TW202134453A - 壓電膜的物理氣相沉積 - Google Patents

壓電膜的物理氣相沉積 Download PDF

Info

Publication number
TW202134453A
TW202134453A TW109139101A TW109139101A TW202134453A TW 202134453 A TW202134453 A TW 202134453A TW 109139101 A TW109139101 A TW 109139101A TW 109139101 A TW109139101 A TW 109139101A TW 202134453 A TW202134453 A TW 202134453A
Authority
TW
Taiwan
Prior art keywords
substrate
phase
target
deposition
physical vapor
Prior art date
Application number
TW109139101A
Other languages
English (en)
Other versions
TWI817054B (zh
Inventor
阿比耶特拉克斯曼 桑吉
維賈伊班 夏爾馬
安庫 卡丹
巴拉特瓦杰 萊瑪克里斯南
菲斯維斯沃倫 希發拉馬奎斯南
薛原
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202134453A publication Critical patent/TW202134453A/zh
Application granted granted Critical
Publication of TWI817054B publication Critical patent/TWI817054B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

一種製造壓電層的方法,包括:在將基板保持在低於400℃的溫度的同時,藉由物理氣相沉積將第一結晶相的壓電材料沉積到基板上;和在高於500℃的溫度下對基板進行熱退火,以將壓電材料轉變為第二結晶相。該物理氣相沉積包括在電漿沉積腔室中從靶材濺射。

Description

壓電膜的物理氣相沉積
本發明涉及壓電裝置的製造,更特定地說,涉及壓電膜的物理氣相沉積。
壓電材料已經在例如噴墨印刷、醫學超聲和陀螺儀的各種技術中使用了幾十年。傳統上,壓電層是藉由製造塊狀晶體形式的壓電材料,然後將該材料加工成所需厚度,或藉由使用溶膠-凝膠技術來沉積層而製成的。鋯鈦酸鉛(PZT),通常為Pb[Zrx Ti1−x ]O3 的形式,是常用的壓電材料。已經提出了PZT的濺射。
最近,弛豫-鈦酸鉛(弛豫-PT),諸如(1-X)[Pb(Mg1/3 Nb2/3 )O3 ]-X[PbTiO3 ] (PMN-PT)、(1-X)[Pb(Y1/3 Nb2/3 )O3 ]-X[PbTiO3 ] (PYN-PT)、(1-X)[Pb(Zr1/3 Nb2/3 )O3 ]-X[PbTiO3 ] (PZN-PT)、(1-X)[Pb(In1/3 Nb2/3 )O3 ]-X[PbTiO3 ] (PIN-PT)等已被提出作為較好的壓電材料。與更常用的PZT材料相比,弛豫-PT能夠提供改進的壓電性質。然而,尚未實現商業可行方式的弛豫-PT層的大面積薄膜沉積。
在一個態樣,一種製造壓電層的方法,包括:在將基板保持在低於400℃的溫度的同時,藉由物理氣相沉積將第一結晶相的壓電材料沉積到基板上;和在高於500℃的溫度下對基板進行熱退火,以將壓電材料轉變為第二結晶相。物理氣相沉積包括在電漿沉積腔室中從靶材濺射。
在另一態樣,一種物理氣相沉積系統,包括:沉積腔室;在沉積腔室中保持基板的支撐件;由壓電材料形成的腔室中的靶材;電源,所述電源配置為向靶材施加電力以在腔室中產生電漿,以將材料從靶材濺射到基板上,以在基板上形成壓電層;和控制器,所述控制器配置為使電源在電源向靶材施加電力的沉積階段與電源不向靶材施加電力的冷卻階段之間交替,每個沉積階段持續至少30秒,並且每個冷卻階段持續至少30秒。
各實施方式可具有但不限於以下一項或多項優點。
包括壓電材料層的裝置能夠使用物理氣相沉積以商業上可行的製程製造。能夠減少過熱和對靶材的損壞,因此可以減少產生缺陷的風險,並且可以改善處理腔室的停機時間。PMNPT可用於壓電材料,可提供優異的壓電性質。可以在整個晶圓上獲得均勻的結晶相和化學計量。該製程還可以限制可能會損害壓電性質的寄生相(諸如PbOx和焦綠石)的存在。
一個或多個實施方式的細節在附圖和以下描述中闡明。其他特徵、目的和優點將從說明書和附圖以及從申請專利範圍而顯而易見。
由塊狀晶體加工壓電層以及使用溶膠-凝膠技術沉積壓電層是緩慢的製程,不利於在半導體製造工廠中進行。塊狀晶體需要在傳統的機械車間中進行加工。這不僅昂貴,而且限制了壓電層集成到裝置中的能力。溶膠-凝膠製程需要多輪沉積和固化,因而使得該製程非常耗時。因此,希望藉由物理氣相沉積製程(例如濺射)來沉積壓電材料。
藉由物理氣相沉積(PVD)在大面積半導體晶圓(例如矽晶圓)上製造壓電材料的薄膜是具有挑戰性的。對於壓電材料(例如PZT或弛豫-PT)的PVD,濺射製程中使用的靶材是陶瓷材料。然而,腔室中使用的靶材可能會破裂或受到其他形式的損壞。此外,甚至不可見的靶材的損壞也會導致顆粒的釋放,這可能在壓電層中導致缺陷。不受任何特定理論的限制,用於靶材的陶瓷材料的導熱性較差,結果,會積聚大量的熱量(直接由於電源施加的電力或來自基板的輻射或二者兼有),導致靶材破裂或以其他方式受損。更換靶材需要PVD系統停機,這會增加擁有成本。
假設可以使用冷卻系統將靶材保持在相對較低的溫度。然而,在實踐中,所需的額外冷卻是不切實際的。如上所述,陶瓷靶材具有較差的導熱性,因此將熱量傳遞到冷卻介質的能力有限。儘管可以在靶材的頂部形成槽、溝槽或溝道以增加熱接觸面積並因此改善熱傳遞,但是這些特徵會在電場和沉積製程中引入非均勻性。
可以解決這些問題的技術是在以使靶材保持在較低溫度下的方式操作PVD腔室的同時沉積壓電層,例如以較低瓦數和/或間歇地施加電力以使靶材冷卻。此外,在沉積製程之後,對壓電層進行熱退火,以使壓電材料獲得所需的晶體結構。
第1圖描繪了適合於實施以下討論的物理氣相沉積製程的集成處理系統(例如ENDURA系統)的腔室100的示意圖。處理系統可包括多個腔室,其可適用於PVD製程或CVD製程。例如,處理系統可包括互連的處理腔室(例如CVD腔室和PVD腔室)的群集。
腔室100包括圍繞真空腔室102的腔室壁101、氣源104、泵送系統106和靶電源108。在真空腔室102內的是靶材110和用於支撐基板10的基座112。遮罩件可置於腔室內以包圍反應區域。基座可以垂直地移動,並且升降機構116可耦接至基座112以相對於靶材110定位基座112。加熱器或冷卻器136(例如電阻加熱器或熱電冷卻器)可嵌入基座112中,以將基板10保持在所需的處理溫度。
靶材110由待沉積的材料組成,例如用於PMNPT的鈮鎂酸鉛-鈦酸鉛、或用於PZT的鋯鈦酸鉛。然而,相對於要沉積的層的所需化學計量,靶材可具有過量的PbOx ,以解決由於鉛的揮發性質而導致的鉛損失。例如,靶材可具有1-20 mol%的過量的PbO。靶材本身應具有均勻的成分。靶材110可以是用於沉積其他層的鉑(Pt)或鈦(Ti)。
氣源104可將惰性氣體(例如氬氣(Ar)或氙氣(Xe))、或惰性氣體與處理氣體(例如氧氣)的混合物引入真空腔室102中。腔室壓力由泵送系統106控制。靶電源108可包括DC源、射頻(RF)源或DC脈衝源。
在操作中,基板10由基座112支撐在腔室102內,來自源104的氣體流入腔室102中,並且靶電源108以一頻率和電壓向靶材110施加電力以在腔室102中產生電漿。靶材料由電漿從靶材110濺射,並沉積在基板10上。
如果靶電源108是DC或DC脈衝源,則靶材110用作負偏壓陰極,並且遮罩件是接地陽極。例如,藉由向濺射靶材210施加DC偏壓而由惰性氣體產生電漿,所述DC偏壓足以產生每平方英寸約0.5瓦至350瓦的電力密度,例如對於直徑為13英寸的靶材為100 W -38,000 W,且更典型地為約100 W -10,000 W。如果靶電源108是射頻源,則遮罩件通常接地,並且靶材110處的電壓在射頻(通常為13.56 MHz)下相對於遮罩件而變化。在這種情況下,電漿中的電子在靶材110處累積,以產生使靶材110具有負偏壓的自偏壓。
腔室100可包括用於改進濺射沉積製程的附加部件。例如,電源124可耦接至基座112,用於對基板10施加偏壓,以便控制膜在基板10上的沉積。電源124通常是具有例如約350 kHz至約450 kHz之間的頻率的AC源。當電源124施加偏壓時,在基板10和基座112處(由於電子累積)產生負DC偏置。基板10處的負偏壓吸引離子化的濺射的靶材料。靶材料通常沿著實質上垂直於基板10的方向被吸引到基板10。這樣,與未加偏壓的基板10相比,偏壓電源124改善了沉積材料的階梯覆蓋。
腔室100還可以具有位於靶材110後面的磁體126或磁性子元件,用於在靶材110附近產生磁場。在一些實施方式中,磁體在沉積製程期間旋轉。
腔室的操作可以由控制器150(例如專用微處理器(例如ASIC)或執行存儲在非易失性電腦可讀媒體中的電腦程式的常規電腦系統)控制。控制器150可包括中央處理器單元(CPU)和包含相關控制軟體的記憶體。
第2圖示出了用於製造裝置的基板10的一部分的截面,該裝置包括形成在半導體晶圓12上的壓電層16。特別地,基板10包括位於半導體晶圓12和壓電層16之間的一個或多個層14。一個或多個層14至少包括第一導電層24以提供下部電極。根據電極的材料和壓電材料,一個或多個層14還可以包括黏附層22和種晶層26,黏附層22用於提高導電層24對半導體晶圓12的黏附,種晶層26促進壓電層16中的壓電材料的適當晶體取向。對於某些壓電材料而言,黏附層22和/或種晶層26不是必需的,而可以是不存在的。
半導體晶圓可以是矽晶圓或諸如鍺(Ge)之類的另一種半導體。矽晶圓可以是單晶矽晶圓,並且可具有<001>晶體學取向,儘管其他取向也可以起作用。
假設存在黏附層22和種晶層26,則層堆疊14依次包括氧化矽(SiOx)層20、黏附層22、下部導電層24和種晶層26。
氧化矽層20可包括SiO2 、SiO或其組合。氧化矽層20可以是熱氧化物,並且可具有約50-1000 nm的厚度。氧化矽層20可以是非晶層。
黏附層22可以是金屬氧化物層。金屬氧化物層的化學計量可以是MO2 、M2 O3 或MO(其中M表示金屬元素),或者是金屬和氧的另一合適的化學計量。特別地,黏附層22可由氧化鈦(例如TiO2 、Ti2 O3 、TiO)、或者另一化學計量的鈦和氧形成。在一些實施方式中,黏附層是純金屬或金屬合金,而非金屬氧化物層。金屬(針對金屬氧化物的金屬、或者純金屬、或者金屬合金的成分)的示例包括鈦、鉻、鉻-鎳、和鎳。黏附層22可比氧化矽層20薄。例如,氧化鈦黏附層22可具有25 nm-40 nm的厚度。黏附層22可具有用於促進導電層24的期望晶體學取向的晶體學取向。例如,TiO2 層可具有<001>取向,以促進鉑導電層的<111>取向。
第一導電層24由諸如鉑、金、銥、鉬、SrRuO3 之類的導電材料形成。第一導電層24可比黏附層22厚,並且可比氧化矽層20厚。例如,第一導電層24可具有50-300 nm的厚度。第一導電層24可具有用於促進種晶層26的期望晶體學取向的晶體學取向。例如,鉑層可具有<111>晶體學取向,以促進氧化鈦種晶層的<001>取向。
種晶層26可以是金屬氧化物。特別地,種晶層26可以是鈦或鈮的氧化物。例如,種晶層可以是TiO2 、Ti2 O3 、TiO,或者是另一化學計量的鈦和氧。種晶層26應在基板10的整個表面上具有均勻的化學計量。種晶層26可具有用於促進壓電層16的期望晶體學取向的晶體學取向。例如,氧化鈦層可具有<001>晶體學取向,以促進PMNPT壓電層的<001>取向。種晶層26比黏附層22薄。例如,第一種晶層26可以是約1 nm-5 nm厚,例如2 nm。
壓電層16形成在種晶層26上。用於壓電層16的材料的示例包括PZT和弛豫-PT材料。特別地,所述材料可以是(1-x)[Pb(Mg(1-y) Nby )O3 ]-x[PbTiO3 ],其中x為約0.2至0.8,y為約0.8至0.2,例如約2/3。由於金屬氧化物種晶層的存在,因此PMNPT材料可以主要是,例如基本上完全是<001>晶體學取向。壓電層可具有50 nm至10微米的厚度。
第二導電層30形成在壓電層16上。第二導電層30可以與第一導電層24具有相同的材料組成,並且可以與第一導電層24具有相同的厚度。例如,第二導電層30可以是鉑,並且可具有50 nm-300 nm的厚度。
可以在第一導電層24和第二導電層30之間施加電壓,以致動壓電層16。因此,第一導電層24提供下部電極,第二導電層30提供上部電極,壓電層16夾在二者之間。
為了製造層堆疊14,可以藉由在含氧氣氛中進行熱處理而在Si <001>單晶晶圓上生長SiO2 的氧化物。可以使熱氧化物生長至50 nm-1000 nm(例如100 nm)的厚度。可以在矽晶圓的兩側上形成熱氧化物。
如果包括可選的黏附層,則藉由PVD沉積金屬層,所述金屬層將提供黏附層的金屬。例如,可以沉積鈦層。例如,可以使基板在室溫和600℃之間的溫度下、以施加至靶材的電力密度為每平方英寸0.5瓦至20瓦(例如每平方英寸約1.5瓦)來沉積金屬層。沉積金屬層之後,可以在氧氣或空氣存在下在快速熱處理腔室或爐中進行退火,以形成金屬氧化物層形式(例如TiOx)的黏附層。退火可於500℃-800℃的溫度進行例如2分鐘-30分鐘。所得的黏附層可具有5 nm-400 nm的厚度。
接下來,將第一導電層沉積在黏附層(如果存在)上、沉積在氧化矽(如果存在)上、或者直接沉積在半導體晶圓上。例如,可以在室溫至500℃的基板溫度下、以施加至靶材的電力密度為每平方英寸0.5瓦至20瓦(例如每平方英寸4瓦-5瓦)來沉積鉑層。可以進行第一導電層的沉積,直到該層的厚度為50 nm -300 nm。如果存在黏附層,則黏附層在鉑與氧化矽之間提供改善的黏附。
如果包括可選的種晶層,則藉由PVD(例如DC濺射)或CVD(例如ALD)技術在下部電極(例如鉑層)上沉積非常薄的金屬層(例如鈦)。特別地,鈦層可以例如藉由DC濺射沉積。例如,可以使基板在室溫至500℃的溫度下、以施加至靶材的電力密度為每平方英寸0.5瓦至4瓦(例如每平方英寸1瓦)來沉積鈦種晶層。薄金屬層可具有1 nm-5 nm的厚度。然後可將薄金屬層氧化,例如在氧化氣氛中加熱,以將金屬層轉化為金屬氧化物,例如將Ti轉化為TiOx,以提供種晶層。另外,氧化的種晶層也可以藉由PVD或CVD技術直接沉積,例如藉由RF濺射或ALD的TiOx沉積。
接下來,藉由PVD將壓電層沉積在種晶層上或直接沉積在第一導電層上。特別地,在將靶材保持在相對較低的溫度(例如不高於175℃,例如不高於150℃)的同時沉積壓電層。例如,可以將靶材保持在室溫至150℃。沉積系統頂部中的冷卻系統可用於冷卻靶材。
可以在基板在相對較低的溫度下,例如不高於350℃,例如不高於300℃的溫度下進行沉積製程。例如,可以操作基座中的冷卻系統以將基板保持在室溫至300℃。相比之下,用於沉積弛豫-PT材料的常規溫度為約600℃-650℃。儘管這樣的高溫可以在沉積時在壓電材料中提供期望的結晶特性,但是來自基板的輻射熱可能會被靶材吸收,從而導致靶材的過熱。
施加至靶材的電力可被限制為小於1.5 W/cm2 ,例如小於1.2 W/cm2 。例如,對於直徑為13英寸的靶材,電源可以施加約1000 W的電力(相比之下,傳統的PVD操作將在1.5 kW至5 kW進行)。該較低的電力水準導致在靶材中產生較少的熱量。
此外,系統可以在其中向靶材施加電力的沉積階段與不施加電力並且允許靶材冷卻的冷卻階段之間交替。例如,參照第3圖,在沉積階段202期間,以脈衝200施加電力,並且在冷卻階段204期間,不施加電力(或以明顯較低的水準施加電力)。沉積階段202和冷卻階段204可以持續超過15秒,例如,超過30秒,例如超過一分鐘。沉積階段202和冷卻階段204可以長達約10分鐘。在一些實施方式中,冷卻階段204可以比沉積階段持續更長的時間。例如,每個沉積階段202可以持續三到五分鐘,並且每個冷卻階段204可以持續一到十分鐘,例如五到七分鐘。冷卻階段允許靶材在相繼的沉積步驟之間冷卻,並且可以減少或防止靶材的破裂。
在沉積壓電層之後,將基板從PVD沉積腔室中移出,例如在爐或快速熱處理系統中經歷非原位熱退火。可以將基板加熱至500℃-850℃。特別地,對於由弛豫-PT材料形成的壓電層,可以將基板加熱至​​高於弛豫-PT材料在鈣鈦礦相和焦綠石相之間的相變溫度的溫度。作為示例,第4圖示出了作為PMNPT中PMN的百分比的函數(PMN的百分比由化學式(1-X)[Pb(Mg(1-Y) NbY )O3 ]-X[PbTiO3 ]中的X給出)的相變溫度。例如,對於約70% PMN和30% PT的壓電層,基板應升高到約750ºC或更高的溫度。
基板的溫度應以足夠快的速度升高,以限制焦綠石相的壓電晶體的形成,例如限制到低於50%。例如,可以從室溫以每秒10-50℃的速度升高溫度,直到達到所需溫度。不受任何特定理論的限制,諸如PMNPT之類的壓電材料從焦綠石相轉變為鈣鈦礦相所需的能量可大於從非晶相轉變為鈣鈦礦相所需的能量。因此,如果溫度緩慢升高,則壓電材料會進入並「鎖定」焦綠石相。然而,如果溫度足夠迅速地升高,則壓電材料沒有足夠的時間形成焦綠石相的晶體。
退火可以在常規大氣、純氧環境、純氮環境、純氧和純氮的混合物、或真空中進行。退火期間氧的存在會影響壓電層的化學計量。
退火可以顯著改變晶粒尺寸。退火還可以顯著增加d33係數,例如從42 pm/V增加至197 pm/V。
在(1-X)[Pb(Mg(1-Y) NbY )O3 ]-X[PbTiO3 ])中X大約等於1/3且Y大約等於2/3時可以形成優異的PMNPT層。例如,X可為約0.25至0.40,Y可為約0.75至0.60。這樣的組成可以在PMNPT固溶體相圖的准同型相界(MPB)處提供有利的能量圖景。由於PMNPT材料的化學計量複雜,因此因形成能相當而在不同相之間存在結晶競爭。因此,這些範圍很關鍵,因為微小的偏差可以決定PMNPT的晶體結構是立方的、正交的、菱形的、四方的、或者是單斜的,進而可對壓電性質產生重大影響。
最後,藉由PVD將第二導電層(例如鉑膜)沉積在壓電層上。例如,可以在與第一鉑膜相同的條件下沉積第二鉑膜。
已經描述了多個實施方式。然而,將理解的是,在不背離本公開內容的精神和範圍的情況下,可以做出各種修改。例如,
•第1圖所示的系統100適合於處理平面基板10,諸如半導體基板,例如矽晶圓,但是下面討論的技術可適用於非平面基板。
•PVD製程可以使用自電離電漿(SIP)。在SIP製程中,最初使用惰性氣體(諸如氬氣)點燃電漿。在電漿點燃之後,惰性氣體流被終止,並且沉積電漿由濺射靶材所產生的離子保持。
•上部電極可以是與下部電極不同的導電材料,例如,除鉑以外的導電材料。
•儘管討論了PMNPT和PZT,但限制靶材溫度和對壓電層進行熱退火的技術可以應用於其他壓電組合物,例如PYN-PT、PZN-PT、PIN-PT等。
因此,其他實施方式在隨附申請專利範圍的範圍內。
10:基板 12:半導體晶圓 14:層 16:壓電層 20:氧化矽層 22:黏附層 24:第一導電層 26:種晶層 30:第二導電層 100:腔室 101:腔室壁 102:真空腔室 104:氣源 106:泵送系統 108:靶電源 110:靶材 112:基座 116:升降機構 124:電源 126:磁體 136:加熱器或冷卻器 150:控制器 200:脈衝 202:沉積階段 204:冷卻階段
第1圖是物理氣相沉積處理腔室的示意性截面圖。
第2圖是壓電裝置中的層堆疊的示意性截面圖。
第3圖是用於向物理氣相沉積處理腔室中的靶材施加電力的時序圖的示意圖。
第4圖是示出作為溫度和組成的函數的PMNPT的相的示意圖。
各個附圖中相似的參考符號表示相似的元件。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
10:基板
100:腔室
101:腔室壁
102:真空腔室
104:氣源
106:泵送系統
108:靶電源
110:靶材
112:基座
116:升降機構
124:電源
126:磁體
136:加熱器或冷卻器
150:控制器

Claims (20)

  1. 一種製造一壓電層的方法,包括以下步驟: 在將一基板保持在低於400℃的一溫度的同時,藉由物理氣相沉積將一第一結晶相的一壓電材料沉積到該基板上,其中該物理氣相沉積包括在一電漿沉積腔室中從一靶材濺射;和 在高於500℃的一溫度下對該基板進行熱退火,以將該壓電材料轉變為一第二結晶相。
  2. 如請求項1所述的方法,其中該第二結晶相是一鈣鈦礦相。
  3. 如請求項2所述的方法,其中該第一結晶相是一非晶相或一准晶相。
  4. 如請求項1所述的方法,其中該壓電材料選自由鈮鎂酸鉛-鈦酸鉛(PMNPT)、鈮釔酸鉛-鈦酸鉛(PYNPT)、鋯鈦酸鉛(PZT)、鈮鋯酸鉛-鈦酸鉛(PZN-PT)、和鈮銦酸鉛-鈦酸鉛(PIN-PT)構成的一群組。
  5. 如請求項4所述的方法,其中該壓電材料是鈮鎂酸鉛-鈦酸鉛(PMNPT)。
  6. 如請求項5所述的方法,其中該PMNPT為(1-X)[Pb(Mg(1-Y) NbY )O3 ]-X[PbTiO3 ],其中X為約0.25至0.40且Y為約0.75至0.60。
  7. 如請求項6所述的方法,其中對該基板進行熱退火之步驟包括以下步驟:在高於500℃的一溫度下對該基板進行熱退火。
  8. 如請求項1所述的方法,包括以下步驟:沉積該壓電材料至50 nm至10微米的一厚度。
  9. 如請求項1所述的方法,包括在該壓電材料的物理氣相沉積期間將該靶材保持在低於150℃的一溫度。
  10. 如請求項1所述的方法,其中該物理氣相沉積包括以小於1.5 W/cm2 的一電力向該靶材施加電力。
  11. 如請求項1所述的方法,其中該物理氣相沉積包括在向該靶材施加電力的沉積階段與不向該靶材施加電力的冷卻階段之間交替,每個沉積階段持續至少30秒,並且每個冷卻階段持續至少30秒。
  12. 如請求項11所述的方法,其中該冷卻階段比該沉積階段更長。
  13. 如請求項11所述的方法,其中每個沉積階段持續至多五分鐘。
  14. 如請求項11所述的方法,其中每個沉積階段持續至多十分鐘。
  15. 如請求項1所述的方法,包括以下步驟:在該物理氣相沉積期間將該基板的一溫度保持在低於400℃。
  16. 如請求項1所述的方法,包括以下步驟:藉由用一冷卻器冷卻支撐該基板的該腔室中的一基座來維持該基板的一溫度。
  17. 一種物理氣相沉積系統,包括: 一沉積腔室; 一支撐件,將一基板保持在該沉積腔室中; 一靶材,由一壓電材料形成並位於該腔室中; 一電源,該電源配置為向該靶材施加電力以在該腔室中產生一電漿,以將材料從該靶材濺射到該基板上,以在該基板上形成一壓電層;和 一控制器,該控制器配置為使該電源在其中該電源向該靶材施加電力的沉積階段與其中電源不向該靶材施加電力的冷卻階段之間交替,每個沉積階段持續至少30秒,並且每個冷卻階段持續至少30秒。
  18. 如請求項17所述的系統,其中該控制器被配置為使得該電源在該沉積階段期間以小於1.5 W/cm2 的一電力向該靶材施加電力。
  19. 如請求項17所述的系統,包括位於該支撐件中的一冷卻器,並且其中該控制器被配置為操作該冷卻器以維持該基板的一溫度不高於400℃。
  20. 一種製造一壓電層的方法,包括以下步驟: 在將一基板保持在低於400℃的一溫度的同時,藉由物理氣相沉積將一非晶相的由鈮鎂酸鉛-鈦酸鉛(PMNPT)組成的一壓電材料沉積到該基板上,其中該物理氣相沉積包括在一電漿沉積腔室中從一靶材濺射;和 在高於500℃的一溫度下對該基板進行熱退火,以將該壓電材料轉變為一鈣鈦礦相,其中該退火之步驟包括以下步驟:以足以在該壓電材料中實質上不形成焦綠石相晶體的一速率升高該基板的溫度。
TW109139101A 2019-11-12 2020-11-10 壓電膜的物理氣相沉積 TWI817054B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911100759.6 2019-11-12
CN201911100759.6A CN112853286A (zh) 2019-11-12 2019-11-12 压电膜的物理气相沉积
US16/691,569 2019-11-21
US16/691,569 US11489105B2 (en) 2019-11-12 2019-11-21 Physical vapor deposition of piezoelectric films

Publications (2)

Publication Number Publication Date
TW202134453A true TW202134453A (zh) 2021-09-16
TWI817054B TWI817054B (zh) 2023-10-01

Family

ID=75845513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109139101A TWI817054B (zh) 2019-11-12 2020-11-10 壓電膜的物理氣相沉積

Country Status (5)

Country Link
US (2) US11489105B2 (zh)
EP (1) EP4059064A4 (zh)
CN (1) CN112853286A (zh)
TW (1) TWI817054B (zh)
WO (1) WO2021096867A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4278389A1 (en) * 2021-01-18 2023-11-22 Applied Materials, Inc. Deposition of piezoelectric films

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077270A (en) * 1987-03-26 1991-12-31 Matsushita Electric Industrial Co., Ltd. Elements comprising a film of a perovskite compound whose crystallographic axes are oriented and a method of making such elements
US5338999A (en) * 1993-05-05 1994-08-16 Motorola, Inc. Piezoelectric lead zirconium titanate device and method for forming same
US5548475A (en) * 1993-11-15 1996-08-20 Sharp Kabushiki Kaisha Dielectric thin film device
JP3890634B2 (ja) 1995-09-19 2007-03-07 セイコーエプソン株式会社 圧電体薄膜素子及びインクジェット式記録ヘッド
US6287435B1 (en) 1998-05-06 2001-09-11 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
JP3796394B2 (ja) 2000-06-21 2006-07-12 キヤノン株式会社 圧電素子の製造方法および液体噴射記録ヘッドの製造方法
US20020136893A1 (en) * 2000-11-27 2002-09-26 Schlesinger Todd Evan Musical instrument strings with polymer treated surface
KR100572916B1 (ko) * 2002-02-19 2006-04-24 마쯔시다덴기산교 가부시키가이샤 압전체 및 그 제조방법, 그리고 이 압전체를 구비한 압전소자, 잉크젯헤드 및 잉크젯방식 기록장치
US6824653B2 (en) * 2003-02-21 2004-11-30 Agilent Technologies, Inc Magnetron with controlled DC power
JP3932458B2 (ja) * 2004-09-16 2007-06-20 学校法人同志社 薄膜製造方法
CN1811008A (zh) 2005-01-25 2006-08-02 电子科技大学 铁电材料锆钛酸铅纳米薄膜结晶取向生长的晶化方法
US7528532B2 (en) 2005-08-23 2009-05-05 Canon Kabushiki Kaisha Piezoelectric substance and manufacturing method thereof, piezoelectric element and liquid discharge head using such piezoelectric element and liquid discharge apparatus
JP4299360B2 (ja) 2007-08-21 2009-07-22 富士フイルム株式会社 圧電素子及びそれを用いた液体吐出装置
JP5275698B2 (ja) 2008-06-17 2013-08-28 富士フイルム株式会社 圧電体膜の分極方法および圧電素子構造体の製造方法
US8188639B2 (en) 2008-06-27 2012-05-29 Panasonic Corporation Piezoelectric element and method for manufacturing the same
US8053951B2 (en) 2008-11-04 2011-11-08 Fujifilm Corporation Thin film piezoelectric actuators
US8557088B2 (en) 2009-02-19 2013-10-15 Fujifilm Corporation Physical vapor deposition with phase shift
US8540851B2 (en) 2009-02-19 2013-09-24 Fujifilm Corporation Physical vapor deposition with impedance matching network
US20100206713A1 (en) 2009-02-19 2010-08-19 Fujifilm Corporation PZT Depositing Using Vapor Deposition
US8164234B2 (en) 2009-02-26 2012-04-24 Fujifilm Corporation Sputtered piezoelectric material
FR2976126B1 (fr) 2011-06-01 2014-05-09 Commissariat Energie Atomique Composant electrique comprenant un materiau de structure perovskite et des electrodes optimisees et procede de fabrication
US9175382B2 (en) 2011-10-25 2015-11-03 Intermolecular, Inc. High metal ionization sputter gun
US20130284589A1 (en) 2012-04-30 2013-10-31 Youming Li Radio frequency tuned substrate biased physical vapor deposition apparatus and method of operation
KR101402988B1 (ko) 2012-06-13 2014-06-11 한국과학기술연구원 압전 복합체를 이용한 플렉서블 압전 에너지 하베스팅 소자의 제조 방법 및 이로부터 제조된 플렉서블 압전 에너지 하베스팅 소자
US9779920B2 (en) 2013-08-14 2017-10-03 Applied Materials, Inc. Sputtering target with backside cooling grooves
WO2017090445A1 (ja) 2015-11-24 2017-06-01 コニカミノルタ株式会社 圧電素子、圧電素子の製造方法、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
US10858727B2 (en) * 2016-08-19 2020-12-08 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition
US10927449B2 (en) * 2017-01-25 2021-02-23 Applied Materials, Inc. Extension of PVD chamber with multiple reaction gases, high bias power, and high power impulse source for deposition, implantation, and treatment

Also Published As

Publication number Publication date
CN112853286A (zh) 2021-05-28
US20210143319A1 (en) 2021-05-13
EP4059064A4 (en) 2023-12-27
EP4059064A1 (en) 2022-09-21
TWI817054B (zh) 2023-10-01
US11489105B2 (en) 2022-11-01
US20230032638A1 (en) 2023-02-02
WO2021096867A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
TWI755922B (zh) 具有pmnpt層的壓電裝置之製造
JP4662112B2 (ja) 強誘電体薄膜及びその製造方法
JP2019016793A (ja) 膜構造体及びその製造方法
JP5274753B2 (ja) 含Pb結晶薄膜の形成方法
US20230032638A1 (en) Physical vapor deposition of piezoelectric films
WO2013094171A1 (ja) SrRuO3膜の成膜方法
CN106062239A (zh) 多层膜的制造方法以及多层膜
Wilke et al. PZT piezoelectric films on glass for Gen-X imaging
JP2010007121A (ja) BiFeO3膜形成方法
CN112928200B (zh) 一种锆钛酸铅压电薄膜及其制备方法与应用
TW202239733A (zh) 壓電膜之沉積
JP3586870B2 (ja) 配向性薄膜形成基板およびその作製方法
TW202218203A (zh) 用於壓電應用的沉積方法及設備
TWI784981B (zh) 壓電體結晶膜的成膜方法及壓電體結晶膜成膜用盤
JP2005350735A (ja) 酸化物薄膜の製作方法、圧電膜および液体吐出ヘッド
JP5612343B2 (ja) 圧電体素子の製造方法
JP5103694B2 (ja) 圧電薄膜の製造方法
JP2004253535A (ja) 誘電体薄膜形成装置および誘電体薄膜形成方法
Zhang et al. Pulsed laser deposited lead zirconate titanate thin films for micro actuators
JP2005038914A (ja) 圧電薄膜の形成装置
JP2020111810A (ja) CoZnMn膜の形成方法、および、CoZnMnターゲット
JP6030418B2 (ja) Pzt膜の形成方法
Zhang et al. Electrical and mechanical properties of PZT thin films prepared by hybrid process of sol-gel technique and laser ablation
JPH10324598A (ja) 誘電体薄膜の製造方法
JPWO2011062050A1 (ja) 圧電体薄膜の製造方法、圧電体薄膜及び圧電体素子