KR100512080B1 - 신규 카르보닐 환원효소, 그의 유전자, 및 그의 이용 방법 - Google Patents

신규 카르보닐 환원효소, 그의 유전자, 및 그의 이용 방법 Download PDF

Info

Publication number
KR100512080B1
KR100512080B1 KR10-2001-7009856A KR20017009856A KR100512080B1 KR 100512080 B1 KR100512080 B1 KR 100512080B1 KR 20017009856 A KR20017009856 A KR 20017009856A KR 100512080 B1 KR100512080 B1 KR 100512080B1
Authority
KR
South Korea
Prior art keywords
chloro
butyl
tert
polypeptide
transformant
Prior art date
Application number
KR10-2001-7009856A
Other languages
English (en)
Other versions
KR20020008116A (ko
Inventor
기자끼노리유끼
야마다유끼오
야소하라요시히꼬
하세가와준조
Original Assignee
카네카 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 카네카 코포레이션 filed Critical 카네카 코포레이션
Publication of KR20020008116A publication Critical patent/KR20020008116A/ko
Application granted granted Critical
Publication of KR100512080B1 publication Critical patent/KR100512080B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/40Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Candida
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 제조를 위한 신규 폴리펩티드, 상기 폴리펩티드를 코딩하는 유전자, 및 상기 폴리펩티드를 사용하는 방법이 제공된다. 상기 폴리펩티드는 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는다. 상기 폴리펩티드는 서열 목록의 서열 번호 1 로 나타낸 아미노산 서열, 또는 하나 이상의 아미노산 치환, 삽입, 결실 또는 부가에 의해 상기 아미노산 서열로부터 유래된 아미노산 서열을 포함한다.

Description

신규 카르보닐 환원효소, 그의 유전자, 및 그의 이용 방법{NOVEL CARBONYL REDUCTASE, GENE THEREOF AND METHOD OF USING THE SAME}
본 발명은 신규 폴리펩티드, 상기 폴리펩티드를 코딩하는 유전자, 상기 폴리펩티드를 발현하기 위한 발현 벡터, 상기 발현 벡터를 사용하여 숙주 세포를 형질전환함으로써 수득되는 형질전환체, 및 상기 형질전환체를 사용하는 의약 및 농약의 합성을 위한 물질로서 유용한 화합물의 제조 방법에 관한 것이다. 더욱 특히, 본 발명은 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 미생물로부터 단리된 폴리펩티드, 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터, 및 상기 발현 벡터에 의해 형질전환된 형질전환체에 관한 것이다.
또한, 본 발명은 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 제조 방법에 관한 것이다. 상기 방법은 형질전환체 또는 그의 처리물을 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트와 반응시키는 단계, 및 제조된 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 수합하는 단계를 포함한다.
tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트는 의약 및 농약, 특히 HMG-CoA 환원효소 저해제의 합성을 위한 원료로서 유용한 화합물이다.
tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시킴으로써 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 방법으로서, 디에틸메톡시보란 및 나트륨 보로히드리드를 사용하는 방법만이 유일하게 보고되어 있다 (미국 특허 제 52,783,131 호). 이 기술의 문제점은 -78 ℃ 만큼이나 낮은 온도를 이루는 매우 낮은 온도의 반응 용기가 요구된다는 점과, 고가의 재료가 사용될 필요가 있다는 점 등이다. 실용적인 반응 절차에 대한 요구가 있다.
발명의 개요
본 발명의 발명자들은, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 미생물로부터 유래된 폴리펩티드를 발견하고, tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 효율적으로 제조할 수 있는 방법을 계획함으로써, 결국 본 발명을 완성하였다.
본 발명의 목적은 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조할 수 있는 폴리펩티드를 제공하는 것이다. 본 발명의 또 다른 목적은 재조합 DNA 기술을 사용하여 폴리펩티드를 효율적으로 제조하는 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 상기 폴리펩티드, 및 글루코오스 탈수소효소 활성을 갖는 폴리펩티드를 동시에 대량으로 제조할 수 있는 형질전환체를 제공하는 것이다. 본 발명의 또 다른 목적은 형질전환체를 사용하는 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 실용적인 제조 방법을 제공하는 것이다.
본 발명은 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 폴리펩티드에 관한 것이다. 상기 폴리펩티드는 서열 목록에서 서열 번호 1 로 나타낸 아미노산 서열, 또는 그의 하나 이상의 아미노산 치환, 삽입, 결실 또는 부가를 갖는 아미노산 서열을 포함한다.
바람직하게는, 상기 펩티드는 칸디다 속에 속하는 미생물로부터 유래될 수 있다. 더욱 바람직하게는, 미생물은 칸디다 마그놀리애 (Candida magnoliae) IFO 0705 일 수 있다.
한 국면에서, 본 발명은 상기 기재된 폴리펩티드를 코딩하는 폴리뉴클레오티드에 관한 것이다.
한 국면에서, 본 발명은 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드에 관한 것이다. 이 폴리뉴클레오티드는 엄격한 조건하에 서열 목록의 서열 번호 2 로 나타낸 뉴클레오티드 서열과 하이브리드화된다.
한 국면에서, 본 발명은 상기 기재된 폴리뉴클레오티드를 포함하는 발현 벡터에 관한 것이다. 바람직하게는, 발현 벡터는 플라스미드 pNTCR 일 수 있다.
한 구현예에서, 상기 기재된 발현 벡터는 글루코오스 탈수소효소 활성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드를 더 포함할 수 있다.
바람직하게는, 글루코오스 탈수소효소 활성을 갖는 폴리펩티드는 바실러스 메가테리움 (Bacillus Megaterium) 으로부터 유래된 글루코오스 탈수소효소일 수 있다.
바람직하게는, 발현 벡터는 플라스미드 pNTCRG 일 수 있다.
한 국면에서, 본 발명은 상기 기재된 발현 벡터를 사용하여 숙주 세포를 형질전환함으로써 수득되는 형질전환체에 관한 것이다.
바람직하게는, 숙주 세포는 대장균일 수 있다. 더욱 바람직하게는, 형질전환체는 대장균 HB101 (pNTCR) 또는 대장균 HB101 (pNTCRG) 일 수 있다.
한 국면에서, 본 발명은 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 제조 방법에 관한 것이다. 상기 방법은 상기 기재된 형질전환체 및/또는 그의 처리물을 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트와 반응시키는 단계, 및 제조된 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 수합하는 단계를 포함한다.
바람직하게는, 반응 단계는 조효소 재생계의 존재하에 수행된다.
도 1 은 본 발명의 폴리뉴클레오티드의 서열, 및 그의 추정되는 아미노산 서열을 나타내는 도식이다.
도 2 는 재조합 플라스미드 pNTCRG 의 제조 방법을 나타내는 도식이다.
하기, 본 발명을 상세하게 설명할 것이다. 본 발명의 폴리펩티드로서, 하기 화학식 I 의 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 하기 화학식 Ⅱ 의 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 효소 활성을 갖는 한 임의의 폴리펩티드가 사용될 수 있다.
tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트
tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트
상기와 같은 폴리펩티드의 예로서, 서열 목록의 서열 번호 1 의 아미노산 서열을 포함하는 폴리펩티드, 및 그의 하나 이상의 아미노산 치환, 삽입, 결실, 또는 부가를 갖는 아미노산 서열 또는 그의 일부를 포함하고 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 효소 활성을 갖는 폴리펩티드가 포함된다.
본 발명의 폴리펩티드는 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 활성을 갖는 미생물로부터 수득될 수 있다. 그러므로, 폴리펩티드의 기원으로서 사용되는 미생물은, 이에 제한되는 것은 아니지만, 효모 (칸디다 속) 일 수 있고, 가장 바람직하게는 칸디다 마그놀리애 IFO 0705 일 수 있다. 이 균주는 Centraalbureau voor Schimmelcultures (CBS; Oosterstraat 1, Postbus 273, NL-3740 AG Baarn, Netherlands) 에 기탁 번호 CBS166 로 최초로 기탁된 미생물이며, 상기 균주의 단리 및 성질은 문헌 [The Yeasts, a Taxonomic Study. 3 판 pp. 731 (1984)] 에 기재되어 있다. 본 발명의 폴리펩티드를 제조하는 미생물은 야생형 또는 변이형 균주일 수 있다. 이와는 달리, (세포 융합, 유전자 조작 등을 사용하여) 유전적으로 엔지니어링된 미생물이 사용될 수 있다. 유전적으로 엔지니어링되어 본 발명의 펩티드를 제조하는 미생물은 하기 단계를 포함하는 방법에 의해 수득될 수 있다: 상기 효소를 단리 및/또는 정제하고, 그의 전부 또는 일부 아미노산 서열을 결정하는 단계; 그의 아미노산 서열을 기초로하여 폴리펩티드를 코딩하는 뉴클레오티드 서열을 결정하는 단계; 그의 아미노산 서열을 기초로 하여 폴리펩티드를 코딩하는 뉴클레오티드 서열을 수득하는 단계; 뉴클레오티드 서열을 다른 미생물로 도입하여 재조합 미생물을 수득하는 단계; 및 재조합 미생물을 배양하여 본 발명의 효소를 수득하는 단계.
본 발명의 폴리펩티드를 제조하는 미생물에 대한 배양 배지는 미생물이 성장할 수 있는 한, 전형적인 탄소원, 질소원, 무기염류원, 유기 영양소원 등을 포함하는 임의의 액체 영양 배지일 수 있다.
본 명세서에서 사용되는 용어 "미생물의 배양물" 은 미생물 그 자체 또는 미생물을 포함하는 액체 배양물을 의미하고, "그의 처리물"은 미생물 그 자체 또는 미생물을 포함하는 액체 배양물의 추출 또는 정제에 의해 수득되는 산물을 의미한다.
본 발명의 폴리펩티드는 통상적인 방법을 사용하여 폴리펩티드를 포함하는 미생물로부터 정제될 수 있다. 예를 들면, 미생물을 적당한 배지에서 배양하고, 배양물을 원심분리하여 미생물을 수확한다. 미생물을, 예를 들면, 디노 밀 (Willy A. Bachofen Co., Ltd. 제조) 에 의해 파쇄하고, 원심분리하여 세포 잔해물을 제거함으로써, 무세포 (cell-free) 추출물을 수득한다. 무세포 추출물에 그 다음 예를 들면, 염석 (예를 들면, 황산 암모늄 침전 및 인산 나트륨 침전), 용매 침전 (아세톤, 에탄올 등을 사용하는 단백질 분획 침전법), 투석, 겔 여과, 이온 교환, 칼럼 크로마토그래피 (예를 들면, 역상 크로마토그래피), 및 한외여과 (ultrafiltration) 와 같은 기술을 단독으로 또는 조합하여 수행하여 폴리펩티드를 정제한다. 효소 활성은 기질로서 5 mM의 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트, 조효소로서 0.33 mM 의 NADPH, 및 효소를 100 mM 의 인산염 완충액 (pH 6.5) 에 첨가하고, 30 ℃에서 340 nm 의 파장에서의 흡광도의 감소를 측정함으로써 결정될 수 있다.
본 발명의 폴리펩티드는 서열 목록의 서열 번호 1 의 아미노산 서열을 포함 할 수 있다. 하나 이상의 아미노산 치환, 삽입, 결실, 또는 부가를 갖는 아미노산 서열, 또는 그의 일부를 갖고, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 효소 활성을 갖는 폴리펩티드는 문헌 [Current Protocols in Molecular Biology (John Wiley and Sons, Inc., 1989) 등] 에 기재된 공지의 방법을 사용하여 서열 목록의 서열 번호 1 의 아미노산 서열을 갖는 폴리펩티드로부터 제조될 수 있다. tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 한 임의의 폴리펩티드가 본 발명의 범위에 해당한다.
본 발명의 폴리뉴클레오티드는 상기 기재된 폴리펩티드 중 임의의 한개를 코딩하는 임의의 폴리뉴클레오티드일 수 있다. 본 발명의 폴리뉴클레오티드의 예는 서열 목록의 서열 번호 2의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드, 및 엄격한 조건하에 상기 폴리뉴클레오티드와 하이브리드화될 수 있는 폴리뉴클레오티드이다.
엄격한 조건하에 서열 목록의 서열 번호 2의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드와 하이브리드화될 수 있는 폴리뉴클레오티드는, 서열 번호 2 의 뉴클레오티드 서열이 DNA 프로브로서 사용되는 경우, 콜로니 하이브리드화법, 플라크 하이브리드화법, 써던 하이브리드화법 등으로 수득되는 폴리뉴클레오티드를 의미한다. 구체적으로, 폴리뉴클레오티드는 하기와 같이 동정될 수 있다. 콜로니 또는 플라크로부터 유래되는 폴리뉴클레오티드가 고정되는 필터에 65 ℃에서 0.7 내지 1.0 M NaCl 중에서 서열 번호 2의 뉴클레오티드 서열과 하이브리드화가 수행되고, 그후 필터는 65 ℃에서 0.1 내지 2 배 농도를 갖는 SSC 용액 (1 배 농도 SSC 용액은 150 mM 염화나트륨 및 15 mM 시트르산 나트륨을 포함) 으로 세척된다.
하이브리드화는 문헌 [Molecular Cloning, A laboratory manual, 2 판, Cold Spring Harbor Laboratory Press, 1989] 등에 기재된 과정에 따라 수행될 수 있다. 구체적으로, 상기 기재된 하이브리드화할 수 있는 폴리뉴클레오티드의 예로서, 서열 번호 2 의 뉴클레오티드 서열과 60 % 이상, 바람직하게는 80 % 이상, 더욱 바람직하게는 90 % 이상, 보다 더욱 바람직하게는 95 % 이상, 가장 바람직하게는 99 % 이상의 서열 동일성을 갖는 폴리뉴클레오티드가 포함된다.
tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 폴리펩티드를 코딩하는 발명의 폴리뉴클레오티드로는, 코딩되는 폴리펩티드가 상기 기재된 효소 활성을 갖는 한, 서열 번호 2 의 뉴클레이티드 서열과 60 % 이상, 바람직하게는 80 % 이상, 더욱 바람직하게는 90 % 이상, 보다 더욱 바람직하게는 95 % 이상, 가장 바람직하게는 99 % 이상의 서열 동일성을 갖는 폴리뉴클레오티드가 포함된다. 용어 "서열 동일성" 은 비교되는 두 폴리뉴클레오티드 서열이 서로 동일한 것을 의미하고, 비교되는 두 폴리뉴클레오티드 간의 서열 동일성의 비율 (%) 은 하기와 같이 계산된다. 첫째로, 비교되는 두 폴리뉴클레오티드 서열을 최적 방식으로 정렬한다. 동일한 핵산 염기 (예를 들면, A, T, C, G, U, 또는 I) 가 양 서열 상에 존재하는 부위의 수 (정합되는 부위의 수) 를 세고, 정합된 부위의 수를 폴리뉴클레오티드중의 핵산 염기의 총 수로 나눈다. 수득된 값에 100 을 곱한다. 서열 동일성은 예를 들어 하기의 서열 분석 기구를 사용하여 계산될 수 있다: [Unix-based GCG Wisconsin Package (Program Mannual for the Wisconsin Package, Version 8, 1994 년 9월, Genetics Conputer Group, 575 Science Drive Madison, Wisconsin, USA53711; Rice P.(1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hinxton Hall, Cambridge, CB10 1RQ, England)] 및 [the ExPASy World Wide Web server for molecular biology (Geneva University Hospital and University of Geneva, Geneva, Switzerland)].
본 발명의 폴리뉴클레오티드는 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 미생물로부터 수득될 수 있다. 폴리뉴클레오티드의 기원으로서 사용되는 미생물은, 이에 제한되는 것은 아니지만, 효모 (칸디다 속) 일 수 있으며, 가장 바람직하게는 칸디다 마그놀리애 IFO 0705 이다.
하기에, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 미생물로부터 본 발명의 폴리뉴클레오티드를 제조하는 방법이 기재될 것이다. 본 발명이 이에 한정되는 것은 아니다.
처음에, 정제된 폴리펩티드 및 적당한 엔도펩티다제로 폴리펩티드를 절단함으로써 수득된 펩티드 단편의 아미노산 서열을 에드만 법에 의해 시퀀싱한다. 이 아미노산 서열 정보를 기초로 하여, 뉴클레오티드 프라이머를 합성한다. 그 후, 염색체 DNA 를 폴리뉴클레오티드가 기원이 된 미생물로부터 전형적인 뉴클레오티드 단리법 (예를 들면, [Cell, 18, 1261 (1979)] 에 기재된 Hereford 법) 을 사용하여 제조한다. 상기 기재된 뉴클레오티드 프라이머 및 이 염색체 DNA 를 주형으로 사용하여 PCR 을 수행함으로써 폴리펩티드 유전자의 일부를 증폭시킨다. 또한, 폴리펩티드 유전자의 증폭된 부분을 예를 들어 문헌 [Anal. Biochem., 132, 6 (1983)] 에 기재된 랜덤 프라이머 표식법으로 표식하여 뉴클레오티드 프로브를 제조한다. 미생물의 염색체 DNA 를 적당한 제한 효소에 의해 절단한다. 생성된 단편을 벡터에 함입하고, 차례로 벡터를 적당한 숙주 세포에 도입함으로써, 미생물의 염색체 DNA 의 DNA 라이브러리를 구축한다. 이 DNA 라이브러리를 콜로니 하이브리드화법, 플라크 하이브리드화법 등에 따라 상기 기재된 뉴클레오티드 프로브를 사용하여 스크리닝함으로써, 폴리펩티드 유전자를 포함하는 DNA 를 수득한다. 상기와 같이 수득된 폴리펩티드 유전자를 포함하는 DNA 단편의 뉴클레오티드 서열을 디데옥시 시퀀싱법, 디데옥시 사슬 종결법 등으로 시퀀싱할 수 있다. 예를 들면, 뉴클레오티드 서열의 시퀀싱을 ABI PRISM DYE Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer Co., Ltd. 제조) 및 ABI 373A DNA 시퀀서 (Perkin Elmer Co., Ltd. 제조) 를 사용하여 수행할 수 있다.
본 발명의 폴리뉴클레오티드를 폴리뉴클레오티드가 발현되는 숙주 미생물로 도입하기 위한 벡터는, 효소 유전자가 적당한 숙주 미생물에서 발현될 수 있는 한, 임의의 벡터일 수 있다. 상기와 같은 벡터의 예로서, 플라스미드 벡터, 파지 벡터, 및 코스미드 벡터가 포함된다. 숙주 균주 간에 유전자를 교환할 수 있는 셔틀 벡터가 사용될 수 있다. 상기와 같은 벡터는 전형적으로 lacUV5 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, lpp 프로모터, tufB 프로모터, recA 프로모터, 또는 pL 프로모터와 같은 조절 인자를 포함하고, 바람직하게는 본 발명의 폴리뉴클레오티드에 작동가능하게 연결된 발현 단위를 포함하는 발현 벡터로서 사용된다.
본 명세서에서 사용되는 용어 "조절 인자"는 기능적 프로모터 및 임의의 관련된 전사 요소 (예를 들면, 인핸서, CCAAT 박스, TATA 박스, SPI 부위) 를 갖는 뉴클레오티드 서열을 의미한다.
본 명세서에서 사용되는 구 "작동가능하게 연결된" 은 폴리뉴클레오티드가, 조절 인자가 작동하여 유전자를 발현시킬 수 있는 방식으로 폴리뉴클레오티드의 발현을 조절하는, 프로모터 및 인핸서와 같은 조절 인자와 연결된 것을 의미한다. 조절 인자의 유형은 숙주 세포에 따라 다양할 수 있다고 당업자들에게 주지되어 있다.
본 발명의 폴리뉴클레오티드를 갖는 벡터가 도입되는 숙주 세포의 예로서, 박테리아, 효모, 사상균, 식물 세포, 및 동물 세포가 포함된다. 대장균이 특히 바람직하다. 본 발명의 폴리뉴클레오티드는 통상적인 방법을 사용하여 숙주 세포로 도입될 수 있다. 대장균이 숙주 세포로서 사용되는 경우, 본 발명의 폴리뉴클레오티드가 예를 들면, 염화칼슘법을 사용하여 도입될 수 있다.
본 발명의 폴리펩티드를 사용하여 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시킴으로써 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조할 때, NADPH 및 NADH 와 같은 조효소가 필요하다. 그러나, 산화된 조효소를 환원된 조효소로 전환할 수 있는 (하기 조효소 재생능으로 언급) 효소가 상응하는 기질과 함께 사용될 수 있고, 즉, 조효소 재생계가 반응에서 본 발명의 폴리펩티드와 조합되어 사용됨으로써, 사용되는 고가의 조효소의 양을 감소시킨다. 조효소 재생능을 갖는 효소의 예로서, 수소화효소, 포르메이트 탈수소효소, 알콜 탈수소효소, 알데히드 탈수소효소, 글루코오스-6-포스페이트 탈수소효소, 및 글루코오스 탈수소효소가 포함된다. 바람직하게는, 글루코오스 탈수소효소가 사용된다. 상기와 같은 반응은 비대칭 반응계에 조효소 재생계를 첨가함으로써 수행될 수 있다. tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 효소 활성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드, 및 글루코오스 탈수소효소 활성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드 모두로 형질전환된 형질전환체를 촉매로서 사용할 때, 반응이 조효소 재생능을 갖는 효소를 제조하여 효소를 반응계에 첨가하지 않고 효율적으로 수행될 수 있다. 상기 형질전환체는, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 비대칭 환원시켜 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 제조하는 효소 활성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드, 및 글루코오스 탈수소효소 활성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드를 동일한 벡터로 함입시켜, 이 벡터를 숙주 세포로 도입함으로써 수득될 수 있다. 이와는 달리, 형질전환체는 상기 두 폴리뉴클레오티드를 상용성이 없는 군으로부터 유래된 두 벡터로 함입시키고, 상기 폴리뉴클레오티드들을 동일한 숙주 세포로 도입시킴으로써 수득될 수 있다.
형질전환체의 글루코오스 탈수소효소 활성은, 기질로서의 0.1 M 글루코오스, 조효소로서의 2 mM NADP, 및 효소를 1 M 트리스 HCl 완충액 (pH 8.0) 에 첨가하여, 25 ℃ 에서 340 nm 의 파장에서의 흡광도의 증가를 측정함으로써 결정될 수 있다.
본 발명의 형질전환체를 사용하는 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 제조는 하기와 같이 수행될 수 있다.
처음에, 기질로서의 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트, NADP 와 같은 조효소, 및 형질전환체의 배양물 또는 그의 처리물을 적당한 용매에 첨가한 후, pH 를 조정한다. 생성된 혼합물을 교반하여 반응시킨다. 반응을 반응 용액의 pH 를 4 내지 10 의 범위로 유지하면서, 10 ℃ 내지 70 ℃ 의 온도에서 수행한다. 반응을 배치 방식 또는 연속 방식으로 수행한다. 배치 방식의 경우, 반응될 기질을 첨가하여 0.1 % 내지 70 % (w/v) 의 농도로 제조한다. 상기 언급된 형질전환체의 처리물 등은 조 추출물, 배양된 미생물, 동결건조된 생물, 아세톤 건조된 생물, 상기 미생물의 균질물 등을 의미한다. 상기 처리물 등은 공지의 수단에 의해 그대로 효소 또는 미생물로서 고정된 상태에서 사용될 수 있다. 반응을 본 발명의 폴리펩티드 및 글루코오스 탈수소효소를 제조하는 형질전환체를 사용하여 수행하는 경우, 반응계에 글루코오스를 첨가하는 것은 조효소의 양을 대폭 감소시키는 것을 가능하게 한다.
반응에 의해 제조되는 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 통상적인 방법에 의해 정제할 수 있다. 예를 들면, tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 원심분리, 여과 및 다른 필요한 방법을 수행하여, 미생물과 같은 현탁 물질을 제거한다. 수득된 생성물을 에틸 아세테이트 및 톨루엔과 같은 유기 용매로 추출하고, 황산 나트륨과 같은 탈수제로 탈수한다. 유기 용매를 감압하에 제거한다. 그 다음, 수득된 생성물에 결정화, 크로마토그래피 등을 수행하여 정제한다.
반응에서, 기질로서의 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트는 본 명세서에 참고로 포함된 미국 특허 번호 52,783,131 에 기재된 방법에 따라 제조된다.
tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트 및 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 정량, 및 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 부분입체이성질체비의 측정은 고성능 액체 크로마토그래피 (칼럼: COSMOSIL 5CN-R (ID 4.6 x 250 mm) Nacalai Tesque Co., Ltd. 제조, 용출액: 1 mM 인산염 용액/아세토니트릴 = 5/1, 유속: 0.7 ml/분, 검출: 210 nm, 칼럼 온도: 30 ℃) 에 의해 수행될 수 있다.
상기 기재된 바와 같이, 본 발명에 따라, 본 발명의 폴리펩티드를 효율적으로 제조하는 것이 가능하다. 상기와 같은 폴리펩티드로, tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 우수한 제조 방법이 제공될 수 있다. 하기에서, 본 발명은 첨부된 도면을 참고로 설명적인 실시예에 의해 기재될 것이다. 본 발명은 이같은 실시예에 제한되는 것은 아니다.
하기 실시예에서 사용된 재조합 DNA 기술과 관련된 조작 방법의 세부 사항이 하기 문헌에 기재되어 있다.
Molecular Cloning 2 판 (Cold Spring Harbor laboratory Press, 1989)
Current Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscience)
(실시예 1: 비대칭 환원 효소 활성을 갖는 폴리펩티드의 정제)
칸디다 마그놀리애 IFO 0705 로부터, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 폴리펩티드를 하기 방식으로 단독으로 정제했다.
(칸디다 마그놀리애 IFO 0705 의 배양)
하기 조성을 갖는 18 L 의 액체 배지를 30 L 단지 발효기 (Marubishi Bioeng Co., Ltd. 제조) 에서 제조하고, 120 ℃ 에서 20 분간 증기로 살균하였다.
배지 조성 : 수돗물, 글루코오스 4.0 %, 효모 추출물 0.5 %, KH2PO4 0.1 %, (NH4)2HPO4 0.65 %, NaCl 0.1 %, MgSO4ㆍ7H2O 0.8 %, ZnSO4ㆍ7H2O 0.06 %, FeSO4ㆍ7H2O 0.09 %, CuSO4ㆍ5H2O 0.005 %, MnSO4ㆍ4-6H20 0.01 %, 및 AdecanolTM LG-109 (NOF Corporation 제조) 0.02 % (pH 7.0).
상기 배지에, 배지에서 미리 배양된 칸디다 마그놀리애 IFO 0705 의 배양물을 180 ml/발효기로 접종하고, 295 rpm 으로 교반하에 통기량 5.0 NL/분으로 33 ℃ 에서 30 % (w/w) 수성 수산화 나트륨을 적하함으로써 pH 하한을 6.5 로 유지하면서 배양하였다. 655 g 의 55 % (w/w) 글루코오스 수용액을 배양 시작 후 22 시간 및 25 시간에 첨가하였다. 배양은 30 시간 동안 수행하였다.
(무세포 추출물의 제조)
미생물을 10 L 의 수득된 배양물로부터 원심분리에 의해 수합한 후, 생리 식염수로 세척함으로써, 1350 g 의 습윤 미생물을 수득하였다. 습윤 미생물을 2700 mL 의 100 mM 인산염 완충액 (pH 6.7) 중에서 현탁하고, 2-메르캅토에탄올 및 페닐메틸술포닐 플루오라이드를 각각 최종 농도 5 mM 및 0.1 mM 로 첨가하였다. 미생물을 디노 밀 (Willy A. Bachofen Co.,Ltd. 제조) 에 의해 파쇄하였다. 파쇄된 미생물을 원심분리하여 세포 잔해물을 제거함으로써, 2880 ml 의 무세포 추출물을 수득하였다.
(황산 암모늄 분획화)
무세포 추출물에 황산 암모늄을 첨가하고 용해시켜 60 % 포화액을 수득하였다. 생성된 침전물을 원심분리에 의해 제거하였다 (이 경우, 무세포 추출물의 pH 는 암모니아수로 6.7 에서 유지되었다). 유사하게 pH 6.7 을 유지하면서 황산 암모늄을 상층액에 더 첨가하여 75 % 포화액을 수득하였다. 생성된 침전물을 원심분리에 의해 수합하였다. 침전물을, 2 mM 2-메르캅토에탄올을 포함하는 10 mM 인산염 완충액 (pH 7.0) 중에 용해시키고, 밤새 투석하였다.
(DEAE-TOYOPEARL 칼럼 크로마토그래피)
상기 수득된 조 효소 용액을 2 mM 2-메르캅토에탄올을 포함하는 10 mM 인산염 완충액 (pH 7.0) 으로 평형화된 DEAE-TOYOPEARL 650 M (500 ml; Tosoh Corporation 제조) 칼럼에 공급하여, 효소 활성을 갖는 폴리펩티드를 칼럼으로 흡착시켰다. 칼럼을 동일한 완충액으로 세척하였다. 활성 분획을 선형 구배의 NaCl (0 M 내지 0.5 M) 을 사용하여 용출하였다. 활성 분획을 수합한 후, 2 mM 2-메르캅토에탄올을 포함하는 10 mM 인산염 완충액 (pH 7.0) 중에서 밤새 투석하였다.
(페닐 세파로오스 칼럼 크로마토그래피)
(암모니아수로 pH 7.0 을 유지하면서) 상기 수득된 조 효소 용액에 황산 암모늄을 최종 농도 1 M 로 용해시킨 후, 2 mM 2-메르캅토에탄올 및 1 M 황산 암모늄을 포함하는 10 mM 인산염 완충액 (pH 7.0) 으로 평형화된 페닐 세파로스 CL-4B 칼럼 (140 ml; Pharmacia Biotech Co., Ltd. 제조) 에 공급하여, 효소 활성을 가진 폴리펩티드를 칼럼으로 흡착시켰다. 칼럼을 동일한 완충액으로 세척하였다. 선형 구배 (1 M 내지 0 M) 의 황산 암모늄을 사용하여 활성 분획을 용출하였다. 활성 분획을 수합한 후, 2 mM 의 2-메르캅토에탄올을 포함하는 10 mM 인산염 완충액 중에서 밤새 투석하였다.
(블루 세파로오스 칼럼 크로마토그래피)
상기 수득된 조 효소 용액을 2 mM 2-메르캅토에탄올을 포함하는 10 mM 인산염 완충액 (pH 7.0) 으로 평형화된 블루 세파로오스 CL-6B 칼럼(40 ml; Pharmacia Biotech. Co., Ltd. 제조) 에 공급하여 효소 활성을 갖는 폴리펩티드를 칼럼으로 흡착시켰다. 칼럼을 동일한 완충액으로 세척하였다. 선형 구배 (0 M 내지 1 M) 의 NaCl 을 사용하여 활성 분획을 용출하였다. 활성 분획을 수합한 후, 2 mM 의 2-메르캅토에탄올을 함유하는 10 mM 인산염 완충액 (pH 7.0) 에서 밤새 투석하였다.
(SuperQ-TOYOPEARL 칼럼 크로마토그래피)
상기 수득된 조 효소 용액을, 2 mM 2-메르캅토에탄올을 함유하는 10 mM 인산완충액 (pH 7.0) 으로 평형화된 SuperQ-TOYOPEARL 650S 칼럼 (12 ml; Tosoh Corporation 제조) 에 공급하여, 효소 활성을 가진 폴리펩티드를 칼럼에 흡착시켰다. 칼럼을 동일한 완충액으로 세척하였다. 활성 분획을 선형 구배 (0 M 내지 0.4 M) 의 NaCl 을 사용하여 용출하였다. 활성 분획을 수합한 후, 2 mM 의 2-메르캅토에탄올을 함유하는 10 mM 인산염 완충액 (pH 7.0) 에서 밤새 투석하였다. 이렇게하여, 전기영동적으로 단일한 순수한 폴리펩티드 검체를 수득하였다 (하기에 CR 효소로 명명).
(실시예 2: CR 효소 유전자의 클로닝)
(합성 올리고뉴클레오티드 프로브의 제조)
실시예 1에서 수득된 정제된 CR 효소를 8 M 우레아의 존재하에 변성시킨 후, 아크로모박터로부터 유래한 라이실 엔도펩티다제 (Wako Pure Chemical Industries, Ltd. 제조)로 절단한다. 생성된 펩티드 단편의 아미노산 서열을 ABI 492 단백질 시퀀서 (Perkin Elmer Co., Ltd. 제조) 로 결정하였다. 아미노산 서열을 기초로, 두 뉴클레오티드 프라이머 (서열 번호 3 및 4) 를 통상적인 방법으로 합성하였다.
(PCR에 의한 CR 효소 유전자의 증폭)
Hereford 방법 (Cell, 18, 1261(1979)) 에 따라, 배양한 칸디다 마그놀리애 IFO 0705 로부터 염색체 DNA를 추출하였다. 이어서, PCR을, 상기 제조된 뉴클레오티드 프라이머 및 주형으로써 생성한 염색체 DNA를 사용하여 수행함으로써, CR 효소 유전자의 일부로 간주되는 약 350 bp의 뉴클레오티드 단편을 증폭하였다.
(염색체 DNA 라이브러리의 제조)
칸디다 마그놀리애 IFO 0705의 염색체 DNA를 제한효소 ApaI으로 완전히 절단하고, 절단된 단편을 아가로스 겔 전기영동으로 분리하였다. 이어서, 상기에서 수득한 350 bp DNA 단편을 사용하여 써던 (Southern) 방법 (J. Mol. Biol., 98, 503(1975)) 을 수행하여, 염색체 DNA로부터 절단된 단편을 분석하였다 (뉴클레오티드 프로브의 표식 및 검출은, [Gene Images Labelling and Detection System (Amersham Co., Ltd. 제조) 을 사용하여 수행하였다). 그 결과, 약 5.5 kb 의 뉴클레오티드 단편이 뉴클레오티드 프로브와 하이브리드화되는 것을 발견하였다.
상기 사실에 근거하여, 절단된 단편을 아가로스 겔 전기영동으로 분리한 후, 4.3 내지 6.2 kb의 뉴클레오티드 단편을 수합하였다. 상기 뉴클레오티드 단편을, 플라스미드 벡터 pBluescriptII KS(-) (STRATAGENE Co., Ltd. 제조) 의 ApaI 부위에 도입하였다. 플라스미드를 대장균 JM109에 도입하였다. 상기 균주의 염색체 DNA 라이브러리가 제조되었다.
(염색체 DNA 라이브러리의 스크리닝)
이렇게 수득된 뉴클레오티드 단편을 프로브로 사용하여, 콜로니 하이브리드화 방법 (뉴클레오티드 프로브의 표식 및 검출은, [Genes Image Labelling and Detection System] (Amersham Co., Ltd. 제조) 을 사용하여 수행하였고, 실험은 시스템의 사용 설명서에 기재된 절차에 따라 실험을 수행하였다) 에 따라 염색체 DNA 라이브러리를 스크리닝하였다. 그 결과, 단일한 양성 콜로니를 수득하였다. 이어서, 약 5.5 kb의 DNA가 삽입되어 있는 양성 콜로니로부터 수득한 재조합 플라스미드를 EcoRI 및 SphI으로 이중 절단을 하였다. 절단한 단편을 상기 기재한 써던 방법으로 분석하였다. 그 결과, 제한 효소를 사용한 절단으로써 생성된 약 1.0 kb의 뉴클레오티드 단편이 프로브에 하이브리드화되었다. 상기 사실을 기초로, 약 1.0 kb의 뉴클레오티드 단편을 플라스미드 pUC19(Takara Shuzo Co.,Ltd. 제조)의 EcoRI-SphI 인식 부위에 도입하여, 재조합 플라스미드 pUC-ES를 구축하였으며, CR 효소 유전자를 포함하는 염색체 DNA 클론으로서 선별하였다.
(염기 서열의 결정)
상기 재조합 플라스미드 pUC-ES를 다양한 제한 효소로 절단하여, 반응중 생성된 절단된 단편을 분석하여 제한 효소 지도를 제작하였다. 이어서, 분석하는 동안 수득된 다양한 DNA 단편을 pUC19 의 멀티 클로닝 부분에 도입하여 재조합 플라스미드를 구축하였다. 상기 재조합 플라스미드를 사용하여, 각각의 삽입된 단편의 뉴클레오티드 서열을 [ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit(Perkin Elmer Co., Ltd. 제조)] 및 [ABI 373A DNA 시퀀서(Perkin Elmer Co., Ltd. 제조)] 를 사용하여 분석하였다. 그 결과, 의도한 효소 유전자를 포함할 것으로 예상된 약 1.0 kb의 DNA 단편의 전체 염기 서열을 결정하였다. 도 1 은 이렇게 결정된 염기 서열을 나타낸다. 또한, 뉴클레오티드 서열의 구조 유전자 부분에 대한 뉴클레오티드 서열로부터 추정된 아미노산 서열이 도 1의 대응되는 뉴클레오티드 서열의 아래에 나타난다. 아미노산 서열을, 정제한 CR 효소의 라이실 엔도펩티다제로 절단한 펩티드 단편의 부분 아미노산 서열과 비교하였다. 그 결과, 정제된 CR 효소의 부분 아미노산 서열이, 뉴클레오티드 서열로부터 예측한 아미노산 서열에 완전히 존재하며, 이와 완전히 일치한다는 것을 발견하였다 (도 1의 아미노산 서열 중에 밑줄로 표시됨). 따라서, DNA 단편은 CR 효소 유전자에 포함되는 것으로 간주되었다.
(실시예 3; CR 효소 유전자를 포함하는 재조합 플라스미드의 제조)
CR 효소의 구조 유전자의 개시 코돈 부분에 NdeI 인식 부위가 부가되고; 종결 코돈 바로 다음에 새로운 종결 코돈 (TAA) 및 EcoRI 인식 부위가 부가되고; 아미노산 코드의 변화없이 유전자의 SalI 인식 부위를 파괴하기 위해 유전자의 5' 말단으로부터 여섯번째 뉴클레오티드인 G 가 T 로 치환된, 이중-나선 DNA 를 하기와 같은 방식으로 수득하였다. 실시예 2에서 결정된 뉴클레오티드 서열을 기초로, CR 효소 유전자의 구조 유전자의 개시 코돈 부분에 NdeI 부위를 부가하고, 유전자의 5' 말단으로부터 여섯번째 뉴클레오티드에 있는 G 가 T 로 치환된 N-말단 뉴클레오티드 프라이머를 합성하였다. 이어서, 실시예 2 에서 결정된 뉴클레오티드 서열을 기초로, 새로운 종결 코돈 (TAA) 및 EcoRI 부위가 CR 효소의 구조 유전자의 종결 코돈 다음에 바로 부가된 C-말단 뉴클레오티드 프라이머를 합성하였다. 상기 두 프라이머의 뉴클레오티드 서열을 서열번호 5 및 6으로 나타낸다. 상기 두 합성 DNA 프라이머를 사용하여, 이중-나선 DNA를, 주형으로서 실시예 2에서 수득한 플라스미드 pUC-ES를 사용하여 PCR로 증폭하였다. 생성된 DNA 단편을, NdeI 및 EcoRI으로 절단하여, 플라스미드 pUCNT (WO94/03613) 의 lac 프로모터로부터의 하류쪽 NdeI 및 EcoRI 부위에 삽입하여, 재조합 플라스미드 pNTCR을 수득하였다.
(실시예 4: CR 효소 유전자 및 글루코오스 탈수소효소 유전자를 모두 포함하는 재조합 플라스미드의 제조)
바실러스 메가테리움 (Bacilus megaterium) IAM 1030 유래의 글루코오스 탈수소효소 (이하, GDH로 명명)의 개시 코돈의 5 뉴클레오티드 상류에 대장균의 Shine-Dalgarno 서열 (9 뉴클레오티드) 이 부가되고; 상기 바로 앞에 EcoRI 인식 부위가 부가되고; 종결 코돈 바로 다음에 SalI 인식 부위가 부가된 이중-나선 DNA 를 하기와 같은 방식으로 수득하였다. GDH 유전자의 뉴클레오티드 서열 정보를 기초로, GDH의 구조 유전자의 개시 코돈으로부터 5 뉴클레오티드 상류에 대장균의 Shine-Dalgarno 서열 (9 뉴클레오티드) 이 부가되고, 상기 바로 앞에 EcoRI 부위가 부가된 N-말단 뉴클레오티드 프라이머, 및 종결 코돈 바로 다음에 SalI 부위를 가진 C-말단 뉴클레오티드 프라이머를 통상적인 방법으로 합성하였다. 상기 두 프라이머의 뉴클레오티드 서열을, 서열 번호 7 및 8로 나타낸다. 상기 두 합성 DNA 프라이머를 사용하여, 이중-나선 DNA를, 주형으로서 플라스미드 pGDK 1(Eur.J.Biochem. 186, 389(1989))를 사용하여 PCR로써 합성하였다. 생성된 DNA 단편을 EcoRI 및 SalI으로 절단하여, 실시예 3에서 구축한 pNTCR 의 EcoRI 및 SalI 부위 (CR 효소 유전자의 하류에 존재함) 에 삽입하여, 재조합 플라스미드 pNTCRG를 수득하였다. pNTCRG의 제조 방법 및 구조를 도 2에 도시하였다.
(실시예 5: 재조합 대장균의 제조)
대장균 HB101 (Takara Shuzo Co., Ltd. 제조) 를, 실시예 3 에서 수득한 재조합 플라스미드 pNTCR 및 실시예 4 에서 수득한 재조합 플라스미드 pNTCRG를 사용하여 형질전환시켜 재조합 대장균 HB101 (pNTCR) 및 HB101 (pNTCRG)를 각각 수득하였다. 상기와 같이 수득된 형질전환체, 대장균 HB101 (pNTCR) 및 HB101 (pNTCRG) 를, 특허 절차 수속상의 미생물 기탁의 국제적 승인에 관한 부다페스트 조약에 따라, 각각 기탁번호 FERM BP-6897 및 FERM BP-6898로, 1999년 9월 28일에, 일본 공업기술원 생명공학 공업기술 연구소 (1-3, 히가시 1-쵸메, 츠쿠바-시, 이바라키켄, 일본) 에 기탁하였다.
(실시예 6: 재조합 대장균에서의 CR 효소의 발현)
실시예 5에서 수득한 재조합 대장균 HB101(pNTCR)을, 120 ㎍/ml의 앰피실린을 함유한 2 ×YT 배지에서 배양하고 수합하여, 100 mM 인산염 완충액(pH 6.5) 중에 현탁하고, 초음파 처리하여 무세포 추출물을 수득하였다. 무세포 추출물의 CR 효소 활성을, 하기와 같은 방식으로 측정하였다. 즉, 기질로서의 5 mM tert-부틸(S)-6-클로로-5-히드록시-3-옥소헥사노에이트, 조효소로서의 0.333 mM NADPH, 및 효소를 100 mM 인산염 완충액 (pH 6.5) 에 첨가하여, 파장 340 nm에서의 흡광도 감소를 30 ℃에서 측정하였다. 상기 반응 조건 하에서, 1 분에 1 μ㏖의 NADPH가 NADP로 산화하는 것을 효소의 1 단위로 정의하였다. 이렇게 측정한 무세포 추출물 중의 CR 효소 활성을 비활성으로 나타내어, 벡터 플라스미드만을 가진 형질전환체와 비교하였다. 또한, 실시예 1에 기재한 바와 거의 같은 방법으로 제조한 칸디다 마그놀리애 IFO 0705의 무세포 추출물 중 CR 효소 활성을 비교하였다. 결과를 하기 표 1 에 나타내었다.
재조합 대장균에서의 CR 효소의 발현
미생물 CR 효소 비활성(U/mg)
HB101 (pUCNT) 0.12
HB101 (pNTCR) 3.76
칸디다 마그놀리애 IFO 0705 0.11
표 1에서 보이는 바와 같이, 대장균 HB101 (pNTCR) 은, 벡터 플라스미드만을 사용해 형질전환한 대장균 HB101 (pUCNT) 와 비교해 보면, CR 효소 활성에서 명백한 증가를 나타내며, 칸디다 마그놀리애 IFO 0705의 약 34 배의 활성을 나타낸다.
(실시예 7: 재조합 대장균에서 CR 효소 및 GDH 의 동시 발현)
실시예 6에 기재된 방법대로, 실시예 5에서 수득한 재조합 대장균 HB101 (pNTCRG) 를 처리함으로써 수득된 무세포 추출물의 GDH 활성을 하기와 같이 측정하였다. 기질로서 0.1 M 글루코오스, 조효소로서 2 mM NADP, 및 효소를 1M Tris HCl 완충액 (pH 8.0) 에 첨가하여, 340 nm 에서의 흡광도 증가를 25 ℃에서 측정하였다. 상기와 같은 반응 조건 하에서, 1 분에 1 μ㏖의 NADP 가 NADPH 로 환원하는 것을 효소의 1 단위로 정의하였다. 또한, CR 효소 활성을 실시예 5에서와 같이 측정하였다. 이렇게 측정한 무세포 추출물 중의 CR 효소 활성 및 GDH 효소 활성을 비활성으로 나타내어, 대장균 HB101(pNTCR) 및 벡터만을 사용한 형질전환체 HB101(pUCNT)와 비교하였다. 결과를 하기 표 2 에 나타내었다.
재조합 대장균에서의 CR 효소와 GDH의 동시 발현
미생물 CR 효소 비활성(U/mg) GDH 비활성(U/mg)
HB101 (pUCNT) 0.12 <0.01
HB101 (pNTCR) 3.76 <0.01
HB101 (pNTCRG) 2.16 87.8
표 2 에서 보이는 바와 같이, 대장균 HB101(pNTCRG)는, 벡터 플라스미드만을 사용해 형질전환한 대장균 HB101(pUCNT)와 비교해, CR 효소 활성 및 GDH 활성에 있어서 명백한 증가를 보였다.
(실시예 8: CR 효소 유전자가 도입된 재조합 대장균을 사용한, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트로부터의 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 합성)
실시예 5 에서 수득한 재조합 대장균 HB101 (pNTCR) 을, 500 ml Sakaguchi 플라스크 중에 멸균된 50 ml의 2 ×YT 배지 (박토 트립톤 1.6%(w/v), 박토 효모 추출물 1.0%(w/v), NaCl 0.5%(w/v), pH 7.0) 에 접종하여, 37℃에서 16시간동안 진탕배양하였다. 680 단위의 GDH (Amano Pharmaceutical Co., Ltd. 제조), 5.0g의 글루코오스, 3.0 mg의 NADP, 및 4.5 g의 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 생성한 배양액 25 ml에 첨가하였다. 배양액을, 5 M 수산화나트륨 수용액으로 pH 6.5로 조정하면서, 30℃에서 40 시간동안 교반하였다. 반응 후, 반응용액을 아세트산 에틸을 사용하여 추출하고, 용매 제거 후의 추출물을 분석하였다. 그 결과, tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트가 수율 96.9%로 생성된 것을 발견하였다. tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 부분입체이성질체 초과율은 98.2% de였다.
tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트 및 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 정량 및, tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 부분입체이성질체 비율 측정은 고성능 액체 크로마토그래피에 의해 수행하였다 (칼럼: COSMOSIL 5CN-R (ID 4.6 ×250 mm) Nacalai Tesque Co., Ltd. 제조, 용출액: 1 mM 인산 용액/아세토니트릴=5/1, 유속: 0.7 ml/분, 검출: 210 nm, 칼럼 온도: 30℃).
(실시예 9: CR 효소 및 GDH가 동시에 발현되는 재조합 대장균을 사용한, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트로부터의 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 합성)
실시예 4 에서 수득한 재조합 대장균 HB101 (pNTCRG) 을, 500 ml Sakaguchi 플라스크 중에 멸균된 100 ml의 2 ×YT 배지 (박토 트립톤 1.6%(w/v), 박토 효소 추출물 1.0%(w/v), NaCl 0.5%(w/v), pH 7.0) 에 접종하여, 37℃에서 16시간동안 진탕 배양하였다. 5.0 g의 글루코오스, 1.5 mg의 NADP, 및 5.0 g의 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 수득한 배양액 25 ml에 첨가하였다. 배양물을, 5 M 수산화나트륨 수용액으로 pH 6.5로 조정하면서, 30℃에서 24 시간동안 교반하였다. 반응 후, 반응용액을 아세트산 에틸을 사용하여 추출하고, 용매 제거 후의 추출물을 분석하였다. 그 결과, tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트가 수율 97.2%로 생성된 것을 발견하였다. tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 부분입체이성질체 초과율은 98.5% de였다.
tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 폴리펩티드의 유전자를 클로닝하는 것, 및 상기 유전자의 뉴클레오티드 서열을 분석함으로써 높은 수준의 폴리펩티드 제조능을 갖는 형질전환체를 수득하는 것이 가능하다. 또한, 폴리펩티드 및 글루코오스 탈수소효소를 동시에 대량으로 제조할 수 있는 형질전환체를 수득하는 것이 가능하다. 또한, 상기 형질전환체를 사용하여 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트로부터 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 합성하는 것이 가능하다.
<110> KANEKA CORPORATION <120> NOVEL CARBONYL REDUCTASE, GENE THEREOF AND METHOD OF USING THE SAME <150> JP <151> 2000-11-24 <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 241 <212> PRT <213> Candida magnoliae IFO 0705 <400> 1 Met Ser Thr Pro Leu Asn Ala Leu Val Thr Gly Ala Ser Arg Gly Ile 1 5 10 15 Gly Ala Ala Thr Ala Ile Lys Leu Ala Glu Asn Gly Tyr Ser Val Thr 20 25 30 Leu Ala Ala Arg Asn Val Ala Lys Leu Asn Glu Val Lys Glu Lys Leu 35 40 45 Pro Val Val Lys Asp Gly Gln Lys His His Ile Trp Glu Leu Asp Leu 50 55 60 Ala Ser Val Glu Ala Ala Ser Ser Phe Lys Gly Ala Pro Leu Pro Ala 65 70 75 80 Ser Asp Tyr Asp Leu Phe Val Ser Asn Ala Gly Ile Ala Gln Phe Thr 85 90 95 Pro Thr Ala Asp Gln Thr Asp Lys Asp Phe Leu Asn Ile Leu Thr Val 100 105 110 Asn Leu Ser Ser Pro Ile Ala Leu Thr Lys Ala Leu Leu Lys Gly Val 115 120 125 Ser Glu Arg Ser Asn Glu Lys Pro Phe His Ile Ile Phe Leu Ser Ser 130 135 140 Ala Ala Ala Leu His Gly Val Pro Gln Thr Ala Val Tyr Ser Ala Ser 145 150 155 160 Lys Ala Gly Leu Asp Gly Phe Val Arg Ser Leu Ala Arg Glu Val Gly 165 170 175 Pro Lys Gly Ile His Val Asn Val Ile His Pro Gly Trp Thr Lys Thr 180 185 190 Asp Met Thr Asp Gly Ile Asp Asp Pro Asn Asp Thr Pro Ile Lys Gly 195 200 205 Trp Ile Gln Pro Glu Ala Ile Ala Asp Ala Val Val Phe Leu Ala Lys 210 215 220 Ser Lys Asn Ile Thr Gly Thr Asn Ile Val Val Asp Asn Gly Leu Leu 225 230 235 240 Ala <210> 2 <211> 726 <212> DNA <213> Candida magnoliae IFO 0705 <400> 2 atgtcgactc cgttgaatgc tctcgtaact ggcgctagcc gcggcattgg cgctgctact 60 gccattaagc tcgccgagaa tggatacagt gtgacgctgg ctgcgcgtaa tgtcgcgaag 120 ctgaacgaag tgaaggagaa gctgcctgtg gtcaaggacg gccagaagca ccacatctgg 180 gagctcgatc ttgcgagcgt tgaggctgca tcgtccttca agggcgcgcc tttaccggct 240 agcgactacg atctgttcgt ttcgaatgct ggcattgcgc agttcacgcc aacggcggac 300 caaaccgaca aggacttcct gaacattctc accgtgaacc tctcctcccc cattgcgctc 360 acgaaggccc tactgaaggg cgtctccgag aggtcgaacg agaagccgtt ccatattatc 420 ttcctctcgt ccgctgcagc cctgcacgga gtccctcaga ctgcagtcta cagtgcttcg 480 aaggcggggc ttgacggttt cgtgcgctct cttgctcgcg aggtgggtcc gaagggcatt 540 catgtgaacg ttattcatcc tggttggacg aagactgaca tgacggatgg tattgacgac 600 cccaatgata ctcctatcaa gggctggatc cagcctgagg cgattgctga tgcggttgtg 660 ttcctggcaa agtcgaagaa catcacaggc actaatatcg tggtggacaa tggcttgctc 720 gcttga 726 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer Sequence <400> 3 atngcytcrg gytgdatcca 20 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer Sequence <400> 4 gcgcatatgt ctactccgtt gaatgctctc gta 33 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer Sequence <400> 5 ggcgaattct tatcaagcga gcaagccatt gtc 33 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer Sequence <400> 6 acngcngayc aracygayaa 20 <210> 7 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Primer Sequence <400> 7 gccgaattct aaggaggtta acaatgtata aagatttaga agg 43 <210> 8 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer Sequence <400> 8 gcggtcgact tatccgcgtc ctgcttgg 28

Claims (16)

  1. 서열 목록의 서열 번호 1 로 나타낸 아미노산 서열을 갖는, tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트를 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트로 비대칭 환원시키는 효소 활성을 갖는 폴리펩티드.
  2. 제 1 항에 있어서, 펩티드가 칸디다 속에 속하는 미생물로부터 유래되는 폴리펩티드.
  3. 제 2 항에 있어서, 미생물이 칸디다 마그놀리애 (Candida magnoliae) IFO 0705 인 폴리펩티드.
  4. 제 1 항에 따른 폴리펩티드를 코딩하는 폴리뉴클레오티드.
  5. 서열 목록의 서열 번호 2 또는 이들과 상보적인 서열로 나타내는 폴리뉴클레오티드.
  6. 제 4 항 또는 제 5 항에 따른 폴리뉴클레오티드를 포함하는 발현 벡터.
  7. 제 6 항에 있어서, 발현 벡터가 플라스미드 pNTCR 인 발현 벡터.
  8. 제 6 항에 있어서, 글루코오스 탈수소효소 활성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드를 더 포함하는 발현 벡터.
  9. 제 8 항에 있어서, 글루코오스 탈수소효소 활성을 갖는 폴리펩티드가 바실러스 메가테리움 (Bacillus megaterium) 으로부터 유래되는 글루코오스 탈수소효소인 발현 벡터.
  10. 제 9 항에 있어서, 발현 벡터가 플라스미드 pNTCRG 인 발현 벡터.
  11. 제 6 항에 따른 발현 벡터를 사용하여 숙주 세포를 형질전환시킴으로써 수득되는 형질전환체.
  12. 제 11 항에 있어서, 숙주 세포가 대장균인 형질전환체.
  13. 제 12 항에 있어서, 형질전환체가 대장균 HB101 (pNTCR) 인 형질전환체.
  14. 제 12 항에 있어서, 형질전환체가 대장균 HB101 (pNTCRG) 인 형질전환체.
  15. 제 11 항에 따른 형질전환체, 또는 그의 처리물을 tert-부틸 (S)-6-클로로-5-히드록시-3-옥소헥사노에이트와 반응시키는 단계, 및 제조된 tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트를 수합하는 단계를 포함하는, tert-부틸 (3R,5S)-6-클로로-3,5-디히드록시헥사노에이트의 제조 방법.
  16. 제 15 항에 있어서, 반응 단계가 조효소 재생계의 존재하에 수행되는 방법.
KR10-2001-7009856A 1999-12-03 2000-11-24 신규 카르보닐 환원효소, 그의 유전자, 및 그의 이용 방법 KR100512080B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-1999-00345541 1999-12-03
JP34554199 1999-12-03

Publications (2)

Publication Number Publication Date
KR20020008116A KR20020008116A (ko) 2002-01-29
KR100512080B1 true KR100512080B1 (ko) 2005-09-02

Family

ID=18377296

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-7009856A KR100512080B1 (ko) 1999-12-03 2000-11-24 신규 카르보닐 환원효소, 그의 유전자, 및 그의 이용 방법

Country Status (15)

Country Link
US (1) US6645746B1 (ko)
EP (1) EP1152054B1 (ko)
JP (1) JP4510351B2 (ko)
KR (1) KR100512080B1 (ko)
AT (1) ATE291616T1 (ko)
AU (1) AU1551701A (ko)
CA (1) CA2360376C (ko)
CZ (1) CZ20012792A3 (ko)
DE (1) DE60018909T2 (ko)
ES (1) ES2240205T3 (ko)
HU (1) HUP0105331A3 (ko)
MX (1) MXPA01007858A (ko)
NO (1) NO20013801L (ko)
SI (1) SI20642A (ko)
WO (1) WO2001040450A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344605B1 (ko) * 2005-12-19 2013-12-26 이에페 게엠베하 하이드록시케토 화합물의 거울상이성질체선택성 효소적환원 방법

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125693B2 (en) * 2002-08-09 2006-10-24 Codexis, Inc. Enzymatic processes for the production of 4-substituted 3-hydroxybutyric acid derivatives
WO2004052829A1 (ja) * 2002-12-06 2004-06-24 Kaneka Corporation 光学活性3−ヒドロキシプロピオン酸エステル誘導体の製造法
US7629157B2 (en) * 2003-08-11 2009-12-08 Codexis, Inc. Ketoreductase polypeptides and related polynucleotides
US7588928B2 (en) * 2003-08-11 2009-09-15 Codexis, Inc. Halohydrin dehalogenases and related polynucleotides
BRPI0413498A (pt) * 2003-08-11 2006-10-17 Codexis Inc método para produzir um éster de ácido carboxìlico substituìdo por hidróxi, ciano vicinal a partir de um éster de ácido carboxìlico substituìdo por hidróxi, halo vicinal, e, composição
CA2535147A1 (en) * 2003-08-11 2005-05-19 Codexis, Inc. Improved glucose dehydrogenase polypeptides and related polynucleotides
MXPA06001725A (es) * 2003-08-11 2006-04-27 Codexis Inc Halohidrina deshalogenasas mejoradas y polinucleotidos relacionados.
US7541171B2 (en) * 2003-08-11 2009-06-02 Codexis, Inc. Halohydrin dehalogenases and related polynucleotides
DE10345772A1 (de) * 2003-10-01 2005-04-21 Basf Ag Verfahren zur Herstellung von 3-Methylamino-1-(thien-2-yl)-propan-1-ol
WO2006046455A1 (ja) * 2004-10-27 2006-05-04 Kaneka Corporation 新規カルボニル還元酵素、その遺伝子、およびその利用法
DE102005044736A1 (de) * 2005-09-19 2007-03-22 Basf Ag Neue Dehydrogenasen, deren Derivate und ein Verfahren zur Herstellung von optisch aktiven Alkanolen
ATE529507T1 (de) 2006-03-31 2011-11-15 Kaneka Corp Verfahren zur produktion von erythro- oder threo- 2-amino-3-hydroxypropionsäureester, neuartige carbonylreduktase, gen für die reduktase, vektor, transformante und verfahren zur produktion von optisch aktivem alkohol unter verwendung dieser
US7879585B2 (en) 2006-10-02 2011-02-01 Codexis, Inc. Ketoreductase enzymes and uses thereof
AT504542B1 (de) * 2006-12-07 2008-09-15 Iep Gmbh Verfahren zur enantioselektiven enzymatischen reduktion von secodionderivaten
US7820421B2 (en) 2007-02-08 2010-10-26 Codexis, Inc. Ketoreductases and uses thereof
CN101784669B (zh) 2007-08-24 2015-02-18 科德克希思公司 用于(r)-3-羟基四氢噻吩的立体选择性制备的改善的酮还原酶多肽
JP5973131B2 (ja) 2007-09-13 2016-08-23 コデクシス, インコーポレイテッド アセトフェノンの還元のためのケトレダクターゼポリペプチド
TWI601825B (zh) * 2007-09-27 2017-10-11 Iep有限公司 對映異構選擇性酶催化還原中間產物之方法
CN101889081B (zh) 2007-09-28 2014-06-18 科德克希思公司 酮还原酶多肽及其用途
JP5646328B2 (ja) 2007-10-01 2014-12-24 コデクシス, インコーポレイテッド アゼチジノンの生産のためのケトレダクターゼポリペプチド
WO2010025287A2 (en) 2008-08-27 2010-03-04 Codexis, Inc. Ketoreductase polypeptides for the production of 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
WO2010027710A2 (en) * 2008-08-27 2010-03-11 Codexis, Inc. Ketoreductase polypeptides and uses thereof
EP2329013B1 (en) 2008-08-27 2015-10-28 Codexis, Inc. Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine
US8273554B2 (en) 2008-08-29 2012-09-25 Codexis, Inc. Ketoreductase polypeptides for the stereoselective production of (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one
WO2010080635A2 (en) 2008-12-18 2010-07-15 Codexis, Inc. Recombinant halohydrin dehalogenase polypeptides
EP2226386A1 (de) 2009-03-05 2010-09-08 IEP GmbH Verfahren zur stereoselektiven enzymatischen Reduktion von Ketoverbindungen
BRPI0924997B1 (pt) * 2009-06-22 2024-01-16 Sk Biopharmaceuticals Co., Ltd Método para preparar um composto de éster do ácido 1-aril-2- tetrazoil etil carbâmico
EP3409765B1 (en) 2009-06-22 2021-08-04 Codexis, Inc. Ketoreductase-mediated stereoselective route to alpha chloroalcohols
ES2575560T3 (es) 2009-08-19 2016-06-29 Codexis, Inc. Polipéptidos cetorreductasa para preparar fenilefrina
US8404461B2 (en) 2009-10-15 2013-03-26 SK Biopharmaceutical Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
US9080192B2 (en) 2010-02-10 2015-07-14 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
EP2566497B1 (en) 2010-05-04 2015-07-29 Codexis, Inc. Biocatalysts for ezetimibe synthesis
EP2639216B1 (en) 2010-11-09 2018-07-11 Kaneka Corporation Halogenated indenones and method for producing optically active indanones or optically active indanols by using same
CN102676596A (zh) * 2011-03-16 2012-09-19 苏州国镝医药科技有限公司 生物酶手性合成立普妥中间体ats-7
US9139819B2 (en) 2011-11-18 2015-09-22 Codexis, Inc. Biocatalysts for the preparation of hydroxy substituted carbamates
TW201343623A (zh) 2012-02-07 2013-11-01 Annikki Gmbh 使氧化還原輔因子經酶催化再生之方法
WO2013117251A1 (de) 2012-02-07 2013-08-15 Annikki Gmbh Verfahren zur enzymatischen regenerierung von redoxkofaktoren
US9902981B2 (en) 2012-02-07 2018-02-27 Annikki Gmbh Process for the production of furan derivatives from glucose
DE102012017026A1 (de) 2012-08-28 2014-03-06 Forschungszentrum Jülich GmbH Sensor für NADP(H) und Entwicklung von Alkoholdehydrogenasen
KR101446551B1 (ko) 2013-02-26 2014-10-06 주식회사 아미노로직스 (2rs)-아미노-(3s)-히드록시-부티르산 또는 이의 유도체의 제조방법
CN105102626B (zh) 2013-03-27 2019-01-01 安尼基有限责任公司 葡萄糖异构化的方法
CN106536725A (zh) 2014-04-22 2017-03-22 C-乐克塔股份有限公司 酮还原酶
CN104328148A (zh) * 2014-11-04 2015-02-04 尚科生物医药(上海)有限公司 酶法制备(3r,5s)-6-氯-3,5-二羟基己酸叔丁酯
US10696953B2 (en) 2015-02-10 2020-06-30 Codexis, Inc. Ketoreductase polypeptides for the synthesis of chiral compounds
CN104830921B (zh) * 2015-04-27 2019-07-02 上海工业生物技术研发中心 一种酶法制备他汀类化合物中间体的方法
CN105087684A (zh) * 2015-09-16 2015-11-25 连云港宏业化工有限公司 一种(3r,5s)-6-氯-3,5-二羟基己酸叔丁酯的制备方法
CN105087685A (zh) * 2015-09-16 2015-11-25 连云港宏业化工有限公司 一种合成(3r,5s)-6-氯-3,5-二羟基己酸叔丁酯的方法
CN106011092A (zh) * 2016-06-20 2016-10-12 苏州汉酶生物技术有限公司 一种工程化酮还原酶多肽及其用于制备孟鲁斯特中间体的方法
CN106011095B (zh) * 2016-07-27 2021-02-26 苏州汉酶生物技术有限公司 工程化酮还原酶多肽及使用其制备依替米贝中间体的方法
US11021729B2 (en) 2017-04-27 2021-06-01 Codexis, Inc. Ketoreductase polypeptides and polynucleotides
WO2019012095A1 (en) 2017-07-14 2019-01-17 C-Lecta Gmbh TCO-reductase
CN108441523A (zh) * 2018-03-22 2018-08-24 南京工业大学 (3r,5s)-6-氯-3,5,-二羟基己酸叔丁酯的制备方法
CN110387359B (zh) * 2018-04-17 2021-04-20 湖州颐盛生物科技有限公司 羰基还原酶突变体及其应用
EP3587393B1 (en) 2018-06-21 2024-01-17 F.I.S.- Fabbrica Italiana Sintetici S.p.A. Enzymatic process for the preparation of droxidopa
BR112023020229A2 (pt) 2021-04-02 2023-11-14 Hoffmann La Roche Processos para a preparação de um composto bicíclico de cetona quiral, composto de n-amino lactama quiral, composto de sal imidato e composto hidroxicetoéster, composto, ou um sal farmaceuticamente aceitável do mesmo e invenção
CN114875081A (zh) * 2022-06-07 2022-08-09 湖北迅达药业股份有限公司 一种瑞舒伐他汀关键中间体的绿色工业化生产方法
WO2024150146A1 (en) 2023-01-12 2024-07-18 Novartis Ag Engineered ketoreductase polypeptides

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278313A (en) 1992-03-27 1994-01-11 E. R. Squibb & Sons, Inc. Process for the preparation of 1,3-dioxane derivatives useful in the preparation of HMG-COA reductase inhibitors
GB9512837D0 (en) * 1995-06-23 1995-08-23 Zeneca Ltd reduction of ketone groups
EP1077212B1 (en) * 1998-04-30 2003-08-20 Kaneka Corporation Process for producing 6-cyanomethyl-1,3-dioxane-4-acetic acid derivatives
CA2305564C (en) 1998-08-05 2008-06-17 Kaneka Corporation Process for the preparation of optically active 2-[6-(hydroxymethyl)-1,3-dioxan-4-yl]acetic acid derivatives
DE19857302C2 (de) 1998-12-14 2000-10-26 Forschungszentrum Juelich Gmbh Verfahren zur enantioselektiven Reduktion von 3,5-Dioxocarbonsäuren, deren Salze und Ester
EP1194582A1 (de) 1999-07-09 2002-04-10 Forschungszentrum Jülich Gmbh Verfahren zur reduktion von keto-carbonsäuren und deren estern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344605B1 (ko) * 2005-12-19 2013-12-26 이에페 게엠베하 하이드록시케토 화합물의 거울상이성질체선택성 효소적환원 방법

Also Published As

Publication number Publication date
CA2360376C (en) 2005-04-26
US6645746B1 (en) 2003-11-11
MXPA01007858A (es) 2003-07-14
KR20020008116A (ko) 2002-01-29
WO2001040450A1 (fr) 2001-06-07
NO20013801D0 (no) 2001-08-02
CZ20012792A3 (cs) 2002-03-13
CA2360376A1 (en) 2001-06-07
HUP0105331A3 (en) 2005-10-28
DE60018909T2 (de) 2006-03-30
ES2240205T3 (es) 2005-10-16
DE60018909D1 (de) 2005-04-28
EP1152054B1 (en) 2005-03-23
NO20013801L (no) 2001-10-03
AU1551701A (en) 2001-06-12
EP1152054A4 (en) 2002-11-20
ATE291616T1 (de) 2005-04-15
SI20642A (sl) 2002-02-28
JP4510351B2 (ja) 2010-07-21
EP1152054A1 (en) 2001-11-07
HUP0105331A2 (hu) 2002-05-29

Similar Documents

Publication Publication Date Title
KR100512080B1 (ko) 신규 카르보닐 환원효소, 그의 유전자, 및 그의 이용 방법
KR100506134B1 (ko) 신규한 카르보닐 환원효소 및 이것을 코딩하는 유전자 및 이러한 환원효소 및 유전자 이용방법
WO2006013801A1 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
KR20090033864A (ko) 광학 활성 알코올의 제조방법
KR20110049907A (ko) 광학 활성인 아민 유도체를 제조하기 위한 방법
EP2980213B1 (en) Modified carbonyl reducing enzyme and gene
EP1985700A1 (en) Novel (s,s)-butanediol dehydrogenase, gene for the same, and use of the same
EP2562253B1 (en) Modified carbonyl reductase, gene thereof, and method of producing optically active alcohols using these
JP4426437B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
EP1116795A1 (en) Process for producing optically active pyridineethanol derivatives
EP2128258B1 (en) Novel amidase, gene for the same, vector, transformant, and method for production of optically active carboxylic acid amide and optically active carboxylic acid by using any one of those items
JP5761641B2 (ja) (r)−3−キヌクリジノールの製造方法
EP1306438B1 (en) Novel carbonyl reductase, gene thereof and method of using the same
JP2003502021A (ja) アスペルギルス起源のエポキシドヒドロラーゼ
US20080305534A1 (en) Novel Glycerol Dehydrogenase, Gene Therefor, and Method of Utilizing the Same
EP1408107B1 (en) Chlorohydrin and hydroxycarboxylic ester asymmetric hydrolase gene
JP2003061668A (ja) 新規グリセロール脱水素酵素およびその利用法
EP1688480A2 (en) NOVEL ACETOACETYL-CoA REDUCTASE AND PROCESS FOR PRODUCING OPTICALLY ACTIVE ALCOHOL
JP2003289895A (ja) メチレンジオキシフェニル基を有するケトン化合物の不斉還元による光学活性アルコール化合物の製造方法
JP2005027552A (ja) 新規な光学活性2−ヒドロキシメチル−3−アリールプロピオン酸の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120802

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130801

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee