CN112853286A - 压电膜的物理气相沉积 - Google Patents

压电膜的物理气相沉积 Download PDF

Info

Publication number
CN112853286A
CN112853286A CN201911100759.6A CN201911100759A CN112853286A CN 112853286 A CN112853286 A CN 112853286A CN 201911100759 A CN201911100759 A CN 201911100759A CN 112853286 A CN112853286 A CN 112853286A
Authority
CN
China
Prior art keywords
substrate
target
phase
deposition
physical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911100759.6A
Other languages
English (en)
Inventor
阿比吉特·拉克斯曼·桑格尔
维杰·班·夏尔马
安库尔·凯达姆
巴拉特瓦·罗摩克里希南
维斯韦斯瓦伦·西瓦拉玛克里施南
薛元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to CN201911100759.6A priority Critical patent/CN112853286A/zh
Priority to US16/691,569 priority patent/US11489105B2/en
Priority to EP20888141.7A priority patent/EP4059064A4/en
Priority to TW109139101A priority patent/TWI817054B/zh
Priority to PCT/US2020/059853 priority patent/WO2021096867A1/en
Publication of CN112853286A publication Critical patent/CN112853286A/zh
Priority to US17/967,556 priority patent/US20230032638A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

一种制造压电层的方法,包括:在将基板保持在低于400℃的温度的同时,通过物理气相沉积将第一结晶相的压电材料沉积到基板上;和在高于500℃的温度下对基板进行热退火,以将压电材料转变为第二结晶相。所述物理气相沉积包括在等离子体沉积腔室中从靶材溅射。

Description

压电膜的物理气相沉积
技术领域
本发明涉及压电装置的制造,更特定地说,涉及压电膜的物理气相沉积。
背景技术
压电材料已经在例如喷墨印刷、医学超声和陀螺仪的各种技术中使用了几十年。传统上,压电层是通过制造块状晶体形式的压电材料,然后将该材料加工成所需厚度,或通过使用溶胶-凝胶技术来沉积层而制成的。锆钛酸铅(PZT),通常为Pb[ZrxTi1-x]O3的形式,是常用的压电材料。已经提出了PZT的溅射。
最近,弛豫-钛酸铅(弛豫-PT),诸如(1-X)[Pb(Mg1/3Nb2/3)O3]-X[PbTiO3](PMN-PT)、(1-X)[Pb(Y1/3Nb2/3)O3]-X[PbTiO3](PYN-PT)、(1-X)[Pb(Zr1/3Nb2/3)O3]-X[PbTiO3](PZN-PT)、(1-X)[Pb(In1/3Nb2/3)O3]-X[PbTiO3](PIN-PT)等已被提出作为较好的压电材料。与更常用的PZT材料相比,弛豫-PT能够提供改进的压电性能。然而,尚未实现商业可行方式的弛豫-PT层的大面积薄膜沉积。
发明内容
在一个方面,一种制造压电层的方法,包括:在将基板保持在低于400℃的温度的同时,通过物理气相沉积将第一结晶相的压电材料沉积到基板上;和在高于500℃的温度下对基板进行热退火,以将压电材料转变为第二结晶相。物理气相沉积包括在等离子体沉积腔室中从靶材溅射。
在另一方面,一种物理气相沉积系统,包括:沉积腔室;在沉积腔室中保持基板的支撑件;由压电材料形成的腔室中的靶材;电源,所述电源配置为向靶材施加功率以在腔室中产生等离子体,以将材料从靶材溅射到基板上,以在基板上形成压电层;和控制器,所述控制器配置为使电源在电源向靶材施加功率的沉积阶段与电源不向靶材施加功率的冷却阶段之间交替,每个沉积阶段持续至少30秒,并且每个冷却阶段持续至少30秒。
各实施方式可具有但不限于以下一项或多项优点。
包括压电材料层的装置能够使用物理气相沉积以商业上可行的工艺制造。能够减少过热和对靶材的损坏,因此可以减少产生缺陷的风险,并且可以改善处理腔室的停机时间。PMNPT可用于压电材料,可提供优异的压电性能。可以在整个晶片上获得均匀的结晶相和化学计量。该工艺还可以限制可能会损害压电性能的寄生相(诸如PbOx和焦绿石)的存在。
一个或多个实施方式的细节在附图和以下描述中阐明。其他特征、目的和优点将从说明书和附图以及从权利要求书而显而易见。
附图说明
图1是物理气相沉积处理腔室的示意性截面图。
图2是压电装置中的层堆叠的示意性截面图。
图3是用于向物理气相沉积处理腔室中的靶材施加功率的时序图的示意图。
图4是示出作为温度和组成的函数的PMNPT的相的示意图。
各个附图中相似的参考符号表示相似的元件。
具体实施方式
由块状晶体加工压电层以及使用溶胶-凝胶技术沉积压电层是缓慢的工艺,不利于在半导体制造工厂中进行。块状晶体需要在传统的机械车间中进行加工。这不仅昂贵,而且限制了压电层集成到装置中的能力。溶胶-凝胶工艺需要多轮沉积和固化,因而使得该工艺非常耗时。因此,希望通过物理气相沉积工艺(例如溅射)来沉积压电材料。
通过物理气相沉积(PVD)在大面积半导体晶片(例如硅晶片)上制造压电材料的薄膜是具有挑战性的。对于压电材料(例如PZT或弛豫-PT)的PVD,溅射工艺中使用的靶材是陶瓷材料。然而,腔室中使用的靶材可能会破裂或受到其他形式的损坏。此外,甚至不可见的靶材的损坏也会导致颗粒的释放,这可能在压电层中导致缺陷。不受任何特定理论的限制,用于靶材的陶瓷材料的导热性较差,结果,会积聚大量的热量(直接由于电源施加的功率或来自基板的辐射或二者兼有),导致靶材破裂或以其他方式受损。更换靶材需要PVD系统停机,这会增加拥有成本。
假设可以使用冷却系统将靶材保持在相对较低的温度。然而,在实践中,所需的额外冷却是不切实际的。如上所述,陶瓷靶材具有较差的导热性,因此将热量传递到冷却介质的能力有限。尽管可以在靶材的顶部形成槽或沟道以增加热接触面积并因此改善热传递,但是这些特征会在电场和沉积工艺中引入非均匀性。
可以解决这些问题的技术是在以使靶材保持在较低温度下的方式操作PVD腔室的同时沉积压电层,例如以较低瓦数和/或间歇地施加功率以使靶材冷却。此外,在沉积工艺之后,对压电层进行热退火,以使压电材料获得所需的晶体结构。
图1描绘了适合于实施以下讨论的物理气相沉积工艺的集成处理系统(例如ENDURA系统)的腔室100的示意图。处理系统可包括多个腔室,其可适用于PVD工艺或CVD工艺。例如,处理系统可包括互连的处理腔室(例如CVD腔室和PVD腔室)的群集。
腔室100包括围绕真空腔室102的腔室壁101、气源104、泵送系统106和靶电源108。在真空腔室102内的是靶材110和用于支撑基板10的基座112。屏蔽件可置于腔室内以包围反应区域。基座可以垂直地移动,并且升降机构116可耦接至基座112以相对于靶材110定位基座112。加热器或冷却器136(例如电阻加热器或热电冷却器)可嵌入基座112中,以将基板10保持在所需的处理温度。
靶材110由待沉积的材料组成,例如用于PMNPT的铌镁酸铅-钛酸铅、或用于PZT的锆钛酸铅。然而,相对于要沉积的层的所需化学计量,靶材可具有过量的PbOx,以解决由于铅的挥发性质而导致的铅损失。例如,靶材可具有1-20mol%的过量的PbO。靶材本身应具有均匀的成分。靶材110可以是用于沉积其他层的铂(Pt)或钛(Ti)。
气源104可将惰性气体(例如氩气(Ar)或氙气(Xe))、或惰性气体与处理气体(例如氧气)的混合物引入真空腔室102中。腔室压力由泵送系统106控制。靶电源108可包括DC源、射频(RF)源或DC脉冲源。
在操作中,基板10由基座112支撑在腔室102内,来自源104的气体流入腔室102中,并且靶电源108以一频率和电压向靶材110施加功率以在腔室102中产生等离子体。靶材料由等离子体从靶材110溅射,并沉积在基板10上。
如果靶电源108是DC或DC脉冲源,则靶材110用作负偏压阴极,并且屏蔽件是接地阳极。例如,通过向溅射靶材210施加DC偏压而由惰性气体产生等离子体,所述DC偏压足以产生每平方英寸约0.5瓦至350瓦的功率密度,例如对于直径为13英寸的靶材为100W-38,000W,且更典型地为约100W-10,000W。如果靶电源108是射频源,则屏蔽件通常接地,并且靶材110处的电压在射频(通常为13.56MHz)下相对于屏蔽件而变化。在这种情况下,等离子体中的电子在靶材110处累积,以产生使靶材110具有负偏压的自偏压。
腔室100可包括用于改进溅射沉积工艺的附加部件。例如,电源124可耦接至基座112,用于对基板10施加偏压,以便控制膜在基板10上的沉积。电源124通常是具有例如约350kHz至约450kHz之间的频率的AC源。当电源124施加偏压时,在基板10和基座112处(由于电子累积)产生负DC偏置。基板10处的负偏压吸引离子化的溅射的靶材料。靶材料通常沿着实质上垂直于基板10的方向被吸引到基板10。这样,与未加偏压的基板10相比,偏压电源124改善了沉积材料的阶梯覆盖。
腔室100还可以具有位于靶材110后面的磁体126或磁性子组件,用于在靶材110附近产生磁场。在一些实施方式中,磁体在沉积工艺期间旋转。
腔室的操作可以由控制器150(例如专用微处理器(例如ASIC)或执行存储在非易失性计算机可读介质中的计算机程序的常规计算机系统)控制。控制器150可包括中央处理器单元(CPU)和包含相关控制软件的存储器。
图2示出了用于制造装置的基板10的一部分的截面,该装置包括形成在半导体晶片12上的压电层16。特别地,基板10包括位于半导体晶片12和压电层16之间的一个或多个层14。一个或多个层14至少包括第一导电层24以提供下部电极。根据电极的材料和压电材料,一个或多个层14还可以包括粘附层22和种晶层26,粘附层22用于提高导电层24对半导体晶片12的粘附,种晶层26促进压电层16中的压电材料的适当晶体取向。对于某些压电材料而言,粘附层22和/或种晶层26不是必需的,而可以是不存在的。
半导体晶片可以是硅晶片或诸如锗(Ge)之类的另一种半导体。硅晶片可以是单晶硅晶片,并且可具有<001>晶体学取向,尽管其他取向也可以起作用。
假设存在粘附层22和种晶层26,则层堆叠14依次包括氧化硅(SiOx)层20、粘附层22、下部导电层24和种晶层26。
氧化硅层20可包括SiO2、SiO或其组合。氧化硅层20可以是热氧化物,并且可具有约50-1000nm的厚度。氧化硅层20可以是非晶层。
粘附层22可以是金属氧化物层。金属氧化物层的化学计量可以是MO2、M2O3或MO(其中M表示金属元素),或者是金属和氧的另一合适的化学计量。特别地,粘附层22可由氧化钛(例如TiO2、Ti2O3、TiO)、或者另一化学计量的钛和氧形成。在一些实施方式中,粘附层是纯金属或金属合金,而非金属氧化物层。金属(针对金属氧化物的金属、或者纯金属、或者金属合金的成分)的示例包括钛、铬、铬-镍、和镍。粘附层22可比氧化硅层20薄。例如,氧化钛粘附层22可具有25nm-40nm的厚度。粘附层22可具有用于促进导电层24的期望晶体学取向的晶体学取向。例如,TiO2层可具有<001>取向,以促进铂导电层的<111>取向。
第一导电层24由诸如铂、金、铱、钼、SrRuO3之类的导电材料形成。第一导电层24可比粘附层22厚,并且可比氧化硅层20厚。例如,第一导电层24可具有50-300nm的厚度。第一导电层24可具有用于促进种晶层26的期望晶体学取向的晶体学取向。例如,铂层可具有<111>晶体学取向,以促进氧化钛种晶层的<001>取向。
种晶层26可以是金属氧化物。特别地,种晶层26可以是钛或铌的氧化物。例如,种晶层可以是TiO2、Ti2O3、TiO,或者是另一化学计量的钛和氧。种晶层26应在基板10的整个表面上具有均匀的化学计量。种晶层26可具有用于促进压电层16的期望晶体学取向的晶体学取向。例如,氧化钛层可具有<001>晶体学取向,以促进PMNPT压电层的<001>取向。种晶层26比粘附层22薄。例如,第一种晶层26可以是约1nm-5nm厚,例如2nm。
压电层16形成在种晶层26上。用于压电层16的材料的示例包括PZT和弛豫-PT材料。特别地,所述材料可以是(1-x)[Pb(Mg(1-y)Nby)O3]-x[PbTiO3],其中x为约0.2至0.8,y为约0.8至0.2,例如约2/3。由于金属氧化物种晶层的存在,因此PMNPT材料可以主要是,例如基本上完全是<001>晶体学取向。压电层可具有50nm至10微米的厚度。
第二导电层30形成在压电层16上。第二导电层30可以与第一导电层24具有相同的材料组成,并且可以与第一导电层24具有相同的厚度。例如,第二导电层30可以是铂,并且可具有50nm-300nm的厚度。
可以在第一导电层24和第二导电层30之间施加电压,以致动压电层16。因此,第一导电层24提供下部电极,第二导电层30提供上部电极,压电层16夹在二者之间。
为了制造层堆叠14,可以通过在含氧气氛中进行热处理而在Si<001>单晶晶片上生长SiO2的氧化物。可以使热氧化物生长至50nm-1000nm(例如100nm)的厚度。可以在硅晶片的两侧上形成热氧化物。
如果包括可选的粘附层,则通过PVD沉积金属层,所述金属层将提供粘附层的金属。例如,可以沉积钛层。例如,可以使基板在室温和600℃之间的温度下、以施加至靶材的功率密度为每平方英寸0.5瓦至20瓦(例如每平方英寸约1.5瓦)来沉积金属层。沉积金属层之后,可以在氧气或空气存在下在快速热处理腔室或炉中进行退火,以形成金属氧化物层形式(例如TiOx)的粘附层。退火可于500℃-800℃的温度进行例如2分钟-30分钟。所得的粘附层可具有5nm-400nm的厚度。
接下来,将第一导电层沉积在粘附层(如果存在)上、沉积在氧化硅(如果存在)上、或者直接沉积在半导体晶片上。例如,可以在室温至500℃的基板温度下、以施加至靶材的功率密度为每平方英寸0.5瓦至20瓦(例如每平方英寸4瓦-5瓦)来沉积铂层。可以进行第一导电层的沉积,直到该层的厚度为50nm-300nm。如果存在粘附层,则粘附层在铂与氧化硅之间提供改善的粘附。
如果包括可选的种晶层,则通过PVD(例如DC溅射)或CVD(例如ALD)技术在下部电极(例如铂层)上沉积非常薄的金属层(例如钛)。特别地,钛层可以例如通过DC溅射沉积。例如,可以使基板在室温至500℃的温度下、以施加至靶材的功率密度为每平方英寸0.5瓦至4瓦(例如每平方英寸1瓦)来沉积钛种晶层。薄金属层可具有1nm-5nm的厚度。然后可将薄金属层氧化,例如在氧化气氛中加热,以将金属层转化为金属氧化物,例如将Ti转化为TiOx,以提供种晶层。另外,氧化的种晶层也可以通过PVD或CVD技术直接沉积,例如通过RF溅射或ALD的TiOx沉积。
接下来,通过PVD将压电层沉积在种晶层上或直接沉积在第一导电层上。特别地,在将靶材保持在相对较低的温度(例如不高于175℃,例如不高于150℃)的同时沉积压电层。例如,可以将靶材保持在室温至150℃。沉积系统顶部中的冷却系统可用于冷却靶材。
可以在基板在相对较低的温度下,例如不高于350℃,例如不高于300℃的温度下进行沉积工艺。例如,可以操作基座中的冷却系统以将基板保持在室温至300℃。相比之下,用于沉积弛豫-PT材料的常规温度为约600℃-650℃。尽管这样的高温可以在沉积时在压电材料中提供期望的结晶特性,但是来自基板的辐射热可能会被靶材吸收,从而导致靶材的过热。
施加至靶材的功率可被限制为小于1.5W/cm2,例如小于1.2W/cm2。例如,对于直径为13英寸的靶材,电源可以施加约1000W的功率(相比之下,传统的PVD操作将在1.5kW至5kW进行)。该较低的功率水平导致在靶材中产生较少的热量。
此外,系统可以在其中向靶材施加功率的沉积阶段与不施加功率并且允许靶材冷却的冷却阶段之间交替。例如,参照图3,在沉积阶段202期间,以脉冲200施加功率,并且在冷却阶段204期间,不施加功率(或以明显较低的水平施加功率)。沉积阶段202和冷却阶段204可以持续超过15秒,例如,超过30秒,例如超过一分钟。沉积阶段202和冷却阶段204可以长达约10分钟。在一些实施方式中,冷却阶段204可以比沉积阶段持续更长的时间。例如,每个沉积阶段202可以持续三到五分钟,并且每个冷却阶段204可以持续一到十分钟,例如五到七分钟。冷却阶段允许靶材在相继的沉积步骤之间冷却,并且可以减少或防止靶材的破裂。
在沉积压电层之后,将基板从PVD沉积腔室中移出,例如在炉或快速热处理系统中经历非原位热退火。可以将基板加热至500℃-850℃。特别地,对于由弛豫-PT材料形成的压电层,可以将基板加热至高于弛豫-PT材料在钙钛矿相和焦绿石相之间的相变温度的温度。作为示例,图4示出了作为PMNPT中PMN的百分比的函数(PMN的百分比由化学式(1-X)[Pb(Mg(1-Y)NbY)O3]-X[PbTiO3]中的X给出)的相变温度。例如,对于约70%PMN和30%PT的压电层,基板应升高到约750℃或更高的温度。
基板的温度应以足够快的速度升高,以限制焦绿石相的压电晶体的形成,例如限制到低于50%。例如,可以从室温以每秒10-50℃的速度升高温度,直到达到所需温度。不受任何特定理论的限制,诸如PMNPT之类的压电材料从焦绿石相转变为钙钛矿相所需的能量可大于从非晶相转变为钙钛矿相所需的能量。因此,如果温度缓慢升高,则压电材料会进入并“锁定”焦绿石相。然而,如果温度足够迅速地升高,则压电材料没有足够的时间形成焦绿石相的晶体。
退火可以在常规大气、纯氧环境、纯氮环境、纯氧和纯氮的混合物、或真空中进行。退火期间氧的存在会影响压电层的化学计量。
退火可以显著改变晶粒尺寸。退火还可以显著增加d33系数,例如从42pm/V增加至197pm/V。
在(1-X)[Pb(Mg(1-Y)NbY)O3]-X[PbTiO3])中X大约等于1/3且Y大约等于2/3时可以形成优异的PMNPT层。例如,X可为约0.25至0.40,Y可为约0.75至0.60。这样的组成可以在PMNPT固溶体相图的准同型相界(MPB)处提供有利的能量图景。由于PMNPT材料的化学计量复杂,因此因形成能相当而在不同相之间存在结晶竞争。因此,这些范围很关键,因为微小的偏差可以确定PMNPT的晶体结构是立方的、正交的、菱形的、四方的、或者是单斜的,进而可对压电性能产生重大影响。
最后,通过PVD将第二导电层(例如铂膜)沉积在压电层上。例如,可以在与第一铂膜相同的条件下沉积第二铂膜。
已经描述了多个实施方式。然而,将理解的是,在不背离本公开内容的精神和范围的情况下,可以做出各种修改。例如,
·图1所示的系统100适合于处理平面基板10,诸如半导体基板,例如硅晶片,但是下面讨论的技术可适用于非平面基板。
·PVD工艺可以使用自电离等离子体(SIP)。在SIP工艺中,最初使用惰性气体(诸如氩气)点燃等离子体。在等离子体点燃之后,惰性气体流被终止,并且沉积等离子体由溅射靶材所产生的离子保持。
·上部电极可以是与下部电极不同的导电材料,例如,除铂以外的导电材料。
·尽管讨论了PMNPT和PZT,但限制靶材温度和对压电层进行热退火的技术可以应用于其他压电组合物,例如PYN-PT、PZN-PT、PIN-PT等。
因此,其他实施方式在随附权利要求书的范围内。

Claims (20)

1.一种制造压电层的方法,包括:
在将基板保持在低于400℃的温度的同时,通过物理气相沉积将第一结晶相的压电材料沉积到基板上,其中所述物理气相沉积包括在等离子体沉积腔室中从靶材溅射;和
在高于500℃的温度下对所述基板进行热退火,以将所述压电材料转变为第二结晶相。
2.如权利要求1所述的方法,其中所述第二结晶相是钙钛矿相。
3.如权利要求2所述的方法,其中所述第一结晶相是非晶相或准晶相。
4.如权利要求1所述的方法,其中所述压电材料选自由铌镁酸铅-钛酸铅(PMNPT)、铌钇酸铅-钛酸铅(PYNPT)、锆钛酸铅(PZT)、铌锆酸铅-钛酸铅(PZN-PT)、和铌铟酸铅-钛酸铅(PIN-PT)构成的组。
5.如权利要求4所述的方法,其中所述压电材料是铌镁酸铅-钛酸铅(PMNPT)。
6.如权利要求5所述的方法,其中所述PMNPT为(1-X)[Pb(Mg(1-Y)NbY)O3]-X[PbTiO3],其中X为约0.25至0.40且Y为约0.75至0.60。
7.如权利要求6所述的方法,其中对所述基板进行热退火包括在高于500℃的温度下对所述基板进行热退火。
8.如权利要求1所述的方法,包括沉积所述压电材料至50nm至10微米的厚度。
9.如权利要求1所述的方法,包括在所述压电材料的物理气相沉积期间将所述靶材保持在低于150℃的温度。
10.如权利要求1所述的方法,其中所述物理气相沉积包括以小于1.5W/cm2的功率向所述靶材施加功率。
11.如权利要求1所述的方法,其中所述物理气相沉积包括在向所述靶材施加功率的沉积阶段与不向所述靶材施加功率的冷却阶段之间交替,每个沉积阶段持续至少30秒,并且每个冷却阶段持续至少30秒。
12.如权利要求11所述的方法,其中所述冷却阶段比所述沉积阶段更长。
13.如权利要求11所述的方法,其中每个沉积阶段持续至多五分钟。
14.如权利要求11所述的方法,其中每个沉积阶段持续至多十分钟。
15.如权利要求1所述的方法,包括在所述物理气相沉积期间将所述基板的温度保持在低于400℃。
16.如权利要求1所述的方法,包括通过用冷却器冷却支撑所述基板的所述腔室中的基座来维持所述基板的温度。
17.一种物理气相沉积系统,包括:
沉积腔室;
将基板保持在所述沉积腔室中的支撑件;
由压电材料形成的位于所述腔室中的靶材;
电源,所述电源配置为向所述靶材施加功率以在所述腔室中产生等离子体,以将材料从所述靶材溅射到所述基板上,以在所述基板上形成压电层;和
控制器,所述控制器配置为使所述电源在其中所述电源向所述靶材施加功率的沉积阶段与其中电源不向所述靶材施加功率的冷却阶段之间交替,每个沉积阶段持续至少30秒,并且每个冷却阶段持续至少30秒。
18.如权利要求17所述的方法,其中所述控制器被配置为使得所述电源在所述沉积阶段期间以小于1.5W/cm2的功率向所述靶材施加功率。
19.如权利要求17所述的方法,包括位于所述支撑件中的冷却器,并且其中所述控制器被配置为操作所述冷却器以维持所述基板的温度不高于400℃。
20.一种制造压电层的方法,包括:
在将基板保持在低于400℃的温度的同时,通过物理气相沉积将非晶相的由铌镁酸铅-钛酸铅(PMNPT)组成的压电材料沉积到所述基板上,其中所述物理气相沉积包括在等离子体沉积腔室中从靶材溅射;和
在高于500℃的温度下对所述基板进行热退火,以将所述压电材料转变为钙钛矿相,其中所述退火包括以足以在所述压电材料中实质上不形成焦绿石相晶体的速率升高所述基板的温度。
CN201911100759.6A 2019-11-12 2019-11-12 压电膜的物理气相沉积 Pending CN112853286A (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201911100759.6A CN112853286A (zh) 2019-11-12 2019-11-12 压电膜的物理气相沉积
US16/691,569 US11489105B2 (en) 2019-11-12 2019-11-21 Physical vapor deposition of piezoelectric films
EP20888141.7A EP4059064A4 (en) 2019-11-12 2020-11-10 PHYSICAL VAPOR DEPOSITION OF PIEZOELECTRIC FILMS
TW109139101A TWI817054B (zh) 2019-11-12 2020-11-10 壓電膜的物理氣相沉積
PCT/US2020/059853 WO2021096867A1 (en) 2019-11-12 2020-11-10 Physical vapor deposition of piezoelectric films
US17/967,556 US20230032638A1 (en) 2019-11-12 2022-10-17 Physical vapor deposition of piezoelectric films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911100759.6A CN112853286A (zh) 2019-11-12 2019-11-12 压电膜的物理气相沉积

Publications (1)

Publication Number Publication Date
CN112853286A true CN112853286A (zh) 2021-05-28

Family

ID=75845513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911100759.6A Pending CN112853286A (zh) 2019-11-12 2019-11-12 压电膜的物理气相沉积

Country Status (5)

Country Link
US (2) US11489105B2 (zh)
EP (1) EP4059064A4 (zh)
CN (1) CN112853286A (zh)
TW (1) TWI817054B (zh)
WO (1) WO2021096867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151472A1 (en) * 2021-01-18 2022-07-21 Applied Materials, Inc. Deposition of piezoelectric films

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240065105A1 (en) * 2022-08-17 2024-02-22 Fujifilm Dimatix, Inc. Process of epitaxial grown pzt film and method of making a pzt device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077270A (en) * 1987-03-26 1991-12-31 Matsushita Electric Industrial Co., Ltd. Elements comprising a film of a perovskite compound whose crystallographic axes are oriented and a method of making such elements
US20020136893A1 (en) * 2000-11-27 2002-09-26 Schlesinger Todd Evan Musical instrument strings with polymer treated surface
US20180051368A1 (en) * 2016-08-19 2018-02-22 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition
CN110225995A (zh) * 2017-01-25 2019-09-10 应用材料公司 用于沉积、注入和处理的具有多种反应气体、高偏置功率和高功率脉冲源的pvd腔室的增设部分

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338999A (en) * 1993-05-05 1994-08-16 Motorola, Inc. Piezoelectric lead zirconium titanate device and method for forming same
US5548475A (en) * 1993-11-15 1996-08-20 Sharp Kabushiki Kaisha Dielectric thin film device
JP3890634B2 (ja) * 1995-09-19 2007-03-07 セイコーエプソン株式会社 圧電体薄膜素子及びインクジェット式記録ヘッド
US6287435B1 (en) 1998-05-06 2001-09-11 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
JP3796394B2 (ja) 2000-06-21 2006-07-12 キヤノン株式会社 圧電素子の製造方法および液体噴射記録ヘッドの製造方法
EP1452490B1 (en) * 2002-02-19 2011-10-26 Panasonic Corporation Piezoelectric body, manufacturing method thereof, piezoelectric element having the piezoelectric body, inject head, and inject type recording device
US6824653B2 (en) * 2003-02-21 2004-11-30 Agilent Technologies, Inc Magnetron with controlled DC power
JP3932458B2 (ja) * 2004-09-16 2007-06-20 学校法人同志社 薄膜製造方法
CN1811008A (zh) 2005-01-25 2006-08-02 电子科技大学 铁电材料锆钛酸铅纳米薄膜结晶取向生长的晶化方法
US7528532B2 (en) 2005-08-23 2009-05-05 Canon Kabushiki Kaisha Piezoelectric substance and manufacturing method thereof, piezoelectric element and liquid discharge head using such piezoelectric element and liquid discharge apparatus
JP4299360B2 (ja) 2007-08-21 2009-07-22 富士フイルム株式会社 圧電素子及びそれを用いた液体吐出装置
JP5275698B2 (ja) 2008-06-17 2013-08-28 富士フイルム株式会社 圧電体膜の分極方法および圧電素子構造体の製造方法
WO2009157189A1 (ja) 2008-06-27 2009-12-30 パナソニック株式会社 圧電体素子とその製造方法
US8053951B2 (en) 2008-11-04 2011-11-08 Fujifilm Corporation Thin film piezoelectric actuators
US8557088B2 (en) 2009-02-19 2013-10-15 Fujifilm Corporation Physical vapor deposition with phase shift
US20100206713A1 (en) 2009-02-19 2010-08-19 Fujifilm Corporation PZT Depositing Using Vapor Deposition
US8540851B2 (en) 2009-02-19 2013-09-24 Fujifilm Corporation Physical vapor deposition with impedance matching network
US8164234B2 (en) 2009-02-26 2012-04-24 Fujifilm Corporation Sputtered piezoelectric material
FR2976126B1 (fr) 2011-06-01 2014-05-09 Commissariat Energie Atomique Composant electrique comprenant un materiau de structure perovskite et des electrodes optimisees et procede de fabrication
US9175382B2 (en) 2011-10-25 2015-11-03 Intermolecular, Inc. High metal ionization sputter gun
US20130284589A1 (en) 2012-04-30 2013-10-31 Youming Li Radio frequency tuned substrate biased physical vapor deposition apparatus and method of operation
KR101402988B1 (ko) 2012-06-13 2014-06-11 한국과학기술연구원 압전 복합체를 이용한 플렉서블 압전 에너지 하베스팅 소자의 제조 방법 및 이로부터 제조된 플렉서블 압전 에너지 하베스팅 소자
US9779920B2 (en) 2013-08-14 2017-10-03 Applied Materials, Inc. Sputtering target with backside cooling grooves
WO2017090445A1 (ja) 2015-11-24 2017-06-01 コニカミノルタ株式会社 圧電素子、圧電素子の製造方法、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077270A (en) * 1987-03-26 1991-12-31 Matsushita Electric Industrial Co., Ltd. Elements comprising a film of a perovskite compound whose crystallographic axes are oriented and a method of making such elements
US20020136893A1 (en) * 2000-11-27 2002-09-26 Schlesinger Todd Evan Musical instrument strings with polymer treated surface
US20180051368A1 (en) * 2016-08-19 2018-02-22 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition
CN110225995A (zh) * 2017-01-25 2019-09-10 应用材料公司 用于沉积、注入和处理的具有多种反应气体、高偏置功率和高功率脉冲源的pvd腔室的增设部分

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周元康等: "《陶瓷表面技术》", 31 January 2007, 国防工业出版社, pages: 55 - 57 *
郭红力等: "高压退火对0.65PMN-0.35PT薄膜结构、形貌及电学性能的影响", 《物理学报》, vol. 62, no. 13, pages 2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151472A1 (en) * 2021-01-18 2022-07-21 Applied Materials, Inc. Deposition of piezoelectric films

Also Published As

Publication number Publication date
EP4059064A1 (en) 2022-09-21
TW202134453A (zh) 2021-09-16
US20230032638A1 (en) 2023-02-02
EP4059064A4 (en) 2023-12-27
WO2021096867A1 (en) 2021-05-20
US11489105B2 (en) 2022-11-01
US20210143319A1 (en) 2021-05-13
TWI817054B (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
US20230032638A1 (en) Physical vapor deposition of piezoelectric films
TWI755922B (zh) 具有pmnpt層的壓電裝置之製造
JP6023722B2 (ja) SrRuO3膜の成膜方法
CN112928200B (zh) 一种锆钛酸铅压电薄膜及其制备方法与应用
TW202239733A (zh) 壓電膜之沉積
JP2001131741A (ja) 触媒スパッタリングによる薄膜形成方法及び薄膜形成装置並びに半導体装置の製造方法
JP2010007121A (ja) BiFeO3膜形成方法
TW202218203A (zh) 用於壓電應用的沉積方法及設備
CN106062239A (zh) 多层膜的制造方法以及多层膜
TWI754503B (zh) 用於沉積壓電材料的方法及裝置
JP4807901B2 (ja) 薄膜作製方法
JP3586870B2 (ja) 配向性薄膜形成基板およびその作製方法
TWI784981B (zh) 壓電體結晶膜的成膜方法及壓電體結晶膜成膜用盤
JPH0878748A (ja) 薄膜圧電体素子およびそれを用いたインクジェット記録ヘッド
JP3888400B2 (ja) 誘電体薄膜の製造方法
JP2005350735A (ja) 酸化物薄膜の製作方法、圧電膜および液体吐出ヘッド
JP5612343B2 (ja) 圧電体素子の製造方法
JP2004253535A (ja) 誘電体薄膜形成装置および誘電体薄膜形成方法
JPH10275896A (ja) メモリ素子
JPH0734241A (ja) 強誘電体薄膜製造方法
Zhang et al. Electrical and mechanical properties of PZT thin films prepared by hybrid process of sol-gel technique and laser ablation
JP2010098084A (ja) 巨大磁気抵抗材料薄膜の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination