KR100860959B1 - 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 - Google Patents
반사 방지 코팅을 갖는 광학 렌즈 제조 방법 Download PDFInfo
- Publication number
- KR100860959B1 KR100860959B1 KR1020077017545A KR20077017545A KR100860959B1 KR 100860959 B1 KR100860959 B1 KR 100860959B1 KR 1020077017545 A KR1020077017545 A KR 1020077017545A KR 20077017545 A KR20077017545 A KR 20077017545A KR 100860959 B1 KR100860959 B1 KR 100860959B1
- Authority
- KR
- South Korea
- Prior art keywords
- optical
- coating
- lens
- refractive index
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/245—Oxides by deposition from the vapour phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
- C03C17/30—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3417—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/42—Gloss-reducing agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
- C23C14/545—Controlling the film thickness or evaporation rate using measurement on deposited material
- C23C14/547—Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/214—Al2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/228—Other specific oxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/23—Mixtures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Physical Vapour Deposition (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
반사 방지(AR) 코팅을 갖는 광학 렌즈 및 다른 광학 제품을 코팅하기 위한 방법이 제공된다. 렌즈는 낮은 반사율을 갖고, 실질적으로 백색광 반사를 제공하고, 낮은 응력 AR 코팅을 갖고, 낮은 응력 렌즈 기판을 제공하는 성형 공정을 사용하여 제조된 광학 렌즈에 이상적으로 적합된다. 일 양태에서, 상기 방법은 하나는 높은 굴절률 조성물을 갖고 다른 하나는 낮은 굴절률 조성물을 갖는 코팅 조성물을 사용한다. 다른 양태에서, 상기 방법은 또한 통상적인 진공 증착 장치와 연계하여 광학 모니터를 사용하고 이에 의해 광학 기준 렌즈가 사용되고 반사광의 특정 광 주파수가 측정되고 이 측정치가 이어서 소정의 광학 코팅이 성취될 때를 결정하는데 사용되는 것이 개시되어 있다. 또 다른 양태에서, 상기 방법은 또한 반사광 내의 청색 대 녹색 대 적색 컬러의 특정비를 사용하여 광학 두께를 계산하는 것이 바람직하다. AR 코팅의 응력은 또한 필요하다면 낮은 굴절률/높은 굴절률 층 사이의 인장 응력 및 압축 응력의 차이를 최소화하도록 각각의 층에 대해 광학 두께를 조절함으로써 제어된다.
광학 렌즈, 반사 방지 코팅, 백색광 반서, 광 주파수, 굴절률
Description
본 발명은 광학 렌즈용 낮은 응력, 낮은 잔류 반사 다층 반사 방지 코팅 및 특히 높은 굴절률 반사 방지 코팅을 형성하기 위한 조성물 및 낮은 굴절률 반사 방지 코팅을 형성하기 위한 조성물, 바람직하게는 반사 방지 코팅의 광학 특성을 제어하도록 광학 모니터를 이용하는 통상의 진공 증착 챔버(vaccum deposition chamber)를 사용하는 것을 포함하는 조성물을 사용하여 광학 렌즈를 제조하기 위한 방법에 관한 것이다.
유리 및 다른 표면으로부터의 광의 반사는 바람직하지 않고 또는 시각적 불편함을 발생한다는 것이 광학 분야에 공지되어 있다. 반사된 광은 여러 바람직하지 않은 영향들 중에서도 사용자에게 현기증을 느끼게 하거나 또한 이미지가 불선명하도록 한다. 이는 광학 렌즈 분야에 있어서 특정 관심 사항이며, 광학 렌즈 표면으로부터의 광의 반사를 감소시키기 위한 조성물 및 방법이 개발되어 왔다.
잔류 반사가 가시 스펙트럼의 전체 범위에 걸쳐 비교적 작은 값으로 유지될 수 있는 것을 보장하는 주요 설계 목적을 위해 상당한 수의 반사 방지(AR) 코팅이 종래 기술 분야에 제안되어 있다. 단일 또는 2중층 코팅은 상당한 개선을 제공하지만, 잔류 반사는 원하는 것 이상으로 여전히 존재하고, AR 특성을 개선하기 위해 종래 기술은 3개 이상의 층을 갖는 AR 코팅에 의지하였다.
각각의 증착된 AR 층의 광학 두께는 일반적으로 AR 효과를 최적화하거나 최대화하도록 제어되고, 공지된 바와 같이 층의 광학 두께는 각각의 층의 굴절률과 실제(기하학적) 두께의 산물(product)이다. 광학 두께는 일반적으로 코팅이 사용되는 지정된 기준 광선의 파장의 분율(fractions)로 설명된다. 빈번하게는, 설계 파장은 약 51 나노미터(nm) 내지 550nm일 수 있다. 각각의 AR 층의 광학 두께는 이하의 일반식으로 정의될 수 있고, 여기서 N은 굴절률, d는 층의 기하학적 두께, λ는 기준 파장이다:
Nada = x λ
여기서, x는 일반적으로 파장의 분율을 지시하는 분율인 수(number)이고, a는 최저수가 안경 렌즈에 근접하는 상태로 코팅된 층을 나타내는 정수이다. 일반적으로, x는 1/4 파장 광학 두께를 나타내는 0.25일 수 있다.
현재 당 기술 분야에서 공지된 바와 같이, 개별층의 광학 두께는 상이한 굴절률의 기판상에 동일한 결과를 얻도록 조절될 수 있다.
각각의 AR 층의 형성시에, 증착된 층은 두께의 측정을 위해 광의 파장의 매 1/4, 즉 λ/4에 대한 간섭의 최대값을 나타낸다. 따라서, 광학 AR 층의 두께는 통상적으로는 광학 두께가 0.25의 배수인 그와 같은 현상을 이용함으로써 형성 중에 제어된다.
이하의 설명은 편의를 위해 폴리카보네이트 렌즈(polycarbonate lens)에 관련되지만, 당업자들은 본 발명이 폴리우레탄(polyurethane), 아크릴 글래스, CR-39 등과 같은 다른 렌즈 재료에 적용된다는 것을 이해할 수 있을 것이다. 폴리카보네이트 렌즈 내의 응력은 복굴절(birefringence) 및 광 왜곡을 초래한다. 정상 상황 하에서는 가시적이지 않지만, 이는 폴리카보네이트가 두 개의 편광 필라먼트 사이에 배치될 때 명백해지고, 이는 폴리카보네이트 렌즈가 글래스, CR 39 및 기타 재료와 같은 렌즈에 대해 광학적으로 열등한 이유 중 하나이다. 옵티마(Optima)에 의해 상표명 레졸루션(Resolution)으로 개발된 새로운 폴리카보네이트 렌즈는 그와 같은 응력 및 복굴절이 없으며, 따라서 AR 코팅을 제공하기 위한 현재의 처리 및 고유의 응력이 그와 같은 렌즈의 제조업자에게 더 큰 과제가 되고 있다.
게다가, AR 코팅의 현재 상태는 0.75%와 1.5% 잔류 반사 사이에서 변화하는 잔류 녹색 반사(green reflection)를 갖는다. 이 녹색 컬러는 미관상 불쾌하고 인간의 눈이 감지하는 녹색광의 양을 감소시키는 녹색 필터로서 작용한다. 필터링 효과가 없는 더 낮은 잔류 반사가 코팅의 성능 및 그의 미관 모두에 있어서 훨씬 더 바람직하다. 단지 백색광만이 반사되는 것이 바람직하다.
현재의 AR 코팅의 디자인 및 제품은 현재의 산업 분야에서 양호하게 이해되고, 일반적으로 제조를 훨씬 더 간단하고 저렴하게 하도록 디자인 내에 잔류 컬러가 잔류한다. 현재의 기술은 AR 코팅을 제조하는데 요구되는 개별 층의 물리적 두께를 제어하도록 석영 결정 모니터(Quartz Crystal Monitor)를 사용한다. 현재의 코팅 표준은 4-층 HLHL 코팅을 요구하고, 여기서 H는 그의 특정 굴절률에 대해 선택된 높은 굴절률 유전 재료를 나타내고, L은 그의 굴절률에 대해 또한 선택된 낮은 굴절률 유전 재료를 나타낸다. 각각의 층은 일반적으로 선택된 높은 또는 낮은 굴절률 재료의 광학 1/4 파장으로 구성된다. 낮은 굴절률 재료는 SiO2 및 MgF2를 포함한다. 높은 굴절률 재료는 이하의 재료: Zr, Hf, Ta, Ti, Sb, Y, Ce 및 Yb의 산화물 서브 그룹을 포함한다. 포함되지 않았지만, 이들 재료는 현재 가장 광범위하게 사용된다.
현재 제조되는 다수의 AR 코팅은 접착층, 버퍼층(buffer layer), 내마모층 및 소수성 외부층을 또한 포함한다. 이 층들은 소비자 관점으로부터 코팅의 성능을 향상시키는데 사용되지만, AR 코팅의 광학 특성에 미치는 영향은 매우 적다.
AR 코팅의 제조에 있어서의 다른 과제는 높은 굴절률 및 낮은 굴절률 재료가 AR 코팅 필름의 압축 응력 뿐만 아니라 인장 응력 모두를 포함한다는 것이다. 그러나, 현재의 반사 방지(AR) 코팅 분야는 코팅 자체 내의 고유 응력의 양을 고려하지 않는다. 이는 폴리카보네이트 렌즈와 같은 현재 시판되는 렌즈가 이미 큰 응력을 가져, AR 코팅에 의해 발생된 응력의 부가량은 중요하게 고려되지 않기 때문이다. 이는 현재의 제조 기술이 사용되는 층의 수를 제한하도록 시도하고 있는 이유 중 하나이다. 일반적으로, 실리카(silica)와 같은 낮은 굴절률 재료는 높은 굴절률 재료에 의해 생성되는 압축 응력의 약 5배인 인장 응력을 생성한다. 코팅이 부가의 층을 갖고 너무 두꺼워지면, 낮은 굴절률 재료와 높은 굴절률 재료에 의해 발 생된 응력의 차이는 AR 필름이 분리되어 렌즈로부터 박리되게 하고, 또한 부정적인 광학 효과를 유발할 수 있다.
현재의 기술이 층의 수를 제한하는 다른 이유는 석영 결정 모니터가 단지 도포된 재료의 물리적 두께를 측정하는 것만 가능하다는 것이다. 그러나, AR 코팅은 사용되는 재료의 굴절률에 매우 의존하는 광학 특성으로 설계된다. 이들 굴절률은 이용 가능한 O2, 코팅 속도 및 증착 온도 변화와 같은 코팅 조건에 따라 전이될 수 있다. 코팅에 잔류하는 녹색 반사는 정상 제조 중에 이들 불완전성을 방지하는 훌륭한 기능을 하고, 매우 광범위한 녹색 가시 스펙트럼 내의 높은 피크 반사가 제조 중에 전이되어 숙련 기술자를 제외한 모든 사람들에게 주목되지 않을 수 있다.
잔류 컬러, 즉 백색을 갖지 않으며, 낮은 전체 잔류 반사를 갖는 AR 코팅을 형성하기 위해, 제조업자는 일반적으로 다수의 부가적인 AR 층을 추가해야 한다. 이들 층에 의해 생성된 추가 두께는 응력 및 가능한 AR 코팅 층분리(delamination)를 초래하고, 이에 필적하는 문제점은 렌즈 제조업자에 의해 처리되어야 한다.
종래 기술의 문제점 및 결점을 고려하여, 그에 따른 본 발명의 목적은 광학 렌즈 또는 다른 광학 제품상에 높은 굴절률 AR 코팅을 제조하기 위한 조성물을 제공하는 것이다.
본 발명의 다른 목적은 광학 렌즈 또는 다른 광학 제품상에 낮은 굴절률 AR 코팅을 제조하기 위한 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 사용하여 AR 코팅을 갖는 광학 렌즈 또는 다른 광학 제품을 제조하기 위한 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 광학 렌즈 또는 다른 광학 제품상에 소정의 AR 광학 코팅을 제공하기 위해 광학 모니터를 사용하여 AR 코팅을 갖는 광학 렌즈를 제조하기 위한 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 낮은 잔류 반사를 갖는 AR을 구비한 광학 렌즈 및 다른 광학 제품을 코팅하기 위한 방법을 제공하는 것이고, 반사광은 본질적으로 백색광이고 AR 코팅은 낮은 응력을 갖는다.
본 발명의 또 다른 목적은 본 발명의 방법을 사용하여 제조된 광학 렌즈 및 다른 광학 제품을 제공하는 것이다.
본 발명의 또 다른 목적 및 장점은 명세서로부터 부분적으로 명확해지고 부분적으로 명백해질 것이다.
당업자에게 명백할 수 있는 상기 및 다른 목적과 장점은, 일 양태에서 세륨(cerium) 및 티타늄 산화물(titanium oxides)의 혼합물을 포함하는 광학 렌즈상에 높은 굴절률 AR 코팅을 제조하기 위한 조성물로서, 상기 세륨 산화물은 조성물의 약 25 중량% 미만인 조성물에 관한 것이 본 발명에서 성취된다.
본 발명의 부가의 양태에서, 실리콘 및 알루미늄 산화물의 혼합물을 포함하는 광학 렌즈상에 낮은 굴절률 AR 코팅을 제조하기 위한 조성물로서, 상기 알루미늄 산화물은 조성물의 약 10 중량% 미만인 조성물이 제공된다.
본 발명의 또 다른 양태에서,
하나 이상의 광학 렌즈 및 광학 기준 렌즈를 공급하는 단계와;
동일한 코팅 평면에서 진공 증착 챔버 내에 상기 렌즈 및 광학 기준 렌즈를 위치시키는 단계로서, 상기 진공 증착 챔버는 상기 광학 기준 렌즈와 통신하는 광학 모니터를 갖는 단계와;
높은 굴절률 AR 코팅 조성물 및 적어도 하나의 낮은 굴절률 AR 코팅 조성물의 적어도 하나의 소스를 상기 챔버 내에 제공하는 단계와;
상기 광학 모니터에 의해 결정된 바와 같이 소정의 광학 두께 코팅이 얻어질 때까지 상기 렌즈상에 높은 굴절률 조성물의 층을 도포하는 단계와;
상기 광학 모니터에 의해 결정된 바와 같이 소정의 광학 두께 코팅이 얻어질 때까지 상기 렌즈상에 낮은 굴절률 조성물의 층을 도포하는 단계; 및
소정의 AR 코팅이 도포될 때까지 AR 도포 단계들을 반복하는 단계를 포함하며,
상기 광학 모니터는, 상기 광학 기준 렌즈에서 챔버 내로 광의 온/오프 빔(on/off beam)을 항하게 하고, 특정 주파수에서 상기 기준 렌즈로부터의 반사광을 측정하고, 소정의 광학 코팅 두께가 성취될 때를 결정하도록 상기 측정치를 사용하기 위한 수단을 포함한다.
본 발명의 다른 양태에서는, 다음과 같은 반사 방지(AR) 코팅을 갖는 광학 렌즈 제조 방법이 제공된다.
광학 렌즈를 공급하는 단계와;
진공 증착 장치의 진공 챔버 내에 상기 렌즈를 위치시키는 단계와;
적어도 하나의 높은 굴절률 AR 조성물 및 적어도 하나의 낮은 굴절률 AR 조성물의 소스를 상기 진공 챔버 내에 제공하는 단계와;
소정의 광학 두께 코팅이 도포될 때까지 상기 렌즈상에 높은 굴절률 재료의 층을 도포하는 단계와;
소정의 광학 두께 코팅이 도포될 때까지 상기 렌즈상에 낮은 굴절률 재료의 층을 도포하는 단계와;
소정의 반사 방지 코팅이 도포될 때까지 상기 도포 단계들을 반복하는 단계를 포함하며,
상기 높은 굴절률 재료 중 하나는 세륨 및 티타늄 산화물의 혼합물을 포함하고, 낮은 굴절률 재료 중 하나는 SiO2를 포함하는 반사 방지(AR) 코팅을 갖는 광학 렌즈 제조 방법이 제공된다.
본 발명의 다른 양태에서,
광학 렌즈를 공급하는 단계와;
진공 증착 장치의 진공 챔버 내에 상기 렌즈를 위치시키는 단계와;
적어도 하나의 높은 굴절률 AR 조성물 및 적어도 하나의 낮은 굴절률 AR 조성물의 소스를 상기 진공 챔버 내에 제공하는 단계와;
소정의 광학 두께 코팅이 도포될 때까지 상기 렌즈상에 높은 굴절률 재료의 층을 도포하는 단계와;
소정의 광학 두께 코팅이 도포될 때까지 상기 렌즈상에 낮은 굴절률 재료의 층을 도포하는 단계; 및
상기 반사 방지 코팅으로부터의 반사광이 청색광 대 녹색광 대 적색광의 비가 실질적으로 백색 반사광을 제공하도록 제어되는 조건으로, 소정의 반사 방지 코팅이 도포될 때까지 상기 도포 단계들을 반복하는 단계를 포함하는 반사 방지(AR) 코팅을 갖는 광학 렌즈 제조 방법이 제공된다.
본 발명의 부가의 양태에서, AR 코팅층들의 광학 두께는 필요하다면 인접층들의 인장 응력 및 압축 응력 사이의 차이를 최소화하도록 조절된다.
본 발명의 다른 양태에서, 상기 방법들에 의해 제조되는 광학 렌즈 또는 다른 광학 제품이 제공된다.
신규한 것으로 고려되는 본 발명의 특징 및 본 발명의 요소 특성은 특히 첨부된 청구범위에 설명된다. 도면은 단지 예시를 위한 것이며, 축적대로 도시된 것은 아니다. 그러나, 본 발명 자체는 구성 및 작동 방법 모두에 있어서 첨부 도면 과 관련하여 취한 이어지는 상세한 설명을 참조하여 가장 양호하게 이해될 수 있을 것이다
본 발명에 따르면, 의도되지 않은 잔류 컬러가 적고, 낮은 반사율 및 낮은 응력을 갖는 미관상 만족스러운 코팅이 얻어질 수 있다.
본 발명의 바람직한 실시예를 설명하는데 있어서, 유사한 도면 부호가 본 발명의 유사한 특징을 나타내는 도 1 내지 도 3을 참조할 것이다. 본 발명의 특징은 반드시 도면에 축적대로 도시된 것은 아니다.
본 출원인은 생성된 잔류 반사 및 코팅 응력에 대해 AR 코팅의 제어를 허용하는 낮은 및 높은 굴절률 범위 모두에서의 AR 코팅 조성물을 발명하였다. 이는 필요하다면, 사용된 AR 층의 수를 상당히 증가시켜 소정의 렌즈를 성취한다. 본 출원인은 또한 코팅되는 재료의 광학 두께 및 속도를 제어하도록 광학 모니터를 사용한다. 광학 모니터는 렌즈와 동시에 코팅 재료를 수용하는 특정 테스트 글래스를 사용한다. 코팅을 광학적으로 적소에서 측정함으로써, 굴절률의 임의의 최소 변화를 자동으로 보정하고, 요구되는 정밀한 광학 두께에서 층의 코팅을 중단시킬 수 있다. 이는 하나의 층에 유도된 임의의 에러가 각각의 후속층을 오정렬시킬 수 있기 때문에 매우 중요하다. 이와 같은 관점에서, 광학 모니터는 광학적으로 보정하는 것 이외에, 또한 필요한 경우 후속 층에서의 최소 보정도 수행할 수 있다.
본 출원인의 발명의 최종 결과는 의도되지 않은 잔류 컬러가 적고, 낮은 반 사율 및 낮은 응력을 갖는 미관상 만족스러운 코팅이다.
본 발명이 특정 실시예를 참조하여 설명되지만, 당업자들은 첨부된 청구범위에 설명된 바와 같은 발명의 범주 및 사상으로부터 일탈하지 않고 변경이 그에 수행될 수 있다는 것을 인식할 수 있을 것이다. AR 코팅은 폴리카보네이트 렌즈(polycarbonate lens)에 대해 특히 개발되었지만, 설명된 기술은 글래스, CR-39를 포함하는 유기 또는 무기의 임의의 렌즈 재료 및 1.40 내지 1.90 미만의 범위의 굴절률을 갖는 렌즈에 사용될 수 있다.
이제 도 1을 참조하면, 전체적으로 도면 부호 30으로 도시된 광학 모니터를 포함하고, 렌즈상에 반사 방지 코팅을 증착하기 위한 종래의 진공 챔버가 전체적으로 도면 부호 10으로 도시되어 있다.
임의의 종래의 진공 코팅 장치가 사용될 수 있고, 그 예는 본원에 참조로서 합체되어 있는 미국 특허 제 3,695,910호, 제 5,026,469호 및 제 5,124,019호에 개시되어 있다.
진공 챔버는 챔버의 상부에 투명 섹션(18)을 갖는 챔버(11)를 포함한다. 진공 챔버 내에는 코팅 재료(13a, 13b, 13c, 13d) 각각을 유지하도록 사용되는 용기(12a, 12b, 12c, 12d)가 위치된다. 용기 및 코팅 재료의 수는 렌즈 기판에 도포되도록 요구되는 반사 방지 코팅에 따라 변경될 수 있다는 것이 당업자들에 의해 이해될 수 있을 것이다.
용기 내의 재료를 증발시키도록 다양한 용기로 향하는 전자(electrons)를 제공하는데 사용되는 E-건(E-gun)(14)이 도시되어 있다. 증발되는 재료에 따라, 용기는 E-건 전자가 용기 및 재료를 향하는 위치로 이동된다. 재료가 증발되고 화살표로 도시된 바와 같이 챔버에 걸쳐 확산된다. 만곡되어 있는(일반적으로 돔) 기판 홀더(15)가 도시되어 있고 증발된 재료는 모든 기판 표면에 균일하게 도포된다. 분배 실드(distribution shield)가 일반적으로 증발된 재료를 균일하게 도포하는데 사용된다. 4개의 기판이 도면 부호 16a 내지 16d로 도시되어 있다. 일반적으로, 75 내지 140개의 기판이 돔상에 위치된다. 기준 기판(17)이 기판 홀더(15)의 중심에 위치되고, 이는 또한 마찬가지로 기판 홀더(15)상의 다른 기판들(16)과 동일한 조성을 갖고 동일한 속도로 증발된 재료에 의해 코팅될 수 있다. 입력부(32)가 몇몇 AR 층을 위한 산화물을 형성하는데 사용되는 O2와 같은 가스에 일반적으로 사용된다.
작동시에, 소정의 용기 및 코팅 재료가 진공 챔버 내의 위치로 이동되고, E-건이 작동되어 코팅 재료를 증발시키도록 용기에 전자를 향하게 한다. 코팅 재료가 증발되고, 증기가 기판 홀더(15)에 의해 유지된 기판(16)의 각각을 코팅한다. 기준 기판(17)도 마찬가지로 코팅될 수 있다. 이러한 코팅 공정 및 진공 챔버는 통상적이고 상기 특허들에 개시된 바와 같이 당 기술 분야에 공지되어 있다. 진공 증착이 바람직하지만 스퍼터링(sputtering)과 같은 다른 방법이 사용될 수도 있다.
코팅 작업 중에, 광학 모니터를 사용하는 것이 바람직하고, 광(20)의 고광도 빔이 광원(19)으로부터 투사된다. 광(20)의 빔은 광 초퍼(light chopper)(21)를 통과하며, 이 때 광 초퍼는 빔을 온 및 오프로 회전시켜, 온/오프 빔(22)을 제공한다. 온/오프 광의 시퀀스(sequence)는 모니터의 단부에 있는 광 검출기(29)에 의해 동기화된다. 이는 광 빔의 오프 주기 동안에 광 검출기(29)가 큰 양의 주위 광(ambient light)을 여전히 수신할 수 있기 때문에 중요하다. 오프 주기 동안 수신되는 광이 노이즈인 것으로 프로그램되기 때문에, 광 빔이 온 될 때 수신되는 광의 양으로부터 이를 차감한다. 이와 같이 구성됨으로써, 측정되도록 제안되는 광만이 실제로 측정되는 것을 보장한다.
쵸핑된(chopped) 광(22)은 또한 포커싱 렌즈(21a)를 통과하고, 이어서 고반사 미러(23)를 향한다. 반사 미러(23)는 챔버 내부에 배치된 기준 기판(17)에서 챔버 내의 투명 개구(18)를 향하는 반사빔(24)으로서 빔을 회전시킨다. 상술한 바와 같이, 기준 기판(17)은 코팅될 기판(16)과 동일한 커브 평면에 위치된다. 이는 실제 AR 코팅 공정 동안에 기준 기판(17)이 코팅되는 기판 각각과 동일한 AR 재료의 코팅을 수용하는 것을 보장한다.
반사빔(24)이 기준 기판(17)에 도달할 때, 대부분의 광이 기준 기판을 통과한다. 후방면으로부터의 광의 약 5% 및 전방면으로부터의 광의 약 5%가 반사된다. 광의 빔은 모니터 글래스의 전방 및 후방면으로부터 반사된 광이 약간 상이한 각도로 복귀되도록 작은 입사각으로 챔버에 진입한다. 이는 단지 기준 기판의 전방면으로부터 반사되는 광만이 측정되어야 하기 때문에 중요하다. 이 전방 표면으로부터의 반사광은 제 2 반사빔(25)으로서 도시되어 있다. 후방면으로부터 반사된 빔은 도시되어 있지 않다.
다음에 빔(25)으로서 전방면으로부터 재반사되는 원래 광의 5%는 투명 섹션(18)을 통해 챔버의 외부로 통과되어 제 2 반사 미러(26)에 부딪치고, 광 검출 기(29)를 향해 회전된다. 검출기(29)에 도달하기 전에, 광 빔(25)은 광의 단지 하나의 주파수만이 필터를 통과하는 것을 허용하도록 설계된 주파수 특정 필터인 광 필터를 통과한다. 이 특정 주파수 광은 빔(28)으로서 도시되어 있고, 이 빔은 이어서 광 검출기(29) 내로 통과된다.
본 발명의 방법은 특정의 소정 광 주파수에서 정확한 광학 코팅을 제공한다. 이 때문에, 광학 코팅을 설계하고 형성하기 위해, 원하는 AR 코팅 두께는 특정 광 주파수를 통해 설계되어야 한다. 광 필터(27)는 AR 코팅을 설계할 때, 설계자에 의해 선택된 광 주파수만을 통과시키도록 선택된다. 일반적으로, 주파수는 480 내지 530nm이다.
검출기(29) 내로 지속되는 특정 주파수는 이어서 수신된 광의 양에 대해 측정되고 검출기는 광을 더 정확하게 판독 가능한 강도로 증폭한다. 고분해능 A/D 컨버터(high-resolution A/D converters) 및 마이크로프로세서의 사용에 의해, 검출기는 0.01% 정도로 작게 광 변화를 검출할 수 있다. 광 검출기(29)는 도포되는 재료의 각각의 층에 대한 광학 두께를 결정하고, 소정의 광학 두께가 렌즈상에 코팅될 때 도포되는 재료에 대한 증발 공정을 중단하도록 정보를 사용하는 증발 제어 시스템(31)으로 광 강도를 전송한다. 이는 광학 모니터(30)가 모니터를 매우 정확하게 하는 렌즈 표면상의 광학 성능의 실제 변화와 동시에 코팅 공정 동안의 광학 성능의 변화를 판독하기 때문인 것으로 인식해야 한다. 모니터(30)는 또한 시스템이 코팅 공정 동안의 굴절률의 전이를 위한 최소 보정을 수행하는 것을 허용한다. 모니터(30)는 기판 표면상에 코팅되는 재료의 물리적 두께가 아니라 코팅의 광학 성능에 정확하게 의존한다는 것을 이해해야 한다.
AR 코팅 응력은 또한 층들의 인장 및 압축 응력 사이의 차이를 최소화하도록 AR 코팅 광학 두께 디자인을 변경하기 위해서 상술한 바와 같이 제어될 수 있다. 광학 두께의 변화는 일반적으로 0.5λ의 스텝일 수 있는데, 이는 광학 특성에 상당한 영향을 갖지 않기 때문이다.
도 2는 렌즈 기판상의 본 발명의 AR 코팅의 도면이다. 모든 코팅은 기판에서 시작되고 디자인 및 실제 제조 모두에 있어서 순차적으로 외향으로 코팅된다. 도시된 기판은 무응력 폴리카보네이트 광학 렌즈이다. 이 렌즈는 본 발명의 양수인에게 양도된 미국 특허 제 6,042,754호에 개시된 바와 같이 특허 허여된 공정을 사용하여 제조된다. 설명되는 공정은 이와 같은 특정 렌즈에 대한 것이지만, 또한 상이한 렌즈 재료를 보상하기 위해 AR 층 두께에 대한 수정을 갖고, 1.40 내지 1.9 또는 그 이상의 굴절률을 갖는 임의의 렌즈 재료상에 사용될 수 있다. 모든 두께 척도는 1/4 파장 광학 두께(QWOT)(0.25λ)이다. 조성물을 설계하는데 사용되고 실제 제조 공정 동안에 사용되는 광의 주파수는 470nm와 580nm 사이이다. AR 코팅층은 코팅된 광학 렌즈로부터 반사된 광 내의 청색광 대 녹색광 대 적색광의 양의 비를 제어함으로써 본원에 논의된 바와 같이 계산된다. 청색은 37.16%로, 녹색은 28.57%로, 적색은 34.27%로 제어된다. 계산된 광학 두께는 제조 요건을 수용하도록 다소 변경될 수 있다는 것을 이해할 수 있을 것이다.
도 2에 도시된 렌즈(50)의 상세는 이하와 같다:
기판(Substrate)(51) - 대략 1.59의 굴절률을 갖는 폴리카보네이트 렌즈.
프라이머(Primer)(52) - 최종 하드 코트(hard coat)가 보다 쉽게 접착될 수 있도록 프라이머가 렌즈에 도포된다. 근사 두께는 0.5 내지 1.0 미크론(microns)이다. 굴절률은 1.50.
하드 코트(Hard Coat)(53) - 3.5 내지 5.0 미크론의 두께를 갖는 폴리실록산계 열 경화 재료. 굴절률은 1.49.
L1(54) - SiO2와 같은 낮은 굴절률 재료. 두께는 대략 1.70 내지 1.9 QWOT이다. 굴절률은 대략 1.45 내지 1.5이다.
H1(55) - 더 낮은 응력 및 증가된 굴절률을 갖도록 설계된 본 발명의 높은 굴절률 재료. 두께는 대략 0.10 내지 0.25 QWOT이다. 굴절률은 대략 2.04 내지 2.30이다.
L2(56) - L1과 동일한 재료. 두께는 대략 0.10 내지 0.25 QWOT이다.
H2(57) - H1과 동일한 재료. 두께는 대략 1.00 내지 1.25 QWOT이다.
L3(58) - L1과 동일한 재료. 두께는 대략 0.01 내지 0.1 QWOT이다.
H3(59) - H1과 동일한 재료. 두께는 대략 1.25 내지 1.50 QWOT이다.
M1(60) - 접착성을 증가시키는 것을 보조하고 내스크래치성을 향상시키는데 사용되는 중간 굴절률 재료. 두께는 대략 0.01 내지 0.1 QWOT이다.
L4(61) - L1광 동일한 재료. 두께는 대략 1.75 내지 2.00 QWOT이다.
하이드로(Hydro)(62) - 평활하고 매끄러운 표면을 형성하도록 외부면에 도포된 폴리실록산 재료. 이는 렌즈의 청결도를 향상시킨다. 근사 두께는 대략 0.01 내지 0.25 QWOT이다. 굴절률은 대략 1.40 내지 1.50이다.
렌즈는 낮은 응력, 낮은 반사 및 낮은 잔류 컬러를 갖는 것으로, 즉 반사광이 본질적으로 백색인 것으로 발견되었다. 최종 렌즈는 도 3의 커브(70)와 유사한 커브를 갖는다.
도 3은 본 발명의 AR 코팅과 시장에서 현재 시판되는 전형적인 AR 코팅 렌즈 사이의 차이를 도식적으로 도시한다. 이 그래프는 코팅의 감소된 응력 능력이 아니라, 단지 광학 우수성만을 도시한다. 커브(70)는 현재 시판을 위해 제조되는 AR 코팅상에서 발견되는 잔류 반사를 표현하고, 녹색 스펙트럼 내에 있고 통상적인 렌즈의 잔류 녹색 반사를 생성하는 피크(70a)를 도시한다. 또한, 최소점(70b, 70c)은 각각 청색 및 적색광 반사를 표현한다.
상술한 바와 같이, 이는 제조 공정 동안에 코팅 두께의 변동을 방지하기 때문에 상업적으로 허용 가능하다. 피크 반사(70a)(커브상의 최고점)는 전체 커브를 우측 또는 좌측으로 이동시킴으로써 우측 또는 좌측으로 조절될 수 있다. 결과는 녹색 잔류 컬러를 더 청색의 외관 또는 더 황색의 외관으로 변화시키는 것이다. 게다가, AR 코팅 회사는 커브의 우측 최소값이 최대 0.75% 정도의 반사가 되도록 커브를 회전시킬 수 있다. 결과는 잔류 반사의 총량이 매우 상당히 상승된다는 것이다. 다른 결과는 잔류 컬러가 한정된 녹황색 외관을 갖는다는 것이다.
커브(71)는 도 2의 렌즈에 도시된 바와 같이 본 발명의 AR 코팅을 나타낸다. 총 잔류 반사는 통상적인 커브(70)보다 훨씬 낮다는 것을 주목하라. 또한, 커브는 가시광 스펙트럼(더 넓음)의 적외선 및 자외선 영역 모두 내로 더 연장된다는 점을 주목할 필요가 있다. 이는 렌즈상의 모든 AR 코팅이 입사광의 각도(표면에 부딪치는 광의 각도)가 더 점점 적게 지향됨에 따라 컬러를 변화시키는 경향을 가질 수 있다. 이와 같이 명백한 컬러의 변화는 입사각이 증가함에 따라 좌측으로 전이하는 커브에 의해 발생된다. 총 커브가 더 좁아질수록, 컬러를 더 신속하게 변화시킨다. 이는 녹색이 갑자기 황색, 오렌지색 또는 적색이 되기 때문에 매우 주목 가능하다. 커브(71)는 훨씬 더 넓은 폭을 갖고 또한 컬러를 갖지 않는다. 입사각이 증가함에 따라, 커브는 좌측으로 전이되기 시작하지만, 컬러는 각도가 최대 45°와 같이 극도로 가파를 때까지 변화되지 않고 유지될 수 있다.
본 출원인의 발명은 일 양태에서 도면 부호 70으로 도시된 통상적인 커브를 도면 부호 71로 도시된 바와 같은 백색광 커브로 수정하는 것에 관련된다. 백색광 커브(71)는 백색광 반사를 생성하고 통상적인 커브(70)에 도시된 바와 같이 현저한 녹색 반사를 갖지 않는 컬러의 조합을 갖는다.
본 출원인은 반사 방지 코팅으로부터의 반사광 내에서의 서로에 대한 청색광, 녹색광 및 적색광의 비의 조절이 실질적으로 백색광을 생성하는 도면 부호 71로서 도시된 커브를 생성할 수 있다는 사실을 발견하였다. 특정 광학 파라미터를 지정함으로써, 광학 렌즈에 대한 박막 두께를 계산하기 위해 컴퓨터 소프트웨어를 사용하는 것이 공지되어 있고, 이 컴퓨터 소프트웨어는 AR 코팅에 대한 박막 두께를 계산하고 제공하는데 사용될 수 있다. 단지, 예를 들면 청색, 녹색 및 적색 레벨이 동일하도록 지정하는 경우 백색광을 생성하지 않지만, 녹색 피크 및 잔류 녹색 반사를 갖는 커브(70)와 같은 커브를 제공할 것이다.
반사광 내의 청색 피크, 녹색 피크 및 적색 피크의 비가 백색광 반사를 제공하도록 제어되는 것이 본 출원인의 발명의 중요한 특징이다. 3개의 컬러는 백색광 반사를 생성하도록 특정 비 내로 제어된다. 일반적으로, 컬러 피크 백분율로, 청색 피크는 약 34 내지 40%, 바람직하게는 36 내지 38%의 범위, 예를 들면 37%일 수 있고, 녹색은 약 24 내지 32%, 바람직하게는 26 내지 30%의 범위, 예를 들면 29%이고, 적색은 약 30 내지 38%, 바람직하게는 32 내지 36%의 범위, 예를 들면 34%일 수 있다. 이들 비가 광학 두께의 범위에 걸친 굴절률의 테이블 및 사용되는 재료의 굴절률과 같은 다른 광학 특성과 함께 컴퓨터 소프트웨어에 공급될 때, 소프트웨어는 지정된 청색, 녹색 및 적색 피크를 생성하는데 필요한 AR 층을 계산할 수 있을 것이다. 전형적인 컴퓨터 소프트웨어 프로그램은 "에센셜 맥레오드(Essential MacLeod)"(광학 코팅 디자인 프로그램, 저작권 씬 필름 센터 인크(Thin Film Center, Inc.) 1995년-2003년, 버전 V 8.6)라 칭하고, 이 프로그램은 씬 필름 센터, 인크에 의해 배포된다. 다른 유사한 공지의 소프트웨어 프로그램이 상기 비에 부합하는 박막 두께를 계산하는데 사용될 수 있다. 상기 비에 부합하는데 필요한 광학 두께는 당 기술 분야에 공지된 바와 같이 수동으로 계산될 수 있는 것이 또한 이해될 것이다. 전형적인 계산 방법은 미국 특허 제 4,609,267호에 개시되어 있고, 이 특허는 본원에 참조에 의해 합체되어 있지만, 광학 두께를 계산하기 위한 다른 공지의 방법이 사용될 수 있다.
본 발명의 다른 양태에서, 높은 응력이 광학 왜곡을 초래하고 AR 코팅이 층분리될 수 있기 때문에 AR 코팅이 낮은 응력을 갖는 것이 중요하다. 높은 굴절률 재료 및 낮은 굴절률 재료는 박막으로 형성될 때 상이한 응력을 갖는 것이 발견되었고 본 발명의 특징은 낮은 응력을 갖는 AR 코팅을 생성하도록 층들 내의 응력의 차이를 최소화하는 것이다.
예를 들면, 전형적인 낮은 굴절률 재료가 코팅시에 인장 응력을 제공하는 것으로 발견되었다. 한편, 높은 굴절률 재료는 일반적으로 코팅시에 압축 응력을 제공한다. 그러나, 압축 응력은 낮은 굴절률 재료의 인장 응력보다 일반적으로 낮은 것으로 발견되었다. 따라서, 이는 층들 사이의 인장 및 압축 응력의 차이를 제공하고 층분리 및 광학 왜곡을 초래할 수 있다.
따라서, 본 출원인의 발명의 중요한 특징은 필요하다면 인장 응력 및 압축 응력을 균형화하도록 광학 코팅의 각각의 인접층을 조절하는 것이다. 이는 청색, 녹색 및 적색광에 대한 소정의 반사 피크(비)를 지정하는 상술한 바와 같은 다양한 층에 대한 광학 두께를 먼저 계산함으로써 성취된다. 일단 AR 층의 광학 두께 및 수가 컴퓨터 계산에 의해 결정되면, 각각의 층의 광학 두께는 층들 사이의 응력을 균형화(평형화)하도록 0.5λ 스텝에서 수정될 수 있다. 예를 들면, 낮은 굴절률 층이 0.25λ의 광학 두께를 갖고 5의 인장 응력을 제공하고 또한 0.25λ 광학 두께를 갖는 높은 굴절률 층이 단지 1의 압축 응력을 생성하면, 높은 굴절률 층의 광학 두께는 선행의 낮은 굴절률 층의 더 높은 인장 응력을 평형화하거나 최소화하도록 압축력을 증가시키기 위해 증가되는 것이 바람직하다. 본 예에서, 높은 굴절률 층의 광학 두께는 낮은 굴절률 층 인장 응력에 더 근접하도록 압축 응력을 증가시키기 위해 0.75λ 또는 심지어 1.25λ로 조절될 수 있다. 인접층에 대한 하나의 층 의 광학 두께의 증가는 광학 두께가 일반적으로 0.5λ 스텝으로 증가될 수 있기 때문에, 코팅된 렌즈의 백색광 반사에 중요한 영향을 미치지 않을 수 있다.
본 발명을 특정 바람직한 실시예와 연계하여 구체적으로 설명하였지만, 다수의 변경, 수정 및 변형예가 상기 설명의 관점에서 당 기술 분야에 명백할 것이다. 따라서 첨부된 청구범위는 본 발명의 범주 및 사상 내에 있는 임의의 이러한 대안, 수정 및 변경을 포함하는 것으로 고려된다.
도 1은 기판상에 코팅을 증착하도록 사용된 종래의 진공 챔버 및 진공 챔버와 연계하여 사용된 본 발명의 광학 모니터의 개략도.
도 2는 본 발명의 조성물 및 방법을 사용하여 제조된 반사 방지 코팅(anti-reflection coating)을 포함하는 렌즈의 도면.
도 3은 종래의 반사 방지 코팅 대 본 발명을 사용하여 제조된 코팅에 있어서의 파장의 함수로서의 반사율(백분율)을 도시하는 그래프.
Claims (8)
- 반사 방지(AR) 코팅을 갖는 광학 렌즈 제조 방법으로서,하나 이상의 광학 렌즈와 광학 기준 렌즈를 공급하는 단계와;동일한 코팅 평면에서 진공 증착 챔버 내에 상기 광학 렌즈 및 상기 광학 기준 렌즈를 위치시키는 단계로서, 상기 진공 증착 챔버는 상기 광학 기준 렌즈와 통신하는 광학 모니터를 갖는 단계와;제 1 굴절률 AR 코팅 조성물 및 적어도 하나의 제 2 굴절률 AR 코팅 조성물의 적어도 하나의 소스(source)를 상기 챔버 내에 제공하는 단계로서, 상기 제 1 굴절률은 상기 제 2 굴절률보다 높은, 단계와;상기 광학 모니터에 의해 결정된 바와 같은 소정의 광학 두께 코팅이 얻어질 때까지, 상기 광학 렌즈상에 제 1 굴절률 조성물층을 도포하는 단계와;상기 광학 모니터에 의해 결정된 바와 같은 소정의 광학 두께 코팅이 얻어질 때까지,상기 광학 렌즈상에 제 2 굴절률 조성물층을 도포하는 단계; 및소정의 AR 코팅이 도포될 때까지, 제 1 굴절률 조성물층을 도포하는 단계와 제 2 굴절률 조성물층을 도포하는 단계를 교대로 반복하는 단계를 포함하며,상기 광학 모니터는,광의 온/오프 빔(on/off beam)을 챔버 내의 상기 광학 기준 렌즈를 향하게 하고, 특정 주파수에서 상기 기준 렌즈로부터 반사된 광을 측정하고, 또한 소정의 광학 코팅 두께가 성취되는 때를 결정하기 위해 그와 같은 측정치를 사용하기 위한 수단을 포함하며,상기 광학 모니터의 단부에 위치한 광 검출기는, 오프(off) 주기 동안 수신되는 광 빔이 온(on)될 때 수신되는 광 빔으로부터 차감되는 노이즈가 되어, 측정될 광만이 측정되고 주위 광은 측정되지 않도록, 프로그램되는 광학 렌즈 제조 방법.
- 삭제
- 제 1 항에 있어서, 상기 제 1 굴절률 AR 코팅 조성물의 소스는 세륨 산화물과 티타늄 산화물의 혼합물인 광학 렌즈 제조 방법.
- 제 1 항에 있어서, 상기 제 2 굴절률 AR 코팅 조성물은 실리콘 산화물과 알루미늄 산화물의 혼합물인 광학 렌즈 제조 방법.
- 제 1 항에 있어서, 상기 광학 렌즈는 1.40 내지 1.90의 굴절률을 갖는 광학 렌즈 제조 방법.
- 제 1 항에 있어서, 상기 광학 렌즈와 상기 광학 기준 렌즈가 위치되는 동일한 코팅 평면은 커브를 갖는 광학 렌즈 제조 방법.
- 삭제
- 제 1 항에 있어서, 상기 광학 렌즈는 폴리카보네이트 렌즈인 광학 렌즈 제조 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/444,582 | 2003-05-23 | ||
US10/444,582 US6972136B2 (en) | 2003-05-23 | 2003-05-23 | Ultra low residual reflection, low stress lens coating and vacuum deposition method for making the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020057022291A Division KR100938772B1 (ko) | 2003-05-23 | 2004-05-18 | 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 및 그에 의해 제조된 광학 제품 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070087238A KR20070087238A (ko) | 2007-08-27 |
KR100860959B1 true KR100860959B1 (ko) | 2008-09-30 |
Family
ID=33450693
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020077017546A KR100869045B1 (ko) | 2003-05-23 | 2004-05-18 | 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 및 그에 의해제조된 광학 제품 |
KR1020077017545A KR100860959B1 (ko) | 2003-05-23 | 2004-05-18 | 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 |
KR1020057022291A KR100938772B1 (ko) | 2003-05-23 | 2004-05-18 | 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 및 그에 의해 제조된 광학 제품 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020077017546A KR100869045B1 (ko) | 2003-05-23 | 2004-05-18 | 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 및 그에 의해제조된 광학 제품 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020057022291A KR100938772B1 (ko) | 2003-05-23 | 2004-05-18 | 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 및 그에 의해 제조된 광학 제품 |
Country Status (10)
Country | Link |
---|---|
US (4) | US6972136B2 (ko) |
EP (2) | EP1629135B1 (ko) |
JP (1) | JP2007505369A (ko) |
KR (3) | KR100869045B1 (ko) |
CN (3) | CN1795284B (ko) |
AT (1) | ATE514800T1 (ko) |
HK (3) | HK1090099A1 (ko) |
RU (1) | RU2324763C2 (ko) |
TW (1) | TWI269058B (ko) |
WO (1) | WO2004106979A2 (ko) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005046983A1 (en) * | 2003-11-05 | 2005-05-26 | Deposition Sciences, Inc. | Optical coatings and methods |
KR100800705B1 (ko) * | 2004-03-26 | 2008-02-01 | 삼성전자주식회사 | 입사파에 의해 발생되는 반사파를 억제하는 카메라 렌즈장치 |
TW200604565A (en) * | 2004-07-22 | 2006-02-01 | Hitachi Maxell | Light shield sheet, optical apparatus, and method of manufacturing light shield sheet |
US20070236809A1 (en) * | 2006-04-05 | 2007-10-11 | Barret Lippey | Forming spectral filters |
DE102006056289A1 (de) * | 2006-11-29 | 2008-06-05 | Bankmann, Joachim, Dr. | Beschichtungsanlage mit einer Funkvorrichtung sowie Verfahren zur Steuerung eines Aktors bzw. einer Heizung |
WO2008083002A1 (en) * | 2006-12-26 | 2008-07-10 | Fujifilm Dimatix, Inc. | Printing system with conductive element |
CN101210312B (zh) * | 2006-12-28 | 2010-05-19 | 鸿富锦精密工业(深圳)有限公司 | 平衡薄膜应力的薄膜制作方法 |
JP5295524B2 (ja) | 2007-06-05 | 2013-09-18 | 日本電波工業株式会社 | 光学薄膜成膜方法 |
US8153035B2 (en) * | 2007-07-24 | 2012-04-10 | Gentex Optics, Inc. | Programmable wetting controller |
KR101489327B1 (ko) * | 2008-05-15 | 2015-02-03 | 삼성전자주식회사 | 물질막의 형성 방법 및 메모리 장치의 제조 방법 |
DE102008041404B4 (de) * | 2008-08-21 | 2017-10-19 | Carl Zeiss Vision Gmbh | Brillenlinse mit verbesserten mechanischen Eigenschaften sowie Verfahren zu deren Herstellung |
DE102008041869A1 (de) | 2008-09-08 | 2010-03-25 | Carl Zeiss Vision Gmbh | Brillenlinse mit farbneutraler Antireflexbeschichtung und Verfahren zu deren Herstellung |
AU2011207390B2 (en) | 2010-01-22 | 2014-09-18 | Oakley, Inc. | Lenses for 3D eyewear |
US8939606B2 (en) | 2010-02-26 | 2015-01-27 | Guardian Industries Corp. | Heatable lens for luminaires, and/or methods of making the same |
EP2563826A2 (en) | 2010-04-29 | 2013-03-06 | Battelle Memorial Institute | High refractive index composition |
US9796619B2 (en) | 2010-09-03 | 2017-10-24 | Guardian Glass, LLC | Temperable three layer antirefrlective coating, coated article including temperable three layer antirefrlective coating, and/or method of making the same |
US8693097B2 (en) * | 2010-09-03 | 2014-04-08 | Guardian Industries Corp. | Temperable three layer antireflective coating, coated article including temperable three layer antireflective coating, and/or method of making the same |
JP2012150458A (ja) * | 2010-12-28 | 2012-08-09 | Hoya Corp | 眼鏡レンズの量産方法 |
US8668990B2 (en) | 2011-01-27 | 2014-03-11 | Guardian Industries Corp. | Heat treatable four layer anti-reflection coating |
US20120200816A1 (en) * | 2011-02-04 | 2012-08-09 | Guardian Industries Corp. | Electronic devices having reduced susceptibility to newton rings, and/or methods of making the same |
US9335443B2 (en) | 2011-04-15 | 2016-05-10 | Qspex Technologies, Inc. | Anti-reflective lenses and methods for manufacturing the same |
US9042019B2 (en) | 2011-04-15 | 2015-05-26 | Qspex Technologies, Inc. | Anti-reflective lenses and methods for manufacturing the same |
US20140043585A1 (en) * | 2012-08-07 | 2014-02-13 | Brian C. Wilson | Method for promoting adhesion of hard coat to optical substrate |
AU2012392166B2 (en) * | 2012-10-10 | 2015-10-29 | Qspex Technologies, Inc. | Anti-reflective lenses and methods for manufacturing the same |
EP2758749B1 (en) | 2012-12-04 | 2016-10-12 | Essilor International (Compagnie Générale D'Optique) | Apparatus and method for performing a reflection measurement on an eyeglass |
DE102013108988A1 (de) * | 2013-08-20 | 2015-03-12 | Von Ardenne Gmbh | Vakuumbeschichtungsanordnung |
RU2542997C1 (ru) * | 2014-02-25 | 2015-02-27 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" | Просветляющее тонкопленочное покрытие на основе оксидных соединений кремния(iv) и висмута(iii) |
JP2019015764A (ja) | 2017-07-03 | 2019-01-31 | 東海光学株式会社 | プラスチック光学製品並びにプラスチック眼鏡レンズ及び眼鏡 |
RU2685887C1 (ru) * | 2018-05-07 | 2019-04-23 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него |
JP2022545500A (ja) * | 2019-08-30 | 2022-10-27 | アプライド マテリアルズ インコーポレイテッド | 電子ビームpvd終点検出および閉ループ処理制御システム |
CN114901991A (zh) | 2020-01-13 | 2022-08-12 | 哈曼专业丹麦公司 | 照明装置集光器和会聚光学系统 |
WO2022240385A1 (en) | 2021-05-10 | 2022-11-17 | Carl Zeiss Vision International Gmbh | A method for calibrating optical coating apparatuses |
KR102644655B1 (ko) * | 2021-12-08 | 2024-03-08 | 주식회사 에이치엘클레무브 | 라이다 장치 |
KR102420201B1 (ko) | 2022-01-17 | 2022-07-13 | 주식회사 유이케미칼 | 인지질 외피 보유 바이러스 사멸기능을 가지는 친환경 방역 조성물 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000023795A (ko) * | 1997-05-16 | 2000-04-25 | 야마나까 마모루 | 반사 방지막을 가지는 플라스틱 광학 부품과 반사 방지막의 막 두께를 균일하게 하는 기구 |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3185020A (en) * | 1961-09-07 | 1965-05-25 | Optical Coating Laboratory Inc | Three layer anti-reflection coating |
GB1213154A (en) * | 1967-09-07 | 1970-11-18 | Umberto Laguzzi | A process for the solubilization of papaveroline and/or papaveroline tetrabenzoylate |
US3695910A (en) * | 1969-01-21 | 1972-10-03 | Anthony W Louderback | Method of applying a multilayer antireflection coating to a substrate |
CH563945A5 (ko) * | 1971-10-20 | 1975-07-15 | Balzers Patent Beteilig Ag | |
CH557546A (de) * | 1972-10-19 | 1974-12-31 | Balzers Patent Beteilig Ag | Aus einer mehrzahl von einfachen oder zusammengesetzen (lambda)/4-schichten bestehender reflexionsvermindernder belag. |
US3781090A (en) * | 1972-11-06 | 1973-12-25 | Minolta Camera Kk | Four layer anti-reflection coating |
US3871090A (en) * | 1973-08-24 | 1975-03-18 | Irwin Ind Inc | Safety belt buckle |
US3892490A (en) * | 1974-03-06 | 1975-07-01 | Minolta Camera Kk | Monitoring system for coating a substrate |
JPS56138701A (en) * | 1980-03-31 | 1981-10-29 | Minolta Camera Co Ltd | Antireflection film |
US4609267A (en) * | 1980-12-22 | 1986-09-02 | Seiko Epson Corporation | Synthetic resin lens and antireflection coating |
JPH0642002B2 (ja) * | 1983-07-29 | 1994-06-01 | セイコーエプソン株式会社 | プラスチックレンズ |
GB8619193D0 (en) * | 1986-08-06 | 1987-01-14 | Pilkington Perkin Elmer Ltd | High emissivity article |
US4921760A (en) * | 1986-09-26 | 1990-05-01 | Minolta Camera Kabushiki Kaisha | Anti-reflection coating of optical part made of synthetic resin |
JPS63121801A (ja) * | 1986-11-11 | 1988-05-25 | Olympus Optical Co Ltd | 合成樹脂製光学部品の反射防止膜 |
US4907846A (en) * | 1987-11-20 | 1990-03-13 | Raytheon Company | Thick, impact resistant antireflection coatings for IR transparent optical elements |
JPH01273001A (ja) * | 1988-04-25 | 1989-10-31 | Olympus Optical Co Ltd | 合成樹脂製光学部品の反射防止膜 |
JPH01303401A (ja) * | 1988-06-01 | 1989-12-07 | Sekinosu Kk | プラスチック光学部品の多層膜コーティング製造法 |
DE3921672C2 (de) * | 1989-07-01 | 1996-12-05 | Leybold Ag | Vorrichtung zum Halten und Wenden von Linsen, insbesondere für in einer Hochvakuum-Aufdampfanlage oder -Sputteranlage zu beschichtende Brillenglaslinsen |
DE3921671A1 (de) * | 1989-07-01 | 1991-01-03 | Leybold Ag | Linsenhalterung, insbesondere halterung fuer in einer hochvakuum-aufdampfanlage oder -sputteranlage zu beschichtende brillenglaslinsen |
US5170291A (en) * | 1989-12-19 | 1992-12-08 | Leybold Aktiengesellschaft | Coating, composed of an optically effective layer system, for substrates, whereby the layer system has a high anti-reflective effect, and method for manufacturing the coating |
DE3941797A1 (de) * | 1989-12-19 | 1991-06-20 | Leybold Ag | Belag, bestehend aus einem optisch wirkenden schichtsystem, fuer substrate, wobei das schichtsystem insbesondere eine hohe antireflexwirkung aufweist, und verfahren zur herstellung des belags |
JPH06650B2 (ja) * | 1991-01-29 | 1994-01-05 | 触媒化成工業株式会社 | 酸化チタン・酸化セリウム複合系ゾルおよびこのゾルから形成された透明薄膜 |
JP3068252B2 (ja) * | 1991-06-28 | 2000-07-24 | ホーヤ株式会社 | 反射防止膜を有する光学部材 |
US5425983A (en) * | 1992-08-10 | 1995-06-20 | Santa Barbara Research Center | Infrared window protected by multilayer antireflective coating |
US5494743A (en) * | 1992-08-20 | 1996-02-27 | Southwall Technologies Inc. | Antireflection coatings |
JP3309101B2 (ja) * | 1992-08-31 | 2002-07-29 | 株式会社シンクロン | 薄膜の屈折率測定方法および装置 |
JP4069331B2 (ja) * | 1997-03-05 | 2008-04-02 | 日産化学工業株式会社 | 酸化チタン−酸化セリウム−酸化スズ複合ゾルの製造方法 |
US6296943B1 (en) * | 1994-03-05 | 2001-10-02 | Nissan Chemical Industries, Ltd. | Method for producing composite sol, coating composition, and optical element |
US5719705A (en) * | 1995-06-07 | 1998-02-17 | Sola International, Inc. | Anti-static anti-reflection coating |
US6248448B1 (en) * | 1995-07-06 | 2001-06-19 | Sony Corporation | Anti-reflection film |
EP0753762B1 (en) * | 1995-07-06 | 2002-03-27 | Sony Corporation | Electrically conductive, anti-reflection coating |
FR2745284B1 (fr) * | 1996-02-22 | 1998-04-30 | Saint Gobain Vitrage | Substrat transparent muni d'un revetement de couches minces |
US5944964A (en) * | 1997-02-13 | 1999-08-31 | Optical Coating Laboratory, Inc. | Methods and apparatus for preparing low net stress multilayer thin film coatings |
JPH1173119A (ja) * | 1997-03-24 | 1999-03-16 | Konica Corp | 電磁波シールド効果を有する反射防止コート及び反射防止コートを有する光学部材 |
US5852513A (en) * | 1997-05-14 | 1998-12-22 | Optical Coating Laboratory, Inc. | Television filter |
JPH11131240A (ja) * | 1997-10-28 | 1999-05-18 | Mitsubishi Electric Corp | 薄膜の形成方法 |
DE19808795C2 (de) * | 1998-03-03 | 2001-02-22 | Sekurit Saint Gobain Deutsch | Wärmestrahlen reflektierendes Schichtsystem für transparente Substrate |
US6103320A (en) * | 1998-03-05 | 2000-08-15 | Shincron Co., Ltd. | Method for forming a thin film of a metal compound by vacuum deposition |
US6039806A (en) * | 1998-04-20 | 2000-03-21 | E-Tek Dynamics, Inc. | Precision thickness optical coating system and method of operation thereof |
JP2000017457A (ja) * | 1998-07-03 | 2000-01-18 | Shincron:Kk | 薄膜形成装置および薄膜形成方法 |
US6042754A (en) | 1998-10-30 | 2000-03-28 | Optima, Inc. | Continuous extrusion-compression molding process for making optical articles |
US6410173B1 (en) * | 1998-11-30 | 2002-06-25 | Denglas Technologies, Llc | Antireflection coatings and other multilayer optical coatings for heat-treatable inorganic substrates and methods for making same |
US6297128B1 (en) * | 1999-01-29 | 2001-10-02 | Vantis Corporation | Process for manufacturing shallow trenches filled with dielectric material having low mechanical stress |
FR2793889B1 (fr) * | 1999-05-20 | 2002-06-28 | Saint Gobain Vitrage | Substrat transparent a revetement anti-reflets |
ATE291240T1 (de) * | 1999-10-14 | 2005-04-15 | Hoya Corp | Gerät und verfahren zur bildung dünner schichten |
JP3926073B2 (ja) * | 1999-10-14 | 2007-06-06 | Hoya株式会社 | 薄膜形成方法及び装置 |
JP2001171504A (ja) * | 1999-12-16 | 2001-06-26 | Nissan Motor Co Ltd | 路面摩擦係数推定装置 |
JP2003098310A (ja) * | 2001-09-25 | 2003-04-03 | Fuji Photo Film Co Ltd | 光学部品 |
US6833600B2 (en) * | 2001-09-25 | 2004-12-21 | Fuji Photo Film Co., Ltd. | Optical component and method manufacturing the same |
JP2003098312A (ja) * | 2001-09-26 | 2003-04-03 | Olympus Optical Co Ltd | 反射防止膜及び光学素子 |
JP3848571B2 (ja) * | 2001-12-28 | 2006-11-22 | Hoya株式会社 | 薄膜形成方法及び装置 |
-
2003
- 2003-05-23 US US10/444,582 patent/US6972136B2/en not_active Expired - Fee Related
-
2004
- 2004-05-18 CN CN2004800141273A patent/CN1795284B/zh not_active Expired - Fee Related
- 2004-05-18 EP EP04752487A patent/EP1629135B1/en not_active Expired - Lifetime
- 2004-05-18 JP JP2006533162A patent/JP2007505369A/ja active Pending
- 2004-05-18 KR KR1020077017546A patent/KR100869045B1/ko not_active IP Right Cessation
- 2004-05-18 RU RU2005136391/02A patent/RU2324763C2/ru not_active IP Right Cessation
- 2004-05-18 KR KR1020077017545A patent/KR100860959B1/ko not_active IP Right Cessation
- 2004-05-18 CN CN2008101795833A patent/CN101441280B/zh not_active Expired - Fee Related
- 2004-05-18 CN CN2008101795829A patent/CN101441279B/zh not_active Expired - Fee Related
- 2004-05-18 WO PCT/US2004/015478 patent/WO2004106979A2/en active Application Filing
- 2004-05-18 EP EP10010579A patent/EP2302091A3/en not_active Withdrawn
- 2004-05-18 KR KR1020057022291A patent/KR100938772B1/ko not_active IP Right Cessation
- 2004-05-18 AT AT04752487T patent/ATE514800T1/de not_active IP Right Cessation
- 2004-05-20 TW TW093114237A patent/TWI269058B/zh not_active IP Right Cessation
-
2005
- 2005-10-19 US US11/253,514 patent/US7311938B2/en not_active Expired - Fee Related
-
2006
- 2006-09-28 HK HK06110793.2A patent/HK1090099A1/xx not_active IP Right Cessation
-
2007
- 2007-04-25 US US11/789,774 patent/US20070202251A1/en not_active Abandoned
- 2007-04-25 US US11/789,646 patent/US20070259108A1/en not_active Abandoned
-
2009
- 2009-11-26 HK HK09111039.1A patent/HK1133301A1/xx unknown
- 2009-11-26 HK HK09111040.8A patent/HK1133302A1/xx unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000023795A (ko) * | 1997-05-16 | 2000-04-25 | 야마나까 마모루 | 반사 방지막을 가지는 플라스틱 광학 부품과 반사 방지막의 막 두께를 균일하게 하는 기구 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100860959B1 (ko) | 반사 방지 코팅을 갖는 광학 렌즈 제조 방법 | |
US6768581B1 (en) | Coated lens exhibiting substantially balanced reflectance | |
AU695547B2 (en) | Light-absorbing and anti-reflective coating for sunglasses | |
US6794066B2 (en) | Optical element with mirror coating and method for forming said coating | |
CN113227848A (zh) | 具有反射涂层的高耐磨性光学制品 | |
CN113167927B (zh) | 具有增强型干涉涂层和用于改善耐磨性的多层系统的光学镜片 | |
CN112867945B (zh) | 耐磨性得到改善的具有干涉涂层的光学制品 | |
JP2024518649A (ja) | 非対称ミラーを有する光学レンズ | |
CN113167926A (zh) | 具有反射镜涂层和用于改善耐磨性的多层系统的光学镜片 | |
JP4166845B2 (ja) | 反射防止膜を有する眼鏡プラスチックレンズ | |
AU766852B2 (en) | Coated lens exhibiting substantially balanced reflectance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20110713 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20120730 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |