JPWO2019070002A1 - オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法 - Google Patents

オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法 Download PDF

Info

Publication number
JPWO2019070002A1
JPWO2019070002A1 JP2019546993A JP2019546993A JPWO2019070002A1 JP WO2019070002 A1 JPWO2019070002 A1 JP WO2019070002A1 JP 2019546993 A JP2019546993 A JP 2019546993A JP 2019546993 A JP2019546993 A JP 2019546993A JP WO2019070002 A1 JPWO2019070002 A1 JP WO2019070002A1
Authority
JP
Japan
Prior art keywords
less
welding
content
welded
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019546993A
Other languages
English (en)
Other versions
JP6870750B2 (ja
Inventor
平田 弘征
弘征 平田
佳奈 浄▲徳▼
佳奈 浄▲徳▼
伸之佑 栗原
伸之佑 栗原
克樹 田中
克樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2019070002A1 publication Critical patent/JPWO2019070002A1/ja
Application granted granted Critical
Publication of JP6870750B2 publication Critical patent/JP6870750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)

Abstract

化学組成が、質量%で、C:0.06〜0.14%、Si:0.10〜0.40%、Mn:2.0〜4.0%、P:0.020%以下、Cu:2.0〜4.0%、Ni:15.0〜19.0%、Cr:16.0〜20.0%、Mo:0.50〜1.50%、Nb:0.30〜0.60%、N:0.10〜0.30%、Al:0.030%以下、O:0.020%以下、S:0〜0.0030%、Sn:0〜0.0030%、Bi:0〜0.0030%、Zn:0〜0.0030%、Sb:0〜0.0030%、As:0〜0.0030%、V:0〜0.50%、Ti:0〜0.50%、Ta:0〜0.50%、Co:0〜2.0%、B:0〜0.020%、Ca:0〜0.020%、Mg:0〜0.020%、REM:0〜0.06%、残部:Feおよび不純物であり、S、Sn、Bi、Zn、SbおよびAsから選択される2種以上を、[0.0005≦S+Sn+Bi+Zn+Sb+As≦0.0030]を満足する範囲で含有する、オーステナイト系耐熱鋼用溶接材料。

Description

本発明は、オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法に関する。
排熱回収ボイラの過熱器管材料としては、従来、ASME T91鋼が広く使用されてきた。しかしながら、環境負荷軽減の観点から、蒸気温度の高温化が進められている。前記ASME T91はCr含有量が少ないため、耐水蒸気酸化特性が不十分であるとともにクリープ強度も不十分である。そのため、過熱器管の高温部には、例えば、特許文献1および2に開示されているような石炭火力発電ボイラの過熱器管に用いられているオーステナイト系ステンレス耐熱鋼を適用しようとする動きがある。
これらオーステナイト系ステンレス耐熱鋼を構造物とする場合、溶接により組み立てるのが一般的であり、それに用いられる溶接材料についても、例えば、特許文献3および4に開示されているような溶接材料が開示されている。
特開2003−268503号公報 特開2013−44013号公報 特開平6−142980号公報 特開2015−110240号公報
ところで、排熱回収ボイラは石炭火力発電ボイラのように連続稼働することは少なく、必要な発電量に応じて停機、稼動を繰り返すのが一般的であり、例えば、電力需要の多い昼間のみ稼働し、夜間は停機するような運転がなされる。その結果、使用されている過熱器管などの部材には、加熱および冷却が繰り返し行われることとなる。
このように、高温への加熱と冷却とが繰り返される場合、溶接部を含む過熱器管にはその温度差による熱衝撃が発生する。そのため、構成する部材には熱衝撃に対する特性、すなわち、繰り返し熱サイクルを受けた後の衝撃特性に優れることも必要となる。特に、溶接金属を含む溶接部は形状、材質とも不連続となるため、問題となる場合が多い。
前記の特許文献3および4に開示されているような溶接材料を使用して得られる溶接金属は、確かに優れたクリープ破断強度を安定して得られるものの、繰り返し熱サイクルを受けた場合の衝撃特性については考慮しておらず、部材の寸法または構造によっては、十分な性能が得られない場合があり、改善の余地があることが明らかとなった。
本発明は、高温加熱と冷却とを繰り返した後でも十分な衝撃特性を有する溶接金属が得られるオーステナイト系耐熱鋼用溶接材料、それを用いてなる溶接金属、およびその溶接金属を有する溶接構造物、ならびに上記の溶接金属および溶接構造物の製造方法を提供することを目的とする。
本発明は、上記課題を解決するためになされたものであり、下記のオーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法を要旨とする。
(1)化学組成が、質量%で、
C:0.06〜0.14%、
Si:0.10〜0.40%、
Mn:2.0〜4.0%、
P:0.020%以下、
Cu:2.0〜4.0%、
Ni:15.0〜19.0%、
Cr:16.0〜20.0%、
Mo:0.50〜1.50%、
Nb:0.30〜0.60%、
N:0.10〜0.30%、
Al:0.030%以下、
O:0.020%以下、
S:0〜0.0030%、
Sn:0〜0.0030%、
Bi:0〜0.0030%、
Zn:0〜0.0030%、
Sb:0〜0.0030%、
As:0〜0.0030%、
V:0〜0.50%、
Ti:0〜0.50%、
Ta:0〜0.50%、
Co:0〜2.0%、
B:0〜0.020%、
Ca:0〜0.020%、
Mg:0〜0.020%、
REM:0〜0.06%、
残部:Feおよび不純物であり、
S、Sn、Bi、Zn、SbおよびAsから選択される2種以上を、下記(i)式を満足する範囲で含有する、
オーステナイト系耐熱鋼用溶接材料。
0.0005≦S+Sn+Bi+Zn+Sb+As≦0.0030 ・・・(i)
但し、上記式中の元素記号は、鋼中に含まれる各元素の含有量(質量%)を表す。
(2)前記化学組成が、質量%で、
V:0.01〜0.50%、
Ti:0.01〜0.50%、
Ta:0.01〜0.50%、
Co:0.01〜2.0%、
B:0.001〜0.02%、
Ca:0.001〜0.02%、
Mg:0.001〜0.02%、および
REM:0.001〜0.06%、
から選択される1種以上を含有する、
上記(1)に記載のオーステナイト系耐熱鋼用溶接材料。
(3)オーステナイト系耐熱鋼からなる母材の溶接に用いられ、
前記母材の化学組成が、質量%で、
C:0.05〜0.15%、
Si:0.10〜0.30%、
Mn:0.1〜1.0%、
P:0.040%以下、
S:0.010%以下、
Cu:2.0〜4.0%、
Ni:7.0〜11.0%、
Cr:16.0〜20.0%、
Mo:0.03〜0.80%、
Nb:0.30〜0.60%、
N:0.05〜0.20%、
Al:0.030%以下、
O:0.020%以下、
V:0〜0.10%、
Ti:0〜0.10%、
Co:0〜1.0%、
W:0〜0.50%、
B:0〜0.005%、
Ca:0〜0.010%、
Mg:0〜0.010%、
REM:0〜0.10%、
残部:Feおよび不純物である、
上記(1)または(2)に記載のオーステナイト系耐熱鋼用溶接材料。
(4)上記(3)に記載の母材と、上記(1)から(3)までのいずれかに記載のオーステナイト系耐熱鋼用溶接材料とを用いてなる、溶接金属。
(5)上記(4)に記載の溶接金属を有する、溶接構造物。
(6)上記(3)に記載の母材に対して、上記(1)から(3)までのいずれかに記載のオーステナイト系耐熱鋼用溶接材料を用いて溶接を行うことで溶接金属を製造する、溶接金属の製造方法。
(7)上記(3)に記載の母材に対して、上記(1)から(3)までのいずれかに記載のオーステナイト系耐熱鋼用溶接材料を用いて溶接を行う、溶接構造物の製造方法。
本発明によれば、高温加熱と冷却とを繰り返した後でも十分な衝撃特性を有する溶接金属が得られるオーステナイト系耐熱鋼用溶接材料、それを用いてなる溶接金属、およびその溶接金属を有する溶接構造物、ならびに上記の溶接金属および溶接構造物の製造方法を提供することができる。
実施例において開先加工を施した板材の形状を示す概略断面図である。
本発明者らは、高温加熱と冷却とを繰り返した後でも十分な衝撃特性を有する溶接金属を得るために、高温加熱および冷却を受ける溶接金属の衝撃特性について種々検討を行った。その結果、以下の知見を得るに至った。
(a)溶接金属中のS、Sn、Bi、Zn、SbおよびAsの含有量が増大すると、靭性低下が顕著となる。
(b)衝撃試験後の破面には柱状晶境界が混在するようになり、S、Sn、Bi、Zn、SbおよびAsの含有量が多くなると、その割合が大きくなる。
(c)破面に柱状晶境界が混在する割合は、高温加熱および冷却を複数回繰り返すと飽和する傾向がある。
これらの事項から以下の結論に至った。すなわち、溶接金属中に含有されるS、Sn、Bi、Zn、SbおよびAsは、溶接の凝固時に凝固偏析することに加え、その後に繰り返される高温への加熱および高温からの冷却の過程で柱状晶境界へ偏析し、柱状晶境界の脆化を招く。そのため、上記S、Snなどの含有量が増加すると、衝撃特性が低下するとともに、破面上に占める柱状晶境界の割合が増えると考えられた。
そこで、本発明者らはその防止策について検討した結果、S、Sn、Bi、Zn、SbおよびAsの含有量を極力減らすことが有効であることを見出した。
しかしながら、これら元素を極端に低減した場合、確かに高温加熱および冷却を受けた後に必要な衝撃特性が得られることは確認できたものの、溶け込みが不十分となる、いわゆる裏波形成能が極端に劣化することが判明した。これを解決するためには、溶接入熱を増大させることが一つの方法となる。しかしながら、入熱の増大は、溶接時の凝固割れ感受性を高める。
そこで、この問題を解決すべく検討した結果、S、Sn、Bi、Zn、SbおよびAsから選択される2種以上を合計で0.0005〜0.0030%の範囲で含有させることにより、繰り返し加熱、冷却後の衝撃特性を確保するとともに、溶け込み深さを増大させることが可能であることを見出した。これは、これらの元素が溶接中の溶融池内の対流に影響を及ぼし、鉛直方向への熱輸送を促進すること、または溶融池表面から蒸発し、アーク中でイオン化して通電経路を形成し、アークの電流密度を高めることによるものと考えられた。
本発明は、上記知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
(A)溶接材料の化学組成
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
C:0.06〜0.14%
Cはオーステナイト生成元素であり、高温での溶接金属の組織安定性を高めるとともに、微細な炭化物を生成してクリープ強度の確保に寄与する。しかしながら、Cが過剰に含有された場合、炭化物が粗大かつ多量に析出し、却ってクリープ強度の低下を招くとともに、衝撃特性を損ねる。そのため、C含有量は0.06〜0.14%とする。C含有量は0.07%以上であるのが好ましく、0.08%以上であるのがより好ましい。また、C含有量は0.13%以下であるのが好ましく、0.12%以下であるのがより好ましい。
Si:0.10〜0.40%
Siは脱酸剤として含有されるが、過剰に含有する場合、溶接時の凝固割れ感受性を増大させる。しかしながら、Si含有量の過度の低減は、脱酸効果が十分に得られず、溶接材料の清浄性が低下するとともに、製造コストの増大を招く。そのため、Si含有量は0.10〜0.40%とする。Si含有量は0.15%以上であるのが好ましく、0.20%以上であるのがより好ましい。また、Si含有量は0.35%以下であるのが好ましく、0.30%以下であるのがより好ましい。
Mn:2.0〜4.0%
Mnは溶接中に溶融金属の窒素の活量を下げることにより溶融池表面からの窒素の飛散を抑制し、間接的に溶接金属の引張強さおよびクリープ強度の確保に寄与する。しかしながら、Mnを過剰に含有すると、脆化を招く。そのため、Mn含有量は2.0〜4.0%とする。Mn含有量は2.2%以上であるのが好ましく、2.5%以上であるのがより好ましい。また、Mn含有量は3.8%以下であるのが好ましく、3.5%以下であるのがより好ましい。
P:0.020%以下
Pは不純物として含まれ、溶接金属の凝固時に最終凝固部に偏析し、その融点を低下させ、凝固割れ感受性を増大させる。そのため、P含有量は0.020%以下とする必要がある。P含有量は0.015%以下であるのが好ましく、0.010%以下であるのがより好ましい。なお、P含有量の下限は特に設ける必要はなく、つまり含有量が0%であってもよいが、極度の低減は溶接材料の製造コストの増大を招く。そのため、P含有量は0.0005%以上であるのが好ましく、0.001%以上であるのがより好ましい。
Cu:2.0〜4.0%
Cuは高温での溶接金属の組織安定性を確保するとともに、Cu富化相として析出し、クリープ強度を向上させるのに有効な元素である。しかしながら、Cuを過剰に含有すると、Cu富化相が過剰に析出し、衝撃特性を損ねる。そのため、Cu含有量は2.0〜4.0%とする。Cu含有量は2.3%以上であるのが好ましく、2.5%以上であるのがより好ましい。また、Cu含有量は3.8%以下であるのが好ましく、3.5%以下であるのがより好ましい。
Ni:15.0〜19.0%
Niは溶接金属の高温での組織安定性を確保し、クリープ強度の向上に寄与する。しかしながら、Niは高価な元素であり、多量の含有は溶接材料の製造コストの増大を招く。加えて、Niを過剰に含有すると、溶接中の溶融金属の窒素溶解度を低めて、逆にクリープ強度を損なう。そのため、Ni含有量は15.0〜19.0%とする。Ni含有量は15.5%以上であるのが好ましく、16.0%以上であるのがより好ましい。また、Ni含有量は18.5%以下であるのが好ましく、18.0%以下であるのがより好ましい。
Cr:16.0〜20.0%
Crは溶接金属の高温での耐酸化性および耐食性の確保のために含有される。しかしながら、Crを過剰に含有すると、溶接金属の高温での組織安定性を損ない、クリープ強度の低下を招く。そのため、Cr含有量は16.0〜20.0%とする。Cr含有量は16.5%以上であるのが好ましく、17.0%以上であるのがより好ましい。また、Cr含有量は19.5%以下であるのが好ましく、19.0%以下であるのがより好ましい。
Mo:0.50〜1.50%
Moはマトリックスに固溶して溶接金属のクリープ強度の向上に寄与する元素である。しかしながら、過剰に含有させてもその効果は飽和するとともに、溶接金属の高温での組織安定性を低下させ、却ってクリープ強度の低下を招く。そのため、Mo含有量は0.50〜1.50%とする。Mo含有量は0.60%以上であるのが好ましく、0.80%以上であるのがより好ましい。また、Mo含有量は1.40%以下であるのが好ましく、1.20%以下であるのがより好ましい。
Nb:0.30〜0.60%
Nbは高温での使用中に微細な炭化物、窒化物または炭窒化物として粒内に析出し、溶接金属のクリープ強度の向上に寄与する。しかしながら、過剰に含有すると、炭窒化物が多量かつ粗大に析出し、クリープ強度およびクリープ延性の低下を招く。そのため、Nb含有量は0.30〜0.60%とする。Nb含有量は0.32%以上であるのが好ましく、0.35%以上であるのがより好ましい。また、Nb含有量は0.58%以下であるのが好ましく、0.55%以下であるのがより好ましい。
N:0.10〜0.30%
Nは高温での溶接金属の組織安定性を高めるとともに、固溶して、または窒化物として粒内に微細に析出して、クリープ強度の向上に大きく寄与する。しかしながら、過剰に含有すると、高温での使用中に多量の窒化物を析出し、クリープ延性の低下を招く。そのため、N含有量は0.10〜0.30%とする。N含有量は0.12%以上であるのが好ましく、0.15%以上であるのがより好ましい。また、N含有量は0.28%以下であるのが好ましく、0.25%以下であるのがより好ましい。
Al:0.030%以下
Alは、脱酸剤として含有されるが、多量に含有すると清浄性を著しく害し、溶接材料の加工性および溶接金属の延性を低下させる。そのため、Al含有量は0.030%以下とする。Al含有量は0.025%以下であるのが好ましく、0.020%以下であるのがより好ましい。なお、Al含有量について特に下限を設ける必要はなく、つまり含有量が0%であってもよいが、極度の低減は溶接材料の製造コストの増大を招く。そのため、Al含有量は0.0005%以上であるのが好ましく、0.001%以上であるのがより好ましい。
O:0.020%以下
O(酸素)は不純物として含有されるが、多量に含まれる場合には、溶接材料の加工性および溶接金属の延性を低下させる。そのため、O含有量は0.020%以下とする。O含有量は0.015%以下であるのが好ましく、0.010%以下であるのがより好ましい。なお、O含有量について特に下限を設ける必要はなく、つまり含有量が0%であってもよいが、極度の低減は材料の製造コストの増大を招く。そのため、O含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
S:0〜0.0030%
Sn:0〜0.0030%
Bi:0〜0.0030%
Zn:0〜0.0030%
Sb:0〜0.0030%
As:0〜0.0030%
S、Sn、Bi、Zn、SbおよびAsは溶接の凝固時に凝固偏析することに加え、その後、例えば溶接金属を備える溶接構造物の使用時において繰り返される高温への加熱および高温からの冷却の過程で溶接金属の柱状晶境界へ偏析し、衝撃特性の低下を招く。一方で、これらの元素は、溶接中の溶け込み深さを増大させ、特に初層溶接時の溶け込み不良を防止するのに有効な元素である。
繰り返し加熱、および冷却後の衝撃特性と溶接性を両立するためには、これらの元素から選択される2種以上を、下記(i)式を満足する範囲で含有する必要がある。(i)式左辺値は0.0008であるのが好ましく、0.0010であるのがより好ましい。また、(i)式右辺値は0.0028であるのが好ましく、0.0025であるのがより好ましい。
0.0005≦S+Sn+Bi+Zn+Sb+As≦0.0030 ・・・(i)
但し、上記式中の元素記号は、鋼中に含まれる各元素の含有量(質量%)を表す。
なお、それぞれの元素の含有量の下限については特に制限は設けないが、上記(i)式を満足する範囲において、上記のうちのいずれかの元素の含有量を0.0001%以上とするのが好ましく、0.0002%以上とするのがより好ましく、0.0003%以上とするのがさらに好ましい。
本発明の溶接材料の化学組成において、上記の元素に加えて、さらにV、Ti、Ta、Co、B、Ca、MgおよびREMから選択される1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。
V:0〜0.50%
VはCおよび/またはNと結合して、微細な炭化物、窒化物または炭窒化物として粒内に析出し、高温でのクリープ強度に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、炭窒化物が多量に析出し、クリープ延性の低下を招く。そのため、V含有量は0.50%以下とする。V含有量は0.45%以下であるのが好ましく、0.40%以下であるのがより好ましい。なお、上記の効果を得たい場合には、V含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
Ti:0〜0.50%
TiはVと同様、微細な炭化物、窒化物または炭窒化物として粒内に析出し、高温でのクリープ強度に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、炭窒化物が多量に析出し、クリープ延性の低下を招く。そのため、Ti含有量は0.50%以下とする。Ti含有量は0.45%以下であるのが好ましく、0.40%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Ti含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
Ta:0〜0.50%
TaもVおよびTiと同様、微細な炭化物、窒化物または炭窒化物として粒内に析出し、高温でのクリープ強度に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、炭窒化物が多量に析出し、クリープ延性の低下を招く。そのため、Ta含有量は0.50%以下とする。Ta含有量は0.45%以下であるのが好ましく、0.40%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Ta含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
Co:0〜2.0%
CoはNiおよちCuと同様、溶接金属の高温での組織安定性を高めてクリープ強度の向上に寄与するため、必要に応じて含有してもよい。しかしながら、極めて高価な元素であるため、過剰の含有は大幅なコスト増を招く。そのため、Co含有量は2.0%以下とする。Co含有量は1.5%以下であるのが好ましく、1.0%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Co含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
B:0〜0.020%
Bは高温使用中に溶接金属の柱状結晶境界に偏析し、粒界を強化するとともに粒界炭化物を微細分散させることによりクリープ強度を向上させるのに有効な元素であるため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、溶接中の凝固割れ感受性を高める。そのため、B含有量は0.020%以下とする。B含有量は0.018%以下であるのが好ましく、0.015%以下であるのがより好ましい。なお、上記の効果を得たい場合には、B含有量は0.001%以上であるのが好ましく、0.002%以上であるのがより好ましい。
Ca:0〜0.020%
Caは溶接材料製造時の熱間加工性を改善する効果を有するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、酸素と結合し、清浄性を著しく低下させて、却って熱間加工性を劣化させる。そのため、Ca含有量は0.020%以下とする。Ca含有量は0.015%以下であるのが好ましく、0.010%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Ca含有量は0.0005%以上であるのが好ましく、0.001%以上であるのがより好ましい。
Mg:0〜0.020%
MgはCaと同様、溶接材料製造時の熱間加工性を改善する効果を有するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、酸素と結合し、清浄性を著しく低下させて、却って熱間加工性を劣化させる。そのため、Mg含有量は0.020%以下とする。Mg含有量は0.015%以下であるのが好ましく、0.010%以下であるのがより好ましい。なお、上記の効果を得たい場合には、Mg含有量は0.0005%以上であるのが好ましく、0.001%以上であるのがより好ましい。
REM:0〜0.06%
REMはCaおよびMgと同様、溶接材料製造時の熱間加工性を改善する効果を有するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、酸素と結合し、清浄性を著しく低下させて、却って熱間加工性を劣化させる。そのため、REM含有量は0.06%以下とする。REM含有量は0.05%以下であるのが好ましく、0.04%以下であるのがより好ましい。なお、上記の効果を得たい場合には、REM含有量は0.001%以上であるのが好ましく、0.002%以上であるのがより好ましい。
ここで、REMは、Sc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。
本発明の溶接材料の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
(B)溶接金属の製造方法
本発明に係る溶接金属は、上述の溶接材料(溶加材)を用いて、オーステナイト系耐熱鋼の母材を溶接して作製される。上記の溶接金属を得るための溶接方法について、特に限定されるものではないが、例えば、ティグ溶接、ミグ溶接、被覆アーク溶接、サブマージアーク溶接、レーザー溶接等が挙げられる。
なお、前記オーステナイト系耐熱鋼の母材の好ましい組成としては、特に限定されるものではない。例えば、母材の化学組成は、質量%で、C:0.05〜0.15%、Si:0.10〜0.30%、Mn:0.1〜1.0%、P:0.040%以下、S:0.010%以下、Cu:2.0〜4.0%、Ni:7.0〜11.0%、Cr:16.0〜20.0%、Mo:0.03〜0.80%、Nb:0.30〜0.60%、N:0.05〜0.20%、Al:0.030%以下、O:0.020%以下、V:0〜0.10%、Ti:0〜0.10%、Co:0〜1.0%、W:0〜0.50%、B:0〜0.005%、Ca:0〜0.010%、Mg:0〜0.010%、REM:0〜0.10%、残部:Feおよび不純物であることが好ましい。
前記母材の化学組成は、質量%で、V:0.01〜0.10%、Ti:0.01〜0.10%、Co:0.01〜1.0%、W:0.01〜0.50%、B:0.0002〜0.005%、Ca:0.0005〜0.010%、Mg:0.0005〜0.010%、および、REM:0.0005〜0.10%、から選択される1種以上を含有してもよい。
また、上記の母材および溶接材料(溶加材)の製造方法について特に制限は設けないが、化学組成が調整された鋼に対して、常法により、熱間鍛造、熱間圧延、熱処理および機械加工を順に施すことにより製造することができる。
(C)溶接構造物
本発明に係る溶接構造物は、上述した溶接金属を有する構造物である。例えば、溶接構造物は、溶接金属と母材とからなる。すなわち、上記の母材に対して、本発明に係る溶接材料を用いて溶接を行うことにより製造される。母材は、金属からなり、鋼材であることが好ましく、ステンレス鋼であることがより好ましく、オーステナイト系耐熱鋼であることがさらに好ましい。なお、溶接構造物の具体的形状、溶接構造物を得るための溶接の具体的態様(溶接姿勢)は特に限定されない。
以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
表1に示す化学組成を有する鋼を溶解して鋳込んだインゴットから、熱間鍛造、熱間圧延、熱処理および機械加工により、板厚15mm、幅50mm、長さ100mmの板材(母材)および板厚4mm、幅200mm、長さ500mmの板材を作製した。さらに、上記の板厚4mmの板材を用い、機械加工により、2mm角、長さ500mmのカットフィラーを作製した。これらを用いて、以下に示す各種の性能評価試験を行った。
Figure 2019070002
<裏波形成能>
上記母材の長手方向の端部に、図1に示す形状の開先加工を施した。その後、開先を形成した母材を2つ突き合わせ、各母材と同じ板材から得られたカットフィラーを溶加材として用い、ティグ溶接により突き合わせ溶接を行った。入熱9kJ/cmとして、各母材につき2つずつ溶接継手を作製した。得られた溶接継手のうち、2つとも溶接線の全長にわたり、裏ビードが形成されたものを裏波形成能が良好であるとし、「合格」とした。一方、2つの溶接継手のうち一部でも裏ビードが形成されない部分があった場合は「不合格」と判定した。
<衝撃特性>
その後、続けて各母材と同じ板材から得られたカットフィラーを溶加材として用い、開先内に手動ティグ溶接により積層溶接を行った。入熱9〜15kJ/cmとし、各母材につき2つずつ溶接継手を作製した。
その後、1体の溶接継手について、「室温→650℃×108時間→室温」の加熱および冷却のサイクルを5回繰り返したのち、溶接金属にVノッチを有するフルサイズシャルピー衝撃試験片を3本採取し、常温でシャルピー衝撃試験を行った。そして、吸収エネルギーの平均値が27J以上となるものを「合格」、27Jを下回るものを「不合格」とした。
<クリープ破断強さ>
さらに、溶接継手の残り1体から、溶接金属が平行部の中央となるように丸棒クリープ破断試験片を採取し、母材の目標破断時間が約1000時間となる650℃、216MPaの条件でクリープ破断試験を行った。そして、破断時間が母材の目標破断時間の90%以上となるものを「合格」とした。
それらの結果を表2にまとめて示す。
Figure 2019070002
表2から分かるように、本発明の規定を満足する鋼A〜Fを母材および溶加材の双方に用いた試験No.1〜6では、溶接継手の作製時に必要な裏波形成能を有するとともに、高温加熱と冷却とを繰り返した後での衝撃特性に優れる結果となった。
それに対して、比較例である鋼GおよびHは(i)式の上限を上回ったため、それらを用いた試験No.7および8では、高温加熱と冷却とを繰り返した後での衝撃特性が劣る結果となった。また、鋼IおよびJは(i)式の下限を下回ったため、それらを用いた試験No.9および10では、十分な溶け込み深さが得られず、裏波形成能が不芳であった。
表3に示す化学組成を有する鋼を溶解して鋳込んだインゴットから、熱間鍛造、熱間圧延、熱処理および機械加工により、板厚15mm、幅50mm、長さ100mmの板材(母材)を作製した。これを用いて、以下に示す各種の性能評価試験を行った。
Figure 2019070002
<衝撃特性>
上記母材の長手方向の端部に、図1に示す形状の開先加工を施した。その後、開先を形成した母材を2つ突き合わせ、鋼Aの板材から得られたカットフィラーを溶加材として用い、開先内に手動ティグ溶接により積層溶接を行った。入熱9〜15kJ/cmとし、各母材につき2つずつ溶接継手を作製した。
その後、1体の溶接継手について、「室温→650℃×108時間→室温」の加熱および冷却のサイクルを5回繰り返したのち、溶接金属にVノッチを有するフルサイズシャルピー衝撃試験片を3本採取し、常温でシャルピー衝撃試験を行った。そして、吸収エネルギーの平均値が27J以上となるものを「合格」、27Jを下回るものを「不合格」とした。
<クリープ破断強さ>
さらに、溶接継手の残り1体から、溶接金属が平行部の中央となるように丸棒クリープ破断試験片を採取し、母材の目標破断時間が約1000時間となる650℃、216MPaの条件でクリープ破断試験を行った。そして、破断時間が母材の目標破断時間の90%以上となるものを「合格」とした。
それらの結果を表4にまとめて示す。
Figure 2019070002
表4から分かるように、溶接材料の化学組成が本発明の規定を満足する試験No.11〜14では、溶接継手の作製時に必要な裏波形成能を有するとともに、高温加熱と冷却とを繰り返した後での衝撃特性に優れる結果となった。
以上のように、本発明の要件を満足する場合のみ、必要な溶接施工性および耐溶接割れ性ならびに優れたクリープ強度が得られることが分かる。
本発明によれば、高温加熱と冷却とを繰り返した後でも十分な衝撃特性を有する溶接金属が得られるオーステナイト系耐熱鋼用溶接材料、それを用いてなる溶接金属、およびその溶接金属を有する溶接構造物、ならびに上記の溶接金属および溶接構造物の製造方法を提供することができる。

Claims (7)

  1. 化学組成が、質量%で、
    C:0.06〜0.14%、
    Si:0.10〜0.40%、
    Mn:2.0〜4.0%、
    P:0.020%以下、
    Cu:2.0〜4.0%、
    Ni:15.0〜19.0%、
    Cr:16.0〜20.0%、
    Mo:0.50〜1.50%、
    Nb:0.30〜0.60%、
    N:0.10〜0.30%、
    Al:0.030%以下、
    O:0.020%以下、
    S:0〜0.0030%、
    Sn:0〜0.0030%、
    Bi:0〜0.0030%、
    Zn:0〜0.0030%、
    Sb:0〜0.0030%、
    As:0〜0.0030%、
    V:0〜0.50%、
    Ti:0〜0.50%、
    Ta:0〜0.50%、
    Co:0〜2.0%、
    B:0〜0.020%、
    Ca:0〜0.020%、
    Mg:0〜0.020%、
    REM:0〜0.06%、
    残部:Feおよび不純物であり、
    S、Sn、Bi、Zn、SbおよびAsから選択される2種以上を、下記(i)式を満足する範囲で含有する、
    オーステナイト系耐熱鋼用溶接材料。
    0.0005≦S+Sn+Bi+Zn+Sb+As≦0.0030 ・・・(i)
    但し、上記式中の元素記号は、鋼中に含まれる各元素の含有量(質量%)を表す。
  2. 前記化学組成が、質量%で、
    V:0.01〜0.50%、
    Ti:0.01〜0.50%、
    Ta:0.01〜0.50%、
    Co:0.01〜2.0%、
    B:0.001〜0.02%、
    Ca:0.001〜0.02%、
    Mg:0.001〜0.02%、および
    REM:0.001〜0.06%、
    から選択される1種以上を含有する、
    請求項1に記載のオーステナイト系耐熱鋼用溶接材料。
  3. オーステナイト系耐熱鋼からなる母材の溶接に用いられ、
    前記母材の化学組成が、質量%で、
    C:0.05〜0.15%、
    Si:0.10〜0.30%、
    Mn:0.1〜1.0%、
    P:0.040%以下、
    S:0.010%以下、
    Cu:2.0〜4.0%、
    Ni:7.0〜11.0%、
    Cr:16.0〜20.0%、
    Mo:0.03〜0.80%、
    Nb:0.30〜0.60%、
    N:0.05〜0.20%、
    Al:0.030%以下、
    O:0.020%以下、
    V:0〜0.10%、
    Ti:0〜0.10%、
    Co:0〜1.0%、
    W:0〜0.50%、
    B:0〜0.005%、
    Ca:0〜0.010%、
    Mg:0〜0.010%、
    REM:0〜0.10%、
    残部:Feおよび不純物である、
    請求項1または請求項2に記載のオーステナイト系耐熱鋼用溶接材料。
  4. 請求項3に記載の母材と、請求項1から請求項3までのいずれかに記載のオーステナイト系耐熱鋼用溶接材料とを用いてなる、溶接金属。
  5. 請求項4に記載の溶接金属を有する、溶接構造物。
  6. 請求項3に記載の母材に対して、請求項1から請求項3までのいずれかに記載のオーステナイト系耐熱鋼用溶接材料を用いて溶接を行うことで溶接金属を製造する、溶接金属の製造方法。
  7. 請求項3に記載の母材に対して、請求項1から請求項3までのいずれかに記載のオーステナイト系耐熱鋼用溶接材料を用いて溶接を行う、溶接構造物の製造方法。
JP2019546993A 2017-10-03 2018-10-03 オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法 Active JP6870750B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017193690 2017-10-03
JP2017193690 2017-10-03
PCT/JP2018/037099 WO2019070002A1 (ja) 2017-10-03 2018-10-03 オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019070002A1 true JPWO2019070002A1 (ja) 2020-11-05
JP6870750B2 JP6870750B2 (ja) 2021-05-12

Family

ID=65994876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019546993A Active JP6870750B2 (ja) 2017-10-03 2018-10-03 オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法

Country Status (7)

Country Link
US (1) US20200238444A1 (ja)
EP (1) EP3693127A4 (ja)
JP (1) JP6870750B2 (ja)
KR (1) KR102255016B1 (ja)
CN (1) CN111163898B (ja)
CA (1) CA3078343A1 (ja)
WO (1) WO2019070002A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144872A4 (en) * 2020-04-30 2024-05-22 Nippon Steel Corporation METHOD FOR PRODUCING AN AUSTENITIC HEAT-RESISTANT STEEL
EP4144871A4 (en) * 2020-04-30 2024-05-22 Nippon Steel Corporation AUSTENITIC HEAT RESISTANT STEEL
CN113319469B (zh) * 2021-06-30 2022-09-02 桂林航天工业学院 高强度耐热钢气体保护焊丝及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142980A (ja) * 1992-11-06 1994-05-24 Sumitomo Metal Ind Ltd 高温強度の優れたオーステナイト鋼用溶接材料
JP2000328198A (ja) * 1999-05-11 2000-11-28 Sumitomo Metal Ind Ltd 熱間加工性に優れたオーステナイト系ステンレス鋼
JP2015110240A (ja) * 2013-10-30 2015-06-18 新日鐵住金株式会社 オーステナイト系耐熱鋼用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP2017014575A (ja) * 2015-07-01 2017-01-19 新日鐵住金株式会社 オーステナイト系耐熱合金及び溶接構造物
JP2017202492A (ja) * 2016-05-09 2017-11-16 新日鐵住金株式会社 オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797981B2 (ja) * 1994-08-31 1998-09-17 住友金属工業株式会社 高強度オーステナイト鋼溶接材料およびその製造方法
JPH09300096A (ja) * 1996-05-16 1997-11-25 Nkk Corp オーステナイト系ステンレス鋼用不活性ガスアーク溶接材料
JPH10286690A (ja) * 1997-04-15 1998-10-27 Nkk Corp オーステナイト系ステンレス鋼用被覆アーク溶接棒
JP4523696B2 (ja) * 2000-04-18 2010-08-11 新日本製鐵株式会社 高温強度に優れたオーステナイト系耐熱鋼用tig溶接材料
JP3632672B2 (ja) 2002-03-08 2005-03-23 住友金属工業株式会社 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法
JP4835770B1 (ja) * 2010-06-07 2011-12-14 住友金属工業株式会社 オーステナイト系耐熱鋼用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP5411820B2 (ja) * 2010-09-06 2014-02-12 株式会社神戸製鋼所 フラックス入り溶接ワイヤ及びこれを用いた肉盛溶接のアーク溶接方法
JP5661001B2 (ja) 2011-08-23 2015-01-28 山陽特殊製鋼株式会社 時効後靭性に優れた高強度オーステナイト系耐熱鋼
KR101568515B1 (ko) * 2013-12-24 2015-11-11 주식회사 포스코 내열강용 용접재료
JP6289941B2 (ja) * 2014-03-05 2018-03-07 株式会社神戸製鋼所 オーステナイト系耐熱鋼
ES2734051T3 (es) * 2015-06-05 2019-12-04 Nippon Steel Corp Acero inoxidable austenítico
CN106893949B (zh) * 2017-04-20 2019-01-25 华能国际电力股份有限公司 一种奥氏体耐热钢及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142980A (ja) * 1992-11-06 1994-05-24 Sumitomo Metal Ind Ltd 高温強度の優れたオーステナイト鋼用溶接材料
JP2000328198A (ja) * 1999-05-11 2000-11-28 Sumitomo Metal Ind Ltd 熱間加工性に優れたオーステナイト系ステンレス鋼
JP2015110240A (ja) * 2013-10-30 2015-06-18 新日鐵住金株式会社 オーステナイト系耐熱鋼用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP2017014575A (ja) * 2015-07-01 2017-01-19 新日鐵住金株式会社 オーステナイト系耐熱合金及び溶接構造物
JP2017202492A (ja) * 2016-05-09 2017-11-16 新日鐵住金株式会社 オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手

Also Published As

Publication number Publication date
CN111163898B (zh) 2021-10-12
EP3693127A4 (en) 2021-03-24
EP3693127A1 (en) 2020-08-12
JP6870750B2 (ja) 2021-05-12
KR20200060491A (ko) 2020-05-29
CA3078343A1 (en) 2019-04-11
CN111163898A (zh) 2020-05-15
WO2019070002A1 (ja) 2019-04-11
KR102255016B1 (ko) 2021-05-24
US20200238444A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6870749B2 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
WO2017104815A1 (ja) フェライト系耐熱鋼用溶接材料、フェライト系耐熱鋼用溶接継手及びフェライト系耐熱鋼用溶接継手の製造方法
KR102048479B1 (ko) 오스테나이트계 내열합금 및 용접 구조물
KR102048482B1 (ko) 오스테나이트계 내열합금 및 용접 구조물
JP6870750B2 (ja) オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法
JP6642282B2 (ja) オーステナイト系ステンレス鋼溶接継手の製造方法
JP6870748B2 (ja) オーステナイト系ステンレス鋼
JP6965938B2 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
JP6627373B2 (ja) オーステナイト系ステンレス鋼
JP2017014576A (ja) オーステナイト系耐熱合金及び溶接構造物
JP5741454B2 (ja) −196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板およびその製造方法
JP2017014575A (ja) オーステナイト系耐熱合金及び溶接構造物
JP7295418B2 (ja) 溶接材料
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP6519009B2 (ja) オーステナイト系ステンレス鋼
JP7183808B2 (ja) オーステナイト系耐熱鋼用溶接材料、溶接金属、溶接構造物、および溶接構造物の製造方法
JP2021016884A (ja) フェライト系耐熱鋼異材溶接継手およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R151 Written notification of patent or utility model registration

Ref document number: 6870750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151