JPWO2020116521A1 - ガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法 - Google Patents
ガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法 Download PDFInfo
- Publication number
- JPWO2020116521A1 JPWO2020116521A1 JP2020559973A JP2020559973A JPWO2020116521A1 JP WO2020116521 A1 JPWO2020116521 A1 JP WO2020116521A1 JP 2020559973 A JP2020559973 A JP 2020559973A JP 2020559973 A JP2020559973 A JP 2020559973A JP WO2020116521 A1 JPWO2020116521 A1 JP WO2020116521A1
- Authority
- JP
- Japan
- Prior art keywords
- burner
- supply pipe
- gas supply
- glass fine
- fine particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 101
- 239000011521 glass Substances 0.000 title claims abstract description 101
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 239000007789 gas Substances 0.000 claims abstract description 165
- 239000002994 raw material Substances 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 12
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000002253 acid Substances 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 2
- 238000006243 chemical reaction Methods 0.000 claims description 34
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 12
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 15
- 230000002093 peripheral effect Effects 0.000 description 12
- 238000009835 boiling Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 6
- 239000004071 soot Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/12—Nozzle or orifice plates
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/30—For glass precursor of non-standard type, e.g. solid SiH3F
- C03B2207/32—Non-halide
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/50—Multiple burner arrangements
- C03B2207/52—Linear array of like burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/62—Distance
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/80—Feeding the burner or the burner-heated deposition site
- C03B2207/85—Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
- C03B2207/87—Controlling the temperature
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/0144—Means for after-treatment or catching of worked reactant gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/21—Burners specially adapted for a particular use
- F23D2900/21005—Burners specially adapted for a particular use for flame deposition, e.g. FHD, flame hydrolysis deposition
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
ガラス微粒子堆積体製造用のバーナであって、バーナ本体となる金属製のガス供給管と、ガス供給管を覆うカバーと、を備え、ガス供給管とカバーとが一体に構成され、ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、カバーは、ガス供給管と、ガス供給管の側面に接続された配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
Description
本開示は、ガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法に関する。
本出願は、2018年12月4日出願の日本国特許出願第2018−227117号に基づく優先権を主張し、当該出願に記載された全ての記載内容を援用するものである。
本出願は、2018年12月4日出願の日本国特許出願第2018−227117号に基づく優先権を主張し、当該出願に記載された全ての記載内容を援用するものである。
特許文献1には、シロキサンを原料として用いてガラス微粒子堆積体を形成するガラス微粒子堆積体製造用バーナとガラス微粒子堆積体の製造方法が記載されている。
特許文献2には、ガラス微粒子堆積体が成長してその径が増大するにしたがってバーナを後退させることが記載されている。
特許文献2には、ガラス微粒子堆積体が成長してその径が増大するにしたがってバーナを後退させることが記載されている。
本開示の一態様に係るガラス微粒子堆積体製造用バーナは、
ガラス微粒子堆積体製造用のバーナであって、
バーナ本体となる金属製のガス供給管と、
前記ガス供給管を覆うカバーと、
を備え、
前記ガス供給管と前記カバーとが一体に構成され、
前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
ガラス微粒子堆積体製造用のバーナであって、
バーナ本体となる金属製のガス供給管と、
前記ガス供給管を覆うカバーと、
を備え、
前記ガス供給管と前記カバーとが一体に構成され、
前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
本開示の一態様に係るガラス微粒子堆積体の製造装置は、
反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造装置であって、
前記出発ロッドから離間配置され、壁面にバーナが通る貫通孔が設けられた壁部と、
前記壁部の外側から内側へクリーンエアを供給するクリーンエア供給部と、
バーナ本体となる金属製のガス供給管と、前記ガス供給管を覆い、前記ガス供給管と一体に構成されるカバーとを備えたバーナと、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い後退させる移動機構と、
を備え、
前記バーナの前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造装置であって、
前記出発ロッドから離間配置され、壁面にバーナが通る貫通孔が設けられた壁部と、
前記壁部の外側から内側へクリーンエアを供給するクリーンエア供給部と、
バーナ本体となる金属製のガス供給管と、前記ガス供給管を覆い、前記ガス供給管と一体に構成されるカバーとを備えたバーナと、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い後退させる移動機構と、
を備え、
前記バーナの前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
また、本開示の一態様に係るガラス微粒子堆積体の製造方法は、
反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記出発ロッドから離間配置された壁部の壁面にバーナが通る貫通孔を設け、
前記バーナは、バーナ本体となる金属製のガス供給管と前記ガス供給管を覆うカバーとを一体として備え、前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っており、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い、前記貫通孔との隙間を一定にしつつ後退させ、
前記隙間からクリーンエアを前記反応容器内に導入する。
反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記出発ロッドから離間配置された壁部の壁面にバーナが通る貫通孔を設け、
前記バーナは、バーナ本体となる金属製のガス供給管と前記ガス供給管を覆うカバーとを一体として備え、前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っており、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い、前記貫通孔との隙間を一定にしつつ後退させ、
前記隙間からクリーンエアを前記反応容器内に導入する。
(本開示が解決しようとする課題)
OVD(Outside Vapor Deposition)法やMMD(Multiburner Multilayer Deposition)法では、クリーンエアを反応容器内に導入し、対向する位置にある排気口で排気することで、ガラス微粒子堆積体に堆積しなかったガラス微粒子等(以下、余剰ススと云う)を排気し、火炎を整え、安定してガラス微粒子を堆積できるようにしている。このとき、ガラス微粒子堆積体が成長してその径が大きくなると、バーナと堆積面との距離が変化して堆積面の温度や堆積効率が変化してしまう。そのため、ガラス微粒子堆積体の径が増大するにしたがってバーナを後退させる必要がある。
OVD(Outside Vapor Deposition)法やMMD(Multiburner Multilayer Deposition)法では、クリーンエアを反応容器内に導入し、対向する位置にある排気口で排気することで、ガラス微粒子堆積体に堆積しなかったガラス微粒子等(以下、余剰ススと云う)を排気し、火炎を整え、安定してガラス微粒子を堆積できるようにしている。このとき、ガラス微粒子堆積体が成長してその径が大きくなると、バーナと堆積面との距離が変化して堆積面の温度や堆積効率が変化してしまう。そのため、ガラス微粒子堆積体の径が増大するにしたがってバーナを後退させる必要がある。
また、シロキサンを原料として用いてガラス微粒子堆積体を形成する際には、バーナの周囲に安定したクリーンエアの気流ができるように、バーナとバーナの周囲の壁面との間に隙間を設けてこの隙間からクリーンエアを入れることが望ましい。
また、シロキサンは沸点が高く、高温でバーナを加熱する必要があり、四塩化珪素を原料としたプロセスで用いられている石英バーナを使うと、配管との接続に用いる材料を選択することが難しい。そのため、シロキサンを用いる場合には、金属製のバーナを使用しているが、金属製のバーナは、石英バーナのような外径精度で長いものを製作すると非常に高価なものとなるため、定径の部分の長さを短くしている。そのため、定径部分だけではバーナが後退するためのストロークを確保することが難しく、定径の部分以外の、配管が接続されている部分なども壁面を通過させる必要がある。
したがって、ガラス微粒子堆積体の成長(バーナの後退)に伴い、クリーンエアが通る上記隙間の断面積が変化し、クリーンエアの流速が変化することになる。クリーンエアの流速が変化して気流が安定しないと、ガラス微粒子の堆積状態に影響を与えてしまう。例えば、堆積効率の安定化のためには堆積面の温度を一定範囲内に保つ必要があるが、堆積中に隙間の断面積が変わると、堆積面の温度が安定しないおそれがある。
そこで、本開示は、製造プロセス中、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くようにすることができるガラス微粒子堆積体製造用のバーナ、ガラス微粒子堆積体の製造装置および製造方法を提供することを目的とする。
(本開示の効果)
本開示に係るガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法によれば、製造プロセス中、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くようにすることができる。
本開示に係るガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法によれば、製造プロセス中、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くようにすることができる。
(本開示の実施形態の説明)
最初に本開示の実施態様を列記して説明する。
本開示の一態様に係るガラス微粒子堆積体製造用バーナは、
(1)ガラス微粒子堆積体製造用のバーナであって、
バーナ本体となる金属製のガス供給管と、
前記ガス供給管を覆うカバーと、
を備え、
前記ガス供給管と前記カバーとが一体に構成され、
前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
上記構成によれば、カバーが、ガス供給管と、ガス供給管の側面に接続された配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。そのため、反応容器内のガラス微粒子堆積体から離間配置された一側壁面にバーナを取り付け、ガラス微粒子堆積体を製造する際にバーナを後退させても、壁面との間の隙間の断面積を一定とすることができる。上記構成のバーナを用いてガラス微粒子堆積体製造を行うことにより、製造プロセス中、一定の隙間からクリーンエアを導入することができるので、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くことができる。
最初に本開示の実施態様を列記して説明する。
本開示の一態様に係るガラス微粒子堆積体製造用バーナは、
(1)ガラス微粒子堆積体製造用のバーナであって、
バーナ本体となる金属製のガス供給管と、
前記ガス供給管を覆うカバーと、
を備え、
前記ガス供給管と前記カバーとが一体に構成され、
前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
上記構成によれば、カバーが、ガス供給管と、ガス供給管の側面に接続された配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。そのため、反応容器内のガラス微粒子堆積体から離間配置された一側壁面にバーナを取り付け、ガラス微粒子堆積体を製造する際にバーナを後退させても、壁面との間の隙間の断面積を一定とすることができる。上記構成のバーナを用いてガラス微粒子堆積体製造を行うことにより、製造プロセス中、一定の隙間からクリーンエアを導入することができるので、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くことができる。
また、本開示の一態様に係るガラス微粒子堆積体の製造装置は、
(2)反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造装置であって、
前記出発ロッドから離間配置され、壁面にバーナが通る貫通孔が設けられた壁部と、
前記壁部の外側から内側へクリーンエアを供給するクリーンエア供給部と、
バーナ本体となる金属製のガス供給管と、前記ガス供給管を覆い、前記ガス供給管と一体に構成されるカバーとを備えたバーナと、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い後退させる移動機構と、
を備え、
前記バーナの前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
上記構成によれば、出発ロッドから離間配置された壁部の壁面とカバーとの間に隙間を開けて貫通して取り付けられたバーナは、カバーが、ガス供給管と、ガス供給管の側面に接続された配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。そのため、ガラス微粒子堆積体を製造する際にバーナを後退させても、壁面との間の隙間の断面積を一定とすることができる。これにより、製造プロセス中、一定の隙間からクリーンエアを導入することができるので、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くことができる。
(2)反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造装置であって、
前記出発ロッドから離間配置され、壁面にバーナが通る貫通孔が設けられた壁部と、
前記壁部の外側から内側へクリーンエアを供給するクリーンエア供給部と、
バーナ本体となる金属製のガス供給管と、前記ガス供給管を覆い、前記ガス供給管と一体に構成されるカバーとを備えたバーナと、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い後退させる移動機構と、
を備え、
前記バーナの前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。
上記構成によれば、出発ロッドから離間配置された壁部の壁面とカバーとの間に隙間を開けて貫通して取り付けられたバーナは、カバーが、ガス供給管と、ガス供給管の側面に接続された配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。そのため、ガラス微粒子堆積体を製造する際にバーナを後退させても、壁面との間の隙間の断面積を一定とすることができる。これにより、製造プロセス中、一定の隙間からクリーンエアを導入することができるので、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くことができる。
また、本開示の一態様に係るガラス微粒子堆積体の製造方法は、
(3)反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記出発ロッドから離間配置された壁部の壁面にバーナが通る貫通孔を設け、
前記バーナは、バーナ本体となる金属製のガス供給管と前記ガス供給管を覆うカバーとを一体として備え、前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っており、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い、前記貫通孔との隙間を一定にしつつ後退させ、
前記隙間からクリーンエアを前記反応容器内に導入する。
上記方法によれば、出発ロッドから離間配置された壁部の壁面とカバーとの間に隙間を開けて貫通して取り付けられたバーナは、カバーが、ガス供給管と、ガス供給管の側面に接続された配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。そのため、ガラス微粒子堆積体を製造する際にバーナを後退させても、壁面との間の隙間の断面積を一定とすることができる。これにより、製造プロセス中、一定の隙間からクリーンエアを導入することができるので、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くことができる。
(3)反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記出発ロッドから離間配置された壁部の壁面にバーナが通る貫通孔を設け、
前記バーナは、バーナ本体となる金属製のガス供給管と前記ガス供給管を覆うカバーとを一体として備え、前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っており、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い、前記貫通孔との隙間を一定にしつつ後退させ、
前記隙間からクリーンエアを前記反応容器内に導入する。
上記方法によれば、出発ロッドから離間配置された壁部の壁面とカバーとの間に隙間を開けて貫通して取り付けられたバーナは、カバーが、ガス供給管と、ガス供給管の側面に接続された配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている。そのため、ガラス微粒子堆積体を製造する際にバーナを後退させても、壁面との間の隙間の断面積を一定とすることができる。これにより、製造プロセス中、一定の隙間からクリーンエアを導入することができるので、ガラス微粒子堆積体の堆積面の温度を安定させることができるとともに、効率よく排気を行って反応容器内の余剰ススを取り除くことができる。
前記(3)に記載のガラス微粒子堆積体の製造方法は、
(4)原料としてOMCTS(オクタメチルシクロテトラシロキサン)を用い、前記ガス供給管を230℃以上に加熱してもよい。
原料としてOMCTSを用いた場合において、ガス供給管をOMCTSの沸点温度以上である、230℃以上に加熱するので、ガス供給管内、即ちバーナ内部でOMCTSが液化することを防ぐことができる。
(4)原料としてOMCTS(オクタメチルシクロテトラシロキサン)を用い、前記ガス供給管を230℃以上に加熱してもよい。
原料としてOMCTSを用いた場合において、ガス供給管をOMCTSの沸点温度以上である、230℃以上に加熱するので、ガス供給管内、即ちバーナ内部でOMCTSが液化することを防ぐことができる。
(本開示の実施形態の詳細)
本開示の実施形態に係るガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法の具体例を、図面を参照しつつ説明する。
なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本開示の実施形態に係るガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法の具体例を、図面を参照しつつ説明する。
なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
図1は、本開示の実施形態に係るガラス微粒子堆積体の製造装置の一例を示す概略構成図である。
図1に示すように、ガラス微粒子堆積体の製造装置1(以下、製造装置1と称する)は、反応容器100内に配置された出発ロッド110にガラス微粒子mを堆積させてガラス微粒子堆積体Mを作製する装置である。製造装置1は、ガラス微粒子mを出発ロッド110に向けて噴き付けるバーナ2と、バーナ2が挿通されている壁部6と、バーナ2を移動させる移動機構7と、クリーンエアを供給するクリーンエア供給部8と、を備えている。
図1に示すように、ガラス微粒子堆積体の製造装置1(以下、製造装置1と称する)は、反応容器100内に配置された出発ロッド110にガラス微粒子mを堆積させてガラス微粒子堆積体Mを作製する装置である。製造装置1は、ガラス微粒子mを出発ロッド110に向けて噴き付けるバーナ2と、バーナ2が挿通されている壁部6と、バーナ2を移動させる移動機構7と、クリーンエアを供給するクリーンエア供給部8と、を備えている。
反応容器100の上壁には貫通孔が設けられており、出発ロッド110がこの貫通孔を上下方向に挿通するように配置されている。出発ロッド110は、上端が回転トラバース装置(図示省略)に把持されており、反応容器100内で回転するとともに、上下方向に往復移動するようになっている。
また、反応容器100には、出発ロッド110を挟んで、一方の側部(左側部)にバーナ2が配置され、バーナ2とは反対側の側部(右側部)に排気管101が接続されている。排気管101は、所定量のガスの排気を行う管であり、ガラス微粒子堆積体Mに堆積しないで反応容器100内に浮遊するガラス微粒子mを外部に排除する。
バーナ2は、反応容器100内を二つの室に区画する壁部6に挿通され、噴出面を出発ロッド110に対向させるように設けられている。バーナ2は、出発ロッド110の軸方向(上下方向)へ等間隔に並んで複数(本例では、6つ)設けられている。各バーナ2は、出発ロッド110に向けてそれぞれ独立してガラス微粒子mを噴射することができるように構成されている。
壁部6は、出発ロッド110から離間した位置に形成されている。反応容器100内は、壁部6により、ガラス微粒子mの噴き付けが行われる反応室100A(右側の室)とクリーンエアが流入されるクリーンエア室100B(左側の室)とに区画されている。壁部6の壁面には、反応容器100の左右二つの室を連通させるように貫通孔61が設けられている。貫通孔61は、出発ロッド110の軸方向へ等間隔に並んで複数(本例では、6つ)設けられている。各貫通孔61には、バーナ2がそれぞれ挿通されている。貫通孔61の径R1は、例えば、70〜80mm程度に形成されている。
移動機構7は、貫通孔61に挿通された状態のバーナ2を支持するとともに、バーナ2を反応容器100内の出発ロッド110に対して後退(矢印A方向)または前進(矢印B方向)させることが可能な機構である。移動機構7は、例えば、クリーンエア室100B内に設けられている。移動機構7は、バーナ2を直線的に移動させることが可能な、例えば、リニアモータやステッピングモータ等からなる駆動部を備えている。
このように、本例の製造装置1では、複数のバーナ2が出発ロッド110に対して相対的に移動しながらガラス微粒子mを堆積させるMMD法でガラス微粒子堆積体Mを製造する。
クリーンエア供給部8は、反応容器100内に清浄化ガスであるクリーンエアを供給するための装置である。クリーンエア供給部8は、エア供給管81を介してクリーンエア室100Bに接続されている。
図2は、バーナ2を側面側から観察した概略構成図である。図3は、図2の矢視C−C線の断面図である。なお、図3では、矢視の方向から見てガス供給管20の外周側面よりも外側の領域がカバー30で閉鎖(塞がれた)状態になっていることを破線のハッチングで示している。
図2および図3に示すように、バーナ2は、ガス供給管20と、ガス供給管20の周囲を覆うカバー30と、を備えている。
図2および図3に示すように、バーナ2は、ガス供給管20と、ガス供給管20の周囲を覆うカバー30と、を備えている。
原料ガスとしては、例えば、融点が17.5℃であり沸点が175℃であるオクタメチルシクロテトラシロキサン(OMCTS)、融点が−38℃であり沸点が210℃であるデカメチルシクロペンタシロキサン(DMCPS)、融点が64℃であり沸点が134℃であるヘキサメチルシクロトリシロキサン、融点が−68℃であり沸点が100℃であるヘキサメチルジシロキサンなどを用いることができるが、OMCTSが最も望ましい。
バーナ2には、原料ガスとしてシロキサン、火炎形成ガスとして水素(H2)や酸素(O2)等、シールガスとして窒素(N2)やアルゴン(Ar)等の不活性ガスが供給される。バーナ2は、助燃性ガス(酸素)と可燃性ガス(水素)とにより発生した酸水素火炎中に、気化されたシロキサンを噴出させて、酸化反応させることでガラス微粒子mを合成させる。
ガス供給管20は、バーナ2の本体を構成する部分であり、例えば、円筒状に形成されている。ガス供給管20は、金属材料、例えば、耐腐食性に優れたステンレス等で構成されている。ガス供給管20の軸方向(左右方向)における長さLは、例えば、75〜105mm程度である。ガス供給管20の長さLは、ガス供給管20の熱容量を確保するために、例えば、供給するシロキサンの量に応じて変化させうる。
ガス供給管20の側面には、酸水素ガスおよびシールガスを供給するための配管が接続される接続部21a〜21dが設けられている。接続部21aには、例えばシールガスを供給する配管22aが接続される。接続部21bには、例えば水素ガスを供給する配管22bが接続される。接続部21c、21dには、例えば酸素ガスを供給する配管22c、22dが接続される。各接続部21a〜21dは、例えば、ガス供給管20の側面から垂直に延びた後に、各配管22a〜22dが接続される接続口をガス供給管20の背面方向へ向けて延ばすような形状に形成されている。
バーナ2は、中央に原料ガスであるシロキサンを噴出する原料ガスポート23を有している。原料ガスポート23の周囲には、シールガスであるN2を噴出するシールガスポート24が同心円状に複数配置されている。シールガスポート24の周囲には、可燃性ガスであるH2を噴出する可燃性ガスポート25が同心円状に複数配置されている。可燃性ガスポート25の周囲には、助燃性ガスであるO2を噴出する助燃性ガスポート26,27が二重の同心円状に複数配置されている。原料ガスポート23の径は、例えば1mm以上4mm以下程度である。また、シールガスポート24、可燃性ガスポート25、および助燃性ガスポート26,27の径は、例えば1mm以上2mm以下程度である。
シールガスポート24は、接続部21aを介して配管22aに接続されている。可燃性ガスポート25は、接続部21bを介して配管22bに接続されている。助燃性ガスポート26は、接続部21cを介して配管22cに接続されている。助燃性ガスポート27は、接続部21dを介して配管22dに接続されている。また、原料ガスポート23は、ガス供給管20の背面に接続されるシロキサンを供給するための配管22eに接続されている。配管22a〜22dの径は、1/4〜3/8インチ程度である。また、配管22eの径は、1/4インチ程度である。
カバー30は、例えば、一定の外径を有する円筒状に形成されている。カバー30は、ガス供給管20および接続部21a〜21dの外周をガス供給管20の長さ方向(左右方向)に所定長を覆うように設けられている。カバー30は、例えば、少なくともバーナ2が出発ロッド110に対して移動(後退)する距離以上の長さに形成されている。
カバー30は、ガス供給管20と一体的に構成されている。カバー30とガス供給管20とは、バーナ2の移動の際に一体となって移動する。円筒状に形成されているカバー30の背面側は、開放状態になっている。これに対して、カバー30の前面側は、カバー30内に収納されているガス供給管20の前面を除く領域、すなわちガス供給管20の外周側面よりも外側の領域が閉鎖(塞がれた)状態になっている。このため、バーナ2を前面側から観察した場合、ガス供給管20の前面だけが見えるような構成になっている。したがって、クリーンエア供給部8からクリーンエア室100B内に送られたクリーンエアは、カバー30の背面側からカバー30内に流入し得るが、カバー30内に流入したクリーンエアは、カバー30の前面側からカバー30外に流れ出ないようになっている。
カバー30の外径R2は、壁部6の貫通孔61の径R1よりも、例えば、10mm程度小さくなるように形成されている。このため、カバー30の外周面と壁部6の貫通孔61の内周面との間には、隙間Sが設けられている。バーナ2は、壁部6の貫通孔61内において、上記隙間Sの径方向の距離がカバー30の全周において等しくなるように、貫通孔61の中央部に挿通されている。
ガス供給管20の外周部分には、ガス供給管20の温度を高温に保持するために、発熱体であるヒータ(図示省略)が設けられている。ヒータとしては、例えば、テープヒータが用いられる。ヒータが通電されることで、ガス供給管20は、例えば、シロキサンの沸点温度以上となるように加熱される(シロキサンがOMCTSである場合は、例えば230℃以上に加熱される)。これにより、配管22e内のシロキサンは、沸点温度以上となるように加熱され、配管22e内でシロキサンが液化しないように、シロキサンの温度が維持されている。
次に、製造装置1を用いたガラス微粒子堆積体の製造方法について説明する。なお、下記のガラス微粒子堆積体の製造方法では、原料のシロキサンとしてOMCTSを用いている。
まず、貫通孔61に挿通されている各バーナ2が出発ロッド110に対して製造開始時の所定の位置にくるように移動機構7によって各バーナ2を移動させる。
その後、クリーンエア供給部8からクリーンエア室100B内にクリーンエアを供給する。クリーンエア室100B内に供給されたクリーンエアは、バーナ2のカバー30の外周面と壁部6の貫通孔61の内周面との隙間Sから反応容器100内に導入される。隙間Sは、バーナ2の軸方向に垂直な断面積が一定となるように形成されているので、製造プロセス中クリーンエアは、隙間Sから一様に反応容器100内に導入される。
その後、クリーンエア供給部8からクリーンエア室100B内にクリーンエアを供給する。クリーンエア室100B内に供給されたクリーンエアは、バーナ2のカバー30の外周面と壁部6の貫通孔61の内周面との隙間Sから反応容器100内に導入される。隙間Sは、バーナ2の軸方向に垂直な断面積が一定となるように形成されているので、製造プロセス中クリーンエアは、隙間Sから一様に反応容器100内に導入される。
ガス供給管20の外周部分に設けられているヒータにより、ガス供給管20を230℃以上に加熱する。バーナ2によって、火炎形成ガス、シールガス、原料ガス等を噴出させる。これにより、形成された火炎の中で気化された原料ガスが酸化反応をおこしてガラス微粒子mが合成される。合成されたガラス微粒子mは、出発ロッド110に噴き付けられて、出発ロッド110の表面に堆積しガラス微粒子堆積体Mが成長する。
ガラス微粒子堆積体Mが成長してその径が大きくなるに伴い、カバー30の外周面と貫通孔61の内周面との隙間Sの断面積を一定にしつつ各バーナ2を矢印A方向に後退させる。
上記のようなガラス微粒子堆積体製造用のバーナ2、ガラス微粒子堆積体の製造装置1および製造方法によれば、ガス供給管20と、配管22a〜22dの接続部21a〜21dとが一定の外径R2を有するカバー30によって覆われている。このため、壁部6の貫通孔61に挿通されたバーナ2を貫通孔61に沿って移動(後退)させる際に、バーナ2のカバー30の外周面と貫通孔61の内周面との隙間Sの断面積が一定になるようにして後退させることができる。これにより、この隙間Sを通ってクリーンエア室100Bから反応容器100内に流れ込むクリーンエアの気流を一様にすることができる。したがって、製造プロセス中、ガラス微粒子堆積体Mの堆積面の温度を安定させることができ、ガラス微粒子mを効率よく堆積させることができる。また、反応容器100の排気管101から効率よく排気を行うことができ、反応容器100内の余剰のガラス微粒子mを取り除くようにすることができる。
また、原料ガスがOMCTSである場合、ガラス微粒子堆積体Mの堆積中にガス供給管20を230℃以上に加熱するので、ガス供給管20内、すなわち配管22e内においてOMCTSが液化することを防ぐことができる。
上記実施形態では、カバー30がガス供給管20に固定されているが、これに限定されない。カバー30は、例えば、ガス供給管20を支持するために移動機構7に設けられているブラケットに固定されていてもよい。また、上記実施形態ではMMD法を例にして説明したが、これに限定されない。MMD法と同様にガラス微粒子を堆積させる、例えば、OVD法に適用することも可能である。
以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。
なお、カバーの外径が一定であるとは、厳密な意味での一定を意味するものではなく、本発明の効果を奏する範囲で幅を持つ意味である。
1:製造装置
2:バーナ
6:壁部
7:移動機構
8:クリーンエア供給部
20:ガス供給管
21a〜21d:接続部
22a〜22e:配管
23:原料ガスポート
24:シールガスポート
25:可燃性ガスポート
26,27:助燃性ガスポート
30:カバー
61:貫通孔
81:エア供給管
100:反応容器
100A:反応室
100B:クリーンエア室
101:排気管
110:出発ロッド
m:ガラス微粒子
M:ガラス微粒子堆積体
S:隙間
2:バーナ
6:壁部
7:移動機構
8:クリーンエア供給部
20:ガス供給管
21a〜21d:接続部
22a〜22e:配管
23:原料ガスポート
24:シールガスポート
25:可燃性ガスポート
26,27:助燃性ガスポート
30:カバー
61:貫通孔
81:エア供給管
100:反応容器
100A:反応室
100B:クリーンエア室
101:排気管
110:出発ロッド
m:ガラス微粒子
M:ガラス微粒子堆積体
S:隙間
Claims (4)
- ガラス微粒子堆積体製造用のバーナであって、
バーナ本体となる金属製のガス供給管と、
前記ガス供給管を覆うカバーと、
を備え、
前記ガス供給管と前記カバーとが一体に構成され、
前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている、
バーナ。 - 反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造装置であって、
前記出発ロッドから離間配置され、壁面にバーナが通る貫通孔が設けられた壁部と、
前記壁部の外側から内側へクリーンエアを供給するクリーンエア供給部と、
バーナ本体となる金属製のガス供給管と、前記ガス供給管を覆い、前記ガス供給管と一体に構成されるカバーとを備えたバーナと、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い後退させる移動機構と、
を備え、
前記バーナの前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、
前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っている、
ガラス微粒子堆積体の製造装置。 - 反応容器内に配置された出発ロッドにガラス微粒子を堆積させてガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記出発ロッドから離間配置された壁部の壁面にバーナが通る貫通孔を設け、
前記バーナは、バーナ本体となる金属製のガス供給管と前記ガス供給管を覆うカバーとを一体として備え、前記ガス供給管には、原料ガス、酸水素ガス、シールガスを供給する配管が接続され、前記カバーは、前記ガス供給管と、前記ガス供給管の側面に接続された前記配管の接続部と、をバーナの軸方向に所定長、一定の外径で覆っており、
前記バーナを、前記ガラス微粒子堆積体の成長に伴い、前記貫通孔との隙間を一定にしつつ後退させ、
前記隙間からクリーンエアを前記反応容器内に導入する、
ガラス微粒子堆積体の製造方法。 - 原料としてOMCTSを用い、前記ガス供給管を230℃以上に加熱する、請求項3に記載のガラス微粒子堆積体の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018227117 | 2018-12-04 | ||
JP2018227117 | 2018-12-04 | ||
PCT/JP2019/047455 WO2020116521A1 (ja) | 2018-12-04 | 2019-12-04 | ガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020116521A1 true JPWO2020116521A1 (ja) | 2021-10-21 |
JP7235056B2 JP7235056B2 (ja) | 2023-03-08 |
Family
ID=70974647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020559973A Active JP7235056B2 (ja) | 2018-12-04 | 2019-12-04 | ガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11981595B2 (ja) |
JP (1) | JP7235056B2 (ja) |
CN (1) | CN113165933B (ja) |
WO (1) | WO2020116521A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1053430A (ja) * | 1996-08-02 | 1998-02-24 | Sumitomo Electric Ind Ltd | 光ファイバ母材の製造装置及び製造方法 |
WO2002102729A1 (en) * | 2001-06-14 | 2002-12-27 | Sumitomo Electric Industries, Ltd. | Device and method for producing stack of fine glass particles |
JP2005029448A (ja) * | 2003-07-10 | 2005-02-03 | Shin Etsu Chem Co Ltd | 光ファイバ母材の製造方法 |
JP2012062203A (ja) * | 2010-09-14 | 2012-03-29 | Sumitomo Electric Ind Ltd | 多孔質ガラス母材の製造装置および多孔質ガラス母材の製造方法 |
JP2012166992A (ja) * | 2011-02-16 | 2012-09-06 | Sumitomo Electric Ind Ltd | ガラス微粒子堆積体の製造方法 |
JP2013241288A (ja) * | 2012-05-18 | 2013-12-05 | Furukawa Electric Co Ltd:The | ガラス微粒子堆積用バーナおよびガラス微粒子堆積体の製造方法 |
JP2014224007A (ja) * | 2013-05-15 | 2014-12-04 | 住友電気工業株式会社 | ガラス微粒子堆積体の製造方法およびガラス微粒子堆積体製造用バーナー |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0660023B2 (ja) * | 1986-01-10 | 1994-08-10 | 住友電気工業株式会社 | ガラス微粒子堆積体の製造方法 |
JPS63222034A (ja) * | 1987-03-11 | 1988-09-14 | Furukawa Electric Co Ltd:The | 煤状微粒子生成用バ−ナ |
JP3396430B2 (ja) * | 1998-07-23 | 2003-04-14 | 信越化学工業株式会社 | 光ファィバ母材の製造方法および光ファィバ母材を製造する装置 |
JP3958444B2 (ja) * | 1998-08-26 | 2007-08-15 | 昭和鉄工株式会社 | 石材支柱の構造 |
JP3521903B2 (ja) * | 2001-08-09 | 2004-04-26 | 住友電気工業株式会社 | 多孔質ガラス母材の製造方法 |
EP1284246A3 (en) * | 2001-08-09 | 2004-02-04 | Sumitomo Electric Industries, Ltd. | Method and apparatus for producing porous glass soot body |
JP4900762B2 (ja) * | 2005-01-19 | 2012-03-21 | 信越化学工業株式会社 | 多孔質ガラス母材の製造方法及び堆積用バーナ |
-
2019
- 2019-12-04 US US17/298,820 patent/US11981595B2/en active Active
- 2019-12-04 WO PCT/JP2019/047455 patent/WO2020116521A1/ja active Application Filing
- 2019-12-04 CN CN201980077905.XA patent/CN113165933B/zh active Active
- 2019-12-04 JP JP2020559973A patent/JP7235056B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1053430A (ja) * | 1996-08-02 | 1998-02-24 | Sumitomo Electric Ind Ltd | 光ファイバ母材の製造装置及び製造方法 |
WO2002102729A1 (en) * | 2001-06-14 | 2002-12-27 | Sumitomo Electric Industries, Ltd. | Device and method for producing stack of fine glass particles |
JP2005029448A (ja) * | 2003-07-10 | 2005-02-03 | Shin Etsu Chem Co Ltd | 光ファイバ母材の製造方法 |
JP2012062203A (ja) * | 2010-09-14 | 2012-03-29 | Sumitomo Electric Ind Ltd | 多孔質ガラス母材の製造装置および多孔質ガラス母材の製造方法 |
JP2012166992A (ja) * | 2011-02-16 | 2012-09-06 | Sumitomo Electric Ind Ltd | ガラス微粒子堆積体の製造方法 |
JP2013241288A (ja) * | 2012-05-18 | 2013-12-05 | Furukawa Electric Co Ltd:The | ガラス微粒子堆積用バーナおよびガラス微粒子堆積体の製造方法 |
JP2014224007A (ja) * | 2013-05-15 | 2014-12-04 | 住友電気工業株式会社 | ガラス微粒子堆積体の製造方法およびガラス微粒子堆積体製造用バーナー |
Also Published As
Publication number | Publication date |
---|---|
WO2020116521A1 (ja) | 2020-06-11 |
US20220017403A1 (en) | 2022-01-20 |
CN113165933A (zh) | 2021-07-23 |
CN113165933B (zh) | 2022-10-14 |
JP7235056B2 (ja) | 2023-03-08 |
US11981595B2 (en) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6236866B2 (ja) | ガラス微粒子堆積体の製造方法およびガラス微粒子堆積体製造用バーナー | |
JP5922759B2 (ja) | シリカ煤体の製造 | |
JPH039047B2 (ja) | ||
JP7276335B2 (ja) | ガラス微粒子堆積体の製造方法 | |
JP7021286B2 (ja) | 改良された粒子蒸着システムと方法 | |
JP7463967B2 (ja) | ガラス微粒子堆積体の製造装置及び製造方法 | |
JP2004035365A (ja) | 多重管バーナおよびこれを用いたガラス体の製造方法 | |
JPWO2020116521A1 (ja) | ガラス微粒子堆積体製造用バーナ、ガラス微粒子堆積体の製造装置および製造方法 | |
JP2012176861A (ja) | 多孔質ガラス微粒子堆積体の製造方法および製造装置 | |
JP6086168B2 (ja) | ガラス微粒子堆積体の製造方法およびガラス母材の製造方法 | |
KR102569042B1 (ko) | 유리 미립자 퇴적체의 제조 방법, 유리 모재의 제조 방법 및 유리 미립자 퇴적체 | |
KR100630117B1 (ko) | 기상 외부 증착 방법에 의한 광섬유 모재 제작 장치 | |
JP2015030642A (ja) | ガラス微粒子堆積体製造用の多重管バーナおよびガラス微粒子堆積体の製造方法 | |
WO2017188334A1 (ja) | ガラス微粒子の合成方法 | |
US20230159371A1 (en) | Synthetic quartz glass manufacturing method through ovd process with improved deposition efficiency | |
JP2012041227A (ja) | 多孔質ガラス母材の製造方法 | |
KR102612252B1 (ko) | 예비 버너를 이용한 대구경 실리카 수트의 크랙을 제어할 수 있는 장치 | |
JP5168772B2 (ja) | ガラス微粒子堆積体の製造方法 | |
WO2022224725A1 (ja) | バーナ、ガラス微粒子堆積体の製造装置およびガラス微粒子堆積体の製造方法 | |
JP5793853B2 (ja) | ガラス母材の製造方法 | |
CN106986534A (zh) | 多孔玻璃预制件的制造设备 | |
JP2015059055A (ja) | ガラス微粒子堆積体の製造方法 | |
JPS62162646A (ja) | ガラス微粒子堆積体の製造方法 | |
JP2024154668A (ja) | ガラス母材の製造方法 | |
JP5691384B2 (ja) | ガラス母材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7235056 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |