KR101371003B1 - 임피던스 매칭 네트워크에 의한 물리 기상 증착법 - Google Patents

임피던스 매칭 네트워크에 의한 물리 기상 증착법 Download PDF

Info

Publication number
KR101371003B1
KR101371003B1 KR1020117021524A KR20117021524A KR101371003B1 KR 101371003 B1 KR101371003 B1 KR 101371003B1 KR 1020117021524 A KR1020117021524 A KR 1020117021524A KR 20117021524 A KR20117021524 A KR 20117021524A KR 101371003 B1 KR101371003 B1 KR 101371003B1
Authority
KR
South Korea
Prior art keywords
matching network
impedance matching
dielectric
radio frequency
physical vapor
Prior art date
Application number
KR1020117021524A
Other languages
English (en)
Other versions
KR20110120323A (ko
Inventor
유밍 리
제프리 버크메이어
타카미치 후지이
타카유키 나오노
요시카즈 히시누마
Original Assignee
후지필름 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지필름 가부시키가이샤 filed Critical 후지필름 가부시키가이샤
Publication of KR20110120323A publication Critical patent/KR20110120323A/ko
Application granted granted Critical
Publication of KR101371003B1 publication Critical patent/KR101371003B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3444Associated circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

물리 기상 증착법은 물리 기상 증착 장치 내에 있고 스퍼터링 타겟을 포함하는 캐소드에 무선 주파수 신호를 인가하는 스텝; 상기 물리 기상 증착 장치 내에 있고 기판을 지지하는 척을 하나 이상의 커패시터를 포함하는 임피던스 매칭 네트워크에 전기적으로 접속하는 스텝; 및 상기 스퍼터링 타겟으로부터의 물질을 상기 기판 상에 증착하는 스텝을 포함한다.

Description

임피던스 매칭 네트워크에 의한 물리 기상 증착법{PHYSICAL VAPOR DEPOSITIION WITH IMPEDANCE MATCHING NETWORK}
본 발명은 통상적으로 무선 주파수(RF:radio frequency) 스퍼터링 물리 기상 증착법(PVD:physical vapor deposition)에 관한 것이다.
무선 주파수 스퍼터링 물리 기상 증착법은 기판 상에 박막을 증착하는 방법이다. 기판은 RF 전원에 접속된 타겟을 대향하는 진공 챔버 내에 배치된다. RF 전력이 초기화되면 플라즈마가 형성된다. 포지티브 가스 이온은 타겟면으로 당겨지고, 타겟을 스트라이킹하고, 모멘텀 트랜스퍼에 의해 타겟 원자를 제거한다. 제거된 타겟 원자는 기판 상에 증착되어 박막층을 형성한다. 물리 기상 증착법 중에는 증착된 박막의 특성을 제어하는 것이 중요할 수 있다.
통상적으로 일실시형태에 있어서, 물리 기상 증착법은 물리 기상 증착 장치 내에 있고 스퍼터링 타겟을 포함하는 캐소드에 무선 주파수 신호를 인가하는 스텝; 물리 기상 증착 장치 내에 있고 기판을 지지하는 척을 하나 이상의 커패시터를 포함하는 임피던스 매칭 네트워크에 전기적으로 접속하는 스텝; 및 스퍼터링 타겟으로부터의 물질을 기판 상에 증착하는 스텝을 포함한다.
본 실시형태 및 다른 실시형태는 이하의 특징 중 하나 이상을 선택적으로 포함할 수 있다. 물리 기상 증착법은 포지티브 자기바이어스 직류 전압이 기판 상에 생성되도록 하기 위해 하나 이상의 커패시터의 커패시턴스를 조정하는 스텝을 포함할 수 있다. 하나 이상의 커패시터의 커패시턴스를 조정하는 스텝은 10㎊과 500㎊ 사이의 값을 갖도록 커패시턴스를 조정하는 스텝을 포함할 수 있다. 포지티브 자기바이어스 직류 전압은 거의 60V 등의 10V와 100V 사이가 될 수 있다.
물리 기상 증착법은 포지티브 자기바이어스 직류 전압이 기판 상에 생성되도록 하기 위해 하나 이상의 커패시터에 대한 커패시턴스를 선택하는 스텝을 포함할 수 있다. 커패시턴스는 10㎊과 500㎊ 사이가 되도록 선택될 수 있다. 포지티브 자기바이어스 직류 전압은 거의 60V 등의 10V와 100V 사이가 될 수 있다.
무선 주파수 신호는 3000W 등의 1000W와 5000W 사이의 값을 갖는 무선 주파수 전력을 가질 수 있다. 타겟은 유전체 물질을 포함할 수 있다. 유전체 물질은 티탄산지르콘산납(lead zirconate titanate : PZT)을 포함할 수 있다. 스퍼터링 타겟으로부터의 물질을 기판 상에 증착하는 스텝은 2㎛와 4㎛ 사이 등의 2000Å와 10㎛ 사이의 두께를 갖는 박막을 생성하는 스텝을 포함할 수 있다. 스퍼터링 타겟으로부터의 물질을 기판 상에 증착하는 스텝은 (100) 결정 조직을 가진 박막을 생성하는 스텝을 포함할 수 있다.
통상적으로 일실시형태에 있어서, 물리 기상 증착 장치는 측벽을 가진 진공 챔버, 진공 챔버 내에 있고 스퍼터링 타겟을 포함하도록 구성된 캐소드, 캐소드에 무선 주파수 신호를 인가하도록 구성된 무선 주파수 전원, 진공 챔버 내에 있고 그 측벽에 전기적으로 접속된 애노드, 임피던스 매칭 네트워크, 및 진공 챔버 내에 있고 기판을 지지하도록 구성되고 임피던스 매칭 네트워크에 전기적으로 접속된 척을 포함한다.
본 실시형태 및 다른 실시형태는 이하의 특징 중 하나 이상을 선택적으로 포함할 수 있다. 임피던스 매칭 네트워크는 하나 이상의 커패시터를 포함할 수 있다. 임피던스 매칭 네트워크는 척에 전기적으로 접속된 입력 단자, 접지에 전기적으로 접속된 제 1 커패시터, 입력 단자와 제 1 커패시터 사이에 전기적으로 접속된 인덕터, 및 입력 단자와 접지 사이에 전기적으로 접속되고, 인덕터 및 제 1 커패시터와 병렬인 제 2 커패시터를 포함할 수 있다. 임피던스 매칭 네트워크는 가변 동조 커패시터 및 션트 커패시터를 포함할 수 있다. 타겟은 유전체 물질을 포함할 수 있다. 유전체 물질은 티탄산지르콘산납(PZT)을 포함할 수 있다. 캐소드는 마그네트론 어셈블리(magnetron assembly)를 포함할 수 있다.
캐소드 상의 제 1 무선 주파수 신호와 기판 상의 제 2 무선 주파수 신호 사이의 위상차를 록킹하거나 척에 임피던스 네트워크를 접속함으로써 기판 상에 포지티브 자기바이어스 DC 전압을 생성하는 스텝은 1000 내지 1700의 범위의 유전 상수, 높은 d31 계수, 및 높은 항복 전압을 가진 PZT 박막 등의 바람직한 압전 및 유전 특성을 가진 박막을 형성할 수 있다. 마찬가지로, 위상 시프터 또는 임피던스 매칭 네트워크를 사용하여 네거티브 자기바이어스를 생성하는 스텝은 증착된 박막, 특히 PZT 박막의 리-스퍼터링 또는 에칭에 바람직할 수 있다.
상세한 하나 이상의 실시형태는 첨부 도면과 이하의 내용에서 설명된다. 다른 특징, 형태, 및 장점은 설명, 도면, 및 청구범위로부터 명백하게 될 것이다.
도 1a는 RF 위상 시프터 및 연장된 애노드를 포함하는 물리 기상 증착 장치의 실시형태의 개략적 단면도이다.
도 1b는 임피던스 매칭 네트워크와 연장된 애노드를 포함하는 물리 기상 증착 장치의 실시형태의 개략적 단면도이다.
도 1c는 도 1의 연장된 애노드의 확대도이다.
도 2는 물리 기상 증착 장치에 사용하기 위한 연장된 애노드의 사시도이다.
도 3a는 RF 위상 시프터와 연장된 실드를 포함하는 물리 기상 증착 장치의 실시형태의 개략적 단면도이다.
도 3b는 임피던스 매칭 네트워크와 연장된 실드를 포함하는 물리 기상 증착 장치의 실시형태의 개략적 단면도이다.
도 3c는 도 3의 연장된 실드의 확대도이다.
도 4는 물리 기상 증착 장치에 사용하기 위한 연장된 실드의 개략적 상면도이다.
도 5는 척과 캐소드에 대한 자기바이어스 DC 전압 대 에어 플로우의 예시적 그래프이다.
도 6a는 캐소드 전원과 척 전원 사이에 접속된 위상 시프터를 갖고 물리 기상 증착법을 사용하여 기판 상에 박막을 증착하는 프로세스의 예시적 플로우 차트이다.
도 6b는 척에 접속된 임피던스 매칭 네트워크를 갖고 물리 기상 증착법을 사용하여 기판 상에 박막을 증착하는 프로세스의 예시적 플로우 차트이다.
다수의 도면에서 유사한 도면부호와 기호는 유사한 엘리먼트를 나타낸다.
RF 물리 기상 증착법 또는 스퍼터링이 기판 상에 박막을 생성하는데 사용되면 증착된 막의 특성을 제어하는 것이 어려울 수 있다. 기판의 DC 자기바이어스를 변경함으로써, 예컨대 캐소드에 인가된 RF 신호와 척에 인가된 RF 신호 사이의 위상차를 록킹하거나 척에 임피던스 매칭 네트워크를 전기적으로 접속함으로써 막의 특성을 더 잘 제어할 수 있다.
도 1a를 참조하면, 물리 기상 증착 장치(100)는 진공 챔버(102)를 포함할 수 있다. 진공 챔버(102)는 실린더형일 수 있고, 측벽(152), 상면(154), 및 저면(156)을 가질 수 있다. 마그네트론 어셈블리(118)는 진공 챔버(102)의 상측부에 배치될 수 있다. 마그네트론 어셈블리(118)는 자극(magnetic pole)을 변경하는 마그넷의 세트를 포함할 수 있다. 마그네트론 어셈블리(118)는 고정될 수 있고, 또는 진공 챔버(102)의 반경에 대하여 수직인 축 주위에서 회전할 수 있다. 물리 기상 증착 장치(100)는 전원(104)의 임피던스를 진공 챔버(102)의 임퍼던스에 매칭시킬 수 있는 대응 부하 매칭 네트워크 및 RF 전원(104)을 더 포함할 수 있다.
캐소드 어셈블리(106)는 진공 챔버(102)의 내부 및 상면(154) 근방에 하우징될 수 있다. 캐소드 어셈블리(106)는 금속 백킹 플레이트(metallic backing plate)(도시되지 않음)에 본딩될 수 있는 타겟(126)을 포함할 수 있다. 타겟(126)은 통상적으로 외측 에지(160)를 가진 원형이 될 수 있다. 타겟은, 예컨대 티탄산지르콘산납(PZT) 등의 유전체 물질로 이루어질 수 있다. 캐소드(106)는 RF 전력이 RF 전원(104)에 의해 인가될 때 RF 전류를 위한 전극으로서 작용할 수 있다. 캐소드 어셈블리(106)는 절연 링(150)에 의해 진공 챔버(102)로부터 전기적으로 절연될 수 있다.
하나 이상의 기판을 지지하기 위한 기판 서포트 또는 척(110)은 진공 챔버(102)의 내부에, 그러나 저면(156) 상에 이격되어 하우징될 수 있다. 척(110)은 PVD 프로세스 중에 기판(116)이 박막에 의해 코팅될 수 있도록 기판(116)을 홀딩하도록 구성된 기판 클램핑 플레이트 등의 기판 홀딩 메카니즘(122)을 포함할 수 있다. 예컨대, 기판(116)은 마이크로일렉트로메카니컬 시스템(MEMS) 웨이퍼가 될 수 있다. 온도 제어기(도시되지 않음)는, 예컨대 650℃ 내지 700℃ 등의 25℃와 800℃ 사이의 규정된 온도로 기판(116)의 온도를 유지하기 위해 척(110) 상에 배치될 수 있다.
일실시형태에 있어서, 도 1a에 도시된 바와 같이, 척(110)은 접지로부터 전기적으로 절연 또는 플로팅(floating)될 수 있고, RF 전원(120)은 척(110)에 전기적으로 접속될 수 있다[RF 전원(120)은 접지에 접속될 수 있음]. RF 위상 시프터(105)는 RF 전원(120)과 RF 전원(104) 사이에 접속될 수 있다. RF 전원(104)은 위상 시프터(105)가 활성화되면 RF 전원(120)에 대하여 위상 기준으로서 기능할 수 있다.
다른 실시형태에 있어서, 도 1b에 도시된 바와 같이, 척(110)은 접지로부터 전기적으로 절연 또는 플로팅될 수 있고, 임피던스 매칭 네트워크(107)는 척(110)에 전기적으로 접속될 수 있다[임피던스 매칭 네트워크(107)는 접지에 접속될 수 있음]. 제 2 RF 전원은 척(110)에 접속되지 않는다. 임피던스 매칭 네트워크(107)는 입력 단자(109), 가변 동조 커패시터(111), 인덕터(113), 및 션트 커패시터(115)를 포함할 수 있다. 입력 단자(109)는 척(110)에 전기적으로 접속될 수 있다. 가변 동조 커패시터(111)는 접지에 전기적으로 접속될 수 있다. 인덕터(113)는 입력 단자(109)와 가변 동조 커패시터(111) 사이에 전기적으로 접속될 수 있다. 션트 커패시터(115)는 입력 단자와 접지 사이에 전기적으로 접속될 수 있고, 인덕터(113) 및 가변 동조 커패시터(111)와 병렬이 될 수 있다.
또한, 애노드(108)는 진공 챔버(102) 내부에 하우징될 수 있다. 애노드(108)는 RF 전류 리턴 경로를 제공하기 위해 캐소드(106)에 카운터파트 전극을 제공할 수 있다. 일부 실시형태에 있어서, 애노드(108)와 척(110)은 동일한 콤포넌트일 수 있다. 그러나, 다른 실시형태에 있어서, 여기에 개시된 바와 같이, 애노드(108)는 척(110)이 애노드(108)와 상이한 전위에서 플로팅되거나 홀딩될 수 있도록 하기 위해 척(110)으로부터 전기적으로 절연될 수 있다. 애노드는 접지, 즉 진공 챔버 측벽(152)에 이와 같은 관계에서 전기적으로 접속될 수 있다(애노드는 접지에 실제로 접속될 필요는 없음).
도 1a, 도 1b, 도 1c, 및 도 2를 참조하면, 애노드(108)는 환상체(annular body)(302)를 가질 수 있고, 환상체(302)로부터 내측으로 돌출되는 환상 플랜지(304)에 의해 연장될 수 있다. 환상 플랜지(304)는 플라즈마가 PVD 프로세스 중에 유지될 수 있는 예정된 방전 공간(128)(도 1a 참조)을 규정할 수 있다. 도 1c 및 도 2에 도시된 바와 같이, 환상체(302)는 상측부(306)와 하측부(308)를 포함할 수 있다. 상측부(306)와 진공 챔버(102)의 상면(154) 사이의 스페이싱(148)(도 1a, 도 1b 참조)은 그 사이에 플라즈마 형성을 방지하도록 구성될 수 있다.
도 1c에 도시된 바와 같이, 애노드의 상측부(306)의 상부(320)는 진공 챔버의 상면(154)으로부터 수직으로 연장되어, 예컨대 실린더형이 될 수 있다. 상부(320)는 타겟(126)의 에지(160)에 평행하게 되고, 에지(160)를 둘러쌀 수 있다. 상측부(306)의 저부(322)는 상부(320)의 저면 에지에서 내측면으로부터 내측으로, 예컨대 수직으로 연장될 수 있다. 저부(322)는, 예컨대 수평 링으로서 거의 수평하게 내측으로 연장될 수 있다. 링 형상의 저부(322)의 내경은 타겟(126)과 거의 동일한 반경을 가질 수 있다. 하측부(308)는 저부(322)의 내측 에지와 저면으로부터 연장될 수 있다. 하측부(308)는 저부(322)로부터 수직으로 연장될 수 있고, 예컨대 실린더로서 수직으로 연장될 수 있다. 실린더의 내측벽은 타겟(126)과 거의 동일한 반경을 가질 수 있다. 도시되지 않았지만, 실드(124)의 상측부의 배치를 위해 갭이 형성되도록 하기 위해 외측 에지 근방에 저부(322)의 하측면으로부터 하향으로 다른 돌출부가 연장될 수 있다.
환상 플랜지(304)는 타겟(126) 아래로 적어도 일부의 플랜지가 연장되도록 하기 위해 하측부(308)로부터 내측으로 돌출될 수 있다. 도 1a에 도시된 바와 같이, 플랜지(304)는 캐소드(106)에 근접한 플랜지(304)의 반경이 캐소드(106)로부터 더 플랜지(304)의 반경보다 크게 되도록 환상체(302)로부터 내측으로 그리고 하향으로 연장될 수 있다. 즉 플랜지가 깔때기 형상을 가질 수 있다. 대안으로서, 도 3a 및 도 3b에 도시된 바와 같이, 플랜지(304)는 환상체(302)로부터 수직으로 연장될 수 있다. 일부 실시형태에 있어서, 플랜지(304)는 하측부(308)의 최하단 에지로부터 연장될 수 있다.
환상 개구(310)(도 2 참조)는 PVD 프로세스 중에 기판(116)의 실질적인 섀도우잉이 없도록, 즉 기판(116)의 상면 전체가 박막에 의해 커버링될 수 있도록 하기 위해 척(110)과 거의 동일한 반경을 가질 수 있다.
또한, 진공 챔버(102)는 진공 챔버(102)의 측벽이 박막 재료에 의해 코팅되는 것을 방지하기 위해 RF 실드(124)를 포함할 수 있다. 실드(124)는, 예컨대 비자성 스테인레스 강 또는 알루미늄으로 이루어질 수 있고, 진공 챔버(102)의 측벽(152)에 접지될 수 있다.
일부 실시에 있어서, 도 1a 및 도 1b에 도시된 바와 같이, 실드(124)는 수직으로 연장되는, 예컨대 실린더 형상의 환상체(402)를 포함할 수 있다. 수평 연장 플랜지(146)는 환상체(402)의 저부 에지로부터 내측으로 연장될 수 있다. 수평 연장 플랜지(146)는 진공 챔버(102)의 저부 근방에 배치될 수 있고, 애노드(108)의 하측부(308)를 부분적으로 그리고 수직으로 오버래핑되고 둘러싸도록 플랜지(304)를 넘어 연장될 수 있다. 일부 실시형태에 있어서, 수직 연장 플랜지(146)는 애노드(108)의 하측부(308)와 기판 홀딩 메카니즘(122) 사이의 갭으로 연장될 수 있다. 플랜지(146)는 기판 홀딩 메카니즘(122)을 부분적으로, 수평으로 오버래핑할 수 있다.
실드(124)의 환상 플랜지(146) 내부의 환상 개구(406)(도 4 참조)는 기판(116)의 실질적인 섀도우잉이 없도록 하기 위해 척과 거의 동일한 반경을 가질 수 있다. 갭(132)은 프로세스 가스가 예정된 방전 공간(128)으로부터 배출될 수 있도록 하기 위해 실드(124)와 애노드(108) 사이에 존재할 수 있다.
일부 실시형태에 있어서, 도 3a, 도 3b, 도 3c, 및 도 4에 도시된 바와 같이, 동심 환상 돌출부(404)의 세트가, 예컨대 캐소드(106)를 향하여 환상 플랜지(146)으로부터 돌출하도록 하기 위해 실드가 연장될 수 있다. 환상 돌출부(404)는 환상체(402)와 평행하게 연장될 수 있다. 도 3a 및 도 3b에 도시된 바와 같이, 환상 돌출부(404)의 높이는 진공 챔버(102)의 중심으로부터 측벽(152)으로 반경을 따라 증가될 수 있다. 환상체(402)는 환상 돌출부(404)의 높이보다 더 높은 높이를 가질 수 있다.
물리 기상 증착 장치(102)는 애노드(108)와 실드(124)를 직접 접속하는, 예컨대 스트랩 등의 도전체(130)를 더 포함할 수 있다. 도전체(130)는 유연하게 될 수 있고, 애노드(108)와 실드(124) 사이의 가스 유동을 가능하게 하도록 구성될 수 있다. 예컨대, 도전체(130)는 매시 또는 와이어 스트랩이 될 수 있다. 도전체(130)는, 예컨대 구리 또는 알루미늄으로 이루어질 수 있다.
애노드(108)와 실드(124) 사이에 다수의 접속이 이루어질 수 있다. 예컨대, 도전체(130)는 4개 이상의 포인트에서 애노드(108)와 실드(124)에 접속될 수 있다. 도전체(130)는 애노드(108)의 저면과 실드(124)의 상부 사이에 접속될 수 있다. 또한, 도전체(130)는 애노드(108)의 상부와 실드(124)의 외면 사이에 접속될 수 있다.
물리 기상 증착 장치(100)는 제 2 챔버 실드(134)를 더 포함할 수 있다. 챔버 실드는, 예컨대 비자성 스테인레스 강 또는 알루미늄으로 이루어질 수 있다. 챔버 실드의 상측부는 애노드(108)와 진공 챔버(102)의 측벽 사이에 배치될 수 있다. 챔버 실드(134)의 하측부는 진공 챔버(102)의 측벽과 실드(124) 사이에 배치될 수 있다. 챔버 실드(134)는 실드(124) 및/또는 애노드(108)과 접속되고, 두러쌀 수 있다. 챔버 실드(134)의 높이는 실드(124)의 높이와 동일하거나 더 크게 될 수 있다. 챔버 실드(134)는 환상체(142)로부터, 예컨대 수직 환상체(142)의 하부 에지로부터 내측으로 연장된 환상 플랜지(144)와 수직 환상체(142)를 포함할 수 있다. 챔버 실드(134)의 환상 플랜지(144)는 실드(124)의 환상 플랜지(146) 아래로 연장될 수 있지만 환상 플랜지(146)보다 짧은 반경 길이를 가질 수 있다. 환상 플랜지(144)는 척(110)보다 챔버의 저부에 근접하게 될 수 있다. 챔버 실드의 플랜지(144)의 내부 에지는 척(110)의 외부 에지와 수직으로 정렬될 수 있다.
챔버 실드(130)는 프로세스 가스가 진공 챔버(102)의 내부와 외부로 여전히 펌핑될 수 있도록 구성될 수 있다. 예컨대, 챔버 실드(134)는 진공 입구(114) 또는 가스 입구(142)를 커버링하지 않도록 하기 위해 충분히 짧게 될 수 있다. 대안으로서, 챔버 실드(134)는 가스 입구(142)와 진공 입구(114)의 위치에 대응하는 위치에 구멍(도시되지 않음)을 가질 수 있다. 또한, 챔버 실드(134)는 개별적으로 제거 가능하게 될 수 있고, 용이하게 클리닝되고 시간 초과되어도 재사용될 수 있다.
챔버 실드(134)는 도전체(136)에 의해 실드(124)에 전기적으로 본딩될 수 있다. 도전체(136)는 도전체(130)와 유사한 재료 및 형상으로 이루어질 수 있다. 따라서, 도전체(136)는 실드(124)와 챔버 실드(134) 사이의 가스의 유동을 가능하게 하도록 구성될 수 있다. 마찬가지로, 도전체(136)는 메쉬로 구성될 수 있고, 하나 이상의 스트랩으로 될 수 있고, 구리 또는 알루미늄을 포함할 수 있다. 또한, 도전체(136)는 실드(124)의 저면과 챔버 실드(134)의 내면 사이에 접속될 수 있다.
물리 기상 증착 장치(100)는 프로세스 가스 입구(112), 프로세스 가스 제어 장치(도시되지 않음), 진공 입구(114), 압력 측정 및 제어 장치(도시되지 않음), 및 진공 펌프(도시되지 않음)를 더 포함할 수 있다.
스퍼터링 또는 PVD 프로세스 중에 아르곤 및 산소 등의 가스는 10 내지 60 sccm/0.5 내지 2 sccm 등의 10-200 sccm/0.2 내지 4 sccm의 유량(flow rate)으로 가스 입구(112)를 통해 공급된다. 진공 펌프(도시되지 않음)는, 예컨대 10-7 Torr 이하의 베이스 진공, 및, 예컨대 0.5mTorr 내지 20mTorr, 특히 4mTorr의 플라즈마 오퍼레이션 압력을 진공 입구(114)를 통해 유지한다. RF 전원(104)으로부터의 RF 전력이, 예컨대 2000W 내지 4000W 또는 3000W 등의 500W 내지 5000W의 오더(order)로 캐소드 어셈블리(106)에 인가되면 플라즈마가 캐소드(104)와 애노드(108) 사이에 예정된 방전 공간(128)으로 형성되도록 타겟(126)은 네거티브 바이어싱되고, 애노드(108)는 포지티브 바이어싱된다. 마그네트론 어셈블리(118)는, 예컨대 200 Gauss 내지 300 Gauss 등의 50 Gauss 내지 400 Gauss의 자계를 캐소드(106)의 전방면과 그 근방에 생성시킨다. 자계는 타겟(126)의 전방면에 평행한 헬리컬 모션(helical motion)으로 전극을 제한한다.
자계에 의해 타겟(126)의 표면 근방에 제한된 전극과 관련한 타겟(126) 상의 네거티브 자기바이어스 DC 전압은 플라즈마의 에너제틱 포지티브 이온(energetic positive ion)에 의해 타겟(126)의 충격(bombardment)을 촉진한다. 운동량 전달은 PZT 분자 등의 중성 타겟 물질이 타겟(126)으로부터 이탈(dislocating)되고, 기판(116) 상에 증착되어 기판(116) 상에 박막을 생성하게 한다. 이 박막은 2000Å 내지 10㎛, 예컨대 2-4㎛의 두께를 가질 수 있다.
도 1a 및 도 3a에 도시된 실시형태에 있어서, RF 전원(120)이 기판(116)에 인가되면 DC 자기바이어스가 기판 상에 발생할 수 있다. RF 위상 시프터(105)는 위상, 예컨대 RF 전원(104) 및/또는 RF 전원(120)에 의해 인가되는 RF 신호의 전류 또는 전압 위상을 조정하는데 사용될 수 있다. RF 위상 시프터(105)는, 예컨대 -300V 내지 +300V, 특히 -100V 내지 +100V 등의 네거티브, 포지티브, 또는 제어 전하를 가질 수 있는 기판 상에 소망하는 DC 자기바이어스를, 예컨대 0° 내지 369°의 위상차가 생성하도록 하기 위해 각 위상을 록킹(locking)할 수 있다. 예로서, 기판의 포지티브 자기바이어스 대 가스 흐름의 그래프가 도 5에 도시되어 있다.
DC 자기바이어스의 전하는 위상차에 더하여 기판(116)에 인가되는 RF 전력의 양에 의해 제어될 수 있다. 예컨대, 2W 이하 등의 50W 이하의 낮은 RF 전력이 척(110)에 인가되고, 위상이, 예컨대 220° 등의 190°와 240° 사이로 록킹되면, 예컨대 60V 등의 10V-100V의 타임-에버리지 포지티브 DC 자기바이어스가 기판(116) 상에 발생할 수 있다. 포지티브 전압은 플라즈마로부터 기판(116)의 표면으로 전하를 끌어당기고 가속시킨다. 충분한 에너지를 가진 이들 전하는 낮은 운동량으로 인해 실질적인 리-스퍼터링을 야기하지 않는 스퍼터링된 물질 특성의 변화를 야기할 것이다. 또한, 포지티브 전압은 플라지마 이온이 기판(116)의 표면에 충격을 주는 것을 방지할 수 있어 표면의 에칭이 회피된다. 역으로, 예컨대 50W보다 큰 높은 RF 전력이 기판에 인가되고, 예컨대 180° 이하 또는 270° 이상 등의 190° 이하 또는 240° 이상으로 위상이 록킹되면 네거티브 DC 자기바이어스가 기판(116) 상에 발생할 수 있다. 네거티브 전압은 플라즈마 이온이 기판을 향하여 당겨지고 가속되게 하여 표면의 리-스퍼터링을 야기할 수 있다. 리-스퍼터링은, 예컨대 기판 표면의 에칭을 위해 유용할 수 있다. 챔버 구성, 가스 성분과 유량, 압력, 자계, 및 전압 등의 소정 실시에 대하여, 포지티브 또는 네거티브 자기바이어스 전압을 생성하기 위해 필요한 위상 시프트를 얻기 위해 실험이 필요할 수 있다.
도 1a 및 도 3a의 장치를 사용한 박막 형성 프로세스의 플로우 차트가 도 6a에 도시되어 있다. 602에서 제 1 위상을 가진 제 1 무선 주파수 신호가 물리 기상 증착 장치 내의 캐소드에 인가된다. 캐소드는 스퍼터링 타겟을 포함할 수 있다. 604에서, 제 2 위상을 가진 제 2 무선 주파수 신호가 물리 기상 증착 장치 내의 기판을 지지하는 척에 인가된다. 제 1 위상과 제 2 위상 간의 위상차는 기판에 포지티브 자기바이어스 DC 전압을 생성한다. 606에서, 스퍼터링 타겟으로부터의 물질이 기판 상에 증착된다.
도 1b 및 도 3b에 도시된 실시형태에 있어서, RF 전원(104)이 캐소드(106)에 인가되고, 임피던스 매칭 네트워크(107)가 척(110)에 접속되면 DC 자기바이어스가 기판 상에 발생할 수 있다. 가변 동조 커패시터(111) 및 션트 커패시터(115)의 커패시턴스는 소망하는 DC 자기바이어스가 기판 상에 발생하도록 하기 위해, 예컨대 10㎊과 500㎊ 사이로 선택 또는 조정될 수 있다. 상기 실시형태에 의하면, 기판은, 예컨대 -300V 내지 +300V, 특히 -100V 내지 +100V 등의 네거티브, 포지티브, 또는 제로 전하를 가질 수 있다.
도 1b 및 도 3b의 장치를 사용하여 박막을 형성하는 프로세스의 플로우 차트가 도 6b에 도시되어 있다. 610에서, 무선 주파수 신호가 물리 기상 증착 장치 내의 캐소드에 인가된다. 캐소드는 스퍼터링 타겟을 포함한다. 612에서, 물리 기상 증착 장치 내의 기판을 지지하는 척이 임피던스 매칭 네트워크에 전기적으로 접속된다. 임피던스 매칭 네트워크는 하나 이상의 커패시터를 포함한다. 614에서, 스퍼터링 타겟으로부의 물질이 기판 상에 증착된다. 도 6에 도시되지 않았지만, 프로세스는 포지티브 자기바이어스 DC 전압이 기판 상에 생성되도록 하기 위해 커패시터의 커패시턴스를 선택 또는 조정하는 스텝을 더 포함할 수 있다.
물리 기상 증착 장치 내의 RF 위상 시프터 또는 임피던스 매칭 네트워크의 사용은 PZT 박막 등의 압전 박막의 생성을 위해 특히 유리할 수 있다. 특히, 기판 또는 증착된 막 상에 인디렉트 바이어스(indirect bias)를 생성하기 위한 위상 시프터(105) 또는 임피던스 매칭 네트워크(107)의 사용은 PZT 등의 유전체 물질에 외부 DC 바이어스가 직접 인가될 수 없기 때문에 유리하다. 또한, RF 위상 시프터(105) 및 임피던스 매칭 네트워크(107)는 기판(116)과 예정된 방출 공간(128) 사이의 다크 스페이스(dark space) 내에 전계 강도를 수정할 수 있고, 이로 인해 증착 프로세스의 리-스퍼터링 효과가 변경된다. 역으로, 기판을 직접적으로 바이어싱하는 것은 타겟 및/또는 기판에 대하여 전체 시스템 전압을 오프셋 값으로 시프팅할 수 있지만 기판(116)과 예정된 방출 공간(128) 사이의 다크 스페이스를 수정할 수 없다.
상기한 바와 같이, PZT 막이 포지티브 DC 자기바이어스에 의해 기판을 가진 물리 기상 증착 장치를 사용하여 스퍼터링되면 기판의 표면으로 당겨지는 전자는 박막 아톰의 수정을 증가시킬 수 있는 전자 가열을 야기할 수 있다. 또한, 표면 상의 전자는 표면의 리-스퍼터링을 회피하기 위해 표면으로부터 플라즈마 이온을 리젝팅(rejecting)하는 것을 도울 수 있다. 따라서, 예컨대 (100) 결정 구조를 가진 박막 등의 바람직한 구조를 가진 막이 형성될 수 있다. 예컨대, 페로브스카이트 PZT (100)/(200) 결정 방위를 가진 PZT 막 등의 포지티브 DC 자기바이어스를 가진 기판 상에 스퍼터링된 이러한 막은 1000 내지 1700 범위의 유전 상수, 높은 d31 계수, 및 높은 항복 전압 등의 유리한 유전 및 압전 특성을 가질 수 있다. 예컨대, (100) 결정 방위를 가진 PZT 박막은 잉크 분배 장치를 위한 액추에이터 등의 MEMS 장치로서 사용될 수 있다.
다수의 실시형태를 설명하였다. 그러나, 상기한 사상 및 범위로부터 벗어나지 않는 다양한 수정이 이루어질 수 있다는 것이 이해되어야 한다. 예컨대, 포지셔닝 및 오리엔테이션(예컨대, 탑, 수직)의 용어는 물리 기상 증착 장치 내의 콤포넌트의 상대적인 포지셔닝 및 오리엔테이션을 설명하는데 사용되지만, 물리 기상 증착 장치 자체는 수직 또는 수평 오리엔테이션 또는 일부 다른 오리엔테이션으로 유지될 수 있다는 것이 이해되어야 한다. 다른 예로서, 도 6a 및 도 6b의 예시적 플로우 차트의 스텝은 다른 순서로 수행될 수 있고, 일부 스텝은 제거될 수 있고, 다른 스텝이 추가될 수 있다. 따라서, 다른 실시형태는 이하의 청구범위의 범위 내에 있다.

Claims (23)

  1. 물리 기상 증착 장치의 진공 챔버 내에 있고 유전체 스퍼터링 타겟을 포함하는 캐소드에 제 1 무선 주파수 전원을 사용하여 무선 주파수 신호를 인가하는 스텝;
    상기 물리 기상 증착 장치 내에 있고 유전체 기판을 지지하는 척을 하나 이상의 커패시터를 포함하는 임피던스 매칭 네트워크에 전기적으로 접속하는 스텝;
    10V와 100V 사이의 포지티브 자기바이어스 직류 전압이 상기 유전체 기판 상에 생성되도록 상기 임피던스 매칭 네트워크를 구성하는 스텝; 및
    상기 유전체 스퍼터링 타겟으로부터의 물질을 상기 유전체 기판 상에 증착하는 스텝을 포함하는 것을 특징으로 하는 물리 기상 증착법.
  2. 제 1 항에 있어서,
    상기 임피던스 매칭 네트워크를 구성하는 스텝은 상기 포지티브 자기바이어스 직류 전압이 상기 유전체 기판 상에 생성되도록 상기 하나 이상의 커패시터의 커패시턴스를 조정하는 스텝을 포함하는 것을 특징으로 하는 물리 기상 증착법.
  3. 제 2 항에 있어서,
    상기 하나 이상의 커패시터의 커패시턴스를 조정하는 스텝은 10㎊과 500㎊ 사이의 값을 갖도록 커패시턴스를 조정하는 스텝을 포함하는 것을 특징으로 하는 물리 기상 증착법.
  4. 삭제
  5. 제 1 항에 있어서,
    상기 포지티브 자기바이어스 직류 전압은 60V인 것을 특징으로 하는 물리 기상 증착법.
  6. 제 1 항에 있어서,
    상기 임피던스 매칭 네트워크를 구성하는 스텝은 상기 포지티브 자기바이어스 직류 전압이 상기 유전체 기판 상에 생성되도록 하나 이상의 커패시터에 대한 커패시턴스를 선택하는 스텝을 포함하는 것을 특징으로 하는 물리 기상 증착법.
  7. 제 6 항에 있어서,
    상기 커패시턴스는 10㎊과 500㎊ 사이가 되도록 선택되는 것을 특징으로 하는 물리 기상 증착법.
  8. 삭제
  9. 제 6 항에 있어서,
    상기 포지티브 자기바이어스 직류 전압은 60V인 것을 특징으로 하는 물리 기상 증착법.
  10. 제 1 항에 있어서,
    상기 무선 주파수 신호는 1000W와 5000W 사이의 값을 갖는 무선 주파수 전력을 갖는 것을 특징으로 하는 물리 기상 증착법.
  11. 제 10 항에 있어서,
    상기 무선 주파수 전력은 3000W의 값을 갖는 것을 특징으로 하는 물리 기상 증착법.
  12. 삭제
  13. 제 1 항에 있어서,
    상기 유전체 스퍼터링 타겟은 티탄산지르콘산납(PZT)을 포함하는 것을 특징으로 하는 물리 기상 증착법.
  14. 제 1 항에 있어서,
    상기 유전체 스퍼터링 타겟으로부터의 물질을 상기 유전체 기판 상에 증착하는 스텝은 2000Å과 10㎛ 사이의 두께를 가진 유전체 박막을 생성하는 스텝을 포함하는 것을 특징으로 하는 물리 기상 증착법.
  15. 제 14 항에 있어서,
    상기 유전체 박막은 2㎛와 4㎛ 사이의 두께를 갖는 것을 특징으로 하는 물리 기상 증착법.
  16. 제 1 항에 있어서,
    상기 유전체 스퍼터링 타겟으로부터의 물질을 상기 유전체 기판 상에 증착하는 스텝은 (100) 결정 구조를 가진 유전체 박막을 생성하는 스텝을 포함하는 것을 특징으로 하는 물리 기상 증착법.
  17. 측벽을 가진 진공 챔버;
    진공 챔버 내에 있고 유전체 스퍼터링 타겟을 포함하도록 구성된 캐소드;
    무선 주파수 신호를 상기 캐소드에 인가하도록 구성된 무선 주파수 전원;
    상기 진공 챔버의 측벽 내에 있고 상기 측벽에 전기적으로 접속된 애노드;
    임피던스 매칭 네트워크; 및
    상기 진공 챔버 내에 있는 척으로서, 유전체 기판을 지지하도록 구성되고 임피던스 매칭 네트워크에 전기적으로 접속된 척을 포함하고,
    상기 임피던스 매칭 네트워크는 상기 무선 주파수 전원에 의해 상기 무선 주파수 신호를 상기 캐소드에 인가할 때 10V와 100V 사이의 포지티브 자기바이어스 직류 전압이 상기 유전체 기판 상에 생성되도록 구성된 것을 특징으로 하는 물리 기상 증착 장치.
  18. 제 17 항에 있어서,
    상기 임피던스 매칭 네트워크는 하나 이상의 커패시터를 포함하는 것을 특징으로 하는 물리 기상 증착 장치.
  19. 제 18 항에 있어서,
    상기 임피던스 매칭 네트워크는,
    상기 척에 전기적으로 접속된 입력 단자;
    접지에 전기적으로 접속된 제 1 커패시터;
    상기 입력 단자와 상기 제 1 커패시터 사이에 전기적으로 접속된 인덕터; 및
    상기 입력 단자와 상기 접지 사이에 전기적으로 접속되고 상기 인덕터 및 상기 제 1 커패시터와 병렬인 제 2 커패시터를 포함하는 것을 특징으로 하는 물리 기상 증착 장치.
  20. 제 17 항에 있어서,
    상기 임피던스 매칭 네트워크는 가변 동조 커패시터와 션트 커패시터를 포함하는 것을 특징으로 하는 물리 기상 증착 장치.
  21. 삭제
  22. 제 17 항에 있어서,
    상기 유전체 스퍼터링 타겟은 티탄산지르콘산납(PZT)을 포함하는 것을 특징으로 하는 물리 기상 증착 장치.
  23. 제 17 항에 있어서,
    상기 캐소드는 마그네트론 어셈블리를 더 포함하는 것을 특징으로 하는 물리 기상 증착 장치.
KR1020117021524A 2009-02-19 2010-02-18 임피던스 매칭 네트워크에 의한 물리 기상 증착법 KR101371003B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/389,253 2009-02-19
US12/389,253 US8540851B2 (en) 2009-02-19 2009-02-19 Physical vapor deposition with impedance matching network
PCT/US2010/024549 WO2010096533A1 (en) 2009-02-19 2010-02-18 Physical vapor deposition with impedance matching network

Publications (2)

Publication Number Publication Date
KR20110120323A KR20110120323A (ko) 2011-11-03
KR101371003B1 true KR101371003B1 (ko) 2014-03-10

Family

ID=42558973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117021524A KR101371003B1 (ko) 2009-02-19 2010-02-18 임피던스 매칭 네트워크에 의한 물리 기상 증착법

Country Status (5)

Country Link
US (1) US8540851B2 (ko)
EP (1) EP2398930B1 (ko)
JP (1) JP2012518722A (ko)
KR (1) KR101371003B1 (ko)
WO (1) WO2010096533A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557088B2 (en) * 2009-02-19 2013-10-15 Fujifilm Corporation Physical vapor deposition with phase shift
US20100206713A1 (en) * 2009-02-19 2010-08-19 Fujifilm Corporation PZT Depositing Using Vapor Deposition
DE102011086111B4 (de) 2011-11-10 2016-03-17 Fhr Anlagenbau Gmbh Anordnung zur Einspeisung von HF-Strom für Rohrkathoden
US20130284589A1 (en) * 2012-04-30 2013-10-31 Youming Li Radio frequency tuned substrate biased physical vapor deposition apparatus and method of operation
KR102222902B1 (ko) 2014-05-12 2021-03-05 삼성전자주식회사 플라즈마 장비 및 이를 이용한 반도체 소자의 제조 방법
JP6900469B2 (ja) * 2017-05-09 2021-07-07 富士フイルム株式会社 成膜装置および圧電膜の成膜方法
KR20210102437A (ko) * 2018-12-19 2021-08-19 에바텍 아크티엔게젤샤프트 화합물 층을 증착하기 위한 진공 시스템 및 방법
CN112853286A (zh) 2019-11-12 2021-05-28 应用材料公司 压电膜的物理气相沉积
WO2021148195A1 (en) * 2020-01-24 2021-07-29 Evatec Ag Phase shift controlled sputter system and process
WO2023286289A1 (ja) * 2021-07-16 2023-01-19 株式会社アルバック 成膜方法及び成膜装置
CN116940705B (zh) * 2021-07-16 2024-03-08 株式会社爱发科 成膜方法和成膜装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471830B1 (en) * 2000-10-03 2002-10-29 Veeco/Cvc, Inc. Inductively-coupled-plasma ionized physical-vapor deposition apparatus, method and system
US20030042131A1 (en) * 2000-02-25 2003-03-06 Johnson Wayne L. Method and apparatus for depositing films
US20070218623A1 (en) * 2006-03-09 2007-09-20 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617459A (en) 1967-09-15 1971-11-02 Ibm Rf sputtering method and apparatus for producing insulating films of varied physical properties
US4036723A (en) * 1975-08-21 1977-07-19 International Business Machines Corporation RF bias sputtering method for producing insulating films free of surface irregularities
US4131533A (en) 1977-12-30 1978-12-26 International Business Machines Corporation RF sputtering apparatus having floating anode shield
US4584079A (en) 1983-10-11 1986-04-22 Honeywell Inc. Step shape tailoring by phase angle variation RF bias sputtering
JPS61276966A (ja) * 1985-04-30 1986-12-06 Oki Electric Ind Co Ltd 帯電性材料の高周波スパツタリング法
US4622122A (en) 1986-02-24 1986-11-11 Oerlikon Buhrle U.S.A. Inc. Planar magnetron cathode target assembly
JPS6459920A (en) * 1987-08-31 1989-03-07 Hitachi Ltd Device for forming thin film
JPH03201713A (ja) 1989-12-28 1991-09-03 Clarion Co Ltd 圧電膜製造装置
US5198090A (en) 1990-08-31 1993-03-30 International Business Machines Corporation Sputtering apparatus for producing thin films of material
JP2635267B2 (ja) * 1991-06-27 1997-07-30 アプライド マテリアルズ インコーポレイテッド Rfプラズマ処理装置
JP3441746B2 (ja) 1992-11-09 2003-09-02 キヤノン株式会社 バイアススパッタ方法およびその装置
JPH0715051A (ja) * 1993-06-24 1995-01-17 Mitsubishi Electric Corp Ybco超電導薄膜の製造方法
JP3490483B2 (ja) 1993-10-08 2004-01-26 アネルバ株式会社 Pzt薄膜の作製方法
US5729423A (en) 1994-01-31 1998-03-17 Applied Materials, Inc. Puncture resistant electrostatic chuck
US5745331A (en) * 1994-01-31 1998-04-28 Applied Materials, Inc. Electrostatic chuck with conformal insulator film
JP3890634B2 (ja) * 1995-09-19 2007-03-07 セイコーエプソン株式会社 圧電体薄膜素子及びインクジェット式記録ヘッド
JPH09176850A (ja) 1995-12-22 1997-07-08 Ulvac Japan Ltd スパッタリング装置、及び誘電体膜製造方法
US6579426B1 (en) * 1997-05-16 2003-06-17 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US5910886A (en) 1997-11-07 1999-06-08 Sierra Applied Sciences, Inc. Phase-shift power supply
JP3944341B2 (ja) 2000-03-28 2007-07-11 株式会社東芝 酸化物エピタキシャル歪格子膜の製造法
US6440280B1 (en) 2000-06-28 2002-08-27 Sola International, Inc. Multi-anode device and methods for sputter deposition
JP4553476B2 (ja) 2000-10-24 2010-09-29 株式会社アルバック スパッタ方法及びスパッタ装置
JP4204824B2 (ja) 2001-09-20 2009-01-07 新明和工業株式会社 光学系
JP2003166047A (ja) * 2001-09-20 2003-06-13 Shin Meiwa Ind Co Ltd ハロゲン化合物の成膜方法及び成膜装置、並びにフッ化マグネシウム膜
US20030180450A1 (en) 2002-03-22 2003-09-25 Kidd Jerry D. System and method for preventing breaker failure
AU2003224727A1 (en) 2002-03-28 2003-10-13 Tokyo Electron Limited A system and method for determining the state of a film in a plasma reactor using an electrical property
SE526857C2 (sv) 2003-12-22 2005-11-08 Seco Tools Ab Sätt att belägga ett skärverktyg med användning av reaktiv magnetronsputtering
US7820020B2 (en) 2005-02-03 2010-10-26 Applied Materials, Inc. Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece with a lighter-than-copper carrier gas
JP4851108B2 (ja) 2005-03-24 2012-01-11 富士フイルム株式会社 複合ペロブスカイト型化合物の膜の成膜方法、並びに、それを用いた液体吐出ヘッドの製造方法
JP5063892B2 (ja) 2005-12-20 2012-10-31 富士フイルム株式会社 液体吐出ヘッドの製造方法
KR101117450B1 (ko) * 2006-03-09 2012-03-13 어플라이드 머티어리얼스, 인코포레이티드 낮은 에너지 플라즈마 시스템을 이용하여 하이 유전상수 트랜지스터 게이트를 제조하는 방법 및 장치
US20080083611A1 (en) * 2006-10-06 2008-04-10 Tegal Corporation High-adhesive backside metallization
JP5194463B2 (ja) * 2007-01-31 2013-05-08 パナソニック株式会社 圧電体薄膜素子の製造方法
EP1953840A3 (en) 2007-01-31 2012-04-11 Panasonic Corporation Piezoelectric thin film device and piezoelectric thin film device manufacturing method and inkjet head and inkjet recording apparatus
EP1973177B8 (en) 2007-03-22 2015-01-21 FUJIFILM Corporation Ferroelectric film, process for producing the same, ferroelectric device, and liquid discharge device
JP2008266771A (ja) * 2007-03-22 2008-11-06 Fujifilm Corp 強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
JP4903610B2 (ja) 2007-03-27 2012-03-28 東京エレクトロン株式会社 プラズマ処理装置
JP4317888B2 (ja) 2007-08-31 2009-08-19 富士フイルム株式会社 スパッタ方法およびスパッタ装置
US8066857B2 (en) 2008-12-12 2011-11-29 Fujifilm Corporation Shaped anode and anode-shield connection for vacuum physical vapor deposition
US8043487B2 (en) 2008-12-12 2011-10-25 Fujifilm Corporation Chamber shield for vacuum physical vapor deposition
US20100206713A1 (en) 2009-02-19 2010-08-19 Fujifilm Corporation PZT Depositing Using Vapor Deposition
US8557088B2 (en) 2009-02-19 2013-10-15 Fujifilm Corporation Physical vapor deposition with phase shift

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042131A1 (en) * 2000-02-25 2003-03-06 Johnson Wayne L. Method and apparatus for depositing films
US6471830B1 (en) * 2000-10-03 2002-10-29 Veeco/Cvc, Inc. Inductively-coupled-plasma ionized physical-vapor deposition apparatus, method and system
US20070218623A1 (en) * 2006-03-09 2007-09-20 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus

Also Published As

Publication number Publication date
JP2012518722A (ja) 2012-08-16
WO2010096533A1 (en) 2010-08-26
EP2398930A4 (en) 2013-07-03
US20100206718A1 (en) 2010-08-19
EP2398930A1 (en) 2011-12-28
KR20110120323A (ko) 2011-11-03
EP2398930B1 (en) 2015-06-24
US8540851B2 (en) 2013-09-24

Similar Documents

Publication Publication Date Title
KR101371003B1 (ko) 임피던스 매칭 네트워크에 의한 물리 기상 증착법
US8133362B2 (en) Physical vapor deposition with multi-point clamp
KR101001743B1 (ko) 헬리컬 자기-공진 코일을 이용한 이온화 물리적 기상 증착장치
US5431799A (en) Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency
US8043487B2 (en) Chamber shield for vacuum physical vapor deposition
US8066857B2 (en) Shaped anode and anode-shield connection for vacuum physical vapor deposition
US20090308732A1 (en) Apparatus and method for uniform deposition
US9181619B2 (en) Physical vapor deposition with heat diffuser
JP7236477B2 (ja) Pvd装置
US8557088B2 (en) Physical vapor deposition with phase shift
EP2660351B1 (en) Radio frequency tuned substrate biased physical vapor deposition apparatus and method of operation
TWI275655B (en) Sputter process and apparatus for the production of coatings with optimized internal stresses
US20110209989A1 (en) Physical vapor deposition with insulated clamp

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190219

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 7