KR101798844B1 - 랜스 및 이를 이용한 조업 방법 - Google Patents

랜스 및 이를 이용한 조업 방법 Download PDF

Info

Publication number
KR101798844B1
KR101798844B1 KR1020160113242A KR20160113242A KR101798844B1 KR 101798844 B1 KR101798844 B1 KR 101798844B1 KR 1020160113242 A KR1020160113242 A KR 1020160113242A KR 20160113242 A KR20160113242 A KR 20160113242A KR 101798844 B1 KR101798844 B1 KR 101798844B1
Authority
KR
South Korea
Prior art keywords
nozzle
sub
extension line
lance
raw material
Prior art date
Application number
KR1020160113242A
Other languages
English (en)
Inventor
금창훈
정태정
최재복
이상동
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020160113242A priority Critical patent/KR101798844B1/ko
Priority to CN201710769925.6A priority patent/CN107794339A/zh
Priority to JP2017169259A priority patent/JP6581632B2/ja
Application granted granted Critical
Publication of KR101798844B1 publication Critical patent/KR101798844B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C5/462Means for handling, e.g. adjusting, changing, coupling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/168Introducing a fluid jet or current into the charge through a lance
    • F27D2003/169Construction of the lance, e.g. lances for injecting particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • F27D2007/023Conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

본 발명은 용기 내부에 원료가스를 취입하는 랜스로서, 원료가스가 경유하는 내부공간이 마련된 노즐부를 포함하고, 노즐부는, 내부공간이 마련된 노즐 벽체, 외부로 원료가스를 취입하도록, 용기와 마주보는 상기 노즐 벽체를 관통하고, 내부공간과 연통되도록 형성된 주 노즐, 주 노즐의 상측에 위치하도록 상기 노즐 벽체를 관통하며, 상기 내부공간과 연통되고, 노즐부의 폭 방향 중심을 지나는 폭 방향 연장선과 교차하도록 연장 형성된 부 노즐을 포함한다.
따라서, 본 발명의 실시형태에 의하면, 부 노즐에 의한 보조 제트의 회전류에 의해 CO 가스와의 접촉율 또는 접촉 기회가 증가하며, 이에 따라 CO의 2차 연소율을 상승되는 효과가 있다. 따라서, 외부로부터 별도의 열원을 추가하지 않고도 2차 연소를 통해 열원을 충분히 확보할 수 있다.

Description

랜스 및 이를 이용한 조업 방법 {Lance and the converter operation method using the same}
본 발명은 랜스 및 이를 이용한 조업 방법에 관한 것으로, 보다 상세하게는 용기 내 온도 확보가 용이하며, 수명이 연장된 랜스 및 이를 이용한 조업 방법에 관한 것이다.
일반적으로 전로에서는 용선 중에 산소를 공급하여 용선 중에 포함된 C(탄소), S(규소), Mn(망간) 등을 산화시켜 용선을 제조하고, 상기 성분들의 산화과정에서 발생되는 열로 인해 용선의 온도는 자체적으로 상승한다. 이때, 일반적으로 용선의 자체 발생열을 이용하여 조업할 수 있는 스크랩의 비율은 대략 20% 정도이다.
이에, 스크랩의 조업 비율을 증가시키고자 하는 경우에는 산소와 반응하여 열을 발생시킬 수 있는 물질(예컨대, Si(실리콘) 또는 C(탄소))을 용선 내에 첨가하는 방법이 사용되고 있다.
또 다른 방법으로는, 전로 내에서 수행되는 탈탄 정련시 발생하는 CO 가스를 산소와 한번 더 반응시켜, CO2로 변화시킬 때에 발생하는 2차 연소열을 이용하는 방법이 있다.
이와 같이 2차 연소열을 발생시키기 위한 방법으로는 랜스 노즐에 용선의 정련을 위한 주공(Main-hole) 이외에 2차 연소용 산소가 뿜어져 나오도록 부공(Sub-hole)을 설치하는 것이 일본공개특허 1995-138631에 제시되어 있다.
그러나, 2차 연소를 위해 부공을 가지더라도 2차 연소율이 만족할 만큼 향상되지 않았다. 또한, 부공을 가지지 않는 일반 랜스에 비해 사용 횟수가 200회 내지 300회 이지만, 가지는 랜스는 사용 가능한 횟수가 100회 이하로 수명이 매우 짧은 문제가 있다.
또한, 2차 연소율 확대를 위해 주공의 연장 방향에 대해 소정 각도로 기울어지도록 부공을 형상을 변경하였다. 그런데, 이러한 부공의 변경에도 랜스의 안정적인 사용 횟수를 확보하지 못하고 있다.
그 이유는 주공은 용선의 탕면에서 약 1.5m 이상의 높이에서 정련을 목적으로 산소를 뿜어내고, 이로 형성된 메인 제트(main jet)가 탕면과 충돌한다. 그런데, 메인 제트가 탕면과 충돌하고 상부로 방향을 전환할 때, 2차연소를 목적으로 부공에서 나오는 산소의 보조 제트(sub jet)의 흐름을 간섭하는 문제가 발생한다. 이에, 보조 제트는 직선으로 뻗어나가지 못하고 다시 부공쪽으로 역화하는 현상이 발생되어 랜스 노즐에 열적 손상을 발생시켜 랜스 노즐의 수명이 짧아지게 된다.
KR 0198915 Y1 KR 2011-0031533 A
본 발명은 용기 내에서 발생된 가스의 2차 연소율을 향상시킬 수 있는 랜스 및 이를 이용한 조업 방법을 제공한다.
본 발명은 부 노즐 주위의 용손을 억제하는 랜스 및 이를 이용한 조업 방법을 제공한다.
본 발명은 용기 내부에 원료가스를 취입하는 랜스로서, 상기 원료가스가 경유하는 내부공간이 마련된 노즐부를 포함하고, 상기 노즐부는, 상기 내부공간이 마련된 노즐 벽체; 외부로 상기 원료가스를 취입하도록, 상기 용기와 마주보는 상기 노즐 벽체를 관통하고, 상기 내부공간과 연통되도록 형성된 주 노즐; 상기 주 노즐의 상측에 위치하도록 상기 노즐 벽체를 관통하며, 상기 내부공간과 연통되고, 상기 노즐부의 폭 방향 중심을 지나는 폭 방향 연장선과 교차하도록 연장 형성된 부 노즐;을 포함한다.
상기 부 노즐은, 상기 노즐 벽체의 수평면 상에서, 상기 부 노즐의 유입구로부터 상기 유입구로 유입된 원료가스가 배출되는 배출구로 연장된 부 노즐 연장선이 상기 폭 방향 연장선에 대해 교차하도록 형성된다.
상기 부 노즐 연장선과 폭 방향 연장선이 이루는 각도가 5°내지 30°인 것이 바람직하다.
상기 부 노즐은 상기 부 노즐 연장선이 상기 노즐부의 상하 방향 연장선과 교차하도록 연장 형성된다.
상기 부 노즐은 상기 부 노즐 연장선과 상하 방향 연장선이 이루는 각도가 10°내지 40°인 것이 바람직하다.
상기 부 노즐은 원료가스를 초음속으로 취입되도록 설계된다.
상기 유입구와 배출구 사이에 해당하는 상기 부 노즐 내부직경에 비해 상기 배출구의 직경이 크다.
상기 부 노즐은 3개 내지 6개로 마련되어 상기 노즐 벽체의 둘레 방향으로 상호 이격 설치된다.
상기 주 노즐은 상기 내부공간과 연통되는 상기 주 노즐의 유입구로부터 상기 원료가스가 배출되는 상기 주 노즐의 배출구로 연장된 주 노즐 연장선이 상기 상하 방향 연장선에 대해 교차하도록 형성된다.
상기 주 노즐 연장선과 상하 방향 연장선이 이루는 각도가 0°내지 20°인 것이 바람직하다.
본 발명은 용선을 정련하는 조업 방법으로서, 용기 내에 상기 용선을 마련하는 과정; 상기 용선 상에 랜스를 배치시키는 과정; 상기 랜스에 원료가스를 공급하여, 상기 용선 상에 상기 랜스의 주 노즐을 통해 상기 원료가스를 분사하는 과정; 상기 주 노즐의 상측에 위치하도록 형성된 부 노즐을 통해, 상기 랜스의 수평면에 대해 교차하는 방향으로 원료가스를 통과시켜 분사하는 과정;을 포함한다.
상기 부 노즐을 통해, 상기 랜스의 수평면에 대해 교차하는 방향으로 원료가스를 통과시켜 분사하는 과정에 있어서, 상기 원료가스는 상기 랜스의 폭 방향 중심을 지나는 폭 방향 연장선에 대해 교차하는 방향으로 상기 부 노즐을 통과하여 분사된다.
상기 부 노즐을 통과하여 분사되는 원료 가스는 상기 랜스의 상하 방향 연장선과 교차하는 방향으로 상기 부 노즐을 통과하여 분사된다.
상기 부 노즐 내부를 통과하는 원료가스는, 상기 랜스의 상기 상하 방향 연장선에 대해 10°내지 40°, 상기 폭 방향 연장선에 대해 5°내지 30°가 되도록 통과한다.
상기 부 노즐 내부를 통과하는 원료가스가 초음속으로 취입된다.
상기 주 노즐 내부를 원료가스는, 상기 랜스의 상하 방향 연장선에 대해 20°이하가 되도록 통과한다.
본 발명의 실시형태에 의하면, 부 노즐은 주 노즐의 상측에 위치하여, 상하 방향 연장선에 대해 교차하도록 형성됨으로써, 메인 제트의 주위로 보조 제트가 형성된다. 그리고 부 노즐이 폭 방향 연장선에 대해 교차하도록 연장 형성됨으로써, 회전류 형태로 보조 제트가 형성된다. 그리고 보조 제트의 회전류에 의해 CO 가스와의 접촉율 또는 접촉 기회가 증가하며, 이에 따라 CO의 2차 연소율을 상승되는 효과가 있다. 따라서, 외부로부터 별도의 열원을 추가하지 않고도 2차 연소를 통해 열원을 충분히 확보할 수 있다.
또한, 부 노즐을 초음속 형태로 설계함으로써, 부 노즐 주변의 용손을 줄여 랜스의 수명을 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 전로 조업 공정을 개략적으로 나타내는 도면
도 2 는 본 발명의 실시예에 따른 랜스의 분리 사시도
도 3은 본 발명의 실시예에 따른 랜스의 노즐부를 나타낸 단면도
도 4는 노즐부 및 산소가 배출되는 상태를 개념적으로 도시한 도면
5는 랜스의 수평 방향 연장선(폭 방향 연장선)에 대한 부 노즐의 연장 형성 각도에 따른 CO2 가스 분포도를 나타낸 도면
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명의 실시예에 따른 전로 조업 공정을 개략적으로 나타내는 도면이다. 도 2 는 본 발명의 실시예에 따른 랜스의 분리 사시도이다. 도 3은 본 발명의 실시예에 따른 랜스의 노즐부를 나타낸 단면도이다. 도 4는 노즐부 및 산소가 배출되는 상태를 개념적으로 도시한 도면으로, 도 4a는 본 발명의 실시예에 따른 노즐부, 도 4b는 종래의 노즐부를 나타낸 것이다. 도 5는 랜스의 수평 방향 연장선(폭 방향 연장선)에 대한 부 노즐의 연장 형성 각도에 따른 CO2 가스 분포도를 나타낸 도면이다.
이하, 도 1 내지 도 4를 참조하여, 본 발명의 실시예에 따른 랜스에 대해 설명한다.
본 발명의 실시 예에 따른 랜스 및 이를 이용한 조업 방법은 반응가스가 발생하는 용기에 원료 가스를 취입하는 랜스(100) 및 이를 이용한 조업 방법으로서, 본 발명에서는 반응가스로 CO가스, 용기는 전로(1)일 수 있고, 원료가스는 산화성 가스일 수 있다.
전로(1)는 고로로부터 이송된 용선을 장입하여, 산소 등과 같은 가스를 취입하거나, 각종 성분 조정을 위한 정련제 및 별도의 첨가제를 투입하여, 용선 중 불순물을 제거하여 원하는 성분 농도로 조정하여 용강을 제조하는 설비이다.
랜스(100)는 용선(M)이 장입된 용기 즉, 전로(1)로 삽입 설치되어, 용선(M)으로 산소 가스를 취입하는 수단이다. 실시예에 따른 랜스(100)는 전로(1) 내로 산소를 취입하는 노즐부(130), 노즐부(130)와 연결 설치되어, 노즐부로 산소를 공급할 수 있도록 내부에 산소가 이동하는 통로(110a)가 마련된 몸체부(110)를 포함한다.
이하에서는 설명의 편의를 위하여, 랜스의 연장 방향(즉, 상하 방향 연장 방향)으로 연장된 선을 상하 방향 연장선(Ln1)으로 명명한다. 그리고, 랜스(100)의 폭 방향 중심을 지나도록 폭 방향(수평 방향 또는 좌우 방향)으로 연장된 선을 폭 방향 연장선(Ln2)이라 명명한다.
여기서 상하 방향 연장선(Ln1)은 랜스(100)의 폭 방향 즉, 수평 방향 중심으로부터 직교하는 방향으로의 수직축을 의미하며, 전로(1) 내 용선(M)의 표면 즉, 탕면에 직교하는 방향으로의 수직축을 의미한다. 즉, 상하 방향 연장선(Ln1)은 폭 방향 연장선(Ln2)에 대해 수직을 이루는 연장선이다. 또한, 폭 방향 연장선(Ln2)은 랜스(100)의 횡방향 연장선으로서, 랜스(100)의 수직축 즉, 상하 방향 연장선(Ln1)과 직교하는 방향으로의 연장선을 의미하며, 또한 탕면과 평행 또는 수평한 수평선을 의미한다. 이하, '랜스 연장선' 및 '탕면에 직교하는 방향으로의 수직축'은 상기 동일한 의미를 내포하며, 동일한 부호가 표기될 수 있다.
몸체부(110)는 상술한 바와 같이 노즐부(130)로 산소를 공급 또는 제공하는 것으로, 내부에는 산소가 노즐부(130)로 이동하는 빈 공간인 통로(110a)가 마련된 관 형태이다. 실시예에 따른 몸체부(110)는 일 방향으로 연장 형성된 형태로서, 예컨대, 원통형의 형상일 수 있으며, 이에 한정되지 않고, 노즐부(130)를 향해 산소의 이동이 가능한 통로를 가지는 다양한 통 형상으로 변경되어도 무방하다. 이러한 몸체부(110)의 일단은 산소 가스를 제공하는 가스 공급부(미도시)와 연결되고, 타단은 노즐부(130)와 연결된다. 그리고, 몸체부(110)의 내부에는 통로와 별도로 독립된 유로가 마련되어 냉매가 흐르도록 설계될 수 있다. 이에, 몸체부(110) 내부를 순환하는 냉매에 의해 랜스(100)가 고온의 조업 환경으로부터 보호될 수 있다.
노즐부(130)는 몸체부(110)의 통로(110a)를 통해 이동된 산소를 전로(1) 내 용선(M)으로 취입하는 수단이다. 이러한 노즐부(130)는 도 3에 도시된 바와 같이, 몸체부(110)의 타단과 연결되며, 몸체부(110)의 통로와 연통되는 내부공간을 가지는 노즐 벽체(131), 노즐 벽체(131) 상에서 내부공간(130a)의 하측에 위치하도록 형성되어, 상기 내부공간(130a)으로부터 전달된 산소를 노즐 외부로 배출, 분사 또는 취입하는 주 노즐, 노즐 벽체(131) 상에서 주 노즐(132)의 상측에 위치하여 내부공간(130a)과 연통되도록 형성되며, 랜스(100)의 상하 연장 방향 및 직경 방향 각각에 대해 나란하지 않고, 소정 각도로 틀어지도록 연장 형성되어, 내부공간(130a)으로부터 전달된 산소를 외부로 배출, 분사 또는 취입하는 부 노즐(133)을 포함한다.
노즐 벽체(131)는 몸체부(110)의 통로(110a)로부터 산소가 전달되는 내부공간(130a)을 형성하기 위한 구성면서, 랜스(100) 외부와 차단되도록 하기 위한 구성이다. 이러한 노즐 벽체(131)는 몸체부(110)와 마찬가지로 고온의 조업 환경으로부터 보호하기 위해 내부공간(130a)과 독립된 공간 유로를 마련하여 냉각수가 흐르도록 설계될 수 있다.
주 노즐(132)은 전로(1) 내 용선으로 산소를 취입하는 것으로, 내부공간(130a)의 하측에서 노즐 벽체(131)를 일 방향으로 관통하도록 형성되며, 일단 및 타단이 개구된 형상이다. 주 노즐(132)의 일단은 내부공간의 하측 끝단과 연결 또는 연통되고, 타단은 노즐 벽체(131)의 하단에 위치하도록 형성되어 노즐부(130) 외부로 노출된다. 여기서 주 노즐(132)의 일단은 내부공간의 산소가 유입되는 유입구(이하, 제 1 유입구(132a))이고, 타단은 주 노즐(132)을 통과한 산소가 노즐부(130) 외부로 배출되는 배출구(이하, 제 1 배출구(132b))이다.
실시예에 따른 주 노즐(132)은 상하 방향 연장선(Ln1)과 나란하거나 평행하지 않고, 상기 상하 방향 연장선(Ln1)으로부터 소정 각도로 기울어지도록 연장 형성될 수 있으며, 그 각도는 20°이하일 수 있다. 주 노즐(132)의 보다 구체적인 설명을 위하여, 주 노즐(132)의 연장 방향으로의 연장선을 주 노즐 연장선(Lm)이라고 명명하며, 주 노즐 연장선(Lm)은 주 노즐(132)의 폭 방향 중심을 지나는 선이다. 실시예에 따른 주 노즐(132)은 주 노즐 연장선(Lm)이 상하 방향 연장선(Ln1)과 이루는 각도(이하, 제 1 각도(θm)) 또는 사잇각이 20°이하, 바람직하게는 15°내지 17°가 되도록 연장 형성된다. 이는 주 노즐 연장선(Lm)이 상하 방향 연장선(Ln1)과 20°이하의 각도(θm)를 이루도록 기울어지게 형성하여, 주 노즐 연장선(Lm)이 전로(1) 내 탕면과 이루는 각이 수직이 아닌 각도를 이루는 것을 의미한다.
상기에서는 주 노즐 연장선(Lm)이 상하 방향 연장선(Ln1)과 20°이하로 기울어진 것을 예를들어 설명하였다. 하지만 이에 한정되지 않고, 주 노즐 연장선(Lm)이 상하 방향 연장선(Ln1)과 나란 또는 평행하도록 연장 형성되어 제 1 각도(θm)가 0°일 수 있다. 이는 주 노즐 연장선((Lm)이 전로 내 탕면과 이루는 각이 수직인 각도를 이루는 것을 의미한다.
여기서, 제 1 각도(θm)는 0 내지 20°범위 내의 어느 특정 각도로 한정하지는 않으나, 상기 각도 범위 내에서 큰 값을 가질수록 주 노즐(132)로부터 분사되는 산소(이하, 메인 제트)의 반경이 커지기 때문에 수직한 상태에서 산소를 분사하는 것보다 용선(M)의 취련 시간을 단축할 수 있다. 한편, 제 1 각도(θm)는 20°를 초과하는 값을 갖는 경우에는, 메인 제트의 반경이 커질수는 있으나, 후술하는 부 노즐(133)에서 분사되는 산소(이하, 보조 제트)와의 간섭이 발생하여, 메인 제트가 용선 상에 제대로 분사되지 않는 문제가 발생할 수도 있다.
상술한 바와 같은 주 노즐(132)은 복수개로 마련되어 노즐 벽체(131) 하부에 상호 이격 설치된다. 예컨대 주 노즐(132)은 6개로 마련될 수 있다. 물론 주 노즐(132)의 갯수는 6개에 한정되지 않고, 6 미만 또는 6을 초과하는 갯수로 마련될 수 있다.
부 노즐(133)은 전로(1) 내에서 조업중에 발생된 반응가스를 다시 연소시키는 2차 연소를 위해 산소를 취입하는 노즐이다. 이러한 부 노즐(133)은 주 노즐(132)의 상측에서 노즐 벽체(131)를 관통하도록 연장 형성되며, 일단 및 타단이 개구된 형상이다. 여기서, 부 노즐(133)의 일단은 제 1 유입구(132a)의 상측에서 내부공간과 연결 또는 연통되고, 타단은 제 1 배출구(132b)의 상측에서 노즐부(130) 외부로 노출되도록 형성된다. 부 노즐(133)의 일단은 내부공간의 산소가 유입되는 유입구(이하, 제 2 유입구(133a))이고, 타단은 부 노즐(133)을 통과한 산소가 노즐부(130) 외부로 배출되는 배출구(이하, 제 2 배출구(133b))이다. 제 2 배출구(133b)는 상술한 바와 같이 노즐부(130) 외부로 노출되도록 형성되는데, 예컨대 노즐 벽체(131)의 외주면 중, 측면으로 노출되도록 형성될 수 있다. 이에, 부 노즐(133)로부터 분사되는 산소 즉, 보조 체트는 메인 제트의 둘레 방향으로 분사된다.
실시예에 따른 부 노즐(133)은 상하 방향 연장선(Ln1) 및 폭 방향 연장선((Ln2)과 각기 나란하거나 평행하지 않고, 제 1 및 폭 방향 연장선(,)으로부터 소정 각도로 기울어지도록 연장 형성된다.
먼저, 도 3을 참조하여, 부 노즐(133)이 상하 방향 연장선(Ln1)에 대해 소정 각도로 기울어지게 연장 형성된 것에 대해 설명한다.
부 노즐(133)은 상하 방향 연장선(Ln1)과 나란하거나 평행하지 않고, 상기 상하 방향 연장선(Ln1)과 이루는 각(이하, 제 2 각도(θs1))이 10°내지 40°가 되도록 연장 형성된다. 부 노즐(133)의 보다 구체적인 설명을 위하여, 부 노즐(133)의 연장 방향으로의 연장선을 부 노즐 연장선(Ls)이라고 명명하며, 부 노즐 연장선(Ls)은 상기 부 노즐(133)의 폭 방향 중심을 지나가는 선이다. 상술한 정의를 이용하여 부 노즐 연장 방향에 대해 다시 설명하면, 부 노즐 연장선(Ls)이 상하 방향 연장선(Ln1)과 이루는 각도가 10°내지 40°이도록 연장 형성한다. 이는 부 노즐 연장선(Ls)이 전로(1) 내 탕면과 이루는 각이 수직이 아닌 각도를 이루는 것을 의미한다.
이때, 부 노즐 연장선(Ls)과 상하 방향 연장선(Ln1)이 이루는 제 2 각도(θs1)가 주 노즐 연장선(Lm)과 상하 방향 연장선(Ln1)이 이루는 제 1 각도(θm)에 비해 크도록 하는 것이 바람직하다. 즉, 주 노즐 연장선(Lm)이 상하 방향 연장선(Ln1)과 이루는 각도가 0 이상, 20°이하일 때, 부 노즐 연장선(Ls)이 상하 방향 연장선(Ln1)과 이루는 각도가 20°초과, 40 °이하로 하는 것이 바람직하다. 이는 보조 제트의 반경이 메인 제트에 비해 넓은 반경이 되도록 전로 내에 산소의 흐름을 형성하고, 메인 제트의 흐름과의 간섭이 억제되어야 하는 각도로 형성되도록 하기 위함이다.
한편, 제 2 각도(θs1)가 10°미만의 값으로 형성되는 경우, 주 노즐(132)에서 분사된 메인 제트의 흐름과의 간섭을 억제하려는 효과가 미비하다. 즉, 메인 제트 중 용선(M)의 탕면과 충돌하고 상부로 방향을 전환한 산소가 부 노즐(133)에서 분사되는 보조 제트와 충돌하여 보조 제트가 직진성을 상실하게 될 수 있다. 이에, 전로(1) 내에서 용선 중 탄소(C)와 주 노즐(132)로부터 취입된 산소와의 반응에 의해 생성된 CO 가스와 보조 제트의 반응이 미비하여 부 노즐(133)에 의한 전로(1) 내 2차 연소 효율이 감소되는 문제가 있다.
다른 예로, 제 2 각도(θs1)가 40°를 초과하는 값으로 형성되는 경우, 보조 제트가 밀어내어 랜스(100)의 상부 방향쪽으로 흐르는 메인 제트의 상승류가 랜스(100)의 몸체부(110)에 직접적인 충돌을 하기 때문에 몸체부(110)에 열적 손상을 야기하는 문제가 발생할 수 있다. 또한, 노즐부(130)의 내부공간(130a) 특성 상, 제 2 각도(θs1)가 40°를 초과할 때에 노즐 벽체(131)의 내벽에 형성된 주 노즐(132)의 단부와 부 노즐(133)의 단부가 근접 배치되기 때문에, 내부공간(130a)에서 주 노즐(132)로 빠져나가야 하는 산소의 흐름을 부 노즐(133)이 빼앗아갈 수 있기 때문에 주 노즐(132)에 의한 용선의 취련 효율이 감소되는 문제가 발생할 수 있다. 따라서, 부 노즐(133)은 전술한 제 2 각도(θs1)의 값을 가지도록 노즐 벽체(131)에 형성될 수 있다.
또한, 본 발명의 실시예에 따른 부 노즐(133)은 랜스 또는 노즐 벽체(131)의 횡단면도 상의 수평면 연장선에 대해, 나란하지 않고, 상기 수평면과 교차하도록 형성된다. 즉, 부 노즐(133)은 랜스 또는 노즐 벽체(131)의 폭 방향 중심을 지나가는 폭 방향 연장선(Ln2)과 나란하거나, 동일 선상에 있지 않고, 폭 방향 연장선(Ln2)과 소정 각도(이하, 제 3 각도)를 이루도록 형성된다. 즉, 부 노즐 연장선(Ls)이 폭 방향 연장선(Ln2)과 나란하거나, 동일 선상에 있지 않고, 부 노즐 연장선(Ls)이 폭 방향 연장선(Ln2)에 대해 제 3 각도(θs2)로 기울어지도록 한다. 이때, 폭 방향 연장선((Ln2)과 부 노즐 연장선(Ls)이 이루는 제 3 각도(θs2)는 5° 내지 30°이다.
부 노즐(133)의 연장 방향에 대해 다른 말로 설명하면, 제 2 유입구(133a)로부터 제 2 배출구(133b)로 연장되는데 있어서, 노즐 벽체(131)의 원주 방향으로 연장되도록 형성된다. 즉, 제 2 유입구(133a)와 제 2 배출구(133b)를 연결하는 부 노즐 연장선(Ls)이 노즐 벽체(131)의 폭 방향 중심(C)을 지나는 연장선 즉, 폭 방향 연장선(Ln2) 상에 위치하지 않도록 하며, 부 노즐 연장선(Ls)이 폭 방향 연장선(Ln2)과 이루는 각이 5° 내지 30°가 되도록 한다.
이렇게 부 노즐(133)이 폭 방향 연장선(Ln2)과 동일 선상에 위치하거나 나란하지 않도록 연장 형성됨으로써,도 4a와 같이 부 노즐(133)로부터 취입되는 산소는 회전류(swirl flow)를 형성한다. 산소가 회전류 형태로 취입되면, 그렇치 않을 때에 비해 전로(1) 내에서 체류 시간이 증가하고, 이에 메인 제트와 용선(M) 중 탄소 간의 반응으로 인해 발생된 CO 가스와의 접촉율 또는 접촉 기회가 많아진다. 이로 인해, CO가 CO2가 되는 2차 연소율이 증가하며, CO가 2차 연소될 때 발생되는 열은 용선(M)의 온도를 승온시키는 열원으로 작용한다.
한편, 도 4b와 같이, 부 노즐이 상하 방향 연장선(Ln1)에 대해서는 10°내지 40°로 기울어져 있으나, 부 노즐 연장선(Ls)이 폭 방향 연장선((Ln2)과 평행하거나, 폭 방향 연장선(Ln2) 상에 있는 경우, 본 발명과 같이 부 노즐을 통한 회전류가 발생되지 않거나, 회전류의 강도가 약하다. 따라서, 도 4b의 노즐부(130)의 경우 도 4b의 실시예에 따른 노즐부에 비해 2차 연소율이 낮다.
또한, 도 5를 참조하면, 부 노즐 연장선(Ls)의 각도에 따라 CO2 가스의 분포 면적이 달라진다. 도 5a는 부 노즐 연장선(Ls)이 폭 방향 연장선(Ln2) 상에 있어, 제 3 각도(θs2)가 0°인 경우이다. 그리고 도 5b 및 도 5c는 부 노즐 연장선(Ls)이 폭 방향 연장선(Ln2) 상에 있지 않고, 교차하며, 도 5b는 제 3 각도가 10°, 도 5c는 제 3 각도가 25°인 경우이다.
도 5는 제 3 각도를 0°, 10°, 25°로 변화시켰을때, 전로(1) 내 가스농도를 수치해석한 결과로서, 제 3 각도(θs2)의 증가에 따라 CO2 가스 농도의 분포면적이 증가함을 알 수 있다. 그리고, 부 노즐(133)의 제 3 각도가 30°를 초과하면, 부 노즐(133)에서 토출되는 산소가 서로 중첩되어 오히려 2차 연소 발생량이 감소하게 된다. 따라서, 본 발명에서는 부 노즐 연장선((Ls)과 폭 방향 연장선(Ln2)이 5°내지 30°가 되도록 한다.
부 노즐(133)의 제 2 배출구(133b)는 전로(1)와 마주보는 노즐부(130)의 단부로부터 100 내지 200㎜ 상부로 이격된 지점에 형성될 수 있다.
제 2 배출구(133b)가 노즐부(130) 단부로부터 상측으로 100mm 미만으로 이격 형성되면, 제 1 배출구(132b)와 제 2 배출구(133b) 간의 거리가 좁아서, 메인 제트 중 용선(M) 탕면과 충돌하여 상승하는 상승류의 흐름을 바꿀 수 있을 정도의 보조 제트가 분사되지 않아, 메인 제트와 보조 제트 간의 간섭 억제 효과가 미비하다.
반대로, 제 2 배출구(133b)가 노즐부(130) 단부로부터 상측으로 200mm 를 초과하여 이격 형성되면, 제 1 배출구(132b)와 제 2 배출구(133b) 간의 거리가 매우 커서, 메인 제트의 상승류가 노즐 벽체(131)에 도달하게 되는 위치보다 상부에 제 2 배출구(133b)가 형성되어, 메인 제트의 상승류에 의해 노즐 벽체(131)가 손상되는 것을 억제하려는 보조 제트의 역할 효과가 미비하다. 따라서, 제 2 배출구(133b)는 노즐부(130)의 단부, 즉, 제 1 배출구(132b)로부터 상부로 100 내지 200㎜ 이격된 위치에 형성한다.
그리고, 상술한 부 노즐(133)은 복수개로 마련되어, 노즐 벽체의 원주방향으로 또는 둘레 방향으로 상호 이격 설치된다. 실시예에서는 부 노즐(133)을 3개 내지 6개로 마련한다. 부 노즐(133)의 갯수가 3개 미만으로 적으면 2차 연소의 기회가 적어지며, 부 노즐(133)의 갯수가 6개를 초과하여 너무 많으면, 부 노즐(133)을 통해서 나가는 산소유량이 균일하지 않아 유량이 적은 부 노즐(133)의 경우 용강이나 슬래그가 침투되어 막힐 우려가 있으며, 유량이 적은 부 노즐(133)의 경우 역화에 의한 용손 가능성이 커진다.
한편, 랜스(100)에 부 노즐(133)이 적용되면, 랜스(100)의 수명 또는 사용횟수를 저하시키는 각장 큰 요인은 부 노즐(133) 주위의 용손이다. 부 노즐(133) 주위의 용손은 상기 부 노즐(133)로부터 배출되는 산소의 유속이 작아, 상부 쪽으로 빠져나오는 CO 가스의 흐름을 뚫고 나가지 못하고, 오히려, 부 노즐(133)쪽으로 역화되기 때문이다.
이러한 역화 현상을 막기 위해서는, 부 노즐(133)에서 분사되는 또는 취입되는 산소 가스의 속도를 충분히 증가시켜야 하며, 이를 위해 본 발명의 실시예에서는 유속을 최대로 하기 위해서 부 노즐(133)을 초음속 노즐 형태로 설계한다. 즉, 제 2 유입구(133a)와 제 2 배출구(133b) 사이에 해당하는 부 노즐(133) 내부 직경(Dt)에 비해 제 2 배출구(133b)의 직경(De)이 크도록 형성된다. 이를 통해 산소가 부 노즐(133)의 제 2 유입구(133a)로 유입되어 제 2 배출구(133b)로 통과되는 동안, 가스의 팽창에 의해 산소의 이동 속도가 음속 보다 커지도록 설계된다.
또한, 실시예에서는 부 노즐(133)을 통한 산소가 초음속으로 분사될 수 있도록 제 2 배출구(133b)의 직경(De, mm)을 조절하는데 있어서, 부 노즐(133)을 통과하는 산소 취입량(Q, Nm3/min), 산소 압력(P0, kg/cm2), 부 노즐의 갯수(N), 내부 직경(Dt, mm), 음속(Ma)을 이용하여 결정한다. 실시예에서는 아래 수학식 1, 2를 이용하여 부 노즐(133)의 제 2 배출구(133b)의 직경(De)을 결정한다.
[수학식 1]
Figure 112016085953955-pat00001
[수학식 2]
Figure 112016085953955-pat00002
먼저, 부 노즐(133)을 통해 나가는 산소유량을 결정한다. 이때, 주 노즐(132)로부터 나가는 산소유량의 3% 내지 15% 부피비로 하는 것이 바람직하다. 3% 미만에서는 부 노즐(133)을 통과하는 산소유량이 적어, 2차 연소 효과가 미비하며, 15%를 초과하는 경우, 정련 반응에 필요한 산소량이 적어 정련시간이 증가되는 단점이 있다.
여기서, 산소압력은 기 설정된 또는 결정된 값이며, 부 노즐(133)의 갯수는 3개 내지 6개로 결정되어 있다. 따라수 수학식 1에 산소유량, 부 노즐 갯수, 산소 압력을 적용하면, 부 노즐(133)의 내부 직경(Dt)이 산출된다.
수학식 1을 통해, 부 노즐(133)의 갯수, 내부 직경, 산소 압력이 결정되면, 이를 수학식 2에 적용하여 내부 직경(Dt)의 직경(De)를 구한다.
수학식 2에서 Ma는 상술한 바와 같이 마하 수로서, Ma수는 1.5 내지 2.5이다. 그리고 수학식 1로부터 계산된 내부 직경(Dt)을 수학식 2에 적용하면, 제 2 배출구(133b)의 직경(De)를 결정할 수 있다.
이를 통해, 부 노즐(133)을 통과하는 산소는 초음속으로 분사될 수 있다.
표 1은 실시예들 및 비교예들에 따른 노즐부 적용시의 랜스의 수명과 2차 연소에 의한 상승 온도를 비교한 표이다.
실험을 위하여, 290톤 용량의 전로에 용선 250톤, 고철 40톤을 장입하고, 랜스로 산소를 850Nm3/min 공급하여 취련을 실시하였다.
그리고 제 1 비교예에 따른 노즐부(130)는 부 노즐(133)이 6개이며, 부 노즐(133)의 내부 직경(Dt)과 제 2 배출구(133b)의 직경(De)이 14mm로 동일하며, 부 노즐(133)로부터 취입되는 산소 취입량은 주 노즐(132)로부터 취입되는 산소 취입량의 2.9%이다.
또한, 제 2 및 제 3 비교예, 제 1 및 제 2 실시예는 모두 내부 직경(Dt)이 14mm, 제 2 배출구의 직경이 19.4mm로 초음속 형태이며, 부 노즐(133)의 갯수 및 산소 취입량을 다르게 하였다.
부 노즐 갯수 부 노즐 산소 비율(%) - 내부 직경
- 제 2 배출구 직경
부 노즐 형태 사용횟수 승온된 온도(℃)
제 1 비교예 6 2.9 - 14mm
- 14mm
일반 58 20
제 2 비교예 2 3.7 - 14mm
- 19.4mm
초음속 140 15
제 1 실시예 4 7.4 - 14mm
- 19.4mm
초음속 127 27
제 2 실시예 6 11.2 - 14mm
- 19.4mm
초음속 115 32
제 3 비교예 8 14.9 - 14mm
- 19.4mm
초음속 82 35
표 1을 참조하면, 부 노즐(133)이 일반형인 제 1 비교예의 경우, 제 2 및 제 3 비교예와, 제 1 및 제 2 실시예에 비해 사용횟수가 현저히 적고 승온효과도 높지 않음을 알 수 있다. 이는 부 노즐(133)에서 나오는 산소의 유속이 음속 이하로 되어 부 노즐 주위에서 역화가 되어 용손이 발생하였기 때문이다.
제 2 비교예는 제 1 비교예에 비해 사용횟수는 증가되었으나, 부 노즐(133)의 갯수가 3 이하로 적어, 2차 연소 효율이 떨어져, 제 1 및 제 3 비교예, 제 1 및 제 2 실시예에 비해 승온된 온도가 난다.
이와는 반대로 제 3 비교예는 승온된 온도는 제 1 및 제 2 비교예, 제 1 및 제 2 실시예에 비해 높게 나타났으나, 부 노즐(133)의 개수가 6개를 초과하는 8개로 많아, 8개의 부 노즐(133)에서 균일한 산소량이 공급되지 않아, 산소유량이 적은 부 노즐(133)에서 용손이 발생하여 사용횟수가 감소하였다. 즉, 부 노즐(133)의 개수가 너무 많으면 모든 부 노즐(133)에 균일한 산소 공급이 되지 않아, 산소유량이 상대적으로 작은 부 노즐(133)의 경우, 용손될 가능성이 커진다.
제 1 및 제 2 실시예의 경우, 제 1 비교예에 비해 사용횟수와 승온효과가 모두 증가하였다.
그리고, 제 1 및 제 2 실시예는 제 2 비교예에 비해 사용횟수는 적으나, 사용횟수가 각각 127 및 115회로서 제 1 비교예에 비해서는 상당한 횟수가 증가된 상태이며, 제 3 비교예에 비해서는 승온 효과가 작으나, 제 1 및 제 2 비교예에 비해 충분히 상승되었다.
따라서, 제 1 및 제 2 실시예를 통해, 본 발명에 따른 랜스(100)는 사용횟수와 승온 효과가 모두 향상됨을 알 수 있다.
이하에서는 도 1 내지 도 5를 참조하여, 본 발명의 실시예에 따른 랜스를 이용한 전로 조업 방법을 설명한다.
먼저, 고로로부터 이송된 용선을 전로(1)에 장입한다. 이때, 용선(M) 내의 불순물을 제거하기 위해 전로(1) 내부로 랜스(100)의 적어도 일부 영역을 장입시켜, 용선(M) 탕면 상에 랜스(100)의 단부가 이격되어 배치되도록 한다.
랜스(100)가 배치되면, 가스 공급기를 작동시켜 랜스(100)의 통로(110a)로 산소를 공급한다. 가스 공급기로부터 제공된 산소는 몸체부(110)의 통로를 따라 이동되어 노즐부(130)의 내부공간(130a)으로 유입된다.
노즐부(130)의 내부공간으로 유입된 산소는 복수의 주 노즐(132) 및 부 노즐(133) 각각을 통해 용선으로 취입되며, 이에 취련이 개시된다. 이때, 주 노즐(132)로부터 취입된 산소의 대부분은 용선 중 탄소(C)와 반응하여 탄소 농도를 낮추는 탈탄에 참여한다. 그리고 부 노즐(133)을 통해 분사되는 산소 즉, 보조 제트는 주 노즐(132)로부터 취입되는 메인 제트의 둘레에서 상기 메인 제트에 비해 넓은 반경으로 취입된다. 그리고, 부 노즐(133)로부터 취입된 산소소의 대부분은 탈탄 과정에서 발생된 CO 가스와 반응하여 상기 CO를 2차 연소시키며, 2차 연소시에 발생되는 열에 의해 용선의 온도가 상승한다.
즉, 처음에는 산화성 가스의 산소(O)와 용선 내 존재하는 탄소(C)의 반응이 이루어져 CO가스 발생되며, 이후 취련이 계속 진행되면 용선(M)의 취련과 2차 연소 반응이 동시에 수행된다.
여기서, 실시예에 따른 부 노즐(133)은 주 노즐(132)의 상측에 위치하여, 상하 방향 연장선(Ln1)에 대해 10°내지 40°기울어지도록 형성됨으로써, 메인 제트의 주위로 보조 제트가 형성된다. 그리고 부 노즐(133)이 폭 방향 연장선(Ln2)에 대해 5°내지 30°각도를 이루도록 연장 형성됨으로써, 회전류 형태로 보조 제트가 형성된다. 그리고 보조 제트의 회전류에 의해 CO 가스와의 접촉율 또는 접촉 기회가 증가하며, 이에 따라 CO의 2차 연소율을 상승되는 효과가 있다. 따라서, 외부로부터 별도의 열원을 추가하지 않고도 2차 연소를 통해 열원을 충분히 확보할 수 있다.
100: 랜스 110: 몸체부
130: 노즐부 132: 주 노즐
133: 부 노즐 Ln1: 상하 방향 연장선
Ln2: 폭 방향 연장선 Lm: 주 노즐 연장선
Ls: 부 노즐 연장선

Claims (16)

  1. 용기 내부에 원료가스를 취입하는 랜스로서,
    상기 원료가스가 경유하는 내부공간이 마련된 노즐부를 포함하고,
    상기 노즐부는,
    상기 내부공간이 마련된 노즐 벽체;
    외부로 상기 원료가스를 취입하도록, 상기 용기와 마주보는 상기 노즐 벽체를 관통하고, 상기 내부공간과 연통되도록 형성된 주 노즐;
    상기 주 노즐의 상측에 위치하도록 상기 노즐 벽체를 관통하며, 상기 내부공간과 연통되고, 상기 노즐부의 폭 방향 중심을 지나는 폭 방향 연장선과 교차하도록 연장 형성된 부 노즐;
    을 포함하고,
    상기 부 노즐은 상기 부 노즐 연장선이 상기 노즐부의 상하 방향 연장선과 교차하도록 연장 형성되며,
    상기 부 노즐은 상기 노즐 벽체의 원주 방향으로 연장 형성되어, 상기 부 노즐의 유입구로부터 상기 유입구로 유입된 원료가스가 배출되는 배출구로 연장된 부 노즐 연장선이 상기 폭 방향 연장선과 나란하거나, 동일 선상에 있지 않고, 상기 폭 방향 연장선에 대해 교차하도록 형성된 랜스.
  2. 삭제
  3. 청구항 1에 있어서,
    상기 부 노즐 연장선과 폭 방향 연장선이 이루는 각도가 5°내지 30°인 랜스.
  4. 삭제
  5. 청구항 1에 있어서,
    상기 부 노즐은 상기 부 노즐 연장선과 상하 방향 연장선이 이루는 각도가 10°내지 40°인 랜스.
  6. 청구항 3 또는 청구항 5에 있어서,
    상기 부 노즐은 원료가스를 초음속으로 취입되도록 설계된 랜스.
  7. 청구항 6에 있어서,
    상기 유입구와 배출구 사이에 해당하는 상기 부 노즐 내부직경에 비해 상기 배출구의 직경이 큰 랜스.
  8. 청구항 7에 있어서,
    상기 부 노즐은 3개 내지 6개로 마련되어 상기 노즐 벽체의 둘레 방향으로 상호 이격 설치된 랜스.
  9. 청구항 3 또는 청구항 5에 있어서,
    상기 주 노즐은 상기 내부공간과 연통되는 상기 주 노즐의 유입구로부터 상기 원료가스가 배출되는 상기 주 노즐의 배출구로 연장된 주 노즐 연장선이 상기 상하 방향 연장선에 대해 교차하도록 형성된 랜스.
  10. 청구항 9에 있어서,
    상기 주 노즐 연장선과 상하 방향 연장선이 이루는 각도가 0°내지 20°인 랜스.
  11. 용선을 정련하는 조업 방법으로서,
    용기 내에 상기 용선을 마련하는 과정;
    상기 용선 상에 랜스를 배치시키는 과정;
    상기 랜스에 원료가스를 공급하여, 상기 용선 상에 상기 랜스의 주 노즐을 통해 상기 원료가스를 분사하는 과정;
    상기 주 노즐의 상측에 위치하도록 형성된 부 노즐을 통해, 상기 랜스의 수평면에 대해 교차하는 방향으로 원료가스를 통과시켜 분사하는 과정;
    을 포함하고,
    상기 부 노즐을 통해, 상기 랜스의 수평면에 대해 교차하는 방향으로 원료가스를 통과시켜 분사하는 과정에 있어서,
    상기 부 노즐을 통과하여 분사되는 원료 가스는 상기 랜스의 상하 방향 연장선과 교차하며, 상기 랜스의 폭 방향 중심을 지나는 폭 방향 연장선에 대해 나란하거나, 동일 선상과 대응하는 방향이 아닌, 상기 노즐의 원주 방향으로 연장 형성되어, 상기 폭 방향 연장선에 대해 교차하는 방향으로 형성된 상기 부 노즐을 통과하여 분사되는 조업 방법.
  12. 삭제
  13. 삭제
  14. 청구항 11에 있어서,
    상기 부 노즐 내부를 통과하는 원료가스는, 상기 랜스의 상기 상하 방향 연장선에 대해 10°내지 40°, 상기 폭 방향 연장선에 대해 5°내지 30°가 되도록 통과하는 조업 방법.
  15. 청구항 14에 있어서,
    상기 부 노즐 내부를 통과하는 원료가스가 초음속으로 취입되는 조업 방법.
  16. 청구항 11에 있어서,
    상기 주 노즐 내부를 원료가스는, 상기 랜스의 상하 방향 연장선에 대해 20°이하가 되도록 통과하는 조업 방법.
KR1020160113242A 2016-09-02 2016-09-02 랜스 및 이를 이용한 조업 방법 KR101798844B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020160113242A KR101798844B1 (ko) 2016-09-02 2016-09-02 랜스 및 이를 이용한 조업 방법
CN201710769925.6A CN107794339A (zh) 2016-09-02 2017-08-31 喷枪及利用其的操作方法
JP2017169259A JP6581632B2 (ja) 2016-09-02 2017-09-04 ランス及びこれを用いた操業方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160113242A KR101798844B1 (ko) 2016-09-02 2016-09-02 랜스 및 이를 이용한 조업 방법

Publications (1)

Publication Number Publication Date
KR101798844B1 true KR101798844B1 (ko) 2017-11-17

Family

ID=60808406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160113242A KR101798844B1 (ko) 2016-09-02 2016-09-02 랜스 및 이를 이용한 조업 방법

Country Status (3)

Country Link
JP (1) JP6581632B2 (ko)
KR (1) KR101798844B1 (ko)
CN (1) CN107794339A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318509B1 (ko) 2020-05-14 2021-10-28 주식회사 포스코 랜스 장치 및 정련 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507917B (zh) * 2018-04-20 2021-12-03 南京恒瑞环保科技有限公司 转炉一次烟气除尘系统除尘能力的检测方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2245064Y (zh) * 1994-12-20 1997-01-15 吴庆祥 钢铁生产用氧气—煤气喷枪
JPH10102122A (ja) * 1996-09-30 1998-04-21 Kawasaki Steel Corp 溶融金属精錬用送酸ランス
JP2003034816A (ja) * 2001-07-25 2003-02-07 Nkk Corp 酸素含有ガス供給装置ノズル部の損耗防止方法
CN2603809Y (zh) * 2003-02-24 2004-02-18 宝山钢铁股份有限公司 转炉氧枪喷头
JP4715384B2 (ja) * 2005-08-19 2011-07-06 Jfeスチール株式会社 溶銑の脱燐処理方法及び脱燐処理用上吹きランス
JP2007239082A (ja) * 2006-03-13 2007-09-20 Jfe Steel Kk 溶融金属の酸化精錬方法及び精錬用上吹きランス
JP4830825B2 (ja) * 2006-12-05 2011-12-07 Jfeスチール株式会社 転炉型精錬炉における精錬方法
JP5644355B2 (ja) * 2009-10-22 2014-12-24 Jfeスチール株式会社 溶銑の精錬方法
CN103890199B (zh) * 2011-10-17 2016-01-20 杰富意钢铁株式会社 粉体吹入喷枪和使用该粉体吹入喷枪的熔融铁的精炼方法
JP5510508B2 (ja) * 2012-08-13 2014-06-04 新日鐵住金株式会社 溶銑吹錬用上吹きランスと、溶銑および脱りん銑の脱炭方法
CN105008553A (zh) * 2012-11-21 2015-10-28 首要金属科技奥地利有限责任公司 用于在利用热空气射束的情况下制造钢的吹气法及装置
CN105154617A (zh) * 2015-10-08 2015-12-16 中冶南方工程技术有限公司 一种自旋式二次燃烧氧枪及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318509B1 (ko) 2020-05-14 2021-10-28 주식회사 포스코 랜스 장치 및 정련 방법

Also Published As

Publication number Publication date
CN107794339A (zh) 2018-03-13
JP6581632B2 (ja) 2019-09-25
JP2018035441A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
KR102344147B1 (ko) 용철의 송산 정련 방법 및 상취 랜스
KR101798844B1 (ko) 랜스 및 이를 이용한 조업 방법
EP2937428B1 (en) Lance, and fishing method using same
CN107429303B (zh) 顶底同吹转炉的操作方法
RU2150516C1 (ru) Установка для рафинирования жидкой стали при производстве сверхнизкоуглеродистой стали и способ рафинирования жидкой стали
JP5724761B2 (ja) 転炉吹錬方法
JP5544807B2 (ja) 精錬用上吹きランス及び転炉精錬方法
JP5987813B2 (ja) 真空脱ガス設備における溶鋼の脱炭精錬方法
KR101366573B1 (ko) 용선의 정련 방법
JP5061535B2 (ja) Rh真空脱ガス装置における溶鋼の精錬方法
KR20170075946A (ko) 랜스 및 이를 이용한 조업 방법
KR100270125B1 (ko) 극저탄소강을 제조하기위한 용강의 정련방법
JP7307305B2 (ja) 電気炉におけるガス噴出装置及びガス噴出方法
JPH03274218A (ja) 多目的三重管ランス
KR20200003114A (ko) 전로 취련용 상취 랜스 및 용선의 정련 방법
JP2001131629A (ja) 溶銑脱燐用上吹きランス及び溶銑脱燐方法
JP2003231911A (ja) 上吹きランスとそれを用いた転炉操業方法
KR100418186B1 (ko) 고속 분체 취입용 랜스
JP5884197B2 (ja) 転炉の精錬方法
JPH1112633A (ja) 溶融金属の精錬用ランスおよび精錬方法
JP4466287B2 (ja) 減圧下における溶鋼の精錬方法及び精錬用上吹きランス
JP6098572B2 (ja) 溶銑の予備処理方法
JP6466733B2 (ja) 溶銑の脱りん処理における固体酸素源の供給方法
JP2006070292A (ja) 減圧下における溶鋼の精錬方法及び精錬用上吹きランス
KR20190077886A (ko) 정련로 및 저취 방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant