화합물을 넣고 진행하였다.
중합 후 생성된 중합체의 분자량과 분자량 분포는 GPC(Gel Permeation Chromatography, 장치명: PL-GPC220, 제조사: Agilent) 분석법으로 측정하였으며, 녹는점은 DSC(Differential Scanning Calorimetry, 장치명: Q200, 제조사: TA Instruments) 분석법으로 측정하였다.
또한, 폴리프로필렌의 입체규칙도(아이소탁티씨티, isotactisity, Pentad I.I, mmmm)는 제조된 폴리프로필렌을 트리클로로벤젠(Trichlorobenzen)과 벤젠-d6(Benzene-d6, C6D6)에 녹인 후 100 ℃에서 13C NMR(장치명: Avance 400 Spectrometer, 제조사: Bruker)로 분석하였다.
그리고, 측정된 각 물성은 하기 표 1에 나타내었다.
( 실시예 iii -1)
상온에서 고압 반응기(내부 용량: 2L, 스테인레스 스틸)의 내부를 질소로 치환하였다. 상기 반응기에 메틸알루미녹산 톨루엔 용액 약 4.0 ml(톨루엔 중 메틸알루미녹산 10 중량% 용액, Al 기준 6 mmol, 제조사: Albemarle)를 가한 후, 프로필렌 500 g을 가하였고, 70 ℃로 승온시켰다. 이어서, 상기 반응기에 실시예 ii-6에 따른 전이금속 화합물 E-6을 톨루엔에 녹인 용액(1.5 ml, 3.0 μmol of Ti)을 주입하고, 1 시간 동안 중합을 실시하였다.
상기와 같이 중합반응을 진행한 후 온도를 상온으로 낮춘 다음, 여분의 프로필렌을 제거하고, 중합체를 회수하였다. 얻어진 중합체를 진공 오븐 내에서 80 ℃로 가열하면서 4 시간 이상 건조시켜 폴리프로필렌(137.9 g)를 얻었다.
( 실시예 iii -2)
상온에서 고압 반응기(내부 용량: 2L, 스테인레스 스틸)의 내부를 질소로 치환하였다. 상기 반응기에 n-헥산 900 ml를 채우고, 메틸알루미녹산 톨루엔 용액 약 13.3 ml(톨루엔 중 메틸알루미녹산 10 중량% 용액, Al 기준 20 mmol, 제조사: Albemarle)를 가한 후, 프로필렌 100 g을 가하였고, 70 ℃로 승온시켰다. 이어서, 상기 반응기에 실시예 ii-6에 따른 전이금속 화합물 E-6을 톨루엔에 녹인 용액(5 ml, 10.0 μmol of Ti)을 주입하고, 1 시간 동안 중합을 실시하였다.
상기와 같이 중합반응을 진행한 후 온도를 상온으로 낮춘 다음, 여분의 프로필렌을 제거하고, 중합체를 회수하였다. 얻어진 중합체를 진공 오븐 내에서 80 ℃로 가열하면서 4 시간 이상 건조시켜 폴리프로필렌(55.5 g)를 얻었다.
( 실시예 iii -3)
중합 온도 180 ℃에서 15 분 동안 중합 반응을 실시한 것을 제외하고, 실시예 iii-2와 동일한 조건 및 방법으로 폴리프로필렌(35.6 g)을 얻었다.
( 비교예 iii -1)
촉매로 실시예 ii-6에 따른 전이금속 화합물 E-6 대신 비스인데닐지르코늄디클로라이드(bisindenylzirconium dichloride, Ind2ZrCl2, 제조사: Strem)를 사용한 것을 제외하고, 실시예 iii-1과 동일한 조건 및 방법으로 폴리프로필렌(40 g)을 얻었다.
( 비교예 iii -2)
촉매로 실시예 ii-6에 따른 전이금속 화합물 E-6 대신 라세믹 비스인데닐지르코늄디클로라이드(racemic ethylenebisindenylzirconium dichloride, 제조사: Strem)를 사용한 것을 제외하고, 실시예 iii-1과 동일한 조건 및 방법으로 폴리프로필렌(80 g)을 얻었다.
실시예
iii-1
실시예
iii-2
실시예
iii-3
비교예
iii-1
비교예
iii-2
촉매활성
(kg-PP)/
(mmol-Ti)(hour)
46.0 5.55 14.2 13.3 26.7
Mw (X103) 349 186 102 5.2 30.3
분자량분포
(Mw/Mn)
5.25 3.02 4.01 2.65 2.63
녹는점(℃) 없음 없음 없음 없음 130.6
I.I. (%, mmmm) 9.6 7.7 6.4 7.2 78.2
밀도(g/ml) 0.850 0.864 0.860 N.O. N.O.
(단, 상기 표 1에서 상기 N.O.는 중합체 물성의 특성상 프레스 시편의 제작이 불가능하여 측정할 수 없음을 의미함)
상기 표 1을 통해 알 수 있는 바와 같이, 비교예 iii-1 및 비교예 iii-2과 같이 이전의 전이금속 화합물을 사용한 경우에 비하여, 실시예 iii-1 내지 실시예 iii-3은 본 발명에 따른 촉매를 사용하여 프로필렌을 단독 중합함에 따라 녹는점이 없고 높은 분자량을 갖는 아택틱 폴리프로필렌을 제조할 수 있음을 확인하였다.

Claims (10)

  1. 하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법:
    [화학식 1]
    Figure pat00010

    상기 화학식 1에서,
    M은 4족 전이금속이고;
    Q1 및 Q2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이고;
    R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있으며, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
    R11, R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)실릴; (C1-C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12 또는 R12와 R13은 서로 연결되어 고리를 형성할 수 있다.
  2. 제 1 항에 있어서,
    상기 M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고;
    상기 Q1 및 Q2 는 각각 독립적으로 메틸 또는 염소이며;
    상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸이고;
    상기 R6, R7, R8, R9, R10, R11, R12 및 R13 은 각각 수소인 폴리프로필렌의 제조방법.
  3. 제 2 항에 있어서,
    상기 R3 및 R4 중 적어도 하나는 메틸이고, 상기 R5 는 메틸인 폴리프로필렌의 제조방법.
  4. 제 1 항에 있어서,
    상기 촉매는 하기 화학식 6, 화학식 7 및 화학식 8로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매 화합물을 더 포함하는 폴리프로필렌의 제조방법:
    [화학식 6]
    -[Al(R61)-O]a-
    상기 화학식 6에서,
    R61은 각각 독립적으로 할로겐 라디칼, (C1-C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C1-C20)하이드로카르빌 라디칼이며;
    a는 2 이상의 정수이다;
    [화학식 7]
    D(R71)3
    상기 화학식 7에서,
    D는 알루미늄 또는 보론이며;
    R71은 각각 독립적으로 할로겐 라디칼, (C1-C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C1-C20)하이드로카르빌 라디칼이고;
    [화학식 8]
    [L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
    상기 화학식 8에서,
    L은 중성 또는 양이온성 루이스 산이며;
    Z는 13족 원소이고;
    A는 각각 독립적으로 1 이상의 수소 원자가 할로겐, (C1-C20)하이드로카르빌, (C1-C20)알콕시 또는 (C6-C20)아릴옥시 라디칼로 치환된 (C6-C20)아릴 또는 (C1-C20)알킬 라디칼이다.
  5. 제 4 항에 있어서,
    상기 화학식 6의 R61은 메틸, 에틸, n-부틸 또는 이소부틸이고;
    상기 화학식 7의 D는 알루미늄이고 R71은 메틸 또는 이소부틸이고, 또는 D는 보론이고 R71은 펜타플루오로페닐이며;
    상기 화학식 8에서 [L-H]+는 디메틸아닐리늄 양이온이고; [Z(A)4]-는 [B(C6F5)4]-이고; [L]+는 [(C6H5)3C]+인 폴리프로필렌의 제조방법.
  6. 제 4 항에 있어서,
    상기 조촉매 화합물의 함량은 상기 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여 조촉매 화합물에 함유된 금속의 몰비를 기준으로 1:1~100,000인 폴리프로필렌의 제조방법.
  7. 제 1 항에 있어서,
    상기 촉매는 화학식 1로 표시되는 전이금속 화합물이 SiO2, Al2O3 , MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-CrO2O3, SiO2-TiO2-MgO, 보오크사이트, 제올라이트, starch 및 cyclodextrine으로 이루어진 군에서 선택되는 1종 이상의 담체에 담지된 것인 폴리프로필렌의 제조방법.
  8. 제 1 항에 있어서,
    상기 중합 단계는 -50 내지 500 ℃의 온도 및 1 내지 3000 기압의 압력 하에서 수행되는 폴리프로필렌의 제조방법.
  9. 제 1 항에 있어서,
    상기 폴리프로필렌은 중량평균분자량이 20,000 내지 1,000,000이고; 밀도가 0.8 내지 0.9 g/ml인 폴리프로필렌의 제조방법.
  10. 제 1 항에 있어서,
    상기 폴리프로필렌은 입체규칙도(isotactisity, Pentad I.I, mmmm)가 5 내지 20 %인 폴리프로필렌의 제조방법.
KR1020110033626A 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법 KR101384412B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100033273 2010-04-12
KR20100033273 2010-04-12
KR1020100057102A KR100986301B1 (ko) 2010-04-12 2010-06-16 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합
PCT/KR2011/002584 WO2011129593A2 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130128127A Division KR20130135802A (ko) 2010-04-12 2013-10-25 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법

Publications (2)

Publication Number Publication Date
KR20110114476A true KR20110114476A (ko) 2011-10-19
KR101384412B1 KR101384412B1 (ko) 2014-04-25

Family

ID=55442557

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020110033625A KR101384450B1 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 올레핀-디엔 공중합체의 제조방법
KR1020110033626A KR101384412B1 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
KR1020130128127A KR20130135802A (ko) 2010-04-12 2013-10-25 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
KR1020130128150A KR20130124273A (ko) 2010-04-12 2013-10-25 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 올레핀-디엔 공중합체의 제조방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020110033625A KR101384450B1 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 올레핀-디엔 공중합체의 제조방법

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020130128127A KR20130135802A (ko) 2010-04-12 2013-10-25 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
KR1020130128150A KR20130124273A (ko) 2010-04-12 2013-10-25 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 올레핀-디엔 공중합체의 제조방법

Country Status (7)

Country Link
US (1) US8889804B2 (ko)
EP (1) EP2559713B1 (ko)
JP (1) JP5546678B2 (ko)
KR (4) KR101384450B1 (ko)
CN (1) CN102834422B (ko)
ES (1) ES2596718T3 (ko)
WO (1) WO2011129593A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101616200B1 (ko) * 2014-10-27 2016-04-27 롯데케미칼 주식회사 저온 내충격성이 우수한 폴리프로필렌 수지 조성물 및 수지 성형품
KR101617099B1 (ko) * 2014-11-05 2016-04-29 롯데케미칼 주식회사 3차원 프린터 필라멘트용 열가소성 수지 조성물
KR20170004398A (ko) * 2015-07-02 2017-01-11 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물
CN107108674A (zh) * 2015-07-02 2017-08-29 Lg化学株式会社 过渡金属化合物以及包含该过渡金属化合物的催化剂组合物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892797A (zh) 2010-04-12 2013-01-23 湖南石油化学株式会社 使用包含噻吩稠合的环戊二烯基配体的过渡金属化合物制备烯烃-二烯共聚物的方法
JP5567209B2 (ja) * 2010-04-12 2014-08-06 ロッテ ケミカル コーポレーション オレフィン重合用担持触媒およびこれを用いたポリオレフィンの製造方法
JP5567208B2 (ja) 2010-04-12 2014-08-06 ロッテ ケミカル コーポレーション オレフィン重合用触媒組成物およびこれを用いたポリオレフィンの製造方法
KR101603016B1 (ko) 2013-09-26 2016-03-11 주식회사 엘지화학 촉매 조성물 및 이를 포함하는 중합체의 제조방법
JP5972474B2 (ja) 2013-09-26 2016-08-17 エルジー・ケム・リミテッド 遷移金属化合物、これを含む触媒組成物およびこれを用いた重合体の製造方法
US9376519B2 (en) 2013-09-26 2016-06-28 Lg Chem, Ltd. Transition metal compound, catalytic composition including the same, and method for preparing polymer using the same
WO2015057001A1 (ko) 2013-10-16 2015-04-23 주식회사 엘지화학 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR101501853B1 (ko) * 2013-11-29 2015-03-12 롯데케미칼 주식회사 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 에틸렌-프로필렌-디엔 삼원중합체의 제조방법
KR101719064B1 (ko) 2014-11-13 2017-03-22 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101686712B1 (ko) * 2014-11-28 2016-12-28 롯데케미칼 주식회사 에틸렌-프로필렌-비닐 노보넨 공중합체의 제조방법 및 이로부터 제조된 에틸렌-프로필렌-비닐 노보넨 공중합체
KR101731177B1 (ko) 2014-12-24 2017-04-27 주식회사 엘지화학 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR101984820B1 (ko) * 2016-09-27 2019-05-31 롯데케미칼 주식회사 연질성과 투명성이 우수한 의료용 필름
KR20200056800A (ko) * 2018-11-15 2020-05-25 롯데케미칼 주식회사 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1327636B1 (en) * 1996-11-15 2006-01-11 Basell Polyolefine GmbH Heterocyclic metallocenes and polymerisation catalysts
US6451938B1 (en) 1997-02-25 2002-09-17 Exxon Mobil Chemical Patents Inc. Polymerization catalyst system comprising heterocyclic fused cyclopentadienide ligands
KR100323116B1 (ko) 1997-07-18 2002-11-04 미쓰이 가가쿠 가부시키가이샤 불포화엘라스토머조성물및그의가황고무
KR100354290B1 (ko) 1999-06-22 2002-09-28 주식회사 엘지화학 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합
US6444833B1 (en) 1999-12-15 2002-09-03 Basell Technology Company Bv Metallocene compounds, process for their preparation and their use in catalytic systems for the polymerization of olefins
HUP0400344A2 (hu) 2001-06-29 2004-09-28 H. Lundbeck A/S Új heteroarilszármazékok, eljárás előállításukra, alkalmazásuk és ezeket tartalmazó gyógyszerkészítmények
DE10145453A1 (de) * 2001-09-14 2003-06-05 Basell Polyolefine Gmbh Monocyclopentadienylkomplexe mit einem kondensierten Heterocyclus
DE60329691D1 (de) 2002-09-06 2009-11-26 Basell Polyolefine Gmbh Verfahren zur copolymerisation von ethylen
JP4528526B2 (ja) 2003-03-03 2010-08-18 ダウ グローバル テクノロジーズ インコーポレイティド 多環状縮合複素環化合物、金属錯体及び重合方法
AU2005275740A1 (en) * 2004-08-27 2006-03-02 Mitsui Chemicals, Inc. Catalysts for olefin polymerization, process for production of olefin polymers, olefin copolymers, novel transition metal compounds, and process for production of transition metal compounds
EP1739103A1 (en) 2005-06-30 2007-01-03 Borealis Technology Oy Catalyst
KR100789242B1 (ko) 2005-07-08 2008-01-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100789241B1 (ko) 2005-07-08 2008-01-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100843603B1 (ko) 2005-12-31 2008-07-03 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100820542B1 (ko) * 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100968704B1 (ko) 2006-12-01 2010-07-06 주식회사 엘지화학 페닐렌 브릿지를 가지는 전이 금속 촉매 화합물을 이용한올레핀 중합용 담지촉매, 이의 제조방법, 상기 올레핀중합용 담지촉매를 이용한 올레핀계 중합체의 제조방법, 및이에 의해 제조된 올레핀계 중합체
KR100976131B1 (ko) 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
KR101011497B1 (ko) 2007-01-29 2011-01-31 주식회사 엘지화학 초저밀도 폴리올레핀 공중합체의 제조 방법
JP2008222635A (ja) 2007-03-13 2008-09-25 Osaka Prefecture Univ 金属錯体化合物、色素および有機電界発光素子
KR101066969B1 (ko) * 2007-05-18 2011-09-22 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
KR100906165B1 (ko) 2008-02-12 2009-07-06 주식회사 코오롱 환상올레핀계 고분자 화합물 및 그 제조 방법
KR101130241B1 (ko) 2008-09-19 2012-03-26 김재수 포장박스 자동 공급 장치 및 방법
KR101479591B1 (ko) 2008-11-21 2015-01-08 삼성전자주식회사 이동통신 시스템의 셀 탐색 방법 및 장치
KR100986301B1 (ko) 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합
JP5567208B2 (ja) 2010-04-12 2014-08-06 ロッテ ケミカル コーポレーション オレフィン重合用触媒組成物およびこれを用いたポリオレフィンの製造方法
JP5567209B2 (ja) 2010-04-12 2014-08-06 ロッテ ケミカル コーポレーション オレフィン重合用担持触媒およびこれを用いたポリオレフィンの製造方法
CN102892797A (zh) 2010-04-12 2013-01-23 湖南石油化学株式会社 使用包含噻吩稠合的环戊二烯基配体的过渡金属化合物制备烯烃-二烯共聚物的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101616200B1 (ko) * 2014-10-27 2016-04-27 롯데케미칼 주식회사 저온 내충격성이 우수한 폴리프로필렌 수지 조성물 및 수지 성형품
KR101617099B1 (ko) * 2014-11-05 2016-04-29 롯데케미칼 주식회사 3차원 프린터 필라멘트용 열가소성 수지 조성물
CN105568420A (zh) * 2014-11-05 2016-05-11 乐天化学株式会社 用于3d打印机细丝的热塑性树脂组合物
US10214658B2 (en) 2014-11-05 2019-02-26 Lotte Chemical Corporation Method of three-dimensional printing
KR20170004398A (ko) * 2015-07-02 2017-01-11 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물
CN107108674A (zh) * 2015-07-02 2017-08-29 Lg化学株式会社 过渡金属化合物以及包含该过渡金属化合物的催化剂组合物

Also Published As

Publication number Publication date
WO2011129593A3 (ko) 2012-03-29
US20130211021A1 (en) 2013-08-15
KR20110114475A (ko) 2011-10-19
EP2559713A2 (en) 2013-02-20
ES2596718T3 (es) 2017-01-11
JP5546678B2 (ja) 2014-07-09
CN102834422A (zh) 2012-12-19
JP2013523990A (ja) 2013-06-17
KR20130124273A (ko) 2013-11-13
KR101384412B1 (ko) 2014-04-25
KR101384450B1 (ko) 2014-04-25
WO2011129593A2 (ko) 2011-10-20
KR20130135802A (ko) 2013-12-11
EP2559713A4 (en) 2014-01-08
CN102834422B (zh) 2015-03-18
EP2559713B1 (en) 2016-08-10
US8889804B2 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
KR101384412B1 (ko) 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
KR101384384B1 (ko) 올레핀 중합용 촉매 조성물 및 이를 사용한 폴리올레핀의 제조방법
US9096575B2 (en) Group 4 metal compound containing thiophene-fused cyclopentadienyl ligand derived from tetraquinoline derivative and olefin polymerization using the same
JP5567209B2 (ja) オレフィン重合用担持触媒およびこれを用いたポリオレフィンの製造方法
EP2559714B1 (en) Method for preparing olefin-diene copolymer using transition metal compound including thiophene-condensed ring cyclopentadienyl ligand

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
A107 Divisional application of patent
AMND Amendment
E902 Notification of reason for refusal
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190403

Year of fee payment: 6