KR101903215B1 - 에칭 방법 및 장치 - Google Patents

에칭 방법 및 장치 Download PDF

Info

Publication number
KR101903215B1
KR101903215B1 KR1020147001138A KR20147001138A KR101903215B1 KR 101903215 B1 KR101903215 B1 KR 101903215B1 KR 1020147001138 A KR1020147001138 A KR 1020147001138A KR 20147001138 A KR20147001138 A KR 20147001138A KR 101903215 B1 KR101903215 B1 KR 101903215B1
Authority
KR
South Korea
Prior art keywords
etching
gas
processing
processing vessel
substrate
Prior art date
Application number
KR1020147001138A
Other languages
English (en)
Other versions
KR20140051900A (ko
Inventor
다카시 도칸
마사루 사사키
히카루 가마타
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20140051900A publication Critical patent/KR20140051900A/ko
Application granted granted Critical
Publication of KR101903215B1 publication Critical patent/KR101903215B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

동일한 처리 용기 내에서, 에칭해야 할 막종, 및 처리 가스의 종류가 상이한 복수의 에칭 공정을 전환할 수 있는 에칭 방법을 제공한다. 본 발명의 에칭 방법은, 에칭해야 할 막종, 및 처리 가스의 종류가 상이한 제1 및 제2 에칭 공정(S1, S3)을 구비한다. 제1 에칭 공정(S1)으로부터 제2 에칭 공정(S3)으로 이행하는 동안에, 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 제1 에칭 공정에서 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제1 전환 처리 공정(S2)을 행한다. 그리고, 제2 에칭 공정(S3)으로부터 제1 에칭 공정(S1)으로 이행하는 동안에, 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 제2 에칭 공정에서 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제2 전환 처리 공정(S4)을 행한다.

Description

에칭 방법 및 장치{ETCHING METHOD AND DEVICE}
본 발명은, 처리 용기에 도입된 처리 가스를 플라즈마화시켜, 기판에 에칭을 행하는 에칭 방법 및 장치에 관한 것이다.
반도체 웨이퍼나 FPD 기판 등의 제조 프로세스에서, 처리 용기에 처리 가스를 도입하고, 처리 가스를 플라즈마화시켜 기판을 드라이 에칭하는 에칭 공정이 행해진다. 이 에칭 공정에서, 에칭해야 할 막종에 따라서 처리 가스의 종류를 상이하게 할 필요가 있다.
예컨대, 기판 상의 폴리실리콘막을 에칭하는 경우, 처리 용기에 HBr, Cl2 등의 할로겐 원소를 포함하는 할로겐계의 처리 가스가 도입된다. 한편, 기판 상에 적층된 절연막, 예컨대 산화실리콘막을 에칭하는 경우, 처리 용기에 탄소와 불소를 포함하는 CF계의 처리 가스가 도입된다.
종래, 처리 가스의 종류가 상이한 에칭은, 각각 별개의 처리 용기에서 행해졌다. 즉, 할로겐계 가스를 사용하는 처리 용기 및 CF계 가스를 사용하는 처리 용기는, 각각 전용(專用)화되어, 상이한 막을 대상으로 한 에칭 처리를 행했다. 그리고, 기판의 에칭 레이트를 안정화하기 위해, 1장의 기판을 에칭할 때마다, 처리 용기의 표면에 부착된 퇴적물을 제거하는 드라이클리닝이 행해졌다(예컨대, 특허문헌 1, 특허문헌 2 참조).
특허문헌 1 : 일본 특허 공개 평7-78802호 공보 특허문헌 2 : 일본 특허 공개 평5-291213호 공보
동일한 처리 용기에서, 할로겐계 가스를 사용하는 처리 용기로부터 CF계 가스를 사용하는 처리 용기에, 또는 그 반대로 이행시킬 수 있다면, 처리 용기의 갯수를 줄일 수 있다. 또, 처리 용기를 전환하여 에칭 처리를 행함으로써, 처리를 기다리는 기판을 줄일 수 있기 때문에, 에칭 공정 전체의 신속화를 도모할 수 있다.
그러나, 종래, 가스종 및 막종이 상이한 에칭은, 각각 별개의 처리 용기에서 행하는 것이 상식이었다. 왜냐하면, 하나의 처리 용기에서, 폴리실리콘막을 에칭하는 공정으로부터 절연막을 에칭하는 공정으로 이행하면, 기판의 에칭 레이트가 안정되지 않거나, 기판 상에 처리 용기의 표면에 부착되는 퇴적물(에칭의 반응 생성물)에 기인하는 파티클이 발생하거나 하는 문제가 우려되기 때문이다. 절연막을 에칭하는 공정으로부터 폴리실리콘막을 에칭하는 공정으로 이행하는 경우에도 마찬가지이다. 폴리실리콘막을 에칭하는 공정과 절연막을 에칭하는 공정에서는, 처리 용기의 표면에 부착되는 퇴적물(에칭의 반응 생성물)의 종류가 상이하다. 이 때문에, 파티클이 기판 처리에 영향을 미쳐, 의도하는 에칭을 저해할 우려가 있다. 또한, 처리 용기의 표면이나 간극에 이전의 에칭 공정의 퇴적물이 남으면, 이후의 에칭 공정의 에칭 레이트가 안정되지 않게 된다.
따라서 본 발명은, 동일한 처리 용기 내에서, 막종 및 가스종이 상이한 복수의 에칭 공정을 전환할 수 있는 에칭 방법 및 장치를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해서, 본 발명의 일양태는, 처리 용기에 제1 처리 가스를 도입하고, 상기 제1 처리 가스를 플라즈마화시켜 제1 기판 상의 막을 에칭하는 제1 에칭 공정과, 상기 처리 용기에 상기 제1 처리 가스와 가스종이 상이한 제2 처리 가스를 도입하고, 상기 제2 처리 가스를 플라즈마화시켜, 상기 막과 막종이 상이한 제2 기판 상의 막을 에칭하는 제2 에칭 공정을 포함하고, 동일한 상기 처리 용기 내에서 상기 제1 에칭 공정과 상기 제2 에칭 공정을 전환하여 행하고, 상기 제1 에칭 공정으로부터 상기 제2 에칭 공정으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜 상기 제1 에칭 공정에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제1 전환 처리 공정을 행하고, 및/또는, 상기 제2 에칭 공정으로부터 상기 제1 에칭 공정으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 상기 제2 에칭 공정에서 상기 처리 용기 내에 퇴적한 반응 생성물을 제거하는 제2 전환 처리 공정을 행하는 에칭 방법이다.
본 발명의 다른 양태는, 처리 용기에 제1 처리 가스를 도입하고, 상기 제1 처리 가스를 플라즈마화시켜 기판 상의 막을 에칭하는 제1 에칭 공정과, 상기 처리 용기에 상기 제1 처리 가스와 가스종이 상이한 제2 처리 가스를 도입하고, 상기 제2 처리 가스를 플라즈마화시켜, 상기 막과 막종이 상이한 기판 상의 막을 에칭하는 제2 에칭 공정을 포함하고, 동일한 상기 처리 용기 내에서 상기 제1 에칭 공정과 상기 제2 에칭 공정을 전환하여 행하고, 상기 제1 에칭 공정으로부터 상기 제2 에칭 공정으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 상기 제1 에칭 공정에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제1 전환 처리 공정을 행하고, 및/또는, 상기 제2 에칭 공정으로부터 상기 제1 에칭 공정으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 상기 제2 에칭 공정에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제2 전환 처리 공정을 행하는 에칭 방법이다.
본 발명의 또 다른 양태는, 처리 용기에 제1 처리 가스를 도입하고, 상기 제1 처리 가스를 플라즈마화시켜 기판 상의 막을 에칭하는 제1 에칭, 및 상기 처리 용기에 상기 제1 처리 가스와 가스종이 상이한 제2 처리 가스를 도입하고, 상기 제2 처리 가스를 플라즈마화시켜 상기 막과 막종이 상이한 기판 상의 막을 에칭하는 제2 에칭을, 동일한 상기 처리 용기 내에서 전환하여 행하고, 상기 제1 에칭으로부터 상기 제2 에칭으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜 상기 제1 에칭에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하고, 상기 제2 에칭으로부터 상기 제1 에칭으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜 상기 제2 에칭에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제어부를 구비하는 에칭 장치이다.
본 발명에 의하면, 동일한 처리 용기에서 복수의 에칭 처리를 행할 수 있게 된다. 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 처리 용기 내에 퇴적되는 반응 생성물을 제거하기 때문에, 전환후의 에칭 레이트 및 파티클 발생량을, 처리 용기를 전환하여 처리를 행할 때와 동등하게 할 수 있다.
도 1은 본 발명의 일실시형태의 에칭 방법의 개념도.
도 2는 본 발명의 제1 실시형태의 에칭 방법의 공정도.
도 3은 RLSA 에칭 장치의 개략 단면도.
도 4는 슬롯 안테나판의 슬롯 패턴의 일례를 나타내는 평면도.
도 5는 4개의 RLSA 에칭 장치를 장비하는 반도체 제조 시스템의 개념도.
도 6은 본 발명의 제1 실시예의 실험 결과를 나타내는 도면.
도 7은 본 발명의 제2 실시예의 실험 결과를 나타내는 도면.
도 8은 본 발명의 제3 실시예의 더블 패터닝의 공정도.
도 9는 상이한 압력하에서의 KrF 포토레지스트의 에칭 레이트의 실험 결과를 나타내는 그래프.
도 10은 상이한 마이크로파 파워하에서의 KrF 포토레지스트의 에칭 레이트의 실험 결과를 나타내는 그래프.
이하, 첨부 도면을 참조하여, 본 발명의 일실시형태의 에칭 방법을 설명한다. 도 1에는, 제1 에칭 공정(S1)과 제2 에칭 공정(S3)의 전환의 개념도가 도시된다. 도 1의 좌측에는, 제1 에칭 공정(S1)이 도시되고, 도 1의 우측에는, 제2 에칭 공정(S3)이 도시되어 있다.
제1 에칭 공정(S1)에서는, 제1 처리 가스로서 할로겐계 가스를 이용하여, 실리콘을 포함하는 막, 예컨대 폴리실리콘막을 에칭한다. 도 1의 우측에는, 제2 처리 가스로서 CF계 가스를 이용하여, 절연막을 에칭하는 공정이 도시된다. 절연막은, 산화실리콘막, 질화실리콘막 등이다. 이 실시형태에서는, 산화실리콘막을 에칭하는 예를 나타낸다.
도 1의 좌측의 폴리실리콘막(2)의 에칭은, 기판으로서의 웨이퍼(W) 상에 게이트 전극(2a)을 형성하기 위해 행해진다. 실리콘 등으로 이루어진 웨이퍼(W) 상에는, 질화실리콘막(1), 폴리실리콘막(2) 및 반사 방지층(3)(BARC)이 순서대로 형성된다. 질화실리콘막(1) 및 폴리실리콘막(2)은, 예컨대 화학적 기상 성장(CVD)에 의해 형성된다. 반사 방지층(3)의 표면에는 ArF 포토레지스트가 도포된다. 포토레지스트층에는 노광에 의해 마스크 패턴이 전사된다. 노광된 포토레지스트층은 현상 처리된다. 현상후에 반사 방지층(3)의 표면에는 레지스트 패턴(4a)이 형성된다.
레지스트 패턴(4a)이 형성된 웨이퍼는, 에칭 장치로서의 RLSA 에칭 장치에 반입된다. RLSA 에칭 장치의 상세한 구조에 관해서는 후술한다. RLSA 에칭 장치에서는, 레지스트 패턴(4a)을 마스크로 하여 폴리실리콘막(2)을 에칭한다. 에칭에 의해, 레지스트 패턴(4a)에 대응한 게이트 전극(2a)이 형성된다.
RLSA 에칭 장치의 처리 용기에는, 제1 처리 가스로서, 플라즈마 여기용 가스와 에칭 가스를 혼합한 가스가 도입된다. 플라즈마 여기용 가스로는, 불활성 가스, 예컨대, Ar, He, Ne, Kr 및 Xe 중 적어도 하나가 이용된다. 에칭 가스로는, 할로겐 원소를 포함하는 가스, 예컨대 HBr, Cl2가 이용된다. 에칭 대상의 형상을 제어하기 위해, 산소를 포함하는 가스, 예컨대, O2, CO 가스를 첨가한다.
표 1에 폴리실리콘막을 에칭할 때의 처리 조건의 일례를 나타낸다.
[표 1]
Figure 112014004228735-pct00001
처리 용기 내에 제1 처리 가스를 도입하고, 처리 용기를 소정의 압력으로 감압한 후, RLSA를 이용하여 처리 용기에 마이크로파를 도입하고, 처리 용기 내의 제1 처리 가스를 플라즈마화시킨다. 그리고, 플라즈마화시킨 제1 처리 가스에 의해 폴리실리콘막(2)을 에칭한다. 폴리실리콘막(2)을 에칭하면, 에칭 가스와 폴리실리콘막의 반응 생성물인 SiBrO, SiClO 등이 처리 용기의 내벽 표면에 퇴적한다.
도 1의 우측의, 산화실리콘막(5)의 에칭은, 게이트 전극(2a)의 측벽에 스페이서(5a)를 형성하기 위해 행해진다. 웨이퍼(W)의 표면 및 게이트 전극(2a)의 표면에는, 산화실리콘(SiO2)막(5)이 화학적 기상 성장(CVD)법에 의해 형성된다.
산화실리콘막(5)이 형성된 웨이퍼(W)는, RLSA(등록상표) 에칭 장치에 반송된다. RLSA 에칭 장치에서는, 웨이퍼(W)의 표면 및 게이트 전극(2a)의 표면에 적층된 산화실리콘막(5)을 에치백하여, 게이트 전극(2a)의 측벽에 스페이서(5a)를 형성한다.
RLSA 에칭 장치의 처리 용기에는, 제2 처리 가스로서, 플라즈마 여기용 가스와 에칭 가스를 혼합한 가스가 도입된다. 플라즈마 여기용 가스로는, 불활성 가스, 예컨대, Ar, He, Ne, Kr 및 Xe 중 적어도 하나가 이용된다. 에칭 가스로는, CH2F2, CHF3 및 CH3F의 군에서 선택되는 적어도 하나, 및 O2, CO, CN 및 N2의 군에서 선택되는 적어도 하나를 혼합한 가스가 이용된다. 산화실리콘막(5)을 에칭하는 이 예에서는, Ar, CHF3, O2의 혼합 가스가 사용된다. 표 2에 산화실리콘막(5)을 에칭할 때의 처리 조건의 일례를 나타낸다.
[표 2]
Figure 112014004228735-pct00002
처리 용기 내에 제2 처리 가스를 도입하고, 처리 용기를 소정의 압력으로 감압한 후, 슬롯 안테나를 이용하여 처리 용기에 마이크로파를 도입하고, 처리 용기 내의 제2 처리 가스를 플라즈마화시킨다. 그리고, 플라즈마화시킨 제2 처리 가스에 의해 산화실리콘막(5)을 에칭한다. 산화실리콘막(5)을 에칭할 때, 질화실리콘막(1)이나 폴리실리콘막(2)에 대한 산화실리콘막의 에칭 선택비를 높인 처리가 요구된다. 따라서, 퇴적물(C, CFx)을 퇴적하면서 에칭함으로써, 질화실리콘막(1)이나 폴리실리콘막(2)의 에칭을 억제한다. CF계 가스 유래의 퇴적물이 웨이퍼(W)나 처리 용기의 표면에 퇴적한다.
도 2는, 본 발명의 일실시형태의 에칭 방법의 플로우차트를 도시한다. 도 2에 나타낸 바와 같이, 제1 에칭 공정(S1)으로부터 제2 에칭 공정(S3)으로 전환할 때, 제1 전환 처리 공정(S2)이 행해진다. 이 제1 전환 처리 공정(S2)도 RLSA 에칭 장치 내에서 행해진다.
제1 전환 처리 공정(S2)에서, 처리 용기에는 클리닝 가스로서 불소를 포함하는 가스가 도입된다. 이 실시형태에서는, 클리닝 가스로서 SF6, O2 및 Ar의 혼합 가스가 이용된다. Ar는, 플라즈마 여기용 가스로서 사용된다. 처리 용기 내에서 클리닝 가스는 플라즈마화되어, 제1 에칭 공정에서 처리 용기 내에 퇴적된 SiBrO, SiClO 등의 반응 생성물이 제거된다. SF6은 SiBrO, SiClO 등의 반응 생성물 중의 Si를 SiF로 하여 제거하는 데 이용된다. O2는 레지스트막 중의 탄소를 CO 등으로 하여 제거하는 데 이용된다. SF6 이외에도 CF4, CF4O2 등의 CF계의 가스를 이용해도 좋고, NF3을 이용해도 좋다. Ar 이외에도 불활성 가스, 예컨대, He, Ne, Kr 및 Xe를 이용해도 좋다. 제1 전환 처리 공정은, 처리 용기의 적재대에 웨이퍼(W)가 적재되지 않은 웨이퍼리스의 상태로 행할 수 있다.
제1 전환 처리 공정(S2)은, 저압 처리와 고압 처리의 2단계로 행해진다. 저압은 10 mT(Torr) 이상 100 mT 미만이다. 고압은 100 mT 이상 300 mT 이하이다. 표 3은 제1 전환 처리 공정의 처리 조건의 일례를 나타낸다.
[표 3]
Figure 112014004228735-pct00003
처리 용기 내의 압력을 저압으로 하면, 처리 용기 내에 플라즈마가 전체적으로 확산된다. 이 때문에, 처리 용기의 하부까지 포함시킨 전체적인 클리닝이 가능해진다. 처리 용기 내를 고압으로 하면, 처리 용기의 상부의 플라즈마의 밀도가 비교적 높아지기 때문에, 유전체창 및 처리 용기 상부 측벽의 효과적인 클리닝이 가능해진다. 저압 처리 공정과 고압 처리 공정의 2단계로 처리함으로써, 처리 용기 전체를 단시간에 클리닝할 수 있다.
제2 에칭 공정(S3)으로부터 제1 에칭 공정(S1)으로 이행하는 동안에, 제2 전환 처리 공정(S4)이 행해진다. 이 제2 전환 처리 공정(S4)도 RLSA 에칭 장치 내에서 행해진다.
제2 전환 처리 공정(S4)에서, 처리 용기에는 클리닝 가스로서 O2를 포함하는 가스가 도입된다. 이 실시형태에서는, 클리닝 가스로서 O2가 이용되고, 플라즈마 여기용 가스로서 Ar가 이용된다. 애싱 처리와 같이 O2에 N2를 첨가해도 좋다. 클리닝 가스는 플라즈마화되어, 제2 에칭 공정에서 처리 용기 내에 퇴적한 C, CF 등의 반응 생성물이 제거된다. O2는 C, CF 등의 반응 생성물 중의 C를 CO 등으로 하여 제거시키는 데 이용된다. 제2 전환 처리 공정(S4)은, 처리 용기의 적재대에 웨이퍼(W)가 적재되지 않은 웨이퍼리스의 상태로 행할 수 있다.
제2 전환 처리 공정(S4)은, 고압 처리와 저압 처리의 2단계로 행해져도 좋다. 표 4는 제2 전환 처리 공정의 처리 조건의 일례를 나타낸다.
[표 4]
Figure 112014004228735-pct00004
제2 전환 처리 공정(S4)에서는, 제1 전환 처리 공정(S2)과 달리, 처음에 고압 처리 공정을 행하고, 두번째로 저압 처리 공정을 행한다. 고압 처리 공정에서는, 처리 용기의 상부의 플라즈마의 농도가 비교적 높아지기 때문에, 유전체창 및 처리 용기 상부 측벽의 효과적인 클리닝이 가능해진다. 저압 처리 공정에서는, 플라즈마가 처리 용기 내에 전체적으로 확산되기 때문에, 처리 용기의 하부까지 포함시킨 전체적인 클리닝이 가능해진다. 고압 처리 공정과 저압 처리 공정의 두 공정으로 처리함으로써, 처리 용기 전체를 단시간에 클리닝할 수 있다.
상기 제1 및 제2 에칭 공정(S1, S3), 및 제1 및 제2 전환 처리(S2, S4)에서는, RLSA 에칭 장치가 사용되고 있지만, 플라즈마를 생성할 수 있는 다른 에칭 장치도 사용할 수 있다. RLSA 에칭 장치의 구성은 이하와 같다.
도 3은, RLSA 에칭 장치의 개략 단면도를 도시한다. RLSA 에칭 장치는, 플라즈마원으로서 마이크로파를 이용한다. 마이크로파 여기 플라즈마를 이용하면, 에칭 처리를 행하는 영역에서 저전자 온도, 고밀도의 플라즈마를 생성할 수 있다.
RLSA 에칭 장치는, 알루미늄, 스테인레스 등으로 이루어진 통형상의 처리 용기(10)를 구비한다. 처리 용기(10)는 접지되어 있다.
처음에, RLSA 에칭 장치의 처리 용기(10)에 마이크로파 여기 플라즈마를 발생시키는 것에 직접적으로 공헌하지 않는 구성 요소나 부재에 관해 설명한다.
처리 용기(10)의 저부의 중앙에는, 웨이퍼(W)가 적재되는 적재대(12)가 설치된다. 적재대(12)는 처리 용기(10)의 저부로부터 상측으로 연장되는 원통형의 지지부(14)에 의해 유지된다. 적재대(12)는, 예컨대 알루미나나 질화알루미늄 등의 절연 재료로 이루어지며, 원반형으로 형성된다. 적재대(12) 내에는, 고주파가 인가되는 하부 전극이 설치되어 있다.
처리 용기(10)의 내측면과, 원통형의 지지부(14)를 포위하며, 처리 용기(10)의 저부로부터 상측으로 연장되는 원통형의 벽부(16)와의 사이에는, 원환형의 배기 경로(18)가 형성된다. 배기 경로(18)의 상부에는 원환형의 배플 플레이트(20)가 배치되며, 배기 경로(18)의 하부에는 배기구(22)가 형성된다. 적재대(12) 상의 웨이퍼(W)에 관해서 대칭으로 분포하는 균일한 가스의 흐름을 얻기 위해, 원환형의 배기 경로(18)에는 둘레 방향과 같은 각도 간격을 두고 다수의 배기구(22)가 형성된다. 각 배기구(22)는 배기 파이프(24)를 통해 배기 장치(26)에 접속된다. 배기 장치(26)는, 처리 용기(10) 내를 진공으로 하고, 원하는 압력으로 감압하는 터보 분자 진공 펌프(TMP) 등의 진공 펌프를 구비한다. 게이트 밸브(28)는, 웨이퍼(W)가 처치 용기로부터 반입 반출되는 반송구를 개폐한다.
적재대(12)는, 정합기(32), 전력 공급 로드(34)를 통해 적재대(12)에 RF 바이어스 전압을 인가하는 고주파 전원(30)에 전기적으로 접속된다. 고주파 전원(30)은, 소정의 전력 레벨에 있어서, 예컨대 13.56 MHz의 비교적 낮은 주파수의 고주파를 출력한다. 이와 같은 낮은 주파수는, 적재대(12) 상의 웨이퍼(W)에 끌어 당겨지는 이온의 에너지를 조정하기에 적합하다. 정합기(32)는, 자기(自己) 바이어스를 발생시키기 위한 블로킹 콘덴서(blocking condenser)를 갖는다.
적재대(12)의 상면에는 정전척(36)이 설치된다. 정전척(36)은, 적재대(12) 상에 웨이퍼(W)를 정전력에 의해 유지한다. 정전척(36)은, 도체막으로 형성되는 전극(36a)과, 전극(36a)을 상하로 사이에 끼우는 한쌍의 절연막(36b, 36c)을 구비한다. 직류 전원(40)은, 스위치(42)를 통해 전극(36a)에 전기적으로 접속된다. 직류 전원(40)으로부터 정전척(36)에 인가되는 직류 전압은, 정전척(36) 상에 웨이퍼(W)를 유지하기 위한 쿨롱력을 생기게 한다. 정전척(36)의 외주에는, 웨이퍼(W)를 둘러싸는 포커스링(38)이 설치된다.
적재대(12)의 내부에는 냉각 매체 경로(44)가 설치된다. 냉각 매체 경로(44)는 둘레 방향으로 연장되어 원환형으로 형성된다. 소정 온도의 냉각 매체 또는 냉각수가, 도관(46) 및 냉각 매체 경로(44)를 순환하도록 틸러 유닛(도시하지 않음)으로부터 도관(46)을 통해 냉각 매체 경로(44)에 공급된다. 냉각 매체의 온도를 조정함으로써, 정전척(36) 상의 웨이퍼(W)의 온도를 조정할 수 있다. 또한, He 가스 등의 열전도 가스가, 웨이퍼(W)와 정전척 사이에, 가스 공급부(도시하지 않음)로부터 공급 파이프(50)를 통해 공급된다.
다음으로, RLSA 에칭 장치의 처리 용기(10) 내에 마이크로파 플라즈마를 발생시키는 데 공헌하는 요소나 부재를 설명한다.
평면 안테나(55)는, 석영, 세라믹, 알루미나(Al2O3) 또는 질화알루미늄(AlN) 등의 유전체로 이루어진 원반형의 유전체창(52)과, 원반형의 슬롯 안테나판(54)을 구비한다. 유전체창(52)은, 처리 용기(10)의 내부를 밀봉하도록 처리 용기(10)에 부착되고, 적재대(12)에 대향하는 처리 용기(10)의 천장부로서 기능한다. 슬롯 안테나판(54)은 유전체창(52)의 상면의 위에 배치되며, 동심원형으로 분포하는 다수의 슬롯을 갖는다. 슬롯 안테나판(54)은, 석영, 세라믹, 알루미나(Al2O3) 또는 질화알루미늄(AlN) 등의 유전체로 이루어진 유전체판(56)을 통해 전자(電磁)적으로 마이크로파 전송 라인(58)에 연결된다. 유전체판(56)은, 그 내부를 전파하는 마이크로파의 파장을 단축한다.
마이크로파 전송 라인(58)은, 도파로(62)와, 도파로/동축관 변환기(64)와, 동축관(66)을 가지며, 마이크로파 발생기(60)로부터 출력된 마이크로파를 슬롯 안테나판(54)에 전송한다. 도파로(62)는, 예컨대 직사각형의 파이프로 형성되며, 마이크로파 발생기(60)로부터 변환기(64)에 TE 모드로 마이크로파를 전송한다.
변환기(64)는, 도파로(62)를 동축관(66)에 연결시키고, 도파로(62) 내를 전파하는 TE 모드의 마이크로파를 동축관(66) 내를 전파하는 TEM 모드의 마이크로파로 변환한다. 변환기(64)는, 하측으로 갈수록 뾰족한 원추형상으로 형성되며, 그 상부가 도파로(62)에 결합되고, 그 하부가 동축관(66)의 내측 도체(68)에 결합된다.
동축관(66)은, 변환기(64)로부터 처리 용기(10)의 상부 중앙을 향하여 수직 하측으로 연장되어, 슬롯 안테나판(54)에 연결된다. 동축관(66)은, 외측 도체(70)와 내측 도체(68)를 갖는다. 외측 도체(70)는, 그 상단부가 도파로(62)에 결합되고, 수직 하측으로 연장되는 하단부가 유전체판(56)에 결합된다. 내측 도체(68)는 그 상단부가 변환기(64)에 접속되고, 그 하단부가 슬롯 안테나판(54)에 도달할 때까지 수직 하측으로 연장된다. 마이크로파는 외측 도체(70)와 내측 도체(68) 사이를 TEM 모드로 전파한다.
마이크로파 발생기(60)로부터 출력된 마이크로파는, 도파로(62), 변환기(64), 동축관(66)을 포함하는 마이크로파 전송 라인(58)으로 전송되고, 유전체판(56)을 통과한 후, 슬롯 안테나판(54)에 공급된다. 마이크로파는 유전체판(56)에서 반경 방향으로 확산되고, 슬롯 안테나판(54)의 슬롯을 통해 처리 용기(10) 내에 방사된다. 이에 따라, 유전체창(52) 바로 아래의 가스가 여기되고, 처리 용기(10) 내에 플라즈마가 발생한다.
유전체판(56)의 상면에는 안테나 배면 플레이트(72)가 설치된다. 안테나 배면 플레이트(72)는, 예컨대 알루미늄으로 이루어진다. 안테나 배면 플레이트(72)에는, 틸러 유닛(도시하지 않음)에 접속되는 유로(74)가 형성된다. 소정 온도의 냉각 매체 또는 냉각수는 유로(74) 및 파이프(76, 78) 내를 순환한다. 안테나 배면 플레이트(72)는 유전체판(56) 등에 발생하는 열을 흡수하는 냉각 재킷으로서 기능하며, 열을 외부로 전도한다.
이 실시형태에서는, 가스 도입로(80)는 동축관(66)의 내측 도체(68)를 관통하도록 설치된다. 제1 가스 도입 파이프(84)는, 그 일단이 가스 도입로(80)의 상단 개구부(80a)에 접속되고, 그 타단이 처리 가스 공급원(82)에 접속된다. 유전체창(52)의 중앙에는, 처리 용기(10)를 향하여 개구된 가스 분사구(86)가 형성된다. 상기 구성을 구비하는 제1 가스 도입부(88)에서, 처리 가스 공급원(82)으로부터의 처리 가스는, 제1 가스 도입 파이프(84) 및 내측 도체(68) 내의 가스 도입로(80)를 흘러, 가스 분사구(86)로부터 하측에 위치하는 적재대(12)를 향하여 분사된다. 처리 가스는 배기 장치(26)에 의해 적재대(12)를 둘러싸는 원환형의 배기 경로(18)로 끌어당겨진다. 제1 가스 도입 파이프(84)의 도중에는, 유량 조정기(90)(MFC)와, 온/오프를 행하는 밸브(92)가 설치된다.
이 실시형태에서는, 제1 가스 도입부(88)에 더하여, 처리 용기(10)에 처리 가스를 공급하기 위한 제2 가스 도입부(94)가 설치된다. 제2 가스 도입부(94)는, 처리 용기(10) 내에 배치되는 가스링(91)과, 가스링(91)에 접속되는 가스 공급관(100)을 구비한다. 가스링(91)은 중공(中空)의 링형상으로 형성되며, 그 내주측의 측면에는 둘레 방향과 동일한 각도 간격을 두고 다수의 측면 분사구(92)를 갖는다. 다수의 측면 분사구(92)는 처리 용기(10)의 플라즈마 영역 내에서 개구된다. 가스 공급관(100)은, 가스링(91) 및 처리 가스 공급원(82)에 접속된다. 가스 공급관(100)의 도중에는, 유량 조정기(102)(MFC), 및 온/오프를 행하는 밸브(104)가 설치된다.
제2 가스 도입부(94)에서, 처리 가스 공급원(82)으로부터의 처리 가스는 가스 공급관(100)을 통해 가스링(91)에 도입된다. 처리 가스가 충만한 가스링(91)의 내부 압력은, 둘레 방향에서 균일해져, 다수의 측면 분사구(92)로부터 처리 용기(10) 내의 플라즈마 영역에 균일하게 수평 방향으로 처리 가스가 분사된다.
도 4는, 슬롯 안테나판(54)의 슬롯 패턴의 일례를 나타낸다. 슬롯 안테나판(54)은, 동심원형으로 배열된 다수의 슬롯(54b, 54c)을 갖는다. 자세하게는, 길이 방향이 직교하는 2종류의 슬롯이 동심원형으로 교대로 배열된다. 동심원의 반경 방향의 간격은, 슬롯 안테나판(54)을 반경 방향으로 전파하는 마이크로파의 파장에 기초하여 정해진다. 이 슬롯 패턴에 의하면, 마이크로파는 서로 직교하는 2개의 편파 성분을 구비하는 평면파로 변환되고, 평면파가 슬롯 안테나판(54)으로부터 방사된다. 이와 같이 구성된 슬롯 안테나판(54)은, 안테나의 전체 영역으로부터 처리 용기(10) 내에 균일하게 마이크로파를 방사하는 데 효과적이며, 안테나의 하측에 균일한 안정된 플라즈마를 생성하기에 적합하다. 이와 같이 구성된 슬롯 안테나판(54)은, RLSA(Radial Line Slot Antenna)로 불린다. 이것을 구비한 에칭 장치를 RLSA 에칭 장치라고 부른다.
배기 장치(26), 고주파 전원(30), 직류 전원(40), 스위치(42), 마이크로파 발생기(60), 처리 가스 공급원(82), 틸러 유닛(도시하지 않음), 열전도 가스 공급부(도시하지 않음) 등의 개개의 작동 및 전체의 작동은, 제어부(도시하지 않음)에 의해 제어된다. 제어부는, 예컨대 마이크로 컴퓨터 등으로 구성된다.
제어부는 후술하는 통괄 제어 장치로부터의 전환 신호를 수신했을 때, 도 2에 도시되는 플로우차트에 따라서, 제1 에칭 공정(S1)과 제2 에칭 공정(S3)을 전환한다. 통괄 제어 장치에는, 웨이퍼(W)를 처리하는 순서가 기억되어 있다. 통괄 제어 장치는, 처리 순서에 따라서, RLSA 에칭 장치를 폴리실리콘막 에칭 장치로서 사용하거나, 산화실리콘막 에칭 장치로서 사용하거나 한다.
RLSA 에칭 장치의 제어부에 전환 기능을 내장시킴으로써, 예컨대 복수의 프로세스 모듈 중 하나가 고장났을 때, 고장난 프로세스 모듈의 대체로서 RLSA 에칭 장치를 사용할 수도 있다.
도 5는, 프로세스 모듈로서 4개의 RLSA 에칭 장치를 장비하는 반도체 제조 시스템의 개념도를 도시한다. 도면 중의 PM1 및 PM2는, 폴리실리콘막 에칭용 프로세스 모듈이며, PM3 및 PM4은, 산화실리콘막 에칭용 프로세스 모듈이다. 이들 프로세스 모듈은, 중앙에 배치되는 진공 반송 모듈(6)에 방사형으로 접속된다. 진공 반송 모듈(6)에는 로드록 모듈(7, 8)이 접속된다.
로드록 모듈(7, 8)에는 대기 반송 모듈(T1)이 접속된다. 대기 반송 모듈(T1)은, 복수매(예컨대 25장)의 웨이퍼(W)를 수용하는 카세트가 배치되는 로드 포트(L1, L2, L3)를 구비한다. 진공 반송 모듈(6)에는 반송용의 로봇이 수용되어 있어, 로드록 모듈(7, 8)과 프로세스 모듈(PM1~PM4) 사이에서 웨이퍼(W)를 반송할 수 있게 되어 있다. 프로세스 모듈(PM1~PM4), 로드록 모듈(7, 8)과 진공 반송 모듈(6)의 사이에는 게이트 밸브(G1~G6)가 배치되어, 웨이퍼(W)의 반송에 따라서 게이트 밸브(G1~G6)가 개폐된다. 대기 반송 모듈(T1)에는 반송용의 로봇이 수용되어 있어, 로드록 모듈(7, 8)과 로드 포트(L1, L2, L3) 사이에서 웨이퍼(W)를 반송할 수 있게 되어 있다. 대기 반송 모듈(T1)과 로드록 모듈(7, 8) 사이에는 게이트 밸브(G7, G8)가 배치되어, 웨이퍼(W)의 반송에 따라서 게이트 밸브(G7, G8)가 개폐된다.
프로세스 모듈(PM1~PM4), 로드록 모듈(7, 8), 진공 반송 모듈(6) 및 대기 반송 모듈(T1)의 동작은, 각각의 모듈에 부설된 제어부에 의해 제어된다. 이들 제어부는, LAN 등의 네트워크를 통해 통괄 제어 장치에 접속되어 있다. 각 제어부에 의한 각 모듈의 제어는 통괄 제어 장치에 의해 통괄하여 제어된다. 통괄 제어 장치는, 미리 정해진 처리 순서에 따라서 이들 모듈을 제어한다. 예컨대, 폴리실리콘막을 에칭할 때에는, 로드 포트(L1)에 수용된 웨이퍼(W)를 폴리실리콘막 에칭용 프로세스 모듈(PM1, PM2)에 반송하고, 프로세스 모듈(PM1, PM2)에서 처리가 이루어진 웨이퍼(W)를 로드 포트(L1)에 반출한다. 한편, 산화실리콘막을 에칭할 때에는, 로드 포트(L2)에 수용된 웨이퍼(W)를 산화실리콘막 에칭용 프로세스 모듈(PM3, PM4)에 반송하고, 프로세스 모듈(PM3, PM4)에서 처리가 이루어진 웨이퍼(W)를 로드 포트(L2)에 반출한다.
예컨대, 폴리실리콘막 에칭용 프로세스 모듈(PM1)이 고장났을 때, 폴리실리콘막 에칭용 웨이퍼(W)의 처리가 지연되어 버린다. 이 때, 산화실리콘막 에칭용 프로세스 모듈(PM4)을 폴리실리콘막 에칭용 프로세스 모듈로 전환함으로써, 폴리실리콘막 에칭용 웨이퍼(W)를 처리할 수 있다. 이에 따라, 폴리실리콘막 에칭용 웨이퍼(W)를 구비한 카세트의 체류 시간을 저감할 수 있다.
통괄 제어 장치에 의한 전환 신호는, 예컨대 이하와 같이 생성된다. 통괄 제어 장치의 모니터에는, PM1이 폴리실리콘막 에칭용 프로세스 모듈인 것이 표시된다. 모니터에는 터치 패널식의 스위치가 있고, 오퍼레이터가 모니터상의 스위치를 누르면, 통괄 제어 장치는 스위치가 눌러진 것을 검지하고, 전환 신호를 프로세스 모듈 PM4에 송신한다. 이것과 동시에, 통괄 제어 장치는, 기억된 처리 순서를 갱신하고, PM1에서 처리할 예정의 웨이퍼(W)를 PM4에 반송한다. 프로세스 모듈 PM4의 전환이 종료하면, 통괄 제어 장치의 모니터에 전환이 완료된 것이 표시된다. 또한, 오퍼레이터에 의한 스위치 조작 대신에, 통괄 제어 장치가 PM1의 장애를 검지했을 때, 자동적으로 PM4에 전환 신호를 송신하도록 해도 좋다.
실시예 1
(산화실리콘막→ 폴리실리콘막으로의 전환)
이하와 같이, 산화실리콘막의 스페이서 에칭으로부터 폴리실리콘막의 에칭으로 전환했다. 그리고, 전환후의 폴리실리콘막의 에칭 레이트 및 파티클의 발생량을 측정했다.
우선, 산화실리콘막의 스페이서의 에칭을, 처리 가스의 유량을 Ar/CHF3/O2=450/50/2 sccm로 설정하고, 표 2에 나타내는 조건으로 행했다. 이 때, 에칭 레이트가 변동하지 않도록, 클리닝 레시피에 따라서, 웨이퍼를 1장 에칭할 때마다 클리닝 처리를 행했다. 클리닝 처리는 O2 드라이클리닝이며, 웨이퍼를 적재대에 적재하지 않은(웨이퍼리스의) 상태로 행해졌다. 클리닝 처리는, 에칭 처리와 동등한 압력, 예컨대 20 mTorr에서 행해진다.
다음으로, 표 4에 나타내는 조건으로 전환 처리를 행하여, 처리 용기의 표면에 부착되어 있는 퇴적물을 제거했다. 전환 처리는, 웨이퍼마다 행해지는 클리닝 처리보다 시간이 길다. 이 때문에, 클리닝 처리로 제거할 수 없었던 퇴적물을 제거할 수 있다. 또, 전환 처리는, 클리닝 처리보다 처리 압력이 높은 공정을 포함할 수 있다. 이에 따라, 유전체창 및 처리 용기 상부 측벽을 효과적으로 클리닝할 수 있다. 또한, 클리닝 처리는 통상 1~2분간이다. 전환 처리의 시간은, 클리닝 처리의 2배 이상, 바람직하게는 5~10배 정도이면 된다.
다음으로, 처리 용기 내의 환경을 갖추기 위해, 아이들 시간을, 예컨대 10분간 취하고, 그 후, 시즈닝 처리(O2 드라이클리닝, 2분간)를 행했다. 그리고, 폴리실리콘막의 에칭을 표 1에 나타내는 조건으로 행했다. 이 때, 에칭 레이트가 변동하지 않도록, 클리닝 레시피에 따라서, 웨이퍼를 1장 에칭할 때마다 클리닝을 행했다. 클리닝은, 웨이퍼를 적재대에 적재하지 않은(웨이퍼리스의) SF6/O2 드라이클리닝이다.
웨이퍼는 25장으로 1로트인 것을 사용했다. 1번째 로트의 슬롯 1 및 25에 폴리실리콘막이 형성된 웨이퍼를 배치하고, 슬롯 2-23에 베어 실리콘으로 이루어진 더미 웨이퍼를 배치했다. 그리고, 슬롯 1 및 25의 웨이퍼의 에칭 레이트를 측정했다.
1번째 로트의 에칭과 2번째 로트의 에칭 사이에, 플라즈마없이 파티클을 제거하는 NPPC(non plasma particle cleaning) 및 시즈닝 처리(O2 드라이클리닝, 2분간)를 행했다. 2번째 로트의 슬롯 1에도 폴리실리콘막이 형성된 웨이퍼를 배치하고, 2번째 로트의 슬롯 1의 에칭 레이트 및 파티클을 측정했다.
도 6은, 1번째 로트의 슬롯 1, 25에 배치된 웨이퍼, 및 2번째 로트의 슬롯 1에 배치된 웨이퍼의 에칭 레이트를 측정한 결과를 나타낸다. 1번째 로트의 슬롯 1의 에칭 레이트의 평균치는 2202Å/min이고, 1번째 로트의 슬롯 25의 에칭 레이트의 평균치는 2198Å/min였다. 2번째 로트의 슬롯 1의 에칭 레이트의 평균치는 2215Å/min였다. 과거에 폴리실리콘막의 에칭만을 행했을 때의 에칭 레이트의 실적치와 2215Å/min과의 차는, ±0.5% 미만이었다. 또, 0.13 ㎛ 이상의 파티클의 갯수는 1개였다. 도 6 중 파선은 균일성을 나타낸다. 적절한 전환 처리에 의해, 폴리실리콘막만을 에칭할 때와 동등하게 에칭 레이트를 안정시킬 수 있고, 파티클도 적게 할 수 있는 것을 알 수 있다.
실시예 2
(폴리실리콘막→ 산화실리콘막으로의 전환)
이하와 같이, 폴리실리콘막의 에칭으로부터 산화실리콘막의 스페이서 에칭으로 전환했다. 그리고, 전환후의 산화실리콘막의 에칭 레이트 및 파티클의 발생량을 측정했다.
우선, 폴리실리콘막의 에칭을, 표 1에 나타내는 조건으로 행했다. 에칭 레이트가 변동하지 않도록, 클리닝 레시피에 따라서, 웨이퍼를 1장 에칭할 때마다 클리닝 처리를 행했다. 클리닝 처리는, 웨이퍼를 적재대에 적재하지 않은(웨이퍼리스의) SF6/O2 드라이클리닝이다. 클리닝 처리는, 에칭 처리와 동등한 압력, 예컨대 20 mTorr에서 행해진다.
다음으로, 표 3에 나타내는 조건으로 전환 처리를 행하여, 처리 용기의 표면에 부착되어 있는 퇴적물을 제거했다. 전환 처리는, 웨이퍼마다 행해지는 클리닝 처리보다 시간이 길다. 이 때문에, 클리닝 처리로 제거할 수 없었던 퇴적물을 제거할 수 있다. 또, 전환 처리는, 클리닝 처리보다 처리 압력이 높은 공정을 포함할 수 있다. 이에 따라, 유전체창 및 처리 용기 상부 측벽을 효과적으로 클리닝할 수 있다. 또한, 클리닝 처리는 통상 1~2분간이다. 전환 처리의 클리닝 시간은, 웨이퍼마다 행해지는 클리닝 시간의 2배 이상, 바람직하게는 5~10배 정도이면 된다.
다음으로, 전환 처리의 클리닝에 이용한 SF6을 배출하고, 처리 용기 내의 환경을 갖추기 위한 시즈닝 처리(O2 드라이클리닝, 300 mT, 5 min+20 mT, 5 min)를 행했다. 그리고, 산화실리콘막의 에칭을 표 2에 나타내는 조건으로 행했다. 이 때, 에칭 레이트가 변동하지 않도록, 클리닝 레시피에 따라서, 웨이퍼를 1장 에칭할 때마다 클리닝을 행했다. 클리닝은, 웨이퍼를 적재대에 적재하지 않은(웨이퍼리스의) O2 드라이클리닝이다.
웨이퍼는 25장으로 1로트인 것을 사용했다. 1번째 로트의 슬롯 1-5, 10, 15, 25에 산화실리콘막이 형성된 웨이퍼를 배치하고, 나머지 슬롯에 산화실리콘막이 형성된 더미 웨이퍼를 배치했다. 그리고, 슬롯 1-5, 10, 15, 25의 웨이퍼의 에칭 레이트를 측정했다.
1번째 로트의 에칭과 2번째 로트의 에칭 사이에, 플라즈마없이 파티클을 제거하는 NPPC(non plasma particle cleaning) 및 시즈닝 처리(O2 드라이클리닝, 300 mT, 5 min+20 mT, 5 min)를 행했다. 2번째 로트의 슬롯 1, 15, 25에도 산화실리콘막이 형성된 웨이퍼를 배치하고, 나머지 슬롯에 산화실리콘막이 형성된 더미 웨이퍼를 배치했다. 2번째 로트의 슬롯 1의 에칭 레이트 및 파티클을 측정했다. 3번째 로트도 2번째 로트와 동일하게 에칭했다.
도 7은, 측정 결과를 나타낸다. 1번째 로트의 슬롯 1의 웨이퍼의 에칭 레이트의 평균치는 524Å/min이고, 슬롯 5의 웨이퍼의 에칭 레이트의 평균치는 532Å/min였다. 2번째 로트 및 3번째 로트의 산화실리콘막의 에칭 레이트의 평균치는 531Å/min이고, 변동률은 ±1.3%였다. 에칭 레이트의 최소치는 525Å/min이고, 최대치는 539Å/min였다. 1번째 로트가 종료한 시점에서의 0.13 ㎛ 이상의 파티클의 갯수는 14개이고, 2번째 로트가 종료한 시점에서의 파티클의 갯수는 4개였다. 전환 처리에 의해, 1번째 로트일 때에도, 2번째, 3번째 로트와 동등하게 에칭 레이트를 안정화할 수 있었다. 보다 에칭 레이트를 안정화하고자 하는 경우에는, 1번째 로트의 4장째까지를 더미 웨이퍼에 대한 처리로 하고, 5장째 이후부터 실제품의 웨이퍼에 대한 처리로 하면 된다. 또한, 통상의 에칭 처리 상태에서의 허용되는 파티클의 갯수는 40개 미만이다.
실시예 3
(웨이퍼 상의 다층막을 에칭할 때의 전환)
실시예 3에서는, 산화실리콘막 및 폴리실리콘막을 포함하는 다층막이 적층된 웨이퍼를 이용하여, 웨이퍼 상의 산화실리콘막을 에칭하는 공정(제2 에칭 공정)으로부터 웨이퍼 상의 폴리실리콘막을 에칭하는 공정(제1 에칭 공정)으로 이행하는 동안에, 전환 처리(제2 전환 처리)를 행한다. 이 전환 처리는, 웨이퍼를 적재대에 적재한 상태로, 처리 용기 내에 산소를 포함하는 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 웨이퍼 상 및 처리 용기 내에 퇴적한 C, CF 등의 반응 생성물을 제거한다. C, CF 등의 반응 생성물은, 웨이퍼 상의 산화실리콘막을 에칭하는 공정(제2 에칭 공정)에 기인하여 생긴 것이다.
또, 실시예 3에서는, 웨이퍼 상의 폴리실리콘막을 에칭하는 공정(제1 에칭 공정)으로부터 웨이퍼 상의 산화실리콘막을 에칭하는 공정(제2 에칭 공정)으로 이행하는 동안에, 전환 처리(제1 전환 처리)를 행한다. 이 전환 처리는, 웨이퍼를 적재대에 적재한 상태로, 처리 용기 내에 불소를 포함하는 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 웨이퍼 상 및 처리 용기 내에 퇴적한 SiBrO, SiClO 등의 반응 생성물을 제거한다. SiBrO, SiClO 등의 반응 생성물은, 제1 에칭 공정에 기인하여 생긴 것이다.
도 8은, 제1 및 제2 에칭 공정, 및 제1 및 제2 전환 처리 공정이 행해지는 더블 패터닝의 형성 방법의 공정도를 나타낸다. 제1 및 제2 에칭 공정, 및 제1 및 제2 전환 처리 공정은, RLSA 에칭 장치 내에서 행해진다.
도 8의 (A)에 나타낸 바와 같이, 실리콘 등으로 이루어진 웨이퍼(W) 상에는, 질화실리콘막(111), 폴리실리콘막(112) 및 반사 방지층(113)(BARC)이 순서대로 적층된다. 질화실리콘막(111) 및 폴리실리콘막(112)은, 예컨대 화학적 기상 성장(CVD)에 의해 형성된다. 반사 방지층(113)의 표면에는, ArF로 이루어진 포토레지스트가 도포된다. 포토레지스트에는, 노광에 의해 마스크 패턴이 전사되어 잠상이 형성된다. 노광된 포토레지스트는 현상 처리된다. 현상후에 반사 방지층(113)의 표면에는, 레지스트 패턴(114a)이 형성된다. 레지스트 패턴(114a)은, 예컨대 라인/스페이스 패턴으로 형성된다. 레지스트 패턴(114a)에서, 라인폭:라인간의 간격=1:3으로 형성된다. 반사 방지막(113)은 레지스트 패턴(114a)을 마스크로 하여 에칭된다.
다음으로, 도 8의 (B)에 나타낸 바와 같이, 레지스트 패턴(114a)을 마스크로 하여 폴리실리콘막(112)을 에칭하고, 폴리실리콘막(112)을 레지스트 패턴(114a)과 동일한 패턴, 예컨대 라인/스페이스 패턴(112a)으로 형성한다. 라인/스페이스 패턴(112a)에서, 라인폭:라인간의 간격=1:3으로 형성된다.
다음으로, 도 8의 (C)에 나타낸 바와 같이, 라인/스페이스 패턴(112a) 상에, 막두께가 컨포멀(conformal)한(막두께가 일정한) 산화실리콘막(115)을 형성한다. 산화실리콘막(115)은, 예컨대 TEOS 가스를 원료 가스로서 이용한 화학적 기상 성장(CVD)에 의해 형성된다.
산화실리콘막(115)은, 라인/스페이스 패턴(112a)의 상면에, 즉 라인(112a)의 상면, 라인(112a)의 좌우의 측벽, 및 라인(112a) 사이의 질화실리콘막(111)의 상면에 형성된다. 라인(112a)의 측벽에 형성되는 산화실리콘막(115)의 두께는, 라인(112a)의 폭에 일치한다. 인접하는 라인(112a)간의 간격은 라인(112a)의 폭의 3배이기 때문에, 인접하는 라인(112a)의 측벽에 형성된 산화실리콘막(115)의 사이에는, 라인(112a)의 폭과 동일한 폭의 스페이스(120)가 비어 있다. 산화실리콘막(115) 대신에, 질화실리콘막 등의 절연막을 이용할 수도 있다.
다음으로, 도 8의 (D)에 나타낸 바와 같이, 라인(112a)의 측벽에 산화실리콘막(115)을 포함하는 스페이서(115a)를 형성하기 위해, 라인(112a)의 상면 및 라인(112a) 사이의 질화실리콘막(111)의 상면에 형성되는 산화실리콘막(115)을 에칭한다.
RLSA 에칭 장치의 처리 용기에는, 예컨대, 플라즈마 여기용 가스로서의 Ar, 에칭 가스로서의 CHF3 가스, 스페이서(115a)를 강화하기 위한 O2 가스가 도입된다. 이들 가스를 플라즈마화시켜 산화실리콘막(115)을 에칭한다. 에칭 종료시, 처리 용기(119)의 표면에는, CF계 가스 유래의 퇴적물(116)이 퇴적한다.
또한, 도 8에서, 처리 용기(119)를 도 8의 (D)~(F)에만 나타내고 있고, 도 8의 (A)~(C)에서는 생략하고 있다.
다음으로, 표 5에 나타내는 조건으로 전환 처리를 행한다. 이 전환 처리에 의해, 처리 용기(119)의 표면에 부착되어 있는 퇴적물(116)이 제거된다. 처리 용기에는, 클리닝 가스로서의 O2 가스, 및 플라즈마 여기용 가스로서의 Ar가 도입된다. O2 가스에 CO 및/또는 CO2를 혼합할 수도 있다. Ar 가스는 플라즈마의 착화를 위해 처리 용기에 도입된다. 착화후에는 클리닝 가스로서의 O2 가스만이 처리 용기에 도입되거나, 또는 O2 가스에 Ar 가스가 혼합된 가스가 처리 용기에 도입된다. O2 가스를 플라즈마화시키면, 플라즈마화한 O2가 처리 용기(119)의 표면에 퇴적한 C, CF 등의 퇴적물(116)을 CO 등으로 산화하여 제거한다.
전환 처리는 처리 용기(119)의 표면에 퇴적한 퇴적물(116)을 제거하는 것을 주안으로 하지만, 표 5에 나타낸 바와 같이 조건을 갖춤으로써, 웨이퍼(W)의 표면, 즉 질화실리콘막(111) 및 라인(112a)의 표면에 부착된 퇴적물(116)을 제거하는 것도 가능하다. 도 8의 (E)는, 전환 처리에 의해 퇴적물(116)을 제거한 상태를 나타낸다.
[표 5]
Figure 112014004228735-pct00005
표 5에 나타낸 바와 같이, 전환 처리는, 처리 용기의 적재대에 바이어스를 인가하지 않는 논바이어스의 상태로, 또한 처리 용기 내의 압력이 100 mT 이상 300 mT 이하의 고압에서 행해진다. 실질적으로 기판에 RF 바이어스를 인가하지 않음으로써, 기판에는 처리가 이루어지지 않도록 할 수 있다. 실질적으로 기판에 영향을 미치지 않는 범위의 RF 바이어스가 인가되어도 좋다.
다음으로, 도 8의 (F)에 나타낸 바와 같이, 폴리실리콘으로 이루어진 라인(112a)만을 에칭하여 제거한다. 라인(112a) 상의 퇴적물(116)은 제거되어 있기 때문에, 라인(112a)의 에칭이 가능해진다. 처리 용기에는, 예컨대, 플라즈마 여기용 가스로서의 Ar, 에칭 가스로서의 HBr 및/또는 Cl2, 스페이서(115a)의 형상을 제어하기 위한 O2 및/또는 CO 가스가 도입된다. 이들 가스를 플라즈마화시켜, 폴리실리콘으로 이루어진 라인(112a)의 에칭을 행한다. 라인(112a)의 에칭을 행하면, 레지스트 패턴(114a)의 배의 수의 스페이서(115a)가 형성된다.
할로겐 원소를 포함하는 에칭 가스를 이용하여, 폴리실리콘으로 이루어진 라인(112a)을 에칭하면, 처리 용기(119)의 표면에는, 에칭 가스와 폴리실리콘막의 반응 생성물인 SiBrO, SiClO 등의 퇴적물(117)이 퇴적한다.
다음으로, 퇴적물(117)을 제거하기 위한 전환 처리를 행한다. 처리 용기에는, 예컨대, 플라즈마 여기용 가스로서의 Ar, 클리닝 가스로서의 SF6 및 O2가 도입된다. 클리닝 가스는 플라즈마화되고, 처리 용기(119)의 표면에 퇴적한 퇴적물(117)이 제거된다.
전환 처리는 처리 용기(119)의 표면에 퇴적한 퇴적물(117)을 제거하는 것을 주안으로 하지만, 조건을 갖춤으로써, 웨이퍼(W)의 표면, 즉 스페이서(115a)의 표면 및 질화실리콘막(111)의 표면에 부착된 퇴적물(117)도 제거하는 것도 가능하다.
다음으로, 도 8의 (G)에 나타낸 바와 같이, 산화실리콘막(115)의 스페이서(115a)를 마스크로 하여 질화실리콘막(111)을 에칭하면, 질화실리콘막(111)의 마스크 패턴(111a)이 형성된다. 질화실리콘막(111) 상의 퇴적물(117)은 제거되어 있기 때문에, 질화실리콘막(111)의 에칭이 가능해진다. 질화실리콘막(111)을 에칭함에 있어서, 처리 용기에는, 플라즈마 여기용 가스로서의 Ar, 에칭 가스로서의 CHF3 가스가 도입된다. 이들 가스를 플라즈마화시켜 질화실리콘막(111)을 에칭한다. 이상의 공정을 거쳐, 웨이퍼(W) 상에 더블 패터닝이 형성된다.
이하에, O2 가스를 포함하는 클리닝 가스를 플라즈마화시키는 전환 처리의 조건을 표 5와 같이 특정한 이유를 설명한다.
도 9는, 상이한 압력하에서의 KrF 포토레지스트의 에칭 레이트의 실험 결과를 나타낸다. 이 실험에서는, 전환 처리(이하, O2 플래시라고 함)는, 각 압력하에 10초간, 3000 W의 마이크로파 파워를 KrF 포토레지스트에 공급함으로써 행해졌다. KrF 포토레지스트는 카본을 포함하는 퇴적물이라고 간주할 수 있기 때문에, O2 플래시의 조건과 에칭 레이트의 관계를 알 수 있다. 도 9의 (A)~(D)에서, 횡축의 단위는 mm이고, 종축의 단위는 Å/min이다. 횡축의 0은 기판(W)의 중심을 나타낸다. 기판(W) 상의 X축, Y축, V축, W축의 에칭 레이트가 표시되어 있다. 도 9의 (A)에 의하면, 압력이 20 mT일 때, 에칭 레이트는 10초간 114.0 nm으로, 높은 값을 유지한다. 에칭 레이트가 높으면, 하지(下地)에 리세스(함몰)가 발생할 우려가 있기 때문에, 에칭 레이트를 낮게 할 필요가 있다.
도 9의 (B)에 의하면, 압력이 60 mT일 때, 에칭 레이트는 10초간 87.7 nm으로, 아직 높은 값을 유지한다. 압력이 60 mT일 때의 KrF 포토레지스트의 에칭 레이트는 아직 높은 값이기 때문에, 에칭 레이트를 더욱 낮게 하기 위해, O2 플래시를 60 mT보다 높은 압력으로 행할 필요가 있다.
도 9의 (C)에 의하면, 압력이 100 mT일 때, 에칭 레이트는 10초간 39.7 nm으로, 낮은 값이 된다. 에칭 레이트를 39.7 nm/10 sec보다 낮게 하기 위해, O2 플래시는 100 mT 이상에서 행해지는 것이 바람직하다. 도 9의 (D)에 의하면, 200 mT일 때, 에칭 레이트는 10초간 20.5 nm으로, 보다 낮은 값이 된다. 100 mT일 때보다 에칭 레이트를 낮게 할 수 있기 때문에, O2 플래시는 200 mT에서 행해져도 좋다.
도 10은, 마이크로파 파워를 변화시켰을 때의 KrF 포토레지스트의 에칭 레이트의 실험 결과를 나타낸다. O2 플래시는, 100 mT의 압력하에 5초간, 1500 W, 2000 W, 3000 W의 각 마이크로파 파워를 KrF 포토레지스트에 공급함으로써 행해진다.
도 10의 (A)에 의하면, 1500 W일 때, 에칭 레이트는 2초간 9.3 nm으로, 낮은 값이 된다. 도 10의 (B)에 의하면, 2000 W일 때, 에칭 레이트는 2초간 12.6 nm으로, 조금 높아지지만, 아직 낮은 값을 유지한다. 도 10의 (C)에 의하면, 3000 W일 때, 에칭 레이트는 2초간 24.2 nm으로, 2000 W일 때의 배의 높은 값이 된다. 에칭 레이트를 낮게 하기 위해서, 마이크로파 파워는 2000 W로 설정되는 것이 바람직하다. 마이크로파 파워가 1500 W일 때에는 보다 에칭 레이트를 낮게 할 수 있기 때문에, 1500 W로 설정되어도 좋다.
또한, 본 발명은, 상기 교시를 고려하여 여러가지로 수정ㆍ변화 가능하다. 구체적인 실시양태에 관해서는, 본 발명의 범위에서 일탈하지 않는 범위에서 여러가지 변형ㆍ변경을 가하는 것이 가능하다.
본 실시형태에서는, 측정을 위해 아이들 시간 및 시즈닝 처리를 행했지만, 실제 처리에서 필수적이지 않다. 또, 실제 처리에 있어서, 전환 처리에서 이용한 클리닝 가스의 영향을 저감하기 위해, 아이들 및 시즈닝 처리를 마련해도 좋다.
또, 본 실시형태에서는, 웨이퍼리스의 드라이클리닝을 행했지만, 이것에 한정되지 않고, 더미 웨이퍼를 이용한 드라이클리닝을 행해도 좋다. 이 경우, 더미 웨이퍼를 반송하기 위한 시간이 걸리지만, 적재대(12)에의 손상을 억제할 수 있다.
또, 본 실시형태에서는, 웨이퍼를 1장 에칭할 때마다 클리닝 처리를 행하는 것으로 했지만, 이것에 한정되지 않고, 예컨대, 웨이퍼 5장을 에칭할 때마다 1번 클리닝 처리를 행하는 것으로 해도 좋다. 또, 클리닝 처리를 행하지 않아도 좋다.
또, 본 실시형태에서는, 폴리실리콘막 에칭 처리와 산화막 에칭 처리를 각각 행하는 것으로 했지만, 이것에 한정되지 않고, 폴리실리콘막 에칭 처리후에 산화막 에칭 처리를 행하는 공정, 또는, 산화막 에칭 처리후에 폴리실리콘막 에칭 처리를 행하는 공정에도 적용할 수 있다.
또, 본 실시형태에서는, 웨트 메인터넌스나, 복수매의 더미 웨이퍼를 장시간 러닝하는 경우가 없기 때문에, 웨트 메인터넌스에 걸리는 시간이나 러닝에 필요한 더미 기판을 삭감할 수 있다.
예컨대 절연막으로서 산화실리콘막 대신에 질화실리콘막을 에칭해도 좋다.
본 명세서는, 2011년 7월 13일 출원의 일본 특허 출원 2011-155171에 기초한다. 이 내용은 전부 여기에 포함시켜 놓는다.
2 : 폴리실리콘막(실리콘을 포함하는 막) 2a : 게이트 전극
5 : 산화실리콘막(절연막) 5a : 스페이서
10 : 처리 용기 54 : 슬롯 안테나판
7, 8 : 로드록 모듈 6 : 진공 반송 모듈
PM1~PM4 : 프로세스 모듈 W : 웨이퍼(기판)
S1 : 제1 에칭 공정 S2 : 제1 전환 처리 공정
S3 : 제2 에칭 공정 S4 : 제2 전환 처리 공정

Claims (12)

  1. 기판을 수용하는 반입 모듈과,
    에칭 장치를 포함하며, 기판에 처리를 실시하는 복수의 프로세스 모듈과,
    처리가 이루어진 기판을 수용하는 반출 모듈과,
    상기 반입 모듈, 상기 복수의 프로세스 모듈 및 상기 반출 모듈 사이에서 기판을 반송하는 반송 모듈과,
    상기 반입 모듈, 상기 복수의 프로세스 모듈, 상기 반출 모듈 및 상기 반송 모듈을 통괄하여 제어하는 통괄 제어 장치
    를 구비하고,
    상기 반송 모듈이 상기 반입 모듈에 수용된 기판을 상기 프로세스 모듈에 반송하고, 상기 프로세스 모듈에서 처리가 이루어진 기판을 상기 반출 모듈에 반송하는 반도체 제조 시스템에 있어서,
    상기 에칭 장치는,
    처리 용기에 제1 처리 가스를 도입하고, 상기 제1 처리 가스를 플라즈마화시켜 기판 상의 막을 에칭하는 제1 에칭, 및 상기 처리 용기에 상기 제1 처리 가스와 가스종이 상이한 제2 처리 가스를 도입하고, 상기 제2 처리 가스를 플라즈마화시켜, 상기 막과 막종이 상이한 기판 상의 막을 에칭하는 제2 에칭을, 동일한 상기 처리 용기 내에서 전환하여 행하고,
    상기 제1 에칭으로부터 상기 제2 에칭으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 상기 제1 에칭에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하고,
    상기 제2 에칭으로부터 상기 제1 에칭으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 상기 제2 에칭에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제어부를 구비하고,
    상기 통괄 제어 장치는, 오퍼레이터가 전환 스위치를 조작했을 때, 또는 상기 복수의 프로세스 모듈 중 어느 것에서 발생한 장애를 검지했을 때, 상기 에칭 장치에 전환 신호를 송신하고,
    상기 에칭 장치는, 상기 통괄 제어 장치로부터의 전환 신호를 수신했을 때, 상기 제1 에칭과 상기 제2 에칭을 전환하는 제어부를 구비하는 것인 반도체 제조 시스템.
  2. 반송 모듈이 반입 모듈에 수용된 기판을 에칭 방법을 행하는 복수의 프로세스 모듈에 반송하고, 상기 복수의 프로세스 모듈에서 처리가 이루어진 기판을 반출 모듈에 반송하는 반도체 제조 방법에 있어서,
    상기 에칭 방법은,
    처리 용기에 제1 처리 가스를 도입하고, 상기 제1 처리 가스를 플라즈마화시켜 기판 상의 막을 에칭하는 제1 에칭 공정과,
    상기 처리 용기에 상기 제1 처리 가스와 가스종이 상이한 제2 처리 가스를 도입하고, 상기 제2 처리 가스를 플라즈마화시켜, 상기 막과 막종이 상이한 기판 상의 막을 에칭하는 제2 에칭 공정
    을 포함하고,
    동일한 상기 처리 용기 내에서 상기 제1 에칭 공정과 상기 제2 에칭 공정을 전환하여 행하고,
    상기 제1 에칭 공정으로부터 상기 제2 에칭 공정으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜 상기 제1 에칭 공정에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제1 전환 처리 공정을 행하고, 그리고, 상기 제2 에칭 공정으로부터 상기 제1 에칭 공정으로 이행하는 동안에, 상기 처리 용기에 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 상기 제2 에칭 공정에서 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 제2 전환 처리 공정을 행하고,
    상기 반도체 제조 방법은,
    오퍼레이터가 전환 스위치를 조작했을 때, 또는 상기 복수의 프로세스 모듈 중 어느 것에서 발생한 장애를 검지했을 때, 전환 신호를 송신하고,
    상기 에칭 방법은, 상기 전환 신호를 수신했을 때, 상기 제1 에칭과 상기 제2 에칭을 전환하는 것인 반도체 제조 방법.
  3. 제2항에 있어서, 상기 제1 에칭 공정에서, 상기 처리 용기에 할로겐 원소를 포함하는 상기 제1 처리 가스를 도입하고, 상기 제1 처리 가스를 플라즈마화시켜, 기판에 형성된 실리콘을 포함하는 막을 에칭하고,
    상기 제2 에칭 공정에서, 상기 처리 용기에 탄소 및 불소를 포함하는 상기 제2 처리 가스를 도입하고, 상기 제2 처리 가스를 플라즈마화시켜, 기판에 형성된 절연막을 에칭하고,
    상기 제2 에칭 공정으로부터 상기 제1 에칭 공정으로 이행하는 동안의 상기 제2 전환 처리 공정에서, 상기 처리 용기에 산소를 포함하는 클리닝 가스를 도입하고, 클리닝 가스를 플라즈마화시켜, 상기 제2 에칭 공정에서 기판 상 및 상기 처리 용기 내에 퇴적된 반응 생성물을 제거하는 것을 특징으로 하는 반도체 제조 방법.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
KR1020147001138A 2011-07-13 2012-07-12 에칭 방법 및 장치 KR101903215B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-155171 2011-07-13
JP2011155171 2011-07-13
PCT/JP2012/067792 WO2013008878A1 (ja) 2011-07-13 2012-07-12 エッチング方法及び装置

Publications (2)

Publication Number Publication Date
KR20140051900A KR20140051900A (ko) 2014-05-02
KR101903215B1 true KR101903215B1 (ko) 2018-10-01

Family

ID=47506157

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147001138A KR101903215B1 (ko) 2011-07-13 2012-07-12 에칭 방법 및 장치

Country Status (5)

Country Link
US (1) US9218983B2 (ko)
JP (1) JP6059657B2 (ko)
KR (1) KR101903215B1 (ko)
TW (1) TWI518217B (ko)
WO (1) WO2013008878A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018876A (ja) * 2013-07-09 2015-01-29 株式会社アルバック 反応装置のコンディショニング方法
US9966312B2 (en) * 2015-08-25 2018-05-08 Tokyo Electron Limited Method for etching a silicon-containing substrate
JP2017045849A (ja) * 2015-08-26 2017-03-02 東京エレクトロン株式会社 シーズニング方法およびエッチング方法
US10381238B2 (en) * 2017-03-03 2019-08-13 Tokyo Electron Limited Process for performing self-limited etching of organic materials
KR102582762B1 (ko) * 2017-05-11 2023-09-25 주성엔지니어링(주) 기판 처리 방법 및 그를 이용한 유기 발광 소자 제조 방법
JP7071850B2 (ja) * 2017-05-11 2022-05-19 東京エレクトロン株式会社 エッチング方法
JP2020017569A (ja) * 2018-07-23 2020-01-30 東京エレクトロン株式会社 エッチング方法及びエッチング装置
JP7072477B2 (ja) 2018-09-20 2022-05-20 東京エレクトロン株式会社 プラズマ処理方法およびプラズマ処理装置
JP7403314B2 (ja) * 2019-12-26 2023-12-22 東京エレクトロン株式会社 エッチング方法及びエッチング装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353698A (ja) * 2004-06-08 2005-12-22 Tokyo Electron Ltd エッチング方法
JP2010093293A (ja) * 2010-01-14 2010-04-22 Canon Anelva Corp 絶縁膜エッチング装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291213A (ja) 1992-04-09 1993-11-05 Fujitsu Ltd 半導体製造装置の清浄方法
WO1994000251A1 (en) * 1992-06-22 1994-01-06 Lam Research Corporation A plasma cleaning method for removing residues in a plasma treatment chamber
JP3175117B2 (ja) 1993-05-24 2001-06-11 東京エレクトロン株式会社 ドライクリーニング方法
JPH10280151A (ja) * 1997-04-08 1998-10-20 Fujitsu Ltd Cvd装置のクリーニング方法
JP2000003905A (ja) * 1998-06-16 2000-01-07 Hitachi Ltd エッチング装置および半導体装置の製造方法
JP2003077900A (ja) * 2001-09-06 2003-03-14 Hitachi Ltd 半導体装置の製造方法
JP2004221313A (ja) * 2003-01-15 2004-08-05 Kawasaki Microelectronics Kk 半導体製造工程の管理方法および半導体製造ラインの管理システム
US20050269294A1 (en) * 2004-06-08 2005-12-08 Tokyo Electron Limited Etching method
US20080219807A1 (en) * 2007-03-05 2008-09-11 Van Der Meulen Peter Semiconductor manufacturing process modules
JP5160302B2 (ja) 2008-05-19 2013-03-13 株式会社東芝 半導体装置の製造方法
JP5396745B2 (ja) * 2008-05-23 2014-01-22 東京エレクトロン株式会社 プラズマ処理装置
JP2010118549A (ja) 2008-11-13 2010-05-27 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置
JP2010056574A (ja) * 2009-12-07 2010-03-11 Nec Electronics Corp 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353698A (ja) * 2004-06-08 2005-12-22 Tokyo Electron Ltd エッチング方法
JP2010093293A (ja) * 2010-01-14 2010-04-22 Canon Anelva Corp 絶縁膜エッチング装置

Also Published As

Publication number Publication date
WO2013008878A1 (ja) 2013-01-17
US20140308815A1 (en) 2014-10-16
US9218983B2 (en) 2015-12-22
TW201323674A (zh) 2013-06-16
JPWO2013008878A1 (ja) 2015-02-23
KR20140051900A (ko) 2014-05-02
JP6059657B2 (ja) 2017-01-11
TWI518217B (zh) 2016-01-21

Similar Documents

Publication Publication Date Title
KR101903215B1 (ko) 에칭 방법 및 장치
US7662723B2 (en) Methods and apparatus for in-situ substrate processing
JP5122966B2 (ja) 表面波プラズマソース
JP5514310B2 (ja) プラズマ処理方法
JP6284786B2 (ja) プラズマ処理装置のクリーニング方法
US20070175393A1 (en) Substrate processing apparatus, substrate processing method, and storage medium storing program for implementing the method
US5221414A (en) Process and system for stabilizing layer deposition and etch rates while simultaneously maintaining cleanliness in a water processing reaction chamber
KR20110050438A (ko) 포토마스크 플라즈마 에칭시 인시츄 건식 세정을 위한 방법 및 장치
KR102460795B1 (ko) 낮은 종횡비 적층물의 패터닝을 위한 방법 및 시스템
KR101982366B1 (ko) 에칭 방법 및 장치
JP5473962B2 (ja) パターン形成方法及び半導体装置の製造方法
US20050269294A1 (en) Etching method
TWI766907B (zh) 電漿處理裝置及電漿處理方法
US20200168468A1 (en) Etching method and substrate processing apparatus
JP2004031888A (ja) フルオロカーボンフィルムの堆積方法
TW201842532A (zh) 有機材料的自我限制蝕刻之實行程序
JP2005353698A (ja) エッチング方法
US11328934B2 (en) Etching method and substrate processing apparatus
US11658038B2 (en) Method for dry etching silicon carbide films for resist underlayer applications
JP2023002466A (ja) プラズマ処理方法、プラズマ処理装置及びプラズマ処理システム
KR20220029478A (ko) 기판 처리 방법 및 플라즈마 처리 장치
TW202240660A (zh) 基板處理方法及基板處理裝置
TW202405582A (zh) 基板處理方法及基板處理系統
JP2023067443A (ja) プラズマ処理方法及びプラズマ処理装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant