KR100933587B1 - 충돌 감지 방법 - Google Patents

충돌 감지 방법 Download PDF

Info

Publication number
KR100933587B1
KR100933587B1 KR1020057004654A KR20057004654A KR100933587B1 KR 100933587 B1 KR100933587 B1 KR 100933587B1 KR 1020057004654 A KR1020057004654 A KR 1020057004654A KR 20057004654 A KR20057004654 A KR 20057004654A KR 100933587 B1 KR100933587 B1 KR 100933587B1
Authority
KR
South Korea
Prior art keywords
signal
collision
threshold
pressure
temperature
Prior art date
Application number
KR1020057004654A
Other languages
English (en)
Other versions
KR20050057437A (ko
Inventor
롤프-위르겐 레크나겔
Original Assignee
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로베르트 보쉬 게엠베하 filed Critical 로베르트 보쉬 게엠베하
Publication of KR20050057437A publication Critical patent/KR20050057437A/ko
Application granted granted Critical
Publication of KR100933587B1 publication Critical patent/KR100933587B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0006Lateral collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0025Pole collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01122Prevention of malfunction
    • B60R2021/01184Fault detection or diagnostic circuits
    • B60R2021/0119Plausibility check

Abstract

측면 충돌에 대한 감지 방법이 제안되는데, 여기서는 온도- 또는 압력 센서가 단열적 압력상승 또는 온도 상승의 검출에 사용된다. 이들 센서의 신호는 저역 통과 필터를 통해 여과되고 난 후, 감도 블록의 신호에 따라 신호의 검사는 상이한 판단 기준으로 초기화한다. 또한, 순수한 온도 신호와 압력 신호 외에 신호의 시간에 대한 일차 그리고 이차 미분의 검사가 추가된다.
감지 방법, 온도 센서, 압력 센서, 단열적 압력상승, 저역 통과 필터, 미분, 신호

Description

충돌 감지 방법 {METHOD FOR THE DETECTION OF AN IMPACT}
본 발명은 독립 청구항의 전제부에 따른 충돌 감지 방법에 관한 것이다.
독일 특허 제100 57 258 C1호로부터 차량 측면 부의 변형에 따른 단열적(adiabatic) 온도 상승을 측정하는 온도 센서를 이용한 측면 충돌 감지 방법이 공지되어 있다. 여기서, 절대 온도의 상승과 온도 변화가 검출된다. 이러한 것들은 측면 충돌이 발생하는지 아닌지를 결정하기 위해 사전에 주어진 임계값과 비교된다. 두 임계값 모두 초과하는 경우에만 측면 충돌이 존재하는데, 이때 가속 센서를 이용한 개연성 검사가 시행된다. 개연성 검사와 충돌 신호에 따라, 필요한 경우에는 억제 수단이 작동된다.
유럽 특허 제667 822 B1호로부터 차체의 광범위하게 폐쇄된 측면 내부의 단열적 압력 상승을 충돌에 대한 결과 값 매개 변수로서 인식하는 압력 센서가 공지되어 있다. 여기에도 역시 개연성(plausibility) 검사 센서가 구비되어 있다. 이때 1킬로 헤르츠(KHz) 미만의 신호에 대한 필터가 시행될 수 있다.
독일 특허 제198 30 835 C2호로부터 억제 수단의 작동 방법이 공지되어 있으며, 이때 센서 장치는 압력 신호를 출력한다. 충돌을 인식하는 알고리즘은 압력 신호의 변화에 영향을 받는 변화 가능한 임계값을 사용한다.
독일 특허 제196 19 468 C1호로부터 차량의 측면 충돌 보호를 위한 억제 수단의 작동 방법이 공지되어 있는데, 이 방법에서는 압력 신호의 평균값 신호와 압력 신호의 증분에 따라 억제 수단의 작동이 시행된다.
압력 신호 또는 온도 신호를 평가하기 위해 배경 기술에 제안된 알고리즘의 단점은 실제 충돌인지 구분하기 어려운 몇몇 미작동 상황이 발생한다는 것이다. 특히 축구공에 의한 충격, 발길질, 자전거 충돌에 의해 또는 적어도 매우 강하게 문을 닫음으로써 압력 또는 온도 신호가 발생하는데, 이 신호는 일반적으로 저속으로 기둥과 충돌하는 것과 구분하기가 매우 어렵다.
이에 비해 독립 청구항의 특징을 갖는 본 발명에 따른 충돌 감지 방법은, 압력 신호 또는 온도 신호의 충돌 관련 데이터가 저주파 신호부에 위치하기 때문에 우선 압력 신호 또는 온도 신호가 약 400Hz에서 저역 통과 필터링되는 장점을 갖고 있다. 신호에 대한 미분의 감도를 관련된 신호 특성의 스케일링(scaling)으로 조정하기 위한 저역 통과 필터는 필수 불가결한 것이다. 특히 제1 비교는 알고리즘의 감도를 규정한다. 임계값은 양의 방향 및 음의 방향으로 임계값 크기가 초과되면 알고리즘 및 추가의 비교가 개시되도록 조정된다. 그 외의 비교는 여러가지 종류일 수 있는데, 이때 가장 간단한 비교는 압력 신호 또는 온도 신호 자체를 비교하는 것이다. 이러한 비교는 견고한 물체와의 고속 충돌 또는 사고시에 나중에야 문이 영향을 받는 비스듬한 충돌의 경우, 예를 들면 충돌에 대한 감지 또는 검출로 이어지게 한다. 압력 변화 또는 온도 변화를 사용하는 경우에는, 이를 통해 고속 기둥 충돌, 즉 비교적 방해받지 않고 단지 국부적으로만 차량 안쪽으로 침투되는 충돌이 감지된다. 일차 미분과 지연된 이차 미분의 곱을 임계값과 비교하는 제3 과정이 존재한다. 일차 그리고 이차 미분 모두 0보다 커야한다. 이러한 과정의 목적은 큰 양(positive)의 곡률이 있은 후에 후속해서 매우 급격한 상승 여부를 찾아내는 것이다. 이상 설명된 것들 중에서 선택할 수도 있지만, 그 외의 것도 생각할 수 있다.
저역 통과 필터와 일차 또는 이차 미분 연산자 사용의 조합을 통해 소위 말하는 일차 또는 이차의 소멸 모멘트를 갖는 파장(wavelet) 필터링이 생성된다. 간단히 말하자면 소멸 모멘트를 갖는 파장은 정해진 스케일링을 갖는 신호의 변화만 감지하는 반면, 두 개의 소멸 모멘트를 갖는 파장은 오히려 신호의 곡률을 감지한다. 침투하는 물체가 견고한 구조, 예를 들면 B-필라 또는 보강관 등에 부딪히면, 이를 통해 침입, 즉 차량으로의 침투가 어느 정도 제동되면 이러한 신호 분포, 즉 양의 곡률 이후에 급격한 상승이 나타난다. 이때 그에 해당하는 구조가 구부러진다면 물체는 더욱 빨리 침투된다. 이러한 효과는 침투되는 물체, 여기서는 부드러운 장애물의 변형에 의해서도 초래된다. 소위 말하는 오용, 즉 축구공, 발길질, 또는 자전거로 인한 오작동의 경우 이러한 현상은 훨씬 적게 나타나며, 이 때문에 중대한 오용들, 예를 들면 느린 기둥 충돌 그리고 부드러운 장애물 충돌을 잘 구분하는 좋은 판단 기준이 주어진다. 소위 말하는 오용의 경우 개연성 검사 센서 역시 작동될 수도 있기 때문에 오용과 작동 충돌의 구분은 알고리즘을 통해 이루어져야 한다. 따라서, 추가로 감도의 임계값이 초과되었는지에 대한 감도 검사가 시행된 후에는, 이러한 과정들 중 한 개만 작동되어야 한다. 즉, 신호 그 자체가 일차 미분이거나, 일차 미분에 이차 미분을 곱한 것이어야 한다.
종속 청구항에서 서술된 방법과 추가 생성을 통해 독립 청구항에 주어진 충돌에 대한 감지 방법의 장점 보완이 가능하다.
특히, 제1 임계값 또는 적어도 제2 임계값 중 하나가 시간에 따라 적응되게 하는 것이 좋다. 즉, 정해진 상황에 반응할 수 있도록 하기 위해 압력 신호 또는 온도 신호 또는 이들의 미분에 따라 임계값이 적응될 수 있다. 예를 들면 압력 상승 또는 온도 상승을 유도함에 따라 오작동이 발생할 수 있는 어떤 상황이 감지되면, 이 경우 임계값을 소정 시간 상승시킨 후에 다시 하강시킬 수도 있다. 본 발명에 따른 방법은 특히 측면 충돌의 감지에 적합하다. 본 발명에 따른 방법이 측면 충돌 감지에 사용되면, 정면 충돌 신호는 경우에 따라서 감도에 영향을 미칠 수도 있다. 이에 따라, 즉 충돌의 경우에 정면 충돌임에도 측면 보호 장비의 작동이 유발되는 일 등은 방지될 수 있다.
본 발명의 실시예가 도면에 도시되고 이하에서 상세히 설명된다.
도1은 본 발명에 따른 방법이 사용된 장치의 흐름도이다.
도2는 압력 센서의 평가를 위한 본 발명에 따른 방법의 흐름도이다.
도3은 온도 신호의 평가를 위한 본 발명에 따른 방법의 흐름도이다.
도4는 전형적인 신호 분포도이다.
도1에는 흐름도를 통해 본 발명에 따른 방법이 실행되는 장치가 도시된다. 단열적 상태 변화를 평가하는 두 개의 충돌 센서(1, 2)는 각각, 제어기(3)에 연결된다. 그 외에, 제3의 데이터 입력을 통해 개연성 검사 센서(4)가 제어기(3)에 연결된다. 데이터 출력을 통해 제어기(3)는 억제 수단과 연결된다. 선택적으로 제어기(3)는 각각의 탑승자에 해당하는 억제 수단만 작동되도록 탑승자 식별 시스템에도 연결될 수 있다.
차량의 부분별 단열적 상태 변화에 따른 신호를 출력하는 충돌 센서(1, 2)는 압력 센서 또는 온도 센서이다. 여기서 이러한 센서들은 차량의 부분별 변형시 단열적 압력 상승이 발생할 수 있도록 대부분 폐쇄된 차량의 부분들 안에 위치한다. 이러한 종류의 충돌 센서 방식이 가장 빠르며, 예를 들면 이는 가속 센서의 신호를 능가한다. 센서(1, 2)는 신호 생성부, 아날로그-디지털 변환기 그리고 제어기(3)에 신호를 보내는 송신 부품을 구비한다. 센서(1, 2)는 즉, 그들의 기능 때문에 제어기(3)로부터 분리되어 있다. 두 센서(1, 2)가 측면 충돌 센서로 작용하면, 예를 들면 문 처럼 차량의 측면 부분에 설치된다. 측면 충돌 센서는 두 개가 아니라 더 많이 사용될 수도 있는데, 예를 들면 각각의 측면 부분을 위해 4개가 사용될 수도 있다. 추가로 후면 그리고 정면 충돌의 경우 역시 이러한 센서들에 설치될 수 있다. 그러면 센서 신호는 프로세서가 구비된 제어기(3)에서 처리된다. 그러나 예를 들면 에어백 또는 안전 벨트와 같은 억제 수단(5)을 작동시키기 위해서 센서(1, 2)의 신호는 또 다른 센서(4)를 통해 개연성 검사가 실행되어야 한다. 이를 위해서는 가속 센서가 추가로 사용된다. 선택적으로, 본체의 음파 센서 또는 주변 센서 역시 사용될 수 있다. 센서(4) 역시, 신호 생성부, 아날로그-디지털 변환기, 그리고 센서의 측정 신호를 제어기(3)에 전달하기 위한 송신 부품을 구비한다. 센서(1, 2, 4)는 고도의 정밀성으로 대량 생산을 가능하게 하는 생산 기술로 인해 각각 마이크로 공학적으로 시행될 수 있다. 제어기(3) 내에 센서(4), 즉 동일한 케이스 내에 설치될 수도 있다. 분리되어 있는 센서(1, 2, 4)는 제어기(3)와 단일 방향의 연결을 통해 연결되는데, 즉 센서(1, 2, 4)는 각각 데이터를 제어기에 보내며, 제어기는 이 데이터를 처리한다. 제어기(3)는 그러나 센서(1, 2, 4)에 데이터를 송신하지 않는다. 이를 위해 제어기(3)는 연결선에 각각의 직류 전류를 보내는데, 이 직류 전류로부터 센서(1, 2, 4)는 각각 에너지를 공급받는다. 전류 변조 장치를 통해, 예를 들면 진폭 또는 펄스 진폭 변조를 통해, 센서 값이 직류 전류로 변조된다. 선택적으로, 각각 양 방향 연결부 또는 센서가 연결될 버스(bus)가 사용될 수 있다.
도2에는 압력 신호의 평가를 위한 본 발명에 따른 방법이 흐름도에 도시된다. 압력 신호에서 충돌 관련 데이터는 신호의 저주파 부분에 존재하기 때문에 압력 신호(P)는 저역 통과 필터(201)에 전해진다. 이 때문에 이러한 제1 과정에서 저역 통과 필터링은 대략 400Hz 까지 실행된다. 여기서 저역 통과 필터는 특히, 해당되는 정확도를 달성하기 위한 저역 3차 저역 통과 필터가 좋다. 이러한 알고리즘 또는 방법에 있어서 일차와 이차 미분이 사용되기 때문에, 미분의 감도를 관련된 신호 특성의 시간에 따른 스케일링에 맞추기 위해 저역 통과 필터링은 필수 불가결하다.
저역 통과 필터(201)의 신호는, 감도 블록(202)에 전달되며 필터링된 압력 신호(P)를 위한 블록(203) 내의 임계값 비교기에, 임계값과 압력의 시간에 따른 미분을 비교하는 블록(204) 내의 또 다른 임계값 비교기에, 그리고 압력의 일차 미분과 곱한 압력의 이차 미분을 또 다른 임계값과 비교하는 블록(205) 내의 제3 임계값 비교기에 전달된다. 블록(204, 205)은 압력의 시간에 따른 미분 또는 압력의 시간에 따른 이차 미분을 수행하기 위해 각각의 미분 함수를 포함한다. 블록(202 내지 205)은 시간에 따른 임계값을 포함하며, 이 임계값과 신호가 비교된다. 임계값은 신호에 따라 스스로 변한다. 오작동 발생을 피하기 위해 특정한 신호 거동의 경우 특정한 물리적 조건을 고려해야 한다는 것을 염두에 두어야 한다. 감도 블록(202)에 있어서 압력 신호(P)는 시간에 따른 임계값을 초과해야 하며, 이를 통해 블록(203)으로부터 블록(205)까지 활성화된다. 사용된 시간에 따른 임계값은 알고리즘의 시작 후에 증가하며 소정 시간 후에 다시 감소한다. 이는 상당히 의미가 있는데, 특히 처음에는 문에 전달되지 않는 충돌의 경우에, 그리고 문의 변형이 어느 정도 오래 걸리는 느린 충돌의 경우에, 문은 항상 공기 누출이 발생되고 있기 때문에 신호는 부피 변화에 대응하는 압력 변화를 보이지 못하게 되어 적절한 것이다.
블록(203)에는 일차의, 시간에 따른 임계값이 압력 신호 자체에 가해지며 이 임계값은 특히 견고한 물체와의 고속 충돌, 그리고 문에 충격이 뒤늦게 전달되며, 에어백 작동이 반드시 필요치 않은 비스듬한 충돌의 경우까지도 작동되게 되면, 차량이 매우 심하게 손상될 수 있기 때문이다. 이러한 경우 일반적으로 차량은 완전 파손될 수 있다.
블록(204)에는 우선 여과된 압력 신호가 시간에 대해 한 번 미분된다. 이때 압력 변화, 즉 증분이 나타난다. 블록(204)에는 다음으로, 이 압력 변화에 대한 추가적인, 시간에 따른 임계값이 사용되는데, 이 임계값은 압력 변화에 따라 다시 변화된다. 이때 무엇보다도 빠른 기둥 충돌이 감지된다. 즉, 비교적 방해 없이 단지 국부적으로 차량 안쪽으로 침투되는 물체와의 충돌이다.
블록(205)에는 두 개 모두 0 보다 커야하는 압력 신호의 일차 미분과 지연된 이차 미분의 곱에 대한 시간에 따른 임계값이 나타난다. 추가로 블록(205)에는 압력 신호의 시간에 관한 한 번 및 두 번의 미분을 위한 해당되는 함수가 존재한다. 그 목적은 상당히 큰 양의 곡률 이후에 매우 가파른 기울기가 온다는 것을 인지하기 위한 것이다. 침투되는 물체가, 예를 들면 B-필라 또는 보강관과 같은 견고한 구조물과 부딪침으로써 침입이 제동되는 경우, 이러한 신호 흐름이 나타난다. 상기 상응하는 구조물이 구부러진 경우 물체는 더욱 빠르게 침투된다. 이러한 효과는 또한 침투되는 물체, 즉 부드러운 장애물, 차량 등의 변형에 의해 초래될 수 있다. 예를 들면 축구공, 발길질 또는 자전거로 인한 오작동의 경우 이러한 효과는 매우 적게 나타나는데, 이를 통해 임계적인 오작동과 예를 들면 느린 기둥 충돌 그리고 부드러운 장애물 충돌 등을 구분하는 매우 좋은 판단 기준이 주어진다. 소위 말하는 오작동의 경우, 개연성 검사 센서 역시 센서(4)처럼 작동되기 때문에 오작동과 충돌 작동에 대한 구분은 알고리즘을 통해 이루어져야 한다.
블록(205)에는 저역 통과 필터(201)와 일차 또는 이차 미분 계수 사용의 조합을 통해 한 개 또는 두 개의 소멸 모멘트를 갖는 파장 필터링이 발생한다. 간단히 말하자면, 특정한 스케일링을 갖는 신호에 대해 하나의 소멸하는 모멘트 변화를 갖는 파장이 감지되는 반면, 두 개의 소멸 모멘트를 갖는 파장은 오히려 신호의 곡률을 감지한다.
블록(202)은 AND 게이트(207)에 연결되는 반면, 블록(203 내지 205)은 OR 게이트에 연결된다. OR 게이트(206)의 출력부는 AND 게이트(207)의 제2 입력부에 연결된다. 즉, 감도가 임계값 비교시 인식되는 경우에만 압력 신호가 제1 임계값 이상이며 적어도 블록(203 내지 205) 중 하나가 임계값 초과를 인식하고 나면, AND 게이트(207)의 출력에 논리 1이 존재하며 블록(208)에서 작동 판단이 결정되는데 이때 개연성 센서의 신호 또한 같이 처리된다.
도3에는 제2 흐름도가 도시된다. 여기서는 온도 센서에 대한 본 발명에 따른 방법이 도시된다. 온도 신호(T)는 위에 언급된 이유로 인해 저역 통과 필터(9)에 전달된다. 여기서도 역시 저주파 부의 충돌 관련 데이터가 존재하며 이로 인해, 여기서도 역시 약 400Hz의 저주파 필터링이 시행된다. 여기서도 역시 충돌을 감지하기 위해 일차와 이차 미분이 사용되기 때문에 저역 통과 필터링의 경우 동일하게 적용된다. 이어서, 여과된 신호는 저역 통과 필터(9)의 출력부로부터 블록(11 내지 14)에 전달된다. 블록(11)에서는 본 발명에 따른 방법의 감도가 규정된다. 블록(12)에서는 온도와 시간에 따른 임계값이 비교된다. 임계값 역시 현재의 온도 신호에 따라 변화된다. 블록(13)에서는 다시 온도의 미분이 역시 시간에 따른 다른 임계값과 비교된다. 블록(14)에서는 압력 평가값과 유사하게 온도의 일차 미분과 시간상 약간 옵셋된 온도의 이차 미분의 곱이 형성된다. 블록(12, 13, 14)은 OR 게이트(15)의 데이터 입력부에 연결된다. OR 게이트(15)의 출력부는 감도 블록(11)의 제2 데이터 입력부와 연결된 AND 게이트(16)의 제1 데이터 입력부에 전해진다. 블록(17)에서는 개연성 검사와 충돌 감지가 시행된다. 감도 블록(11)은 추가로 정면 에어백(10)의 신호를 취한다.
신호가 임계값을 초과하는지 즉, 크기가 양의 방향 또는 음의 방향으로 초과하는지를 감도 블록(11)이 감지하면, 블록(12 내지 14)은 비교를 시작한다. 음의 임계값이 초과되면 상기 비교가 시작되는 것은, 문이 닫힌 경우에만 발생할 수 있는데, 문의 내측 라이닝이 그의 관성으로 인해 문에서 쉽게 들려짐으로써, 문의 내측에서 감압, 즉 냉각이 발생하기 때문이다. 반향 진동은 압력 상승, 즉 온도 상승을 초래한다. 일반적으로 임계값이 더욱 민감하지 않게 조정되기 때문에 시작 알고리즘 이후 약간 나중에 온도상승이 일어난다면 이러한 온도 상승은 쉽게 소멸된다.
블록(11)에서는 알고리즘의 감도가 결정되며, 여기서 온도는 시간에 따른 임계값을 초과해야 하며, 이에 따라 다른 세 개의 블록(12 내지 14)이 활성화된다. 이러한 시간에 따른 임계값은 추가적인 매개변수(10)에 의해 즉 정면 에어백 작동이 발생하는지에 대한 플래그에 영향을 받는다. 이 경우 문 내부공간 부피의 압축과 이에 따른, 온도 센서에 의해 기록된 온도 상승에 영향을 미치는 압력파가 발생한다. 이를 통해 시스템은 혹시 가능한 측면 충돌에 대해 더 민감해진다. 차후의 측면 충돌의 경우에, 제대로 작동시키기 위해서 블록(11)에서는 시간에 따른 임계값이 압력파의 경과에 대하여 일치하여 상승된다.
사용된, 시간에 따른 임계값은 알고리즘의 시작 후에 증가되며 소정 시간 후에 다시 감소될 수 있다. 이는 상당히 의미가 있는데, 특히 처음에는 문에 충격이 전달되지 않는 충돌의 경우, 그리고 문의 변형이 어느 정도 오래 지속되는 느린 충돌의 경우, 그 신호는 문이 항상 공기 누출을 발생시키고 있어서 원하는 온도 변화를 보이지 않기 때문이다.
블록(11)에서는 단순 시간의존 임계값이 온도 신호 자체에 대해 사용되며 이 임계값은 그 중에서도 견고한 물체와의 고속 충돌에 대한 작동을 위해, 그리고 문에 충격이 조금 나중에 전달되고 반드시 작동되지 않아도 됨에도 불구하고 에어백 작동이 일어나서 차량이 매우 심하게 손상되게하는 비스틈한 충돌 시에 작동을 위해 사용된다. 일반적으로는 차량을 완전 파손에 이르게 된다.
블록(13)에서는 시간에 따른 임계값이 온도 변화에 대해 사용된다. 이러한 경로는 무엇보다도 고속 기둥 충돌의 작동을 위해 제공되는데 즉, 비교적 방해를 받지 않으며 단지 국부적으로만 차량 안쪽으로 침투되는 정도의 물체와의 충돌이다.
다음 블록(14)은 두 개 모두 0 보다 커야하는 일차 미분과 지연된 이차 미분의 곱에 대한 시간에 따른 임계값이다. 이 블록(14)의 목적은, 매우 가파른 기울기에 따른 큰 양의 곡률을 감지하는 것이다. 저역 통과 필터와 1차 또는 2차 미분 계수 사용의 조합을 통해 한 개 또는 두 개의 소멸 모멘트를 갖는 파장 필터링이 발생된다. 간단히 말하자면 특정한 스케일링을 갖는 신호에 대해 하나의 소멸되는 모멘트 변화를 갖는 파장이 감지되는 반면, 두 개의 소멸 모멘트를 갖는 파장은 오히려 신호의 곡률을 감지한다. 침투할 물체가, 예를 들면 B-필라 또는 보강관과 같은 견고한 구조물과 부딪치는 경우 이러한 신호 흐름이 나타난다. 이를 통해 침입이 제동된다. 상기의 상응하는 구조물이 구부러지면, 물체는 더욱 빠르게 침투한다. 이러한 효과는 또한 침투할 물체의 변형, 즉 부드러운 장애물을 통해 발생된다. 축구공, 발길질 또는 자전거로 인한 오작동의 경우 이러한 효과는 매우 적게 나타나는데, 이를 통해 임계적인 오용, 즉 오작동, 예를 들면 느린 기둥 충돌과 부드러운 장애물 충돌을 구분하는 매우 좋은 판단 기준이 주어진다. 소위 말하는 오작동의 경우, 개연성 검사 센서 역시 작동되기 때문에 오작동과 충돌 작동에 대한 구분은 알고리즘을 통해 이루어져야 한다. 블록들(12 내지 14)은 서로 독립적으로 작동을 결정할 수 있는데, 이러한 작동 결정은 최종 결정을 요구하기 위해 자동차에 설치된 다른 센서의 개연성 검사 신호와 함께 작동되어야한다. 블록들(12 내지 14) 중에서 적어도 하나가 충돌을 표시하면, OR 게이트(15)는 AND 게이트(15)에 논리 1을 출력하며 이때 감도 블록(11)도 역시 논리 1을 출력하는데, 블록(12 내지 14)만 작동될 수 있기 때문이다. 이 경우 AND 게이트(16)는 블록(17)에 논리 1을 출력하며, 이를 통해 블록(17)은 억제 수단(5)의 작동을 위해 센서(4)의 개연성 검사 신호에 따라 이러한 충돌 감지를 시행한다.
도4에는 한 개의 도면에 측면부 압력의 시간에 따른 관계가 도시된다. 가로축(18)위에 시간이 표시되며 세로축(19)에는 압력이 표시된다. 곡선(100)은 시속 25킬로의 자전거 충돌시의 압력 분호이고 곡선(200)은 B-필라 부근에서 시속 20킬로의 기둥 충돌시의 압력 분포이다. 블록(14) 또는 블록(15)의 도움이 있어야 이 두 가지 경우를 정확히 구분하여 적시의 작동 결정을 할 수 있다.

Claims (9)

  1. 단열적 상태 변화를 나타내는 적어도 하나의 신호(P, T)에 따라 충돌이 감지되며, 적어도 하나의 신호(P, T)를 적어도 하나의 제1 임계값에 대해 비교하는 제1 비교를 수행하는 충돌 감지 방법에 있어서,
    적어도 하나의 신호(P, T)가 제1 비교 이전에 저역 통과 필터링(201, 9)되며, 제1 비교에 따라, 그리고 적어도 하나의 신호로부터 미분된 변수를 적어도 하나의 제2 임계값과 비교하는 적어도 하나의 제2 비교에 따라 충돌이 감지되며, 제1 비교는, 제1 임계값이 초과되는 경우에만 적어도 하나의 제2 비교를 실행함으로써 방법의 감도를 조정하는 데 사용되는 것을 특징으로 하는 충돌 감지 방법.
  2. 제1항에 있어서, 제1 임계값 및 제2 임계값 중 적어도 하나는 시간이 경과하면서 적응되는 것을 특징으로 하는 충돌 감지 방법.
  3. 제1항 또는 제2항에 있어서, 변수로서 적어도 하나의 신호(P, T)의 적어도 하나의 높은 차수의 시간에 대한 미분이 사용되는 것을 특징으로 하는 충돌 감지 방법.
  4. 제3항에 있어서, 제2 비교가 시간에 대한 일차 미분과 이차 미분의 곱에 대한 검사를 위해 실행되는 것을 특징으로 하는 충돌 감지 방법.
  5. 제1항 또는 제2항에 있어서, 측면 충돌에 대한 감지에 사용되는 것을 특징으로 하는 충돌 감지 방법.
  6. 제4항에 있어서, 제1 임계값이 정면 충돌에 따라 변경되는 것을 특징으로 하는 충돌 감지 방법.
  7. 제1항 또는 제2항에 있어서, 적어도 하나의 제2 임계값이 처음에 상승하고 나서 다시 하강하는 것을 특징으로 하는 충돌 감지 방법.
  8. 제1항 또는 제2항에 있어서, 적어도 하나의 개연성 검사 신호를 갖는 충돌 감지에 따라 억제 수단의 작동이 결정되는 것을 특징으로 하는 충돌 감지 방법.
  9. 삭제
KR1020057004654A 2002-09-19 2003-02-26 충돌 감지 방법 KR100933587B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10243514.6 2002-09-19
DE10243514A DE10243514A1 (de) 2002-09-19 2002-09-19 Verfahren zur Erkennung eines Aufpralls
PCT/DE2003/000614 WO2004028866A1 (de) 2002-09-19 2003-02-26 Verfahren zur erkennung eines aufpralls

Publications (2)

Publication Number Publication Date
KR20050057437A KR20050057437A (ko) 2005-06-16
KR100933587B1 true KR100933587B1 (ko) 2009-12-23

Family

ID=31969268

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057004654A KR100933587B1 (ko) 2002-09-19 2003-02-26 충돌 감지 방법

Country Status (8)

Country Link
US (1) US7295909B2 (ko)
EP (1) EP1542886B1 (ko)
JP (1) JP2005538893A (ko)
KR (1) KR100933587B1 (ko)
CN (1) CN100408384C (ko)
DE (2) DE10243514A1 (ko)
ES (1) ES2264762T3 (ko)
WO (1) WO2004028866A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035738A1 (de) * 2004-07-23 2005-09-15 Siemens Ag Einrichtung zum Auslösen eines Personenschutzsystems
JP4662137B2 (ja) * 2005-06-03 2011-03-30 株式会社デンソー 車両の衝突判定方法
US8996255B2 (en) 2005-10-13 2015-03-31 Trw Vehicle Safety Systems Inc. Method and apparatus for providing a safing function in a restraining system
JP2007137333A (ja) * 2005-11-21 2007-06-07 Denso Corp 車両用乗員保護装置
DE102006026879A1 (de) * 2006-06-09 2007-12-13 Robert Bosch Gmbh Sensor und Verfahren zur Datengewinnung
DE102006036960A1 (de) * 2006-08-08 2008-02-14 Robert Bosch Gmbh Vorrichtung, Verfahren und Steuergerät zur Seitenaufprallerkennung und Drucksensor
DE102006044085B4 (de) * 2006-09-20 2012-02-09 Audi Ag Kollisions- und/oder Personenschutzsystem für ein Kraftfahrzeug
DE102008045586B4 (de) 2008-09-03 2017-09-14 Audi Ag Kollisions-und/oder Personenschutzsystem für ein Kraftfahrzeug und Verfahren dazu
US8733791B2 (en) 2011-02-10 2014-05-27 Toyota Jidosha Kabushiki Kaisha Collision sensing device and occupant protecting system
US20140025270A1 (en) * 2012-07-19 2014-01-23 Bendix Commercial Vehicle Systems Llc Radar initiated foundation braking only for autonomous emergency braking situations
DE102012018214B4 (de) * 2012-09-14 2014-04-30 Audi Ag Kraftfahrzeug mit einer Insassenschutzeinrichtung
DE102019204071A1 (de) * 2019-03-25 2020-10-01 Robert Bosch Gmbh Verfahren zur Erkennung eines ersten Betriebszustandes einer Handwerkzeugmaschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619468C1 (de) * 1996-05-14 1997-08-21 Siemens Ag Verfahren zum Auslösen eines Rückhaltemittels zum Seitenaufprallschutz in einem Fahrzeug
DE19830835A1 (de) * 1998-07-09 2000-01-20 Siemens Ag Verfahren und System zum Auslösen eines Rückhaltemittels, insbesondere zum Seitenaufprallschutz, in einem Fahrzeug
DE10057258C1 (de) * 2000-11-18 2002-03-07 Bosch Gmbh Robert Vorrichtung und Verfahren zur Seitenaufprallerkennung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851305A (en) * 1971-05-28 1974-11-26 Nissan Motor Collision detecting system for a motor vehicle
CA2060340C (en) * 1991-01-31 1995-12-05 Manabu Hirao Vehicle collision detecting apparatus
EP0667822B1 (de) 1992-11-11 1997-04-02 Siemens Aktiengesellschaft Steuereinheit mit einem luftdruckdetektor für ein insassenschutzsystem eines fahrzeuges
US5483449A (en) * 1994-03-31 1996-01-09 Delco Electronics Corporation Inflatable restraint system and method of controlling deployment thereof
JPH0862239A (ja) * 1994-08-25 1996-03-08 Fujitsu Ten Ltd 車両衝突判別装置
KR100202941B1 (ko) 1994-10-31 1999-06-15 배길훈 3방향(3축) 감속신호를 이용한 자동차용 충돌유형 판별장치
US5572511A (en) * 1995-01-27 1996-11-05 Tamarack Microelectronics, Inc. Auto-adjustment circuit for collision detection of ethernet
US5910851A (en) * 1997-02-04 1999-06-08 Digital Equipment Corporation Multiple wavelength transceiver
JP3063731B2 (ja) * 1998-04-02 2000-07-12 トヨタ自動車株式会社 乗員保護装置の起動制御装置
US6825765B2 (en) * 1998-12-30 2004-11-30 Automotive Systems Laboratory, Inc. Occupant detection system
JP2000255373A (ja) * 1999-03-02 2000-09-19 Mitsubishi Electric Corp 車両衝突検出装置
DE19909538A1 (de) * 1999-03-04 2000-09-14 Siemens Ag Verfahren und Vorrichtung zur Steuerung der Auslösung eines Kraftfahrzeug-Insassenschutzsystems
US6549836B1 (en) * 2000-06-07 2003-04-15 Trw Inc. Method and apparatus for controlling an actuatable restraint device using a velocity/displacement based safing function with immunity box
DE10059426A1 (de) * 2000-11-30 2002-06-13 Bosch Gmbh Robert Verfahren zur Auslösung von Rückhaltemitteln in einem Kraftfahrzeug
US6636791B2 (en) * 2001-01-05 2003-10-21 Calsonic Kansei Corporation Collision record apparatus, collision state estimation method, and record medium
US6529810B2 (en) * 2001-04-09 2003-03-04 Trw Inc. Method and apparatus for controlling an actuatable restraining device using switched thresholds based on transverse acceleration
DE10121386C1 (de) * 2001-05-02 2002-08-29 Daimler Chrysler Ag Verfahren zum Ansteuern eines reversiblen Insassenschutzmittels in einem Kraftfahrzeug
US6906622B2 (en) * 2001-06-06 2005-06-14 Robert Bosch Gmbh System for sensing a head-on collision in a motor vehicle
JP3608050B2 (ja) * 2001-07-24 2005-01-05 トヨタ自動車株式会社 ロールオーバ判別装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619468C1 (de) * 1996-05-14 1997-08-21 Siemens Ag Verfahren zum Auslösen eines Rückhaltemittels zum Seitenaufprallschutz in einem Fahrzeug
DE19830835A1 (de) * 1998-07-09 2000-01-20 Siemens Ag Verfahren und System zum Auslösen eines Rückhaltemittels, insbesondere zum Seitenaufprallschutz, in einem Fahrzeug
DE10057258C1 (de) * 2000-11-18 2002-03-07 Bosch Gmbh Robert Vorrichtung und Verfahren zur Seitenaufprallerkennung

Also Published As

Publication number Publication date
US7295909B2 (en) 2007-11-13
DE10243514A1 (de) 2004-04-01
CN1620376A (zh) 2005-05-25
WO2004028866A1 (de) 2004-04-08
EP1542886A1 (de) 2005-06-22
JP2005538893A (ja) 2005-12-22
CN100408384C (zh) 2008-08-06
KR20050057437A (ko) 2005-06-16
EP1542886B1 (de) 2006-05-31
ES2264762T3 (es) 2007-01-16
DE50303609D1 (de) 2006-07-06
US20060124378A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US6438475B1 (en) Crash detection system
US6553295B1 (en) System for sensing a side impact collision
KR100933587B1 (ko) 충돌 감지 방법
US8145386B2 (en) Activation apparatus for occupant protection system
US9481335B2 (en) Method and apparatus for detecting pedestrian vehicle impact
US8733791B2 (en) Collision sensing device and occupant protecting system
KR20090068253A (ko) 차량 안전 시스템
CN105905060B (zh) 一种智能化汽车安全气囊系统及控制方法
JP2661882B2 (ja) 加速度計と高周波圧力変換器の組合せによる衝突の検知
KR101110492B1 (ko) 승객 보호 수단 제어 방법
US6756889B2 (en) Dual sensor crash sensing system
US5394328A (en) Method for activating an occupanct restraint in a vehicle
JP5447984B2 (ja) 車両用衝突検知装置
US7519460B2 (en) Device for recognition of a pole crash
US20100256873A1 (en) Method and control unit for triggering occupant protection means for a vehicle
JP3768268B2 (ja) 車両の側面衝突判別装置
KR100747399B1 (ko) 사이드 에어백모듈의 제어방법
US5948032A (en) Polynomial windowing algorithm for impact responsive activation
JP2008080979A (ja) 乗員保護制御装置の制御方法
JP2010228524A (ja) 側突判定装置、及び乗員保護装置
CN115210114A (zh) 利用压力管传感器的增强前碰撞检测
JPH11321548A (ja) 車両の側面衝突判定方法及び側面衝突判定装置
JP2023133952A (ja) 衝突検出装置
KR20100076480A (ko) 충돌 감지 장치 및 방법
KR20100089659A (ko) 측면 승객 구속장치의 제어방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121206

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141209

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161212

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171205

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191209

Year of fee payment: 11