JPWO2016129329A1 - 透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 - Google Patents

透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
JPWO2016129329A1
JPWO2016129329A1 JP2016574699A JP2016574699A JPWO2016129329A1 JP WO2016129329 A1 JPWO2016129329 A1 JP WO2016129329A1 JP 2016574699 A JP2016574699 A JP 2016574699A JP 2016574699 A JP2016574699 A JP 2016574699A JP WO2016129329 A1 JPWO2016129329 A1 JP WO2016129329A1
Authority
JP
Japan
Prior art keywords
bis
transparent heat
film
resistant laminated
fluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016574699A
Other languages
English (en)
Inventor
直矢 岩上
直矢 岩上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2016129329A1 publication Critical patent/JPWO2016129329A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/32Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の課題は、ヘイズが低く、光透過率の高い透明耐熱性積層フィルムの製造方法を提供することである。本発明の透明耐熱性積層フィルムの製造方法は、透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程と、前記少なくとも処方の異なる2種のドープを支持体上に少なくとも2層で共流延して流延膜を形成する工程と、前記流延膜を前記支持体から剥離する工程とを有する透明耐熱性積層フィルムの製造方法であって、前記溶媒として沸点80℃以下の低沸点溶媒を主溶媒として用いることを特徴とする。

Description

本発明は、ヘイズが低く、光透過性が高い透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置に関する。
近年、電子機器などの小型化、軽量化に伴いフレキシブル基板が用いられるようになってきた。
例えば、照明用途としてもフレキシブル基板が求められており、LED(Light Emitting Diode)照明装置用途の一般的なフレキシブル基板用フィルムとして、ポリイミドフィルムのような耐熱性に優れるフィルムが用いられる場合がある。
また、耐熱性フィルムと金属箔などの接着性を確保するために、3層構成の耐熱性フィルムが知られている。例えば、コア層に非熱可塑性のポリイミド樹脂を用いて両表面に熱可塑性ポリイミド樹脂を用いることで、ラミネートによって金属箔との接着が可能となるような積層フィルムである。当該積層フィルムは多層共流延によって製膜されており、前記樹脂を溶解する溶媒としては、N,N−ジメチルホルムアミドやN,N−ジメチルアセトアミドなどの高沸点溶媒を用いていた(例えば、特許文献1参照。)。
しかしながら、前記多層共流延した積層フィルムは、支持体上での乾燥工程において層界面を通じて前記樹脂同士が混合して白濁し、ヘイズが上昇して光透過性が損なわれるという問題があり、透明性が劣っていた。したがって、透明性が要求されるデバイス用途への適用が難しかった。
国際公開第2012/081478号
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、ヘイズが低く、光透過性が高い透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置を提供することである。
本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程において、前記溶媒として特定の溶媒を用いることによって層界面での材料の混合を抑制し、ヘイズが低く、光透過性の高い透明耐熱性積層フィルムが得られることを見出した。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程と、前記少なくとも処方の異なる2種のドープを支持体上に共流延して流延膜を形成する工程と、前記流延膜を前記支持体から剥離する工程とを有する透明耐熱性積層フィルムの製造方法であって、
前記溶媒として沸点80℃以下の低沸点溶媒を主溶媒として用いることを特徴とする透明耐熱性積層フィルムの製造方法。
2.前記透明耐熱性樹脂が、ポリイミド、ポリアミド酸、ポリアリレート、及びポリエーテルの中から選択される少なくとも1種の樹脂であることを特徴とする第1項に透明耐熱性積層フィルムの製造方法。
3.前記低沸点溶媒が、ジクロロメタン、酢酸エチル、メチルエチルケトン、テトラヒドロフラン、アセトン、及び1,3−ジオキソランの中から選択される少なくとも1種を主溶媒として含有することを特徴とする第1項又は第2項に記載の透明耐熱性積層フィルムの製造方法。
4.前記支持体上での流延膜の乾燥を、前記溶媒の沸点をT℃としたときに、(T−1)℃以下の温度で行うことを特徴とする第1項から第3項までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法。
5.前記流延膜を前記支持体から剥離する工程の後に、前記流延膜を1.03〜2.00倍の範囲内で延伸する工程を有することを特徴とする第1項から第4項までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法。
6.前記透明耐熱性積層フィルムの厚さを、10〜100μmの範囲内になるように調整することを特徴とする第1項から第5項までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法。
7.第1項から第6項までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法によって製造されたことを特徴とする透明耐熱性積層フィルム。
8.第7項に記載の透明耐熱性積層フィルムを具備していることを特徴とするフレキシブルプリント基板。
9.第7項に記載の透明耐熱性積層フィルムを具備していることを特徴とするフレキシブルディスプレイ用基板。
10.第7項に記載の透明耐熱性積層フィルムを具備していることを特徴とするフレキシブルディスプレイ用前面板。
11.第7項に記載の透明耐熱性積層フィルム又は第8項に記載のフレキシブルプリント基板を具備していることを特徴とするLED照明装置。
12.第に7項記載の透明耐熱性積層フィルム、第9項に記載のフレキシブルディスプレイ用基板又は第10項に記載のフレキシブルディスプレイ用前面板を具備することを特徴とする有機エレクトロルミネッセンス表示装置。
本発明の上記手段により、ヘイズが低く、光透過性が高い透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、当該透明耐熱性積層フィルムを具備したフレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置を提供することができる。
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
前記ドープを前記支持体上に少なくとも2層で共流延して流延膜を形成する際の透明耐熱性樹脂の混合について解析した結果、前記支持体上での乾燥温度が高いほど層間での混合の度合いが大きいということが分かった。これは恐らく高温乾燥するほど前記透明耐熱性樹脂の拡散が速くなることに起因しているものと考えられる。
したがって、前記耐熱性樹脂の拡散を制御することができれば、層間での混合を抑制できると考え、前記ドープを調製する際の溶媒に着目して解析した結果、溶媒として、N,N−ジメチルホルムアミド(沸点153℃)、N,N−ジメチルアセトアミド(沸点165℃)などの高沸点溶媒ではなく、本発明に係る特定の沸点以下の低沸点溶媒を主溶媒として用いることによって、前記耐熱性樹脂の拡散を抑え、層界面での材料の混合を顕著に抑制できたものと推察される。
さらに、前記耐熱性樹脂の拡散を制御するのに、前記支持体上での乾燥温度を低く調整することで、その効果をより向上することができたものと考えられる。
本発明に係る共流延に用いられる装置の模式図 有機エレクトロルミネッセンス表示装置の模式図
本発明の透明耐熱性積層フィルムの製造方法は、透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程において、前記溶媒として特定の沸点以下の低沸点溶媒を主溶媒として用いることを特徴とする。この特徴は、請求項1から請求項12までの請求項に係る発明に共通する技術的特徴である。
本発明の実施態様としては、本発明の効果発現の観点から、前記透明耐熱性樹脂が、ポリイミド、ポリアミド酸、ポリアリレート、及びポリエーテルの中から選択される少なくとも1種の樹脂であることが好ましく、前記低沸点溶媒が、ジクロロメタン、酢酸エチル、メチルエチルケトン、テトラヒドロフラン、アセトン、及び1,3−ジオキソランの中から選択される少なくとも1種を主溶媒として含むことが、層界面での材料の混合を顕著に抑制でき、白濁によるヘイズの上昇を抑え、高い光透過性を発現する上で好ましい。
また、前記ドープを前記支持体上に少なくとも2層で共流延して流延膜を形成する工程において、前記支持体上での流延膜(ウェブともいう。)の乾燥を、前記溶媒の沸点をT℃としたときに、(T−1)℃以下の温度で行うことが、層界面での材料の混合をさらに抑制でき、さらに高い光透過性を有する透明耐熱性積層フィルムが得られる観点から、好ましい実施態様である。
本発明の製造方法としては、前記前記流延膜を前記支持体から剥離する工程の後に、前記流延膜を1.03〜2.00倍の範囲内で延伸する工程を有することがフィルムに強度を付与したり位相差(リターデーション)を調整する上で好ましく、前記透明耐熱性積層フィルムの厚さが、10〜100μmの範囲内になるように調整することが、LED照明装置及び有機エレクトロルミネッセンス表示装置用のフレキシブルプリント基板、フレキシブルディスプレイ用基板、及びフレキシブルディスプレイ用前面板として、耐熱性に加えて、薄膜でありながら機械的強度を保持する観点から、好ましい。
本発明の透明耐熱性積層フィルムの製造方法によって製造された透明耐熱性積層フィルムムは、LED照明装置のフレキシブルプリント基板や有機エレクトロルミネッセンス表示装置のフレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板などに好適に具備される。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
≪本発明の透明耐熱性積層フィルムの製造方法の概要≫
本発明の透明耐熱性積層フィルムの製造方法は、透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程と、前記少なくとも処方の異なる2種のドープを支持体上に共流延して流延膜を形成する工程と、前記流延膜を前記支持体から剥離する工程とを有する透明耐熱性積層フィルムの製造方法であって、前記溶媒として沸点80℃以下の低沸点溶媒を主溶媒として用いることを特徴とする。
本発明でいう透明耐熱性樹脂の「透明」とは、当該透明耐熱性樹脂を用いて耐熱性積層フィルムを形成したときに、フィルムのヘイズ、全光線透過率、YI値(イエローインデックス)が下記に挙げる条件を満たすときに「透明」であると定義する。
〈ヘイズ〉
透明耐熱性積層フィルムは、厚さ25μmのサンプルを作製し、ヘイズが1%未満であるときに「透明」であるといい、当該ヘイズは0.5%未満であることが好ましく、0.3%未満であることがさらに好ましい。ヘイズを1%未満とすることにより、光学用途のフィルムとして、種々なデバイスに適用の幅が広がるという利点がある。
フィルム試料について、23℃・55RHの空調室で24時間調湿した試料1枚をJIS K−7136に従って、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用してヘイズと全光線透過率を測定する。
本発明に係る透明耐熱性積層フィルムは、厚さ25μmのサンプルを作製し、全光線透過率が80%以上であるときに「透明」といい、本発明の透明耐熱性積層フィルムをLED照明装置や有機エレクトロルミネッセンス素子に具備する観点から、85%以上であることがより好ましい。
従来ポリイミドフィルムは、耐熱性に優れるが高い芳香環密度により、茶色又は黄色に色を呈し可視光線領域での透過率が低く、透明性が要求される分野に用いることは困難であった。したがって、透明性が要求される分野においては、着色の程度を表すYI値(イエローインデックス:黄色味の指数)は、透明耐熱性積層フィルムの厚さ25μmにおいて、2.0以下であることが好ましく、より好ましくは0.3〜2.0の範囲内であり、特に好ましくは0.3〜1.6の範囲内である。前記YI値の範囲を達成するには、本発明に好ましい耐熱性樹脂であるポリイミド、ポリアミド酸、ポリアリレート、又はポリエーテルが、それぞれフルオレン骨格を有する構造であることが好ましい。
イエローインデックスは、JIS K−7103に定められているフィルムのYI(イエローインデックス:黄色味の指数)に従って求めることができる。
具体的なイエローインデックス値の測定方法としては、厚さ25μmのサンプルを作製し、(株)日立ハイテクノロジーの分光光度計U−3200と附属の彩度計算プログラム等を用いて、JIS Z8701に定められている光源色の三刺激値X、Y、Zを求め、下式に従ってイエローインデックス値を求める。
イエローインデックス(YI)=100(1.28X−1.06Z)/Y
<本発明の透明耐熱性積層フィルムの製造方法の構成>
最初に、本発明の透明耐熱性積層フィルムの製造方法に用いる材料について、詳細に説明する。
また、前記「少なくとも処方の異なる」とは、前記少なくとも処方の異なる2種のドープを支持体上に共流延して流延膜を形成する工程において、樹脂が混合しない程度に処方が異なることであって、透明耐熱性樹脂の構造は同一でも異なっていてもよいが、本発明では前記透明耐熱性樹脂の構造が異なることが好ましい。
〔1〕透明耐熱性樹脂
本発明の透明耐熱性積層フィルムは、透明耐熱性樹脂を用いることが特徴であり、当該透明耐熱性樹脂は、ポリイミド、ポリアミド酸、ポリアリレート、及びポリエーテルの中から選択される少なくとも1種の樹脂であることが、耐熱性及び透明性の観点から、好ましい。
〔1−1〕ポリイミド又はポリアミド酸
本発明に係る透明耐熱性樹脂は、ポリイミド又はポリアミド酸から選択されることが好ましい。
本発明に用いられるポリイミド又はポリアミド酸としては、特に、下記一般式(1)で表される繰り返し単位を有するポリイミド(以下、ポリイミド(A)と称する。)又は下記一般式(1′)で表される繰り返し単位を有するポリアミド酸(以下、ポリアミド酸(A′)と称する。)が好ましい。
Figure 2016129329
一般式(1)及び(1′)中、Rは、芳香族炭化水素環若しくは芳香族複素環、又は、炭素数4〜39の4価の脂肪族炭化水素基若しくは脂環式炭化水素基である。Φは、炭素数2〜39の2価の脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、又はこれらの組み合わせからなる基であって、結合基として、−O−、−SO−、−CO−、−CH−、−C(CH−、−OSi(CH−、−CO−及び−S−からなる群から選ばれる少なくとも一つの基を含有していても良い。
Rで表される芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、及びアンスラアントレン環等が挙げられる。
また、Rで表される芳香族複素環としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等が挙げられる。
Rで表される炭素数4〜39の4価の脂肪族炭化水素基としては、例えば、ブタン−1,1,4,4−トリイル基、オクタン−1,1,8,8−トリイル基、デカン−1,1,10,10−トリイル基等の基が挙げられる。
また、Rで表される炭素数4〜39の4価の脂環式炭化水素基としては、例えば、シクロブタン−1,2,3,4−テトライル基、シクロペンタン−1,2,4,5−テトライル基、シクロヘキサン−1,2,4,5−テトライル基、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトライル基、ビシクロ[2.2.2]オクタン−2,3,5,6−テトライル基、3,3′,4,4′−ジシクロヘキシルテトライル基、3,6−ジメチルシクロヘキサン−1,2,4,5−テトライル基、3,6−ジフェニルシクロヘキサン−1,2,4,5−テトライル基等の基が挙げられる。
Φで表される上記結合基を有する又は有さない炭素数2〜39の2価の脂肪族炭化水素基としては、例えば、下記構造式で表される基が挙げられる。
Figure 2016129329
上記構造式において、nは、繰り返し単位の数を表し、1〜5が好ましく、1〜3がより好ましい。また、Xは、炭素数1〜3のアルカンジイル基、つまり、メチレン基、エチレン基、トリメチレン基、プロパン−1,2−ジイル基であり、メチレン基が好ましい。
Φで表される上記結合基を有する又は有さない炭素数2〜39の2価の脂環式炭化水素基としては、例えば、下記構造式で表される基が挙げられる。
Figure 2016129329
Φで表される上記結合基を有する又は有さない炭素数2〜39の2価の芳香族炭化水素基としては、例えば、下記構造式で表される基が挙げられる。
Figure 2016129329
Φで表される脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基の組み合わせからなる基としては、例えば、下記構造式で示される基が挙げられる。
Figure 2016129329
Φで表される基としては、結合基を有する炭素数2〜39の2価の芳香族炭化水素基、又は該芳香族炭化水素基と脂肪族炭化水素基の組み合わせであることが好ましく、特に、以下の構造式で表される基が好ましい。
Figure 2016129329
ポリアミド酸(A′)は、上記のとおり、ポリイミド(A)のイミド結合の一部が解離した構造に当たり、ポリアミド酸(A′)の詳細説明はポリイミド(A)に対応させて考えることができるため、以下、代表的にポリイミド(A)について詳細に説明する。
前記一般式(1)で表される繰り返し単位は、全ての繰り返し単位に対して好ましくは10〜100モル%、より好ましくは50〜100モル%、更に好ましくは80〜100モル%、特に好ましくは90〜100モル%である。また、ポリイミド(A)1分子中の一般式(1)の繰り返し単位の個数は、10〜2000、好ましくは20〜200であり、この範囲において、更にガラス転移温度が230〜350℃であることが好ましく、250〜330℃であることがより好ましい。ガラス転移温度は、DSC装置(示差走査熱量分析装置)にて測定することができ、例えば示差走査熱量測定器(セイコーインスツル(株)製DSC−6220型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)にしたがい求めた中間点ガラス転移温度(Tmg)をガラス転移点(Tg)として求めることができる。
ポリイミド(A)は、芳香族、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体と、ジアミン又はその誘導体とを反応させることにより得られる。
脂肪族若しくは脂環式テトラカルボン酸の誘導体としては、例えば、脂肪族若しくは脂環式テトラカルボン酸エステル類、脂肪族若しくは脂環式テトラカルボン酸二無水物等が挙げられる。なお、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体のうち、脂環式テトラカルボン酸二無水物が好ましい。
ジアミンの誘導体としては、例えば、ジイソシアネート、ジアミノジシラン等が挙げられる。ジアミン又はその誘導体のうち、ジアミンが好ましい。
脂肪族テトラカルボン酸としては、例えば、1,2,3,4−ブタンテトラカルボン酸等が挙げられる。脂環式テトラカルボン酸としては、例えば、1,2,3,4−シクロブタンテトラカルボン酸、1,2,4,5−シクロペンタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸等が挙げられる。
脂肪族テトラカルボン酸エステル類としては、例えば、上記脂肪族テトラカルボン酸のモノアルキルエステル、ジアルキルエステル、トリアルキルエステル、テトラアルキルエステルが挙げられる。脂環式テトラカルボン酸エステル類としては、例えば、上記脂環式テトラカルボン酸のモノアルキルエステル、ジアルキルエステル、トリアルキルエステル、テトラアルキルエステルが挙げられる。なお、アルキル基部位は、炭素数1〜5のアルキル基であることが好ましく、炭素数1〜3のアルキル基であることがより好ましい。
脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4−ブタンテトラカルボン酸二無水物等が挙げられる。脂環式テトラカルボン酸二無水物としては、例えば、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸二無水物等が挙げられる。特に好ましくは、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物である。一般に、脂肪族ジアミンを構成成分とするポリイミドは、中間生成物であるポリアミド酸とジアミンが強固な塩を形成するため、高分子量化するためには塩の溶解性が比較的高い溶媒(例えばクレゾール、N,N−ジメチルアセトアミド、γ−ブチロラクトン、N−メチル−2−ピロリドン等)を用いることが好ましい。ところが、脂肪族ジアミンを構成成分とするポリイミドでも、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を構成成分としている場合には、ポリアミド酸とジアミンの塩は比較的弱い結合で結ばれているので、高分子量化が容易で、フレキシブルなフィルムが得られ易い。
他にも、例えば、4,4′−ビフタル酸無水物、4,4′−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、2,3,3′,4′−ビフェニルテトラカルボン酸二無水物、4,4′−オキシジフタル酸無水物、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸二無水物、3,4′−オキシジフタル酸無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物(ピグメントレッド224)1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物トリシクロ[6.4.0.02,7]ドデカン−1,8:2,7−テトラカルボン酸二無水物等を用いることができる。
芳香族、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体は、1種を単独で使用しても良いし、2種以上を併用しても良い。また、ポリイミドの溶媒可溶性、フィルムのフレキシビリティ、熱圧着性、透明性を損なわない範囲で、他のテトラカルボン酸又はその誘導体(特に二無水物)を併用しても良い。
かかる他のテトラカルボン酸又はその誘導体としては、例えば、ピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸、2,3,3′,4′−ビフェニルテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(2,3−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)エーテル、ビス(2,3−ジカルボキシフェニル)エーテル、3,3′,4,4′−ベンゾフェノンテトラカルボン酸、2,2′,3,3′−ベンゾフェノンテトラカルボン酸、4,4−(p−フェニレンジオキシ)ジフタル酸、4,4−(m−フェニレンジオキシ)ジフタル酸、1,1−ビス(2,3−ジカルボキシフェニル)エタン、ビス(2,3−ジカルボキシフェニル)メタン、ビス(3,4−ジカルボキシフェニル)メタン等の芳香族系テトラカルボン酸及びこれらの誘導体(特に二無水物);エチレンテトラカルボン酸等の炭素数1〜3の脂肪族テトラカルボン酸及びこれらの誘導体(特に二無水物)等が挙げられる。
本発明の透明耐熱フィルムの製造方法では、従来のポリイミド特有の着色を改善するのに、フルオレン骨格を有するポリイミド又はポリアミド酸を含有することが好ましい。当該フルオレン骨格を有するポリイミド又はポリアミド酸は、ジアミン又はその誘導体と酸無水物又はその誘導体とから形成され、当該ジアミン又は酸無水物のいずれか一方がフルオレン骨格を有する化合物であることが好ましい。
なお、本発明でいうフルオレン骨格とは、以下の構造をいう。
Figure 2016129329
市販のポリイミドフィルムは、分子間又は分子内の電荷移動相互作用に由来する可視光領域の吸収により、黄色から褐色に着色しているという問題がある。また、上記フィルムは、フィルム状に成形するのに、高温での熱処理を要するなど、プロセス負荷が高く成形性が低いという問題がある。具体的には、上記フィルムを形成するポリイミドは溶媒に対する溶解性が低く、ポリイミドをそのまま用いてフィルムを形成することが難しい。そのため、前記ポリイミドの前駆体であるポリアミド酸の溶媒溶液を用い、支持体への流延などによりフィルム状の塗膜とした後、該塗膜を400℃程度の高温で熱処理することにより、塗膜中のポリアミド酸をイミド化し、ポリイミドからなるフィルムを得る必要がある。したがって着色が強いという問題があった。
本発明では、好ましくはフルオレン骨格を有するポリイミド又はポリアミド酸を用いることによって、前記着色の問題を改善し、透明耐熱性積層フィルムを得ることができる。
酸無水物のうち、フルオレン骨格を有する酸無水物としては、例えば、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、9,9−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−フェニルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−3−フェニルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−フェニルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−2−フェニルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−メチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−3−メチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−メチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−2−メチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−エチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−3−エチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−エチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−2−エチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−プロピルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−3−プロピルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−プロピルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−2−プロピルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−ブチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−3−ブチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−ブチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−2−ブチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−t−ブチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−3−t−ブチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−t−ブチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(2,3−ジカルボキシフェノキシ)−2−t−ブチルフェニル〕フルオレン酸二無水物、等を挙げることができる。これらの芳香族ビス(エーテル酸無水物)化合物のうち、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)フェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−フェニルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−フェニルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−3−メチルフェニル〕フルオレン酸二無水物、9,9−ビス〔4−(3,4−ジカルボキシフェノキシ)−2−メチルフェニル〕フルオレン酸二無水物等を挙げることができる。
中でも、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、又は9,9−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物を用いることが、耐熱性、透明性の観点で好ましい。
ジアミンは、芳香族ジアミン、脂肪族ジアミン又はこれらの混合物のいずれでも良い。なお、本発明において「芳香族ジアミン」とは、アミノ基が芳香族環に直接結合しているジアミンを表し、その構造の一部に脂肪族炭化水素基、脂環式炭化水素基、その他の置換基(例えば、ハロゲン原子、スルホニル基、カルボニル基、酸素原子等。)を含んでいても良い。「脂肪族ジアミン」とは、アミノ基が脂肪族炭化水素基又は脂環式炭化水素基に直接結合しているジアミンを表し、その構造の一部に芳香族炭化水素基、その他の置換基(例えば、ハロゲン原子、スルホニル基、カルボニル基、酸素原子等。)を含んでいても良い。
芳香族ジアミンとしては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジアミノトルエン、2,6−ジアミノトルエン、ベンジジン、o−トリジン、m−トリジン、ビス(トリフルオロメチル)ベンジジン、オクタフルオロベンジジン、3,3′−ジヒドロキシ−4,4′−ジアミノビフェニル、3,3′−ジメトキシ−4,4′−ジアミノビフェニル、3,3′−ジクロロ−4,4′−ジアミノビフェニル、3,3′−ジフルオロ−4,4′−ジアミノビフェニル、2,6−ジアミノナフタレン、1,5−ジアミノナフタレン、4,4′−ジアミノジフェニルエーテル、3,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルスルホン、3,4′−ジアミノジフェニルスルホン、4,4′−ジアミノベンゾフェノン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(2−メチル−4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(2,6−ジメチル−4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(2−メチル−4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(2,6−ジメチル−4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4′−ビス(4−アミノフェノキシ)ビフェニル、4,4′−ビス(2−メチル−4−アミノフェノキシ)ビフェニル、4,4′−ビス(2,6−ジメチル−4−アミノフェノキシ)ビフェニル、4,4′−ビス(3−アミノフェノキシ)ビフェニル、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(2−メチル−4−アミノフェノキシ)フェニル)スルホン、ビス(4−(2,6−ジメチル−4−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)エーテル、ビス(4−(2−メチル−4−アミノフェノキシ)フェニル)エーテル、ビス(4−(2,6−ジメチル−4−アミノフェノキシ)フェニル)エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(2−メチル−4−アミノフェノキシ)ベンゼン、1,4−ビス(2,6−ジメチル−4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(2−メチル−4−アミノフェノキシ)ベンゼン、1,3−ビス(2,6−ジメチル−4−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(2−メチル−4−アミノフェニル)プロパン、2,2−ビス(3−メチル−4−アミノフェニル)プロパン、2,2−ビス(3−エチル−4−アミノフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−アミノフェニル)プロパン、2,2−ビス(2,6−ジメチル−4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(2−メチル−4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(2,6−ジメチル−4−アミノフェニル)ヘキサフルオロプロパン、α,α′−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン、α,α′−ビス(2−メチル−4−アミノフェニル)−1,4−ジイソプロピルベンゼン、α,α′−ビス(2,6−ジメチル−4−アミノフェニル)−1,4−ジイソプロピルベンゼン、α,α′−ビス(3−アミノフェニル)−1,4−ジイソプロピルベンゼン、α,α′−ビス(4−アミノフェニル)−1,3−ジイソプロピルベンゼン、α,α′−ビス(2−メチル−4−アミノフェニル)−1,3−ジイソプロピルベンゼン、α,α′−ビス(2,6−ジメチル−4−アミノフェニル)−1,3−ジイソプロピルベンゼン、α,α′−ビス(3−アミノフェニル)−1,3−ジイソプロピルベンゼン、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(2−メチル−4−アミノフェニル)フルオレン、9,9−ビス(2,6−ジメチル−4−アミノフェニル)フルオレン、1,1−ビス(4−アミノフェニル)シクロペンタン、1,1−ビス(2−メチル−4−アミノフェニル)シクロペンタン、1,1−ビス(2,6−ジメチル−4−アミノフェニル)シクロペンタン、1,1−ビス(4−アミノフェニル)シクロヘキサン、1,1−ビス(2−メチル−4−アミノフェニル)シクロヘキサン、1,1−ビス(2,6−ジメチル−4−アミノフェニル)シクロヘキサン、1,1−ビス(4−アミノフェニル)4−メチル−シクロヘキサン、1,1−ビス(4−アミノフェニル)ノルボルナン、1,1−ビス(2−メチル−4−アミノフェニル)ノルボルナン、1,1−ビス(2,6−ジメチル−4−アミノフェニル)ノルボルナン、1,1−ビス(4−アミノフェニル)アダマンタン、1,1−ビス(2−メチル−4−アミノフェニル)アダマンタン、1,1−ビス(2,6−ジメチル−4−アミノフェニル)アダマンタン、1,4−フェニレンジアミン、3,3′−ジアミノベンゾフェノン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、3−アミノベンジルアミン、9,9−ビス(4−アミノ−3−フルオロフェニル)フルオレン、2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、1,3−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン、ビス(2−アミノフェニル)スルフィド、ビス(4−アミノフェニル)スルフィド、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、4,4′−ジアミノ−3,3′−ジメチルジフェニルメタン、3,3′−ジアミノジフェニルメタン、4,4′−エチレンジアニリン、4,4′−メチレンビス(シクロヘキシルアミン)、4,4′−メチレンビス(2,6−ジエチルアニリン)、4,4′−メチレンビス(2−メチルシクロヘキシルアミン)等が挙げられる。
脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3−アミノプロピル)エーテル、ポリプロピレングリコールビス(3−アミノプロピル)エーテル、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、m−キシリレンジアミン、p−キシリレンジアミン、1,4−ビス(2−アミノ−イソプロピル)ベンゼン、1,3−ビス(2−アミノ−イソプロピル)ベンゼン、イソフォロンジアミン、ノルボルナンジアミン、シロキサンジアミン、4,4′−ジアミノジシクロヘキシルメタン、3,3′−ジメチル−4,4′−ジアミノジシクロヘキシルメタン、3,3′−ジエチル−4,4′−ジアミノジシクロヘキシルメタン、3,3′,5,5′−テトラメチル−4,4′−ジアミノジシクロヘキシルメタン、2,3−ビス(アミノメチル)−ビシクロ[2.2.1]ヘプタン、2,5−ビス(アミノメチル)−ビシクロ[2.2.1]ヘプタン、2,6−ビス(アミノメチル)−ビシクロ[2.2.1]ヘプタン、2,2−ビス(4,4′−ジアミノシクロヘキシル)プロパン、2,2−ビス(4,4′−ジアミノメチルシクロヘキシル)プロパン等が挙げられる。
ジアミン誘導体であるジイソシアネートとしては、例えば、上記芳香族又は脂肪族ジアミンとホスゲンを反応させて得られるジイソシアネートが挙げられる。
また、ジアミン誘導体であるジアミノジシラン類としては、例えば上記芳香族又は脂肪族ジアミンとクロロトリメチルシランを反応させて得られるトリメチルシリル化した芳香族又は脂肪族ジアミンが挙げられる。
以上のジアミン及びその誘導体は任意に混合して用いても良いが、それらの中におけるジアミンの量が50〜100モル%となることが好ましく、80〜100モル%となることがより好ましい。
ジアミン又はその誘導体のうち、フルオレン骨格を有するジアミン又はその誘導体としては、芳香族ジアミンであることが好ましく、例えば、9,9−ビス〔4−(4−アミノフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−エチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−i−プロピルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−t−ブチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−5−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、
9,9−ビス〔4−(3−アミノ−5−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−メチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−トリフルオロメチルフェノキシ)−3−フェニルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)フェニル〕フルオレン、
9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−メチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−エチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−n−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−i−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−t−ブチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−3−トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−メチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−メチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−メチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−メチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−エチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−エチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−エチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−エチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−n−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−n−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−n−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−n−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−i−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−i−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−i−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−i−プロピルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−t−ブチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−t−ブチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−t−ブチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−t−ブチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−トリフルオロメチルフェノキシ)フェニル〕フルオレン、
9,9−ビス〔4−(2−アミノ−4−トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3−エチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3−エチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3−エチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3−エチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3−エチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3−エチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3−トリフルオロメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3−トリフルオロメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3−トリフルオロメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3−トリフルオロメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3−トリフルオロメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3−トリフルオロメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3,5−ジメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3,5−ジメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3,5−ジメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3,5−ジメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3,5−ジメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3,5−ジメチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3,5−ジエチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3,5−ジエチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3,5−ジエチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3,5−ジエチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3,5−ジエチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3,5−ジエチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3,5−ジ−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3,5−ジ−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3,5−ジ−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3,5−ジ−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3,5−ジ−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3,5−ジ−n−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3,5−ジ−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3,5−ジ−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3,5−ジ−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3,5−ジ−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3,5−ジ−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3,5−ジ−i−プロピルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3,5−ジ−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3,5−ジ−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3,5−ジ−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3,5−ジ−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3,5−ジ−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3,5−ジ−t−ブチルフェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−メチルフェノキシ)−3,5−ジ(トリフルオロメチル)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−エチルフェノキシ)−3,5−ジ(トリフルオロメチル)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−n−プロピルフェノキシ)−3,5−ジ(トリフルオロメチル)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−i−プロピルフェノキシ)−3,5−ジ(トリフルオロメチル)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−t−ブチルフェノキシ)−3,5−ジ(トリフルオロメチル)フェニル〕フルオレン、9,9−ビス〔4−(4−アミノ−2−トリフルオロメチルフェノキシ)−3,5−ジ(トリフルオロメチル)フェニル〕フルオレン、
9,9−ビス〔4−(2−アミノ−3−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−3−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−4−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−5−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(2−アミノ−6−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−5−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−メチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−エチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−エチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−5−エチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−エチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−n−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−n−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−5−n−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−n−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−i−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−i−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−5−i−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−i−プロピルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−t−ブチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−t−ブチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−5−t−ブチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−t−ブチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−2−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−4−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−5−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン、9,9−ビス〔4−(3−アミノ−6−トリフルオロメチルフェノキシ)−3−メチルフェニル〕フルオレン等が挙げられる。
前記フルオレン骨格を有するポリイミド又はポリアミド酸は、ジアミン又はその誘導体と、酸無水物又はその誘導体として、前記ジアミンが、9,9−ビス(4−アミノフェニル)フルオレン、9,9-ビス(4−アミノ−3−メチルフェニル)フルオレン又は9,
9−ビス(3−フルオロ−4−アミノフェニル)フルオレンのいずれかであることが好ましく、前記酸無水物が、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン二無水物又は9,9−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物のいずれかであることが非着色性を向上する観点から、好ましい。
ポリアミド酸は、適当な溶媒中で、前記テトラカルボン酸類の少なくとも1種類と、前記ジアミン類の少なくとも1種類を重合反応させることにより得られる。
また、ポリアミド酸エステルは、前記テトラカルボン酸二無水物を、メタノール、エタノール、イソプロパノール、n−プロパノール等のアルコールを用いて開環することによりジエステル化し、得られたジエステルを適当な溶媒中で前記ジアミン化合物と反応させることにより得ることができる。更に、ポリアミド酸エステルは、上記のように得られたポリアミド酸のカルボン酸基を、上記のようなアルコールと反応させることによりエステル化することによっても得ることができる。
前記テトラカルボン酸二無水物と、前記ジアミン化合物との反応は、従来知られている条件で行うことができる。テトラカルボン酸二無水物とジアミン化合物の添加順序や添加方法には特に限定はない。例えば、溶媒にテトラカルボン酸二無水物とジアミン化合物とを順に投入し、適切な温度で撹拌することにより、ポリアミド酸を得ることができる。
ジアミン化合物の量は、テトラカルボン酸二無水物1モルに対して、通常0.8モル以上、好ましくは1モル以上である。一方、通常1.2モル以下、好ましくは1.1モル以下である。ジアミン化合物の量をこのような範囲とすることにより、得られるポリアミド酸の収率が向上し得る。
溶媒中のテトラカルボン酸二無水物及びジアミン化合物の濃度は、反応条件やポリアミド酸溶液の粘度に応じて適宜設定する。例えば、テトラカルボン酸二無水物とジアミン化合物との合計の質量は、特段の制限はないが、全溶液量に対し、通常1質量%以上、好ましくは5質量%以上であり、一方、通常70質量%以下、好ましくは30質量%以下である。反応基質の量をこのような範囲とすることにより、低コストで収率良くポリアミド酸を得ることができる。
反応温度は、特段の制限はないが、通常0℃以上、好ましくは20℃以上であり、一方、通常100℃以下、好ましくは80℃以下である。反応時間は、特段の制限はないが、通常1時間以上、好ましくは2時間以上であり、一方、通常100時間以下、好ましくは24時間以下である。このような条件で反応を行うことにより、低コストで収率良くポリアミド酸を得ることができる。
この反応で用いられる重合溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン及びメシチレン等の炭化水素系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン、ジクロロベンゼン及びフルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン及びメトキシベンゼン等のエーテル系溶媒;アセトン及びメチルエチルケトン等のケトン系溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド及びN−メチル−2−ピロリドン等のアミド系溶媒;ジメチルスルホキシド、γ−ブチロラクトン等の非プロトン系極性溶媒;ピリジン、ピコリン、ルチジン、キノリン及びイソキノリン等の複素環系溶媒;フェノール及びクレゾールのようなフェノール系溶媒、等が挙げられるが、特に限定されるものではない。重合溶媒としては、1種のみを用いることもできるし、2種類以上の溶媒を混合して用いることもできる。
また、重合反応の前に芳香族ジアミン類に少量の末端封止剤を添加して重合反応を制御しても良い。
ポリイミドは、後述するように、ポリアミド酸溶液を流延したフィルムに対して加熱処理を行うか、閉環触媒を混合したポリアミド酸溶液を支持体上に流延してイミド化させることにより得られる。閉環触媒の具体例としては、トリメチルアミン、トリエチレンジアミン等の脂肪族第3級アミン及びイソキノリン、ピリジン、ピコリン等の複素環式第3級アミン等が挙げられるが、複素環式第3級アミンから選ばれる少なくとも1種のアミンを使用することが好ましい。ポリアミド酸に対する閉環触媒の含有量は、閉環触媒の含有量(モル)/ポリアミド酸の含有量(モル)が、0.5〜8.0となる範囲が好ましい。
上記のようにして構成されるポリアミド酸又はポリイミドは、フィルムを形成する観点から、重量平均分子量30000〜1000000のものが用いられる。
また、ポリアミド酸は、流延時においてイミド化されていても良く、流延時のイミド化率としては10〜100%であることが好ましい。ここで、イミド化率としては、フーリエ変換赤外分光法により得られたピークから下記式で求めることができる。
式(A):(C/D)×100/(E/F)
上記式(A)中、Cは、ポリアミド酸又はポリイミドのドープの1370cm−1の吸収ピーク高さを表し、Dは、ポリアミド酸又はポリイミドのドープの1500cm−1の吸収ピーク高さを表し、Eは、ポリイミドフィルムの1370cm−1の吸収ピーク高さを表し、Fは、ポリイミドフィルムの1500cm−1の吸収ピーク高さを表す。
流延時のポリアミド酸のイミド化率を10〜100%とすることで、イミド化率0%のポリアミド酸を用いて流延膜を形成した後にイミド化させる方法よりも、低弾性率のポリイミドフィルムを得ることができる。
〔1−2〕ポリアリレート
本発明に係る透明耐熱性樹脂は、ポリアリレートから選択されることが好ましい。
〈ポリアリレート〉
ポリアリレートは、少なくとも芳香族ジアルコール成分単位と芳香族ジカルボン酸成分単位とを含む。
(芳香族ジアルコール成分単位)
芳香族ジアルコール成分単位を得るための芳香族ジアルコールは、好ましくは下記一般式(2)で表されるビスフェノール類、より好ましくは下記一般式(2’)で表されるビスフェノール類である。
Figure 2016129329
一般式(2)及び(2’)のLは、2価の有機基である。2価の有機基は、好ましくは単結合、アルキレン基、−S−、−SO−、−SO−、−O−、−CO−又は−CR−(RとRは互いに結合して脂肪族環又は芳香族環を形成する)である。
アルキレン基は、好ましくは炭素数1〜10のアルキレン基であり、その例には、メチレン基、エチレン基、イソプロピリデン基等が含まれる。アルキレン基は、ハロゲン原子やアリール基等の置換基をさらに有してもよい。
−CR−のR及びRは、それぞれ互いに結合して脂肪族環又は芳香族環を形成している。脂肪族環は、好ましくは炭素数5〜20の脂肪族炭化水素環であり、好ましくは置換基を有してもよいシクロヘキサン環である。芳香族環は、炭素数6〜20の芳香族炭化水素環であり、好ましくは置換基を有してもよいフルオレン環である。置換基を有してもよいシクロヘキサン環を形成する−CR−の例には、シクロヘキサン−1,1−ジイル基、3,3,5−トリメチルシクロヘキサン−1,1−ジイル基等が含まれる。置換基を有してもよいフルオレン環を形成する−CR−の例には、下記一般式で表されるフルオレンジイル基が含まれる。
Figure 2016129329
一般式(2)及び(2′)のRは、独立して炭素数1〜5のアルキル基又は炭素数6〜10のアリール基である。nは、独立して0〜4の整数、好ましくは0〜3の整数である。
Lがアルキレン基であるビスフェノール類の例には、1,1−ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−メチル−2−ヒドロキシフェニル)メタン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)メタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(BPA)、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン(BPC)、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン(TMBPA)等が含まれる。中でも、2,2−ビス(4−ヒドロキシフェニル)プロパン(BPA)、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン(BPC)、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン(TMBPA)等のイソプロピリデン含有ビスフェノール類が好ましい。
Lが−S−、−SO−又は−SO−であるビスフェノール類の例には、ビス(4−ヒドロキシフェニル)スルホン、ビス(2−ヒドロキシフェニル)スルホン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルホン(TMBPS)、ビス(3,5−ジエチル−4−ヒドロキシフェニル)スルホン、ビス(3−メチル−4−ヒドロキシフェニル)スルホン、ビス(3−エチル−4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルフィド、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルフィド、ビス(3,5−ジエチル−4−ヒドロキシフェニル)スルフィド、ビス(3−メチル−4−ヒドロキシフェニル)スルフィド、ビス(3−エチル−4−ヒドロキシフェニル)スルフィド、2,4−ジヒドロキシジフェニルスルホン等が含まれる。Lが−O−であるビスフェノール類の例には、4,4’−ジヒドロキシジフェニルエーテルが含まれ;Lが−CO−であるビスフェノール類の例には、4,4’−ジヒドロキシジフェニルケトンが含まれる。
Lが−CR−であり、かつRとRが互いに結合して脂肪族環を形成するビスフェノール類の例には、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、及び1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(BPTMC)等のシクロヘキサン骨格を有するビスフェノール類が含まれる。
Lが−CR−であり、かつRとRが互いに結合して芳香族環を形成するビスフェノール類の例には、9,9−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン(BCF)、9,9−ビス(3,5−ジメチル−4−ヒドロキシフェニル)フルオレン(BXF)等のフルオレン骨格を有するビスフェノール類が含まれる。
ポリアリレートを構成する芳香族ジアルコール成分は、1種類であってもよいし、2種類以上であってもよい。
これらの中でも、樹脂の溶剤に対する溶解性を高めたり、フレキシブルプリント基板に適用する際の透明耐熱性積層フィルムの金属との密着性を高めたりする観点では、例えば主鎖中に硫黄原子(−S−、−SO−又は−SO−)を含有するビスフェノール類が好ましい。フィルムの耐熱性を高める観点では、例えば主鎖中に硫黄原子を含有するビスフェノール類や、シクロアルキレン骨格を有するビスフェノール類が好ましい。フィルムの複屈折を低減したり、耐摩耗性を高めたりする観点では、フルオレン骨格を有するビスフェノール類が好ましい。
シクロヘキサン骨格を有するビスフェノール類やフルオレン骨格を有するビスフェノール類は、イソプロピリデン基を含有するビスフェノール類と併用することが好ましい。その場合、シクロヘキサン骨格を有するビスフェノール類又はフルオレン骨格を有するビスフェノール類と、イソプロピリデン基を含有するビスフェノール類との含有比率は、10/90〜90/10(モル比)、好ましくは20/80〜80/20(モル比)である。
ポリアリレートは、本発明の効果を損なわない範囲で、芳香族ジアルコール成分以外の芳香族多価アルコール成分単位をさらに含んでもよい。芳香族多価アルコール成分の例には、特許第4551503号公報の段落〔0015〕に記載の化合物が含まれる。具体的には、トリス(4−ヒドロキシフェニル)メタン、4,4’−[1−[4−[1−(4−ヒドロキシフェニル)−1−メチルエチル]フェニル]エチリデン]ビスフェノール、2,3,4,4’−テトラヒドロキシベンゾフェノン、4−[ビス(4−ヒドロキシフェニル)メチル]−2−メトキシフェノール、トリス(3−メチル−4−ヒドロキシフェニル)メタン等が含まれる。これらの芳香族多価アルコール成分単位の含有割合は、求められる特性に応じて適宜設定されうるが、芳香族ジアルコール成分単位及びそれ以外の芳香族多価アルコール成分単位の合計に対して例えば5モル%以下にし得る。
〈芳香族ジカルボン酸成分単位〉
芳香族ジカルボン酸成分単位を構成する芳香族ジカルボン酸は、テレフタル酸、イソフタル酸又はそれらの混合物であることが好ましい。
フィルムの機械的特性を高める等の観点から、テレフタル酸とイソフタル酸の混合物が好ましい。テレフタル酸とイソフタル酸の含有比率は、好ましくはテレフタル酸/イソフタル酸=90/10〜10/90(モル比)の範囲、より好ましくは70/30〜30/70の範囲、さらに好ましくは50/50の範囲である。テレフタル酸の含有比率が上記範囲であると、十分な重合度を有するポリアリレートが得られやすく、十分な機械的特性を有するフィルムが得られやすい。
ポリアリレートは、本発明の効果を損なわない範囲で、テレフタル酸及びイソフタル酸以外の芳香族ジカルボン酸成分単位をさらに含んでもよい。そのような芳香族ジカルボン酸成分の例には、オルトフタル酸、2,6−ナフタレンジカルボン酸、ジフェン酸、4、4′−ジカルボキシジフェニルエーテル、ビス(p−カルボキシフェニル)アルカン、4,4′−ジカルボキシフェニルスルホン等が含まれる。テレフタル酸及びイソフタル酸以外の芳香族ジカルボン酸成分単位の含有割合は、求められる特性に応じて適宜設定されるが、テレフタル酸成分、イソフタル酸成分単位及びそれら以外の芳香族ジカルボン酸成分単位の合計に対して例えば5モル%以下とすることができる。
〈ガラス転移温度〉
ポリアリレートのガラス転移温度は、260℃以上350℃以下であることが好ましく、265℃以上300℃未満であることがより好ましく、270℃以上300℃未満であることがさらに好ましい。
ポリアリレートのガラス転移温度は、同様に、JIS K7121(1987)に準拠して測定される。具体的には、測定装置としてセイコーインスツル(株)製DSC6220を用いて、ポリアリレートの試料10mg、昇温速度20℃/分の条件で測定することができる。
ポリアリレートのガラス転移温度は、ポリアリレートを構成する芳香族ジアルコール成分の種類等によって調整される。ガラス転移温度を高めるためには、例えば芳香族ジアルコール成分単位として「主鎖に硫黄原子を含有するビスフェノール類由来の単位」を含むことが好ましい。
〈固有粘度〉
ポリアリレートの固有粘度は、0.3〜1.0cm/gであることが好ましく、0.4〜0.9cm/gがより好ましく、0.45〜0.8cm/gがさらに好ましく、0.5〜0.7cm/gであることがさらに好ましい。ポリアリレートの固有粘度が0.3cm/g以上であると、樹脂組成物の分子量が一定以上となりやすく、十分な機械的特性や耐熱性を有するフィルムが得られやすい。ポリアリレートの固有粘度が1.0cm/g以下であると、製膜時の溶液粘度が過剰に高まるのを抑制できる。
固有粘度は、ISO1628−1に準拠して測定できる。具体的には、1,1,2,2−テトラクロロエタンに対し、ポリアリレート試料を濃度1g/cmとなるように溶解させた溶液を調製する。この溶液の25℃における固有粘度を、ウベローデ型粘度管を用いて測定する。
ポリアリレートの製造方法としては、公知の方法であってよく、好ましくは水と相溶しない有機溶剤に溶解させた芳香族ジカルボン酸ハライドとアルカリ水溶液に溶解させた芳香族ジアルコールとを混合する界面重合法(W.M.EARECKSON,J.Poly.Sci.XL399,1959年、特公昭40−1959号公報)である。
ポリアリレートの含有量は、ポリアリレートフィルム全体に対して50質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上である。
〔1−3〕ポリエーテル
本発明に係る透明耐熱性樹脂は、ポリエーテルから選択されることが好ましい。
本発明に係るポリエーテルは、下記一般式(3)で表される構造単位(以下「構造単位(3)」ともいう。)及び下記一般式(4)で表される構造単位(以下「構造単位(4)」ともいう。)からなる群より選ばれる少なくとも一つの構造単位(i)を有することが好ましい。当該構造単位(i)を有するポリエーテル(I)は、このため、耐着色性、耐熱性及び光透過性に優れる。また、後述する、構造単位(i)を有し、特定の分子量を有するポリエーテル(II)は、低分子量成分が少ないため、耐着色性、耐熱性及び光透過性がさらに優れる。
Figure 2016129329
一般式(3)中、R〜Rは、それぞれ独立に炭素数1〜12の1価の有機基を示す。a〜dは、それぞれ独立に0〜4の整数を示し、好ましくは0又は1であり、より好ましくは0である。
炭素数1〜12の1価の有機基としては、炭素数1〜12の1価の炭化水素基、並びに酸素原子及び窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の1価の有機基等を挙げることができる。
炭素数1〜12の1価の炭化水素基としては、炭素数1〜12の直鎖又は分岐鎖の炭化水素基、炭素数3〜12の脂環式炭化水素基及び炭素数6〜12の芳香族炭化水素基等が挙げられる。
前記炭素数1〜12の直鎖又は分岐鎖の炭化水素基としては、炭素数1〜8の直鎖又は分岐鎖の炭化水素基が好ましく、炭素数1〜5の直鎖又は分岐鎖の炭化水素基がより好ましい。
前記直鎖又は分岐鎖の炭化水素基の好適な具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基及びn−ヘプチル基が挙げられる。
前記炭素数3〜12の脂環式炭化水素基としては、炭素数3〜8の脂環式炭化水素基が好ましく、炭素数3又は4の脂環式炭化水素基がより好ましい。
炭素数3〜12の脂環式炭化水素基の好適な具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等のシクロアルキル基;シクロブテニル基、シクロペンテニル基及びシクロヘキセニル基等のシクロアルケニル基が挙げられる。当該脂環式炭化水素基の結合部位は、脂環上のいずれの炭素でもよい。
前記炭素数6〜12の芳香族炭化水素基としては、フェニル基、ビフェニル基及びナフチル基等が挙げられる。当該芳香族炭化水素基の結合部位は、芳香族環上のいずれの炭素でもよい。
酸素原子を含む炭素数1〜12の有機基としては、水素原子、炭素原子及び酸素原子からなる有機基が挙げられ、中でも、エーテル結合、カルボニル基又はエステル結合と炭化水素基とからなる総炭素数1〜12の有機基等を好ましく挙げることができる。
エーテル結合を有する総炭素数1〜12の有機基としては、炭素数1〜12のアルコキシ基、炭素数2〜12のアルケニルオキシ基、炭素数2〜12のアルキニルオキシ基、炭素数6〜12のアリールオキシ基及び炭素数2〜12のアルコキシアルキル基などを挙げることができる。具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基、シクロヘキシルオキシ基及びメトキシメチル基等が挙げられる。
また、カルボニル基を有する総炭素数1〜12の有機基としては、炭素数2〜12のアシル基等を挙げることができる。具体的には、アセチル基、プロピオニル基、イソプロピオニル基及びベンゾイル基等が挙げられる。
エステル結合を有する総炭素数1〜12の有機基としては、炭素数2〜12のアシルオキシ基等が挙げられる。具体的には、アセチルオキシ基、プロピオニルオキシ基、イソプロピオニルオキシ基及びベンゾイルオキシ基等が挙げられる。
窒素原子を含む炭素数1〜12の有機基としては、水素原子、炭素原子及び窒素原子からなる有機基が挙げられ、具体的には、シアノ基、イミダゾール基、トリアゾール基、ベンズイミダゾール基及びベンズトリアゾール基等が挙げられる。
酸素原子及び窒素原子を含む炭素数1〜12の有機基としては、水素原子、炭素原子、酸素原子及び窒素原子からなる有機基が挙げられ、具体的には、オキサゾール基、オキサジアゾール基、ベンズオキサゾール基及びベンズオキサジアゾール基等が挙げられる。
前記一般式(3)におけるR〜Rとしては、炭素数1〜12の1価の炭化水素基が好ましく、炭素数6〜12の芳香族炭化水素基がより好ましく、フェニル基がさらに好ましい。
Figure 2016129329
前記一般式(4)中、R〜R及びa〜dは、それぞれ独立に前記一般式(3)中のR〜R及びa〜dと同義であり、Yは、単結合、−SO−又は>C=Oを示し、R及びRは、それぞれ独立にハロゲン原子、炭素数1〜12の1価の有機基又はニトロ基を示し、mは、0又は1を示す。ただし、mが0の時、Rはシアノ基ではない。g及びhは、それぞれ独立に0〜4の整数を示し、好ましくは0である。
炭素数1〜12の1価の有機基としては、前記一般式(3)における炭素数1〜12の1価の有機基と同様の有機基等を挙げることができる。
前記ポリエーテルは、上記構造単位(3)と上記構造単位(4)とのモル比(ただし、両者(構造単位(3)+構造単位(4)の合計は100である。)が、光学特性、耐熱性及び機械的特性の観点から構造単位(3):構造単位(4)=50:50〜100:0の範囲であることが好ましく、構造単位(3):構造単位(4)=70:30〜100:0の範囲であることがより好ましく、構造単位(3):構造単位(4)=80:20〜100:0の範囲であることがさらに好ましい。
ここで、機械的特性とは、ポリエーテルの引張強度、破断伸び及び引張弾性率等の性質のことをいう。
また、前記ポリエーテルは、さらに、下記一般式(5)で表される構造単位及び下記一般式(6)で表される構造単位からなる群より選ばれる少なくとも一つの構造単位を有してもよい。前記ポリエーテルがこのような構造単位を有すると、該ポリエーテルを含んでなるフィルムの機械的特性が向上するため好ましい。
Figure 2016129329
前記一般式(5)中、R及びRは、それぞれ独立に炭素数1〜12の1価の有機基を示し、Zは、単結合、−O−、−S−、−SO−、>C=O、−CONH−、−COO−又は炭素数1〜12の2価の有機基を示し、nは、0又は1を示す。e及びfは、それぞれ独立に0〜4の整数を示し、好ましくは0である。
炭素数1〜12の1価の有機基としては、前記一般式(3)における炭素数1〜12の1価の有機基と同様の有機基等を挙げることができる。
炭素数1〜12の2価の有機基としては、炭素数1〜12の2価の炭化水素基、炭素数1〜12の2価のハロゲン化炭化水素基、酸素原子及び窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価の有機基、並びに酸素原子及び窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価のハロゲン化有機基等を挙げることができる。
炭素数1〜12の2価の炭化水素基としては、炭素数1〜12の直鎖又は分岐鎖の2価の炭化水素基、炭素数3〜12の2価の脂環式炭化水素基及び炭素数6〜12の2価の芳香族炭化水素基等が挙げられる。
炭素数1〜12の直鎖又は分岐鎖の2価の炭化水素基としては、メチレン基、エチレン基、トリメチレン基、イソプロピリデン基、ペンタメチレン基、ヘキサメチレン基及びヘプタメチレン基等が挙げられる。
炭素数3〜12の2価の脂環式炭化水素基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基及びシクロヘキシレン基等のシクロアルキレン基;シクロブテニレン基、シクロペンテニレン基及びシクロヘキセニレン基等のシクロアルケニレン基などが挙げられる。当該脂環式炭化水素基の結合部位は、脂環上のいずれの炭素でもよい。
炭素数6〜12の2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基及びビフェニレン基等が挙げられる。当該芳香族炭化水素基の結合部位は、芳香族環上のいずれの炭素でもよい。
炭素数1〜12の2価のハロゲン化炭化水素基としては、炭素数1〜12の直鎖又は分岐鎖の2価のハロゲン化炭化水素基、炭素数3〜12の2価のハロゲン化脂環式炭化水素基及び炭素数6〜12の2価のハロゲン化芳香族炭化水素基等が挙げられる。
炭素数1〜12の直鎖又は分岐鎖の2価のハロゲン化炭化水素基としては、ジフルオロメチレン基、ジクロロメチレン基、テトラフルオロエチレン基、テトラクロロエチレン基、ヘキサフルオロトリメチレン基、ヘキサクロロトリメチレン基、ヘキサフルオロイソプロピリデン基及びヘキサクロロイソプロピリデン基等が挙げられる。
炭素数3〜12の2価のハロゲン化脂環式炭化水素基としては、前記炭素数3〜12の2価の脂環式炭化水素基において例示した基の少なくとも一部の水素原子がフッ素原子、塩素原子、臭素原子又はヨウ素原子で置換された基等が挙げられる。
炭素数6〜12の2価のハロゲン化芳香族炭化水素基としては、前記炭素数6〜12の2価の芳香族炭化水素基において例示した基の少なくとも一部の水素原子がフッ素原子、塩素原子、臭素原子又はヨウ素原子で置換された基等が挙げられる。
酸素原子及び窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価の有機基としては、水素原子及び炭素原子と、酸素原子及び/又は窒素原子とからなる2価の有機基が挙げられ、エーテル結合、カルボニル基、エステル結合又はアミド結合と炭化水素基とを有する総炭素数1〜12の2価の有機基等が挙げられる。
酸素原子及び窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価のハロゲン化有機基としては、具体的には、酸素原子及び窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価の有機基において例示した基の少なくとも一部の水素原子がフッ素原子、塩素原子、臭素原子又はヨウ素原子で置換された基等が挙げられる。
前記一般式(5)におけるZとしては、単結合、−O−、−SO−、>C=O又は炭素数1〜12の2価の有機基が好ましく、炭素数1〜12の2価の炭化水素基又は炭素数1〜12の2価のハロゲン化炭化水素基がより好ましく、炭素数1〜12の2価の炭化水素基としては、炭素数3〜12の2価の脂環式炭化水素基が好ましい。
Figure 2016129329
前記一般式(6)中、R、R、Y、m、g及びhは、それぞれ独立に前記一般式(4)中のR、R、Y、m、g及びhと同義であり、R、R、Z、n、e及びfは、それぞれ独立に前記一般式(5)中のR、R、Z、n、e及びfと同義である。なお、mが0の時、Rはシアノ基ではない。
前記ポリエーテルは、前記構造単位(5)と前記構造単位(6)とのモル比(ただし、両者((5)+(6))の合計は100である。)が、光学特性、耐熱性及び力学的特性の観点から(5):(6)=50:50〜100:0の範囲であることが好ましく、(5):(6)=70:30〜100:0の範囲であることがより好ましく、(5):(6)=80:20〜100:0の範囲であることがさらに好ましい。
前記ポリエーテルは、光学特性、耐熱性及び力学的特性の観点から前記構造単位(5)及び前記構造単位(6)を全構造単位中70モル%以上含むことが好ましく、全構造単位中95モル%以上含むことがより好ましい。
〈ポリエーテルの合成方法〉
前記ポリエーテルは、例えば、下記一般式(7)で表される化合物(以下「化合物(7)」ともいう。)及び下記一般式(8)で表される化合物(以下「化合物(8)」ともいう。)からなる群より選ばれる少なくとも一つの化合物を含む成分(C)と下記一般式(9)で表される化合物を含む成分(D)とを、反応させることにより得ることができる。
Figure 2016129329
前記一般式(7)中、Xは独立してハロゲン原子を示し、フッ素原子が好ましい。
Figure 2016129329
前記一般式(8)中、R、R、Y、m、g及びhは、それぞれ独立に前記一般式(4)中のR、R8、Y、m、g及びhと同義であり、Xは、独立に前記一般式(7)中のXと同義である。ただし、mが0の時、Rはシアノ基ではない。
Figure 2016129329
前記一般式(9)中、Rは、独立に水素原子、メチル基、エチル基、アセチル基、メタンスルホニル基又はトリフルオロメチルスルホニル基を示し、この中でも水素原子が好ましい。なお、一般式(9)中、R〜R及びa〜dは、それぞれ独立に前記一般式(3)中のR〜R及びa〜dと同義である。
上記化合物(7)としては、具体的には、2,6−ジフルオロベンゾニトリル、2,5−ジフルオロベンゾニトリル、2,4−ジフルオロベンゾニトリル、2,6−ジクロロベンゾニトリル、2,5−ジクロロベンゾニトリル、2,4−ジクロロベンゾニトリル及びこれらの反応性誘導体を挙げることができる。特に、反応性及び経済性等の観点から、2,6−ジフルオロベンゾニトリル及び2,6−ジクロロベンゾニトリルが好適に用いられる。これらの化合物は2種以上を組み合わせて用いることも可能である。
上記一般式(9)で表される化合物(以下「化合物(9)」ともいう。)としては、具体的には、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−フェニル−4−ヒドロキシフェニル)フルオレン、9,9−ビス(3,5−ジフェニル−4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)フルオレン及びこれらの反応性誘導体等が挙げられる。上述の化合物の中でも、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(3−フェニル−4−ヒドロキシフェニル)フルオレンが好適に用いられる。これらの化合物は2種以上を組み合わせて用いることも可能である。
上記化合物(8)としては、具体的には、4,4′−ジフルオロベンゾフェノン、4,4′−ジフルオロジフェニルスルホン、2,4′−ジフルオロベンゾフェノン、2,4′−ジフルオロジフェニルスルホン、2,2′−ジフルオロベンゾフェノン、2,2′−ジフルオロジフェニルスルホン、3,3′−ジニトロ−4,4’−ジフルオロベンゾフェノン、3,3′−ジニトロ−4,4’−ジフルオロジフェニルスルホン、4,4′−ジクロロベンゾフェノン、4,4′−ジクロロジフェニルスルホン、2,4′−ジクロロベンゾフェノン、2,4′−ジクロロジフェニルスルホン、2,2′−ジクロロベンゾフェノン、2,2′−ジクロロジフェニルスルホン、3,3′−ジニトロ−4,4′−ジクロロベンゾフェノン及び3,3′−ジニトロ−4,4′−ジクロロジフェニルスルホン等を挙げることができる。これらの中でも、4,4′−ジフルオロベンゾフェノン、4,4′−ジフルオロジフェニルスルホンが好ましい。これらの化合物は2種以上を組み合わせて用いることも可能である。
化合物(7)及び化合物(8)からなる群より選ばれる少なくとも一つの化合物は、成分(C)100モル%中に、80モル%〜100モル%含まれていることが好ましく、90モル%〜100モル%含まれていることがより好ましい。
また、成分(D)は、必要に応じて下記一般式(10)で表される化合物(以下「化合物(10)」ともいう。)を含むことが好ましい。
化合物(9)は、成分(D)100モル%中に、50〜100モル%含まれていることが好ましく、80〜100モル%含まれていることがより好ましく、90〜100モル%含まれていることがさらに好ましい。
Figure 2016129329
前記一般式(10)中、R、R、Z、n、e及びfは、それぞれ独立に前記一般式(5)中のR、R、Z、n、e及びfと同義であり、Rは、独立に前記一般式(9)中のRと同義である。
前記化合物(10)としては、ヒドロキノン、レゾルシノール、2−フェニルヒドロキノン、4,4’−ビフェノール、3,3’−ビフェノール、4,4’−ジヒドロキシジフェニルスルホン、3,3’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシベンゾフェノン、3,3’−ジヒドロキシベンゾフェノン、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン及びこれらの反応性誘導体等が挙げられる。これらの化合物は2種以上を組み合わせて用いることも可能である。
上述の化合物の中でも、レゾルシノール、4,4′−ビフェノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンが好ましく、反応性及び力学的特性の観点から、4,4′−ビフェノールが好適に用いられる。
前記ポリエーテルは、より具体的には、以下に示す方法(I′)又は方法(II′)で合成することができる。これらの中でも方法(I′)を用いることで、前記構造単位を有し、特定の重量平均分子量を有し、かつGPCによるポリスチレン換算の分子量が一定の分子量以下である低分子量成分が少ないポリエーテルを容易に得ることができる。
方法(I′)は、前記成分(D)とアルカリ金属化合物とを反応させて、成分(D)のアルカリ金属塩を得る工程(a)、及び工程(a)後の混合物と前記成分(C)とを混合し、工程(a)で得られたアルカリ金属塩と成分(C)とを反応させる工程(b)を含む方法である。
工程(a)では、具体的には、化合物(8)や化合物(10)等のアルカリ金属塩が得られ、工程(b)では、前記構造単位(i)を有するポリエーテルが得られる。
工程(a)及び(b)では、それぞれの反応を溶媒の存在下で行うことが好ましい。
方法(II′)は、成分(D)とアルカリ金属化合物との反応を成分(C)の存在下で行う方法である。
この方法(II′)では、成分(D)のアルカリ金属塩と成分(C)とが反応し、前記ポリエーテルが得られる。
前記方法(II′)では、反応を溶媒の存在下で行うことが好ましい。
なお、方法(I′)や方法(II′)で前記ポリエーテルを製造する場合には、例えば、
反応系中(成分(C)+成分(D)+溶媒の配合量)の成分(C)と成分(D)の濃度の和を大きくすることが好ましい。具体的には反応開始前の成分(C)と成分(D)の濃度の和が成分(C)、成分(D)及び溶媒の合計量100質量%に対して20〜50質量%の範囲であることが好ましく、24〜35質量%の範囲であることがより好ましい。
反応系中の成分(C)と成分(D)の濃度の和が前記範囲にあることで、分子量分布が狭く、分子量が5000以下である低分子量成分の割合が少ない、つまり、末端基の数が少ないポリエーテルが得られる。このため、該ポリエーテルを用いることで、耐着色性に優れ、特に、加熱による着色が抑制された、光透過性に優れるフィルムを得ることができる。
反応に使用するアルカリ金属化合物としては、リチウム、カリウム及びナトリウム等のアルカリ金属;水素化リチウム、水素化カリウム及び水素化ナトリウム等の水素化アルカリ金属;水酸化リチウム、水酸化カリウム及び水酸化ナトリウム等の水酸化アルカリ金属;炭酸リチウム、炭酸カリウム及び炭酸ナトリウム等のアルカリ金属炭酸塩;炭酸水素リチウム、炭酸水素カリウム及び炭酸水素ナトリウム等のアルカリ金属炭酸水素塩などを挙げることができる。これらは、1種又は2種以上を組み合わせて用いることも可能である。
アルカリ金属化合物は、前記成分(D)中の全ての−O−Raに対し、アルカリ金属化合物中の金属原子の量が通常1〜3倍当量、好ましくは1.1〜2倍当量、さらに好ましくは1.2〜1.5倍当量となる量で使用される。
また、反応に使用できる溶媒としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、γ−ブチルラクトン、スルホラン、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホン、ジフェニルエーテル、ベンゾフェノン、ジアルコキシベンゼン(アルコキシ基の炭素数1〜4)及びトリアルコキシベンゼン(アルコキシ基の炭素数1〜4)などを使用することができる。これらの溶媒の中でも、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、スルホラン、ジフェニルスルホン及びジメチルスルホキシド等の誘電率の高い極性溶媒が特に好適に用いられる。
さらに、前記反応の際には、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、オクタン、クロロベンゼン、ジオキサン、テトラヒドロフラン、アニソール及びフェネトールなどの水と共沸する溶媒をさらに用いることもできる。
成分(C)と成分(D)の使用割合は、成分(C)と成分(D)との合計を100モル%とした場合に、成分(C)が好ましくは45〜55モル%の範囲、より好ましくは50〜52モル%の範囲、さらに好ましくは50モル%を超えて52モル%以下であり、成分(D)が好ましくは45〜55モル%の範囲、より好ましくは48〜50モル%の範囲であり、さらに好ましくは48モル%以上、50モル%未満である。
また、反応温度は、好ましくは60〜250℃、より好ましくは80〜200℃の範囲である。反応時間は、好ましくは15分〜100時間、より好ましくは1時間〜24時間の範囲である。
<ポリエーテルの物性等>
前記ポリエーテル(I)は、東ソー(株)製HLC−8220型GPC装置(カラム:TSKgelα―M、展開溶剤:テトラヒドロフラン(以下「THF」ともいう。))を用いて測定した、ポリスチレン換算の重量平均分子量(Mw)が、好ましくは5000〜500000の範囲、より好ましくは15000〜400000の範囲、さらに好ましくは30000〜300000の範囲である。
前記ポリエーテル(II)は、東ソー(株)製HLC−8220型GPC装置(カラム:SuperH2000及びSuperH4000、ガードカラム:SuperH−Lを連結したカラム、展開溶剤:THF)を用いて測定した、ポリスチレン換算の重量平均分子量(Mw)が、好ましくは2.5×10〜5.0×10の範囲であり、より好ましくは5.0×10〜4.0×10の範囲であり、より好ましくは7.0×10〜3.0×10の範囲である。
また、前記ポリエーテルは、GPCによる積分分子量分布曲線から算出した、ポリエーテル全体に対するGPCによるポリスチレン換算の分子量が5.0×10以下である低分子量成分の占める量(割合)が、好ましくは5.0%以下であり、より好ましくは3.5%以下である。
ポリエーテルの分子量及びその分布が前記範囲にあることで、耐着色性、特に、高温に曝された場合でも耐着色性に優れるポリエーテルとなる。このため、ポリエーテル(II)を含むフィルムは、光透過性、特に、高温に曝された場合でも光透過性にさらに優れる。
なお、ポリスチレン換算の分子量が5.0×10以下である低分子量成分の占める量は、具体的には、東ソーH製HLC−8220型GPC装置(カラム:SuperH2000及びSuperH4000、ガードカラム:SuperH−L、展開溶剤:THF、検出器:UV254nm、流量:0.6ml/min)を用いて、分子量5.0×10のポリスチレン標準試料の溶出時間より前に溶出する成分のクロマトグラムにおける積分値と、分子量5.0×10のポリスチレン標準試料の溶出時間より後に溶出する成分のクロマトグラムにおける積分値を測定することにより算出することができる。
前記ポリエーテルは、熱重量分析法(TGA)で測定した熱分解温度が、好ましくは400℃以上、より好ましくは425℃以上、さらに好ましくは450℃以上である。
〔2〕溶媒
本発明に係る透明耐熱性樹脂を用いて透明耐熱性積層フィルムを製造する場合、当該透明耐熱性樹脂を溶解する溶媒として、沸点80℃以下の低沸点溶媒を主溶媒として用いることが特徴である。
ここで「主溶媒として用いる」とは、混合溶媒であれば、本発明に係る前記低沸点溶媒を溶媒全体量に対して55質量%以上を用いることをいい、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上用いることである。もちろん単独使用であれば100質量%となる。
透明耐熱性樹脂を溶液流延製膜法で製造する場合の樹脂溶液(ドープ)を形成するのに有用な溶媒は、当該透明耐熱性樹脂、その他の添加剤を同時に溶解するものであればよく、例えば、塩素系溶媒としては、ジクロロメタン、非塩素系溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることができる。
本発明に係る沸点80℃以下の低沸点溶媒としては、上記溶媒のなかで、ジクロロメタン(40℃)、酢酸エチル(77℃)、メチルエチルケトン(79℃)、テトラヒドロフラン(66℃)、アセトン(56.5℃)、及び1,3−ジオキソラン(75℃)の中から選択される少なくとも1種を主溶媒として含有することが好ましい(括弧内はそれぞれ沸点を表す。)。
また、混合溶媒の場合に含有される溶媒としては、本発明に係る透明耐熱性樹脂を溶解し得るものであれば、本発明の効果を阻害しない範囲で用いることができ、上記挙げた溶媒以外として、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m−クレゾール、フェノール、p−クロルフェノール、2−クロル−4−ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ−ブチロラクトン、ジオキソラン、シクロペンタノン、イプシロンカプロラクタム、クロロホルム等が使用可能であり、2種以上を併用しても良い。また、これらの溶媒と併せて、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o−ジクロロベンゼン等の貧溶媒を、本発明に係る透明耐熱性樹脂が析出しない程度に使用しても良い。
〔3〕添加剤
本発明に係る透明耐熱性樹脂を含有するドープには、各種添加剤を添加することができる。用いることができる添加剤について以下説明する。
本発明に係る透明耐熱性樹脂を含有するドープには、本発明の効果を阻害しない範囲で、熱伝導性フィラーを添加しても良い。これにより、透明耐熱性積層フィルムの熱伝導率を高めることができる。
熱伝導性フィラーとしては、高熱伝導性のフィラーが好ましく、具体的には、アルミニウム、銅、ニッケル、シリカ、ダイヤモンド、アルミナ、マグネシア、ベリリア、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素が挙げられ、これらのフィラー形状は球状、板状の物の他、針状など特に限定されるものではない。これらの中でも、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類以上のフィラーが好ましい。
さらに、フィルム表面の滑り性を向上する目的で、無機化合物の微粒子や樹脂の微粒子を用いることも好ましい。無機化合物の微粒子の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。
微粒子の一次粒子の平均粒径は、5〜400nmの範囲内が好ましく、さらに好ましいのは10〜300nmの範囲内である。これらは主に粒径0.05〜0.3μmの範囲内の2次凝集体として含有されていてもよく、平均粒径80〜400nmの範囲内の粒子であれば凝集せずに一次粒子として含まれていることも好ましい。
フィルム中のこれらの微粒子の含有量は、0.01〜1質量%の範囲内であることが好ましく、特に0.05〜0.5質量%の範囲内であることが好ましい。
共流延法による多層構成のフィルムの場合は、表面にこの添加量の微粒子を含有することが、好ましい。
二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル、株式会社製)の商品名で市販されており、使用することができる。
酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
樹脂の微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。
これらの中でもアエロジル200V、アエロジルR972Vが、フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。
また、透明耐熱性樹脂を含有するドープには、脱水剤を添加しても良い。脱水剤の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族カルボン酸無水物、及び無水安息香酸等の芳香族カルボン酸無水物等が挙げられるが、無水酢酸及び/又は無水安息香酸が好ましい。また、透明耐熱性樹脂に対する脱水剤の含有量は、脱水剤の含有量(モル)/透明耐熱性樹脂の含有量(モル)が、0.1〜5.0となる範囲が好ましい。なお、この場合には、アセチルアセトン等のゲル化遅延剤を併用しても良い。
また、透明耐熱性樹脂を含有するドープには、例えば、フッ素系、ポリシロキサン系等の界面活性剤を添加しても良い。界面活性剤を添加すると、表面平滑性の良好なフィルムを得やすくなる。界面活性剤は市販品を使用しても良く、フッ素系界面活性剤としては、例えば、DIC株式会社のメガファック(登録商標)シリーズや、株式会社ネオスのフタージェント(登録商標)シリーズであるフタージェント(登録商標)251、212MH、250、222F、212D、FTX−218等が挙げられる。ポリシロキサン系界面活性剤としては、例えば、ビックケミー・ジャパン株式会社のBYK−307、BYK−315、BYK−320、BYK−325、BYK−330、BYK−331、BYK−332、BYK−333、BYK−344等が挙げられる。
また、透明耐熱性樹脂を含有するドープには、例えば、フェノール系、硫黄系、リン酸系、亜リン酸系等の酸化防止剤を添加しても良い。
また、透明耐熱性樹脂を含有するドープには、その他の各種機能性材料を添加しても良い。各種機能性材料とは、例えば、カーボンナノチューブ、ナノ金属材料等の導電性材料、チタン酸バリウム等の強誘電性材料、ZnS:Ag、ZnS:Cu、YS:Eu等の蛍光体、紫外線吸収剤等である。
更に、透明耐熱性樹脂を含有するドープには、リン系難燃剤を添加しても良い。これにより、透明耐熱性積層フィルムに難燃性を付与することができる。リン系難燃剤としては、例えば、ポリリン酸アンモニウム、リン酸エステル、縮合リン酸エステル、フェノキシフォスファゼン化合物、リン酸エステルアミド等を用いることができる。これらリン系難燃剤の中でも、フェノキシフォスファゼン化合物を使用することが好ましい。該フェノキシフォスファゼン化合物としては、例えば、大塚化学製SPS−100等を使用することができる。なお、ハロゲン形難燃剤を混合して難燃性を付与することもできるが、リン系難燃剤を使用することが好ましい。
〔4〕フィルムのイミド化処理
ポリアミド酸を用いて流延膜を形成した場合は、得られたフィルムに対してイミド化処理を施すことでポリイミドを含有する透明耐熱性積層フィルムを製造することができる。
フィルムは適切な熱処理を施すことでポリマー鎖分子内及びポリマー鎖分子間でのイミド化が進行して機械的特性が向上するが、熱処理を施すほどポリイミドを用いた光学フィルムは吸収波長の変化に伴い色濃く変化する。特に、4.0〜15.0μmの薄いポリイミドを用いたフィルムにおいては、L値が高いほど全体的に色が薄いために厚さムラによる横段ムラは見えにくく外観は良好となるが、イミド化の進行具合が十分ではないためフィルムの耐屈曲性及び破断強度等の機械的特性が悪化する。また、逆にL値が低すぎると、厚さムラによる色のコントラストが鮮明になるため横段ムラが悪化するばかりか、ポリイミドを用いたフィルムが一部炭化して脆弱となりフィルムの機械的特性が著しく後退する。上記理由から、本発明に係るポリイミドを用いた透明耐熱性積層フィルムの製造方法では、L値を30〜55とするのが良好な機械的特性を保つのに良く、より好ましくは、L値は38〜54とするのが良い。
フィルムのL値は、スガ試験機製SM−7−CHを用い測定した。フィルム幅方向に5分割したそれぞれのサンプルについて、幅方向の中央位置を中心とした30mm×30mmの範囲を切り出して測定し、その5点平均値とした。なお、L値はフィルム厚さが薄くなると検出器の感度が鈍くなり適切な評価ができないことから、フィルム厚さが50μm以上のフィルムについては1枚、50μm未満のフィルムについては50μm以上になる最小の枚数を重ねて測定した値である。
フィルムのL値が30〜55となるようなフィルムを得るための熱処理の方法については、例えば、熱風や電気ヒーター(例えば、赤外線ヒーター等)等公知の手段を用いて熱処理量を調整する手法を挙げることができる。
本発明に係るポリイミドを用いた透明耐熱性積層フィルムの製造方法においては、閉環触媒及び脱水剤を含有しないポリアミド酸の溶液を流延してフィルムに成形し、支持体上で加熱乾燥した後、支持体よりフィルムを剥離し、更に高温下で乾燥熱処理することによりイミド化する熱閉環法を用いることができる。また、閉環触媒及び脱水剤を含有させたポリアミド酸の溶液を流延してフィルム状に成形し、支持体上でイミド化を一部進行させてフィルムとした後、支持体よりフィルムを剥離し、加熱乾燥/イミド化し、熱処理を行う化学閉環法を用いることもできる。閉環触媒としては、上記した第3級アミン等を用いることができる。
熱閉環法においては、例えば赤外線ヒーターを用いることにより熱処理を行うことができる。
赤外線ヒーターとしては、例えば、フィラメントを内管が囲むように形成されたヒーター本体が外管によって覆われ、ヒーター本体と外管との間に冷却流体が流通可能に構成されたものが用いられる。フィラメントは、700〜1200℃に通電加熱され、波長が3μm付近にピークを持つ赤外線を放射する。内管及び外管は、石英ガラスやホウケイ酸クラウンガラス等で作製されており、3.5μm以下の波長の赤外線を通過し、3.5μmを超える波長の赤外線を吸収するフィルターとして機能する。このような赤外線ヒーターは、フィラメントから波長が3μm付近にピークを持つ赤外線が放射されると、そのうち3.5μm以下の波長の赤外線を内管や外管を通過してフィルムに照射する。この波長の赤外線が照射されることにより、フィルム内の混合溶媒を効率的に蒸発させることができるとともに、フィルム内のポリアミド酸をイミド化することができる。なお、内管や外管は、3.5μmを超える波長の赤外線を吸収するが、流路を流れる冷却流体によって冷却されるため、フィルムから蒸発する混合溶媒の着火点未満の温度に維持することが可能である。
本発明に係るポリイミドを用いた透明耐熱性積層フィルムの製造方法では、上記のいずれの閉環方法を採用しても良いが、化学閉環法はポリアミド酸の溶液に閉環触媒及び脱水剤を含有させる設備を必要とするものの、自己支持性を有するフィルムを短時間で得られる点で、より好ましい方法といえる。
〔5〕本発明の透明耐熱性積層フィルムの製造方法
本発明の透明耐熱性積層フィルムの製造方法の具体例について以下説明する。
本発明の透明耐熱性積層フィルムの製造方法は、透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程(ドープ調製工程)と、前記少なくとも処方の異なる2種のドープを支持体上に共流延して流延膜(ウェブともいう。)を形成する工程(流延工程)と、前記流延膜を前記支持体から剥離する工程(剥離工程)を有するものであるが、前記支持体上で流延膜から溶媒を蒸発させる工程(溶媒蒸発工程)、得られたフィルムを乾燥させる工程(第1乾燥工程)、フィルムを延伸する工程(延伸工程)、延伸後のフィルムを更に乾燥させる工程(第2乾燥工程)、得られた透明耐熱性積層フィルムを巻き取る工程(巻取り工程)、さらに必要であればフィルムを加熱処理してイミド化させる工程(加熱工程)等により行われることが好ましい。
以下、各工程について具体的に説明する。
〔5−1〕ドープ調製工程
上記したように、透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程である。上記溶媒として前述の沸点80℃以下の低沸点溶媒を主溶媒として用いる。その際に、透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製するのに、同一の溶媒に溶解させてもよいし、それぞれ別の溶媒に溶解させてもよいが、層間での溶媒の混合による影響を回避する観点からは、同一の溶媒に溶解させることが好ましい。
その後、調製したドープを送液ポンプ等により濾過器に導いて濾過する。
当該低沸点溶媒の1気圧における沸点+5℃以上の温度で当該ドープを濾過することにより、ドープ中のゲル状異物を取り除く。好ましい温度範囲は45〜120℃であり、45〜70℃がより好ましく、45〜55℃であることが更に好ましい。
〔5−2〕流延膜形成工程
前記調製した少なくとも2種のドープを支持体上に共流延して流延膜を形成する工程である。
本発明では、共流延として、好ましくは下記に挙げる装置、方法を用いることが好ましい。
図1に、本発明に係る共流延に用いられる装置の一部を模式図で示す。
本発明の透明耐熱性積層フィルムは、共流延によりドープ(少なくともドープ1及びドープ2)を積層して得られるものであり、図1では当該ドープ1及びドープ2を用いて3層構成のフィルムを形成する例を説明する。
共流延は図に示すように、共流延ダイ10の口金部分11に複数のスリット13、15(スキン層用スリットともいう。)、スリット14(コア層用スリットともいう。)を有しており、金属支持体16の上に同時にそれぞれのスリットからスキン層用ドープ2(17)、コア層用ドープ1(18)、及びスキン層用ドープ2(19)を流延することにより、スキン層21/コア層22/スキン層23の構成を有する多層構造ウェブ20が形成される。
透多層構造ウェブ20を、その後、溶媒を蒸発させフィルムとし、それを金属支持体16から剥離することで、透明耐熱性積層フィルムを形成することができる。
金属支持体の表面温度は10〜70℃、溶液の温度は25〜60℃が好ましく、さらに各溶液の温度を支持体の温度と同じ又はそれ以上の温度にすることが好ましい。
金属支持体の温度のさらに好ましい範囲は、使用する溶媒に依存するが、20〜60℃、溶液温度のさらに好ましい範囲は、30〜50℃である。
流延は、複数のドープを調製して、支持体としての平滑なバンド上又はドラム上に前記複数のドープを流延して製膜することもできる。
この場合、2種以上のドープを同時に支持体上に流延しても良いし、別々に支持体上に流延しても良い。別々に流延する逐次流延法の場合は、支持体側のドープを先に流延して支持体上である程度乾燥させた後に、その上に重ねて流延することができる。また、3種以上のドープを使用する場合、同時流延(共流延ともいう。)と逐次流延を適宜組み合わせて流延し、積層構造のフィルムを作製することもできる。共流延若しくは逐次流延によって製膜されるこれらの方法は、乾燥されたフィルム上に塗布する方法とは異なり、積層構造の各層の境界が不明確になり、断面の観察で積層構造が明確には分かれないことがあるという特徴があり、各層間の密着性を向上させる効果がある。
共流延としては、公知の共流延方法を用いることができる。例えば、金属支持体の進行方向に間隔を置いて設けた複数の流延口から透明耐熱性樹脂を含むドープをそれぞれ流延させて積層させながらフィルムを作製しても良く、例えば特開昭61−158414号、特開平1−122419号、特開平11−198285号の各公報等に記載の方法が適応できる。また、二つの流延口から透明耐熱性樹脂を含むドープを流延することによってもフィルム化することでも良く、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、特開平6−134933号の各公報に記載の方法で実施できる。
流延(キャスト)における金属支持体は、表面を鏡面仕上げしたものが好ましく、支持体としては、ステンレススチールベルト又は鋳物で表面をめっき仕上げしたドラム、又はステンレスベルト若しくはステンレス鋼ベルト等の金属支持体が好ましく用いられる。キャストの幅は1〜4mの範囲、好ましくは1.5〜3mの範囲、更に好ましくは2〜2.8mの範囲とすることができる。なお、支持体は、金属製でなくとも良い。
金属支持体の走行速度は特に制限されないが、通常は5m/分以上であり、好ましくは10〜180m/分、特に好ましくは80〜150m/分である。金属支持体の走行速度は、高速であるほど、同伴ガスが発生しやすくなり、外乱による膜厚ムラの発生が顕著になる。
金属支持体の走行速度は、金属支持体外表面の移動速度である。
ダイスは、幅方向に対する垂直断面において、吐出口に向かうに従い次第に細くなる形状を有している。ダイスは通常、具体的には、下部の走行方向で下流側と上流側とにテーパー面を有し、当該テーパー面の間に吐出口がスリット形状で形成されている。ダイスは金属からなるものが好ましく使用され、具体例として、例えば、ステンレス、チタン等が挙げられる。本発明において、厚さが異なるフィルムを製造するとき、スリット間隙の異なるダイスに変更する必要はない。
ダイスの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイを用いることが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。厚さが異なるフィルムを連続的に製造する場合であっても、ダイスの吐出量は略一定の値に維持されるので、加圧ダイを用いる場合、押し出し圧力、せん断速度等の条件もまた略一定の値に維持される。また、製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層しても良い。
ダイスからのドープの吐出量は好ましくは200〜720g/mであり、より好ましくは400〜650g/mである。本発明において、厚さが異なるフィルムを連続的に製造する場合であっても、ダイスからのドープ吐出量は上記範囲内で略一定の値に維持されることが好ましい。当該吐出量が200g/m以上であると、流延膜が振動及び風等の外乱の影響を受けにくくなるので、膜厚ムラを十分に防止することができる。当該吐出量が720g/m以下であると、収縮が過度に起きにくく、収縮による膜厚ムラが発生しないので、膜厚ムラを十分に防止できる。
〔5−3〕溶媒蒸発工程
溶媒蒸発工程は、金属支持体上で行われ、流延膜を金属支持体上で加熱し、溶媒を蒸発させる予備乾燥工程である。
溶媒を蒸発させるには、例えば、乾燥機により流延膜側及び金属支持体裏側から加熱風を吹き付ける方法、金属支持体の裏面から加熱液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等を挙げることができる。それらを適宜選択して組み合わせる方法も好ましい。金属支持体の表面温度は全体が同じであっても良いし、位置によって異なっていても良い。
本発明では、前記金属支持体上でのウェブの乾燥を、本発明に係る低沸点溶媒の沸点をT℃としたときに、(T−1)℃以下の温度で行うことが、前記耐熱性樹脂の拡散を抑え、層界面での材料の混合を顕著に抑制できる観点から、より好ましい態様である。好ましくは(T−5)℃以下、さらに好ましくは(T−10)℃以下である。したがって、乾燥機によって加熱風を吹き付ける場合の、加熱風の温度は10〜70℃の範囲であることが好ましい。
金属支持体を加熱する方法においては、温度が高い方が流延膜の乾燥速度を速くできるため好ましいが、余り高すぎると流延膜が発泡したり、平面性が劣化したりする場合があるため、用いられる樹脂や溶媒によって適宜調整されることが好ましい。
溶媒蒸発工程においては、流延膜の剥離性及び剥離後の搬送性の観点から、残留溶媒量が10〜150質量%になるまで、流延膜を乾燥することが好ましい。
本発明において、残留溶媒量は下記の式で表すことができる。
残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mは流延膜(フィルム)の所定の時点での質量、NはMのものを115℃で1時間乾燥させた時の質量である。特に、溶媒蒸発工程において達成された残留溶媒量を算出するときのMは剥離工程直前の流延膜の質量である。
〔5−4〕剥離工程
金属支持体上で溶媒が蒸発した流延膜を、剥離位置で剥離する。
金属支持体と流延膜とを剥離する際の剥離張力は、通常、60〜400N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
本発明においては、当該金属支持体上の剥離位置における温度を−50〜60℃の範囲内とするのが好ましく、10〜40℃の範囲内がより好ましく、15〜40℃の範囲内とするのが最も好ましい。
剥離されたフィルムは、延伸工程に直接送られても良いし、所望の残留溶媒量を達成するように第1乾燥工程に送られた後に延伸工程に送られても良い。本発明においては、延伸工程での安定搬送の観点から、剥離工程後、フィルムは、第1乾燥工程及び延伸工程に順次送られることが好ましい。
〔5−5〕第1乾燥工程
第1乾燥工程は、フィルムを加熱し、溶媒を更に蒸発させる乾燥工程である。乾燥手段は特に制限されず、例えば、熱風、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は、残留溶媒量及び搬送における伸縮率等を考慮して、30〜200℃の範囲が好ましい。
〔5−6〕延伸工程
金属支持体から剥離された透明耐熱性積層フィルムを延伸することで、フィルムの膜厚や平坦性、配向性等を制御することができる。
本発明に係る透明耐熱性積層フィルムの製造方法においては、長手方向及び/又は幅手方向に延伸することが好ましい。
延伸操作は多段階に分割して実施しても良い。また、二軸延伸を行う場合には同時二軸延伸を行っても良いし、段階的に実施しても良い。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。
すなわち、例えば、次のような延伸ステップも可能である:
・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。
延伸開始時の残留溶媒量は2〜50質量%の範囲内であることが好ましい。
当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、50質量%以内であれば、表面の凹凸が減り、平面性が向上し好ましい。
本発明の透明耐熱性積層フィルムの製造方法においては、延伸後の膜厚が所望の範囲になるように長手方向及び/又は幅手方向に、好ましくは幅手方向に延伸しても良い。フィルムのガラス転移点(Tg)のうち最も低いTgをTgL、最も高いTgをTgHとしたときに、(TgL−200)〜(TgH+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れたポリイミドを含有する透明耐熱性積層フィルムが得られる。延伸温度は、(TgL−150)〜(TgH+40)℃の範囲で行うことがより好ましい。
本発明の透明耐熱性積層フィルムの製造方法では、支持体から剥離された自己支持性を有するフィルムを、延伸ローラーで走行速度を規制することにより長手方向に延伸することができる。長手方向の延伸倍率は、30〜250℃の温度範囲で1.03〜2.00倍が好ましく、より好ましくは1.10〜1.80倍、更に好ましくは1.20〜1.60倍である。
幅手方向に延伸するには、例えば、特開昭62−46625号公報に示されているような乾燥全処理又は一部の処理を幅方向にクリップ又はピンでフィルムの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる。)、中でも、クリップを用いるテンター方式が好ましく用いられる。
長手方向に延伸されたフィルム又は未延伸のフィルムは、クリップに幅方向両端部を把持された状態にてテンターへ導入され、テンタークリップとともに走行しながら、幅方向へ延伸されることが好ましい。幅方向の延伸倍率は、特に限定されないが、30〜300℃の温度範囲で1.03〜2.00倍が好ましく、より好ましくは1.10〜1.80倍、更に好ましくは1.20〜1.60倍である。
幅手方向への延伸に際し、フィルム幅手方向に50〜1000%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。
延伸速度は50%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、1000%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。
より好ましい延伸速度は、100〜500%/minの範囲内である。延伸速度は下記式によって定義される。
延伸速度(%/min)=[(d/d)−1]×100(%)/t
(上記式において、dは延伸後の樹脂フィルムの前記延伸方向の幅寸法であり、dは延伸前の樹脂フィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸倍率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
〔5−7〕第2乾燥工程
次いで、延伸後のフィルムを加熱して乾燥させる。熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40〜350℃の範囲がより好ましい。また、乾燥時間は5秒〜30分程度が好ましく、10秒〜15分がより好ましい。
また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40〜350℃の範囲がより好ましい。
第2乾燥工程においては、残留溶媒量が0.5質量%以下になるまで、フィルムを乾燥することが好ましい。
〔5−8〕巻取り工程
巻取り工程は、得られたフィルムを巻き取って室温まで冷却する工程である。巻取り機は、一般的に使用されているもので良く、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻取り方法で巻き取ることができる。
フィルムの厚さは特に制限されず、例えば、5〜200μm、特に7〜50μmであることが好ましい。
巻取り工程においては、延伸搬送したときにテンタークリップ等で挟み込んだフィルムの両端をスリット加工しても良い。スリットした端部は、返材として再利用することが好ましい。ここで、返材とは、フィルムに成形したもののうち、何らかの理由で原料として再利用される部分のことを指し、上記スリットされた端部(耳部ともいう。)や、製造の繰り出し・終端に位置するフィルムの全幅部分、更には、傷やスジ等の外観上の問題で製品として不適合なフィルム等が挙げられる。スリットしたフィルム端部は、1〜30mm幅に細かく断裁された後、溶剤に溶解させて再利用する。
成形されたフィルムのうち返材として再利用される部分の比は、10〜90質量%が好ましく、より好ましくは20〜80質量%、更に好ましくは30〜70質量%である。
製膜工程の途中又は最終的に発生する返材の量により投入量は若干変わるが、通常、ドープ中の全固形分に対する返材の混合率は10〜50質量%程度であり、好ましくは、15〜40質量%程度である。返材の混合率は、できるだけ一定量とすることが生産安定上好ましい。
上述した溶媒蒸発工程から巻取り工程までの各工程は、空気雰囲気下で行っても良いし、窒素ガス等の不活性ガス雰囲気下で行っても良い。また、各工程、特に乾燥工程や延伸工程は、雰囲気における溶媒の爆発限界濃度を考慮して行う。
〔5−9〕加熱工程
上記巻取り工程後に、ポリマー鎖分子内及びポリマー鎖分子間でのイミド化を進行させて機械的特性を向上させるべく、上記第2乾燥工程で乾燥したフィルムを更に熱処理する加熱工程を行うこともできる。
また、ポリイミド(イミド化率100%)を用いてドープを調製した場合や、上記第2乾燥工程を行うことによりフィルムのイミド化率が100%となった場合であっても、フィルムの残留応力を緩和させる目的で、加熱工程を行うことも好ましい。
なお、上記第2乾燥工程が、加熱工程を兼ねるものであっても良い。
加熱手段は、例えば、熱風、電気ヒーター、マイクロ波等の公知の手段を用いて行われる。電気ヒーターとしては、上記した赤外線ヒーターを用いることができる。
加熱処理条件は、フィルムL値が30〜55となるようにヒーター出力及び熱風温度等を調整し、最終的な処理条件が200〜450℃の温度範囲内で、30秒〜1時間の範囲で適宜行うのが好ましい。これにより、ポリイミドフィルムの寸法安定性を向上させることができる。加熱工程において、フィルムを急激に加熱すると表面欠点が増加する等の不具合が生じるため、加熱方法は適宜選択することが好ましい。また、加熱工程は、低酸素雰囲気下で行うことが好ましい。
第二乾燥工程及び加熱工程における加熱温度は450℃を超えると、加熱に必要なエネルギーが非常に大きくなることから製造コストが高くなり、更に、環境負荷が増大するため、当該加熱温度は450℃以下にすることが好適である。
なお、巻取り工程後であって、加熱工程の前又は後に、ポリイミドフィルムの幅方向端部をスリットする工程や、ポリイミドフィルムが帯電していた場合にはこれを除電する工程等を更に行うものとしても良い。
〔6〕透明耐熱性積層フィルムの物性
〈フィルム長、幅、膜厚〉
本発明の透明耐熱性積層フィルムは、長尺であることが好ましく、具体的には、100〜10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、本発明の透明耐熱性積層フィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4〜4mであることが好ましい。
フィルムの膜厚は、フレキシブルプリント基板としての強度と透明性、位相差(リターデーションともいう。)の観点から、10〜100μmの範囲内であることが好ましい。膜厚が10μm以上であれば、一定以上のフィルム強度やリターデーションを発現させることができる。膜厚が100μm以下であれば、所望のリターデーションを具備し、かつプリント基板としてフレキシブルである。
〔7〕フレキシブルプリント基板、フレキシブルディスプレイ用基板及びフレキシブルディスプレイ用前面板
本発明のフレキシブルプリント基板は、本発明の透明耐熱性積層フィルムの製造方法により製造される透明耐熱性積層フィルムをベースフィルムとし、これに接着剤を介して金属箔を圧着することによって得られる。ここで用いられる接着剤としては、例えば、アクリル系、ポリイミド系及びエポキシ系接着剤等が挙げられる。
また、接着剤を介して透明耐熱性積層フィルムと熱圧着される金属箔は、コスト低減の観点から銅箔であることが好ましいが、アルミニウム、金、銀、アルミニウム、ニッケル、スズ等、他の金属箔でも良い。
また、本発明の透明耐熱性積層フィルムは、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板としても好適であり、有機エレクトロルミネッセンス表示素子の基板や前面板に適用し、有機エレクトロルミネッセンス表示装置に具備することも好ましい。
〔8〕LED照明装置
本発明のLED照明装置としては、本発明の透明耐熱性積層フィルムの製造方法により製造される透明耐熱性積層フィルムを用いてなるものであれば、特に制限されるものではない。
具体的には、LED照明装置は、本発明に係る透明耐熱性積層フィルムを用いた金属部を有するフレキシブルプリント基板を準備する工程、当該基板上にLEDチップを固定する工程、金属部を被覆するように、バリアー層用塗布組成物を塗布して、バリアー層を形成する工程、LEDチップを被覆するように透明樹脂及び蛍光体粒子を含む波長変換層用組成物を塗布し、波長変換層を形成する工程等によって形成される。
〔9〕有機エレクトロルミネッセンス表示装置
本発明の有機エレクトロルミネッセンス表示装置においては、本発明の透明耐熱性積層フィルムの製造方法により製造される透明耐熱性積層フィルム、それを具備したフレキシブルディスプレイ用基材、又はフレキシブルディスプレイ用前面板を具備していることが好ましい。
本発明の有機エレクトロルミネッセンス表示装置に適用可能な有機EL素子の概要については、例えば、特開2013−157634号公報、特開2013−168552号公報、特開2013−177361号公報、特開2013−187211号公報、特開2013−191644号公報、特開2013−191804号公報、特開2013−225678号公報、特開2013−235994号公報、特開2013−243234号公報、特開2013−243236号公報、特開2013−242366号公報、特開2013−243371号公報、特開2013−245179号公報、特開2014−003249号公報、特開2014−003299号公報、特開2014−013910号公報、特開2014−017493号公報、特開2014−017494号公報等に記載されている構成を挙げることができる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
実施例1
<透明耐熱性積層フィルム101の作製>
ポリイミド1−1:河村産業株式会社製 KPI−MX300F(重量平均分子量20万、ガラス転移温度Tg:354℃)
ポリイミド1−2:ソマール株式会社製:SPIXAREA TP001(重量平均分子量7万、ガラス転移温度Tg:340℃)
ポリイミド1−3:ソマール株式会社製:SPIXAREA TP002(重量平均分子量7万、ガラス転移温度Tg:310℃)
ポリイミド1−4:ソマール株式会社製:SPIXAREA TP003(重量平均分子量7万、ガラス転移温度Tg:274℃)
〔ポリイミド1−5の合成〕
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5ツ口ガラス製丸底フラスコ中で、4,4’−ビス(4−アミノフェノキシ)ビフェニル(BAPB、和歌山精化工業(株)製)26.48g(0.07187モル)、γ−ブチロラクトン(GBL、三菱化学(株)製)51.11g、及び触媒としてトリエチルアミン(TEA、関東化学(株)製)0.364gを、窒素雰囲気下、100rpmで撹拌して溶液を得た。
これに1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(HPMDA、三菱ガス化学(株)製)16.11g(0.07187モル)とジメチルアセトアミド(DMAC、三菱ガス化学(株)製)12.78gをそれぞれ一括で加えた後、マントルヒーターで加熱し、約20分かけて反応系内温度を180℃まで上げた。留去される成分を捕集しながら、反応系内温度を180℃に3.5時間維持した。
DMAC96.11gを添加後、130℃付近で約30分撹拌して均一な溶液とし、10分程度で100℃まで空冷し固形分濃度20質量%のポリイミド1−5溶液を得た。ポリイミド1−5は、重量平均分子量:15万、ガラス転移温度Tg:297℃であった。
〔ポリイミド2−1の合成〕
(ポリイミド前駆体の重合)
反応容器としてステンレス製セパラブルフラスコを備え、該セパラブルフラスコ内の撹拌装置として2枚のパドル翼を備え、冷却装置を備えた反応装置を用いてポリアミド酸を製造した。重合反応中は水分の混入を防ぐために塩化カルシウム管を通過させて脱水を行った窒素ガスを0.05L/minで流して重合反応を行った。
上記セパラブルフラスコに、重合溶媒としてN,N−ジメチルアセトアミド(DMAC)223.5gを仕込み、これに、〔化18〕記載のジアミン1(2,2’−ビス(トリフルオロメチル)ベンジジン)を40.0g(0.125モル)溶解する。この溶液に、〔化18〕記載の酸無水物1(9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物)を55.5g(0.125モル)添加・撹拌して完全に溶解させた。完全に溶解した後、なお、この反応溶液における芳香族ジアミン化合物及び芳香族テトラカルボン酸二無水物の仕込み濃度は、全反応液に対して30質量%となっている。
(ポリイミド樹脂への化学イミド化)
上記溶液にDMACを加え固形分濃度を15質量%とし、イミド化促進剤としてピリジン(pkBH+;5.17)を60g(イミド化促進剤/ポリアミド酸中アミド基のモル比=3)添加して、完全に分散させる。分散させた溶液中に無水酢酸を1分間に1gの速度で30.6g(脱水剤/ポリアミド酸中アミド基のモル比=1.2)を添加してさらに30分間撹拌した。撹拌後に内部温度を50℃に上昇させて5時間過熱撹拌を行った。
(ポリイミドの抽出)
得られた溶液をメタノールに加え、目的ポリイミド粉末を沈殿させた。得られた白色沈殿をメタノールで十分洗浄後 乾燥装置で50℃に加熱乾燥して、ポリイミド2−1として取り出した。フルオレン骨格を有するポリイミド2−1は、重量平均分子量:20万、イミド化率:100%、ガラス転移温度Tg:320℃であった。
〔ポリイミド2−2の合成〕
ポリイミド2−1の合成において、ジアミン2及び酸二無水物2を用いた以外は同様にして、ポリイミド2−2を調製した。フルオレン骨格を有するポリイミド2−2は、重量平均分子量:15万、イミド化率:100%、ガラス転移温度Tg:260℃であった。
〔ポリイミド2−3の合成〕
ポリイミド2−1の合成において、ジアミン3及び酸二無水物3を用いた以外は同様にして、ポリイミド2−3を調製した。フルオレン骨格を有するポリイミド2−3は、重量平均分子量:14万、イミド化率:100%、ガラス転移温度Tg:300℃であった。
上記ポリイミド2−1〜2−3の合成に用いたジアミン又はその誘導体、及び酸無水物又はその誘導体を下記に示す。
Figure 2016129329
〔コア層用ドープの調製〕
下記組成のコア層用ドープを調製した。まず、加圧溶解タンクにジクロロメタンとエタノールを添加した。溶剤の入った加圧溶解タンクに、上記調製したポリイミド1−1を撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、残りの成分を添加し、撹拌して溶解させて、ドープを調製した。
(ドープの組成)
ジクロロメタン 340質量部
エタノール 10質量部
ポリイミド1−1 100質量部
〔スキン層用ドープの調製〕
下記組成のスキン層用ドープを調製した。まず、加圧溶解タンクにジクロロメタン(MC)とエタノール(ETOH)を添加した。溶剤の入った加圧溶解タンクに、上記調製したポリイミド2−1を撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、残りの成分を添加し、撹拌して溶解させて、ドープを調製した。
〈ドープの組成〉
ジクロロメタン 340質量部
エタノール 18質量部
ポリイミド2−1 100質量部
〔流延工程〕
次いで、無端ベルト流延装置を用い、ドープを温度30℃、1500mm幅でステンレスベルト支持体上に、図1で示す共流延用ダイスを用いて。コア層の乾燥層厚19μm、スキン層の乾燥層厚3μmで、スキン層/コア層/スキン層の3層構成で均一に流延した。ステンレスベルト上での乾燥温度は30℃に制御した。
〔剥離工程〕
ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力180N/mで、ステンレスベルト支持体上から剥離した。
〔延伸工程〕
剥離したフィルムを、200℃の熱をかけながらクリップ式テンターを用いて幅方向に1.30倍延伸した。延伸開始時の残留溶媒量は20質量%であった。
〔乾燥工程〕
延伸したフィルムを、搬送張力100N/m、乾燥時間15分間として、残留溶媒量が0.1質量%未満となる乾燥温度で乾燥させ、乾燥膜厚25μmの3層構成のフィルムを得た。得られたフィルムを巻き取って、透明耐熱性積層フィルム101を得た。
<透明耐熱性積層フィルム102〜108の作製>
上記透明耐熱性積層フィルム101の作製において、ドープ調製に用いるジクロロメタンの代わりに、表1に記載のテトラヒドロフラン、酢酸エチル、メチルエチルケトン、アセトン、1,3−ジオキソラン、N,N−ジメチルホルムアミド及びN,N−ジメチルアセトアミドをそれぞれ用いて、透明耐熱性積層フィルム102〜108を作製した。
<透明耐熱性積層フィルム109〜114の作製>
上記透明耐熱性積層フィルム101の作製において、コア層に用いたポリイミド1−1の代わりに、ポリイミド1−2、1−3、1−4及び1−5を用い、スキン層に用いたポリイミド2−1の代わりに、ポリイミド2−2及び2−3を用いて、表1の組み合わせにてコア層用ドープ及びスキン層用ドープを調製した以外は同様にして、透明耐熱性積層フィルム109〜114を作製した。なお、上記コア層用ドープを調製する際は、それぞれエタノールを18質量部添加した。
<透明耐熱性積層フィルム115の作製>
上記透明耐熱性積層フィルム101の作製において、層1用にポリイミド1−1及び層2用にポリイミド1−4を用いて、それぞれドープを調製し、乾燥膜厚がそれぞれ12.5μmになるように2層構成で製膜した以外は同様にして、透明耐熱性積層フィルム115を作製した。
≪評価≫
(1)透明性(ヘイズ及び全光線透過率)
上記で作製した各々の透明耐熱性積層フィルム101〜115について、23℃・55%RHの空調室で24時間調湿した試料1枚をJIS K−7136に従って、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用してヘイズ及び全光線透過率を測定し、透明性を評価した。
ヘイズ値は、1.0%未満であり、全光線透過率は85%以上であることが透明フィルムとして好ましい特性である。
Figure 2016129329
表1から、本発明の透明耐熱性積層フィルムは、製膜中の白化もなく透明性が高いことが分かった。また、本発明の透明耐熱性積層フィルムのYI値(イエローインデックス:黄色味の指数)は、前述の試験法によって測定した結果、いずれも0.3〜1.6の範囲内にあり、着色の点でも優れたフィルムであった。
実施例2
〔ポリアリレート1の合成〕
撹拌装置を備えた反応容器中に、水2514質量部を添加した後、水酸化ナトリウム22.7質量部、芳香族ジアルコール成分として9,9−ビス(3,5−ジメチル−4−ヒドロキシフェニル)フルオレン(BCF)35.6質量部、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン(TMBPA)18.5質量部、分子量調節剤としてp−tert−ブチルフェノール(PTBP)0.049質量部を溶解させ、0.34質量部の重合触媒(トリブチルベンジルアンモニウムクロライド)を添加し、撹拌した。
一方、芳香族ジカルボン酸成分としてテレフタル酸クロライドとイソフタル酸クロライドの等量混合物26.8質量部を秤量し、945質量部の塩化メチレンに溶解させた。この塩化メチレン溶液を、前述で調製したアルカリ水溶液に撹拌下に添加し、重合を開始させた。重合反応温度は15℃以上20℃以下になるように調整した。重合は2時間行い、その後、系内に酢酸を添加して重合反応を停止させ、有機相と水相を分離した。
得られた有機相を、1回の洗浄毎に有機相の2倍量のイオン交換水で洗浄した後、有機相と水相に分離する操作を繰り返した。洗浄水の電気伝導度が50μS/cm未満となった時点で洗浄を終了した。50℃でホモミキサーを装着した温水槽中に洗浄後の有機相を投入して塩化メチレンを蒸発させて、粉末状のポリマーを得た。さらに脱水・乾燥を行い、ポリアリレート1を得た。ポリアリレート1は、重量平均分子量:7万、ガラス転移温度Tg:271℃であった。
〔ポリエーテル1の合成〕
3Lの四つ口フラスコに成分(B):9,9−ビス(3−フェニル−4−ヒドロキシフェニル)フルオレン125.65g(0.250モル)、炭酸カリウム41.46g(0.300モル)、N,N−ジメチルアセトアミド643g及びトルエン161gを添加した。続いて、四つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、Dean−Stark管及び冷却管を取り付けた。
次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をDean−Stark管から随時取り除いた。水の生成が認められなくなったところで、溶液を室温まで冷却、次いで成分(A):2,6−ジフルオロベンゾニトリル34.95g(0.251モル)を加え、徐々に温度を140℃まで上昇させ、そのままの温度で6時間反応させた。
室温(25℃)まで冷却後、精製した塩を濾紙で除去し、濾液をメタノールに投じて再沈殿させ、濾別により濾物(残渣)を単離した。得られた濾物を60℃で一晩真空乾燥し、白色粉末のポリエーテル1を得た。ポリエーテル1は、重量平均分子量:9.4万、ガラス転移温度Tg:275℃であった。
<透明耐熱性積層フィルム201の作製>
実施例1の透明耐熱性積層フィルム101の作製において、スキン層に用いるポリイミド2−1の代わりに、上記合成したポリアリレート1を用いた以外は同様にして、表2に記載の構成の透明耐熱性積層フィルム201を作製した。
<透明耐熱性積層フィルム202〜204の作製>
透明耐熱性積層フィルム201の作製において、ポリアリレート1の代わりに、上記合成したポリエーテル1を用いた以外は同様にして、透明耐熱性積層フィルム202を作製した。また、溶媒として、ジクロロメタンの代わりにN,N−ジメチルホルムアミドを用いて、表2記載の構成で、透明耐熱性積層フィルム203及び204を作製した。
≪評価≫
実施例1と同様に、ヘイズ及び全光線透過率の評価を実施し、結果を表2に示した。
Figure 2016129329
表2から、本発明の透明耐熱性積層フィルムは、スキン層の透明耐熱性樹脂を変更しても、実施例1を再現し、製膜中の白化もなく透明性が高いことが分かった。
実施例3
<透明耐熱性積層フィルム301の作製>
実施例1の透明耐熱性積層フィルム101の作製において、用いる溶媒のジクロロメタンを、ジクロロメタン:N,N−ジメチルホルムアミド(質量比7:3)の混合溶媒にした以外は同様にして、透明耐熱性積層フィルム301を作製した。
<透明耐熱性積層フィルム302〜304の作製>
透明耐熱性積層フィルム301の作製において、ポリイミド2−1の代わりに、ポリアリレート1及びポリエーテル1を用いた以外は同様にして、透明耐熱性積層フィルム302及び303を作製した。また、ジクロロメタン:N,N−ジメチルホルムアミド(質量比5:5)の混合溶媒にした以外は同様にして、透明耐熱性積層フィルム304を作製した。
≪評価≫
実施例1と同様に、ヘイズ及び全光線透過率の評価を実施し、結果を表3に示した。
Figure 2016129329
表3から、本発明の透明耐熱性積層フィルムは、溶媒を混合溶媒としても、主溶媒の沸点が80℃以下であれば、実施例1を再現し、製膜中の白化もなく透明性が高いことが分かった。また、溶媒として沸点が80℃以下の低沸点溶媒を主溶媒として用いなかった透明耐熱性積層フィルム304は、ヘイズ及び全光線透過率が劣っていた。
実施例4
<透明耐熱性積層フィルム401〜404の作製>
実施例1の透明耐熱性積層フィルム101の作製において、製膜時の延伸倍率を、表4に記載の倍率に変更した以外は同様にして、透明耐熱性積層フィルム401〜404を作製した。
≪評価≫
実施例1で実施したヘイズ及び全光線透過率の評価に加えて、(2)低温折り曲げ耐性を評価した。
(2)低温折り曲げ耐性(MIT低温屈曲試験)
上記作製した透明耐熱性積層フィルム401〜404を用いて以下のようにしてフレキシブルプリント基板401〜404を作製した。
透明耐熱性積層フィルムの片面に、巻き出し機、スパッタリング装置、巻取り機から構成されるスパッタリング設備を用いて直流スパッタリング法により、平均厚さ230Åの20質量%Crのクロム−ニッケル合金層を金属薄膜として形成した。更に、同様にして、金属薄膜の上に平均厚さ1000Åの銅薄膜を形成した。
次に、銅薄膜の上に電気銅めっき法により、厚さ9μmの銅層を設けて金属被覆透明耐熱性積層フィルムを得た。用いた銅めっき浴は、銅濃度23g/Lの硫酸銅めっき浴であり、めっき時の浴温は27℃とした。また、めっき槽は、複数のめっき槽を連結させた複数構造槽とし、巻き出し機と巻取り機とにより片面に金属層が設けられた透明耐熱性積層フィルムが連続的に各槽に浸漬されるように搬送しながら電気めっきを行った。搬送速度は、75m/hとし、めっき槽の平均陰極電流密度を1.0〜2.5A/dmに調整して銅めっきを施した。
次に、この金属被覆透明耐熱性積層フィルムを用いて配線間隔30μm、全配線幅が15000μmのCOF(Chip on film)をサブトラクティブ法で作製した。これにICチップを搭載し、ICチップ表面の電極と配線のリード部とをワイヤボンディング装置を用いて400℃にて0.5秒間のボンディング処理条件でワイヤボンディングを施した。このときにインナーリード部に生じたリードと透明耐熱性積層フィルムとの接合不良の割合は0.0001%であった。
上記作製したフレキシブルプリント基板401〜404を用いて、低温恒温恒湿器(エスペック社製PL−4)の内に−20℃に設定して、MIT試験機を設置した。恒温槽内を−20℃に設定して、荷重500g、屈折角135°、屈折サイクル175cpm、屈折部局率半径0.38mmの条件下、通電試験により回路破断による通電状態切れまでの回数を測定し、以下の基準で評価した。
◎:5000回以上の折り曲げ回数でも通電状態切れが発生しない
○:1000回以上5000回未満の折り曲げ回数で通電状態切れが発生
実用上は○以上であれば問題はない。
Figure 2016129329
表4から、本発明の透明耐熱性積層フィルムは、製膜時に延伸することによって、低温折り曲げ耐性がより向上することが分かった。
実施例5
次いで、特開2014−22508号公報記載のLED照明の作製方法を参考にして、実施例4で作製したフレキシブルプリント基板401〜404を用いて、LED照明に実装した。
上記作製した各LED照明を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の正面発光の輝度(cd/m)を、分光放射輝度計C154S−2000(コニカミノルタ社製)を用いて測定したところ、本発明の透明耐熱性積層フィルムを実装したLED照明は、いずれも正面輝度が1000(cd/m)以上であった。
以上から、本発明の構成の透明耐熱性積層フィルムは透明度が高く、それを実装したLED照明装置は正面輝度に優れることが分かった。
実施例6
実施例1で作製した透明耐熱性積層フィルム101〜115を用いて、片側の面上に下記ハードコート層を設けてハードコート層付き透明耐熱性積層フィルム101HC〜115HCを作製した。
<ハードコート層の作製>
下記ハードコート層塗布組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、ダイコーターにより塗布し、70℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が300mW/cm、照射量を0.3J/cmとして塗布層を硬化させ、さらに加熱処理ゾーンにおいて、130℃で5分間、搬送力300N/mで加熱処理し、ドライ膜厚7μmのハードコート層を形成した。
(ハードコート層組成物1)
下記材料を撹拌、混合しハードコート層塗布組成物1とした。
ペンタエリスリトールトリアクリレート 20.0質量部
ペンタエリスリトールテトラアクリレート 50.0質量部
ジペンタエリスリトールヘキサアクリレート 30.0質量部
ジペンタエリスリトールペンタアクリレート 30.0質量部
イルガキュア184(BASFジャパン(株)製) 5.0質量部
フッ素−シロキサングラフトポリマーI(35質量%)5.0質量部
シーホスターKEP−50(粉体のシリカ粒子、平均粒径0.47〜0.61μm、日本触媒(株)製) 24.3質量部
プロピレングリコールモノメチルエーテル 20質量部
酢酸メチル 40質量部
メチルエチルケトン 60質量部
(フッ素−シロキサングラフトポリマーIの調製)
以下、フッ素−シロキサングラフトポリマーIの調整に用いた素材の市販品名を示す。
ラジカル重合性フッ素樹脂(FA):セフラルコートCF−803(ヒドロキシ(水酸基)価60、数平均分子量15000;セントラル硝子(株)製)
片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM−0721(数平均分子量5000;JNC(株)製)
ラジカル重合開始剤:パーブチルO(t−ブチルパーオキシ−2−エチルヘキサノエート;日本油脂(株)製)
硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;住化バイエルウレタン(株)製)
(ラジカル重合性フッ素樹脂(FA)の合成)
機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF−803(1554質量部)、キシレン(233質量部)、及び2−イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂(FA)を得た。
(フッ素−シロキサングラフトポリマーIの調製)
機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(FA)(26.1質量部)、キシレン(19.5質量部)、酢酸n−ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n−ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2−ヒドロキシエチルメタクリレート(1.8質量部)、FM−0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、さらに90℃で5時間保持することによって、重量平均分子量が171000である35質量%フッ素−シロキサングラフトポリマーIの溶液を得た。
<有機EL表示装置の作製>
上記作製した、透明耐熱性積層フィルム101〜115及びハードコート層付き透明耐熱性積層フィルム101HC〜115HCを用いて、下記構成により、有機EL表示装置101〜115を作製した。
(円偏光板の作製)
〔偏光子の作製〕
厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
〔円偏光板の作製〕
次いで、下記工程1〜5に従って偏光子と下記λ/4位相差フィルムと、裏面側(視認側)には下記保護フィルムを長手方向で合わせるようにロールtoロールで貼り合わせて円偏光板を作製した。
工程1:λ/4位相差フィルムと延伸した保護フィルム1を60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化した。
工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒浸漬した。
工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き取り、これを工程1で処理したλ/4位相差フィルムの上に載せて配置した。
工程4:工程3で積層したλ/4位相差フィルムと偏光子と保護フィルムを圧力20〜30N/cm、搬送スピードは約2m/分で貼合した。
工程5:80℃の乾燥機中に工程4で作製した偏光子とλ/4位相差フィルムと保護フィルムとを貼り合わせた試料を2分間乾燥し、円偏光板を作製した。
λ/4位相差フィルム:特開2013−101229号公報段落〔0277〕〜〔0287〕に記載の方法で作製した。
保護フィルム:コニカミノルタタック KC4UY(コニカミノルタ(株)製)
(有機エレクトロルミネッセンス表示装置の作製)
図2に示す構成からなる有機エレクトロルミネッセンス(EL)表示装置を作製した。
〔有機EL表示素子の作製〕
図2に示す構成において、透明基板31として実施例1で作製した透明耐熱性積層フィルム101〜115を用いて、その上にクロムからなる反射電極、反射電極上に金属電極(陽極)としてITO用いて金属電極32を形成し、有機発光層33として、陽極上に正孔輸送層としてポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT:PSS)をスパッタリング法で厚さ80nmで形成し、次いで正孔輸送層上にシャドーマスクを用いて、RGBそれぞれの発光層33R、33G、33B(不図示)を100nmの膜厚で形成した。赤色発光層33Rとしては、ホストとしてトリス(8−ヒドロキシキノリナート)アルミニウム(Alq)と発光性化合物[4−(dicyanomethylene)−2−methyl−6(p−dimethylaminostyryl)−4H−pyran](DCM)とを共蒸着(質量比99:1)して100nmの厚さで形成した。緑色発光層33Gとしては、ホストとしてAlqと、発光性化合物クマリン6(3−(2−ベンゾチアゾリル)−7−(ジエチルアミノ)クマリン)とを共蒸着(質量比99:1)して100nmの厚さで形成した。青色発光層33Bとしては、ホストとしてBAlqと発光性化合物Peryleneとを共蒸着(質量比90:10)して厚さ100nmで形成した。
Figure 2016129329
さらに、有機発光層上に電子が効率的に注入できるような仕事関数の低い第1の陰極としてカルシウムを真空蒸着法により4nmの厚さで成膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで形成した。ここで、第2の陰極として用いたアルミニウムはその上に形成される透明導電膜をスパッタリング法により成膜する際に、第1の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。以上のようにして、有機発光層を得た。次に、陰極上にスパッタリング法によって透明導電膜を80nmの厚さで成膜し透明電極34とした。ここで透明導電膜としてはITOを用いた。さらに、透明電極34上にCVD法によって窒化ケイ素を200nm成膜することで、絶縁層35とし、有機EL素子ユニットを作製した。
次に、ガスバリアーフィルム37として、厚さ20μmのガスバリアー層付きポリエチレンテレフタレートフィルムを使用し、このガスバリアーフィルム37の片面に、封止層36として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで付与した封止ユニットを作製した。
次に、90℃で0.1MPaの減圧条件下で、透明基板31〜絶縁層35まで形成した有機EL素子ユニットと封止ユニットとに押圧をかけて5分間保持した。続いて、積層体を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させて、有機EL表示デバイスBを作製した。
上記作製した有機EL表示デバイスBの発光面積は1296mm×784mmであった。また、この有機EL表示素子に6Vの直流電圧を印加した際の正面輝度は1200cd/mであった。正面輝度の測定は、コニカミノルタ社製分光放射輝度計CS−1000を用いて、2°視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430〜480nmの範囲を測定し、積分強度をとった。
〔有機EL表示装置101〜115の作製〕
上記作製した有機EL表示デバイスBに、前記作製したλ/4位相差フィルム38、偏光子39及び保護フィルム40を搭載した円偏光板Cを、図2に記載の構成となるように、対向して接着層を介して固定化し、さらにその上層として前記作製したハードコート層付き透明耐熱性積層フィルム101HC〜115HCをハードコート層が最表層となるように接着層を介して前面板41として積層し、有機EL表示装置101〜115を作製した。
≪評価≫
(3)目視でのコントラスト評価
上記作製した有機EL表示装置101〜115を通電して点灯し、表示画面のコントラストを目視で評価した。
その結果、本発明の透明耐熱性積層フィルムを用いた有機EL表示装置は、フィルムの透明性が高いため、比較例に対してコントラストに優れている結果であった。
本発明の透明耐熱性積層フィルムは、ヘイズが低く、光透過性が高いことから、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置に好適である。
10 共流延ダイ
11 口金部分
13、15 スキン層用スリット
14 コア層用スリット
16 金属支持体
17、19 スキン層用ドープ
18 コア層用ドープ
20 多層構造ウェブ
21 スキン層
22 コア層
23 スキン層
A 有機EL表示装置
B 有機EL表示デバイス
C 円偏光板
31 基板、透明基板
32 金属電極
33 有機発光層
34 透明電極
35 絶縁層
36 封止層
37 バリアフィルム
38 λ/4位相差フィルム
39 偏光子
40 保護フィルム
41 ハードコート層付き透明耐熱性積層フィルム
41a 透明耐熱性積層フィルム
41b ハードコート層

Claims (12)

  1. 透明耐熱性樹脂をそれぞれ溶媒に溶解させている少なくとも処方の異なる2種のドープを調製する工程と、前記少なくとも処方の異なる2種のドープを支持体上に共流延して流延膜を形成する工程と、前記流延膜を前記支持体から剥離する工程とを有する透明耐熱性積層フィルムの製造方法であって、
    前記溶媒として沸点80℃以下の低沸点溶媒を主溶媒として用いることを特徴とする透明耐熱性積層フィルムの製造方法。
  2. 前記透明耐熱性樹脂が、ポリイミド、ポリアミド酸、ポリアリレート、及びポリエーテルの中から選択される少なくとも1種の樹脂であることを特徴とする請求項1に透明耐熱性積層フィルムの製造方法。
  3. 前記低沸点溶媒が、ジクロロメタン、酢酸エチル、メチルエチルケトン、テトラヒドロフラン、アセトン、及び1,3−ジオキソランの中から選択される少なくとも1種を主溶媒として含有することを特徴とする請求項1又は請求項2に記載の透明耐熱性積層フィルムの製造方法。
  4. 前記支持体上での流延膜の乾燥を、前記溶媒の沸点をT℃としたときに、(T−1)℃以下の温度で行うことを特徴とする請求項1から請求項3までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法。
  5. 前記流延膜を前記支持体から剥離する工程の後に、前記流延膜を1.03〜2.00倍の範囲内で延伸する工程を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法。
  6. 前記透明耐熱性積層フィルムの厚さを、10〜100μmの範囲内になるように調整することを特徴とする請求項1から請求項5までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法。
  7. 請求項1から請求項6までのいずれか一項に記載の透明耐熱性積層フィルムの製造方法によって製造されたことを特徴とする透明耐熱性積層フィルム。
  8. 請求項7に記載の透明耐熱性積層フィルムを具備していることを特徴とするフレキシブルプリント基板。
  9. 請求項7に記載の透明耐熱性積層フィルムを具備していることを特徴とするフレキシブルディスプレイ用基板。
  10. 請求項7に記載の透明耐熱性積層フィルムを具備していることを特徴とするフレキシブルディスプレイ用前面板。
  11. 請求項7に記載の透明耐熱性積層フィルム又は請求項8に記載のフレキシブルプリント基板を具備していることを特徴とするLED照明装置。
  12. 請求項7に記載の透明耐熱性積層フィルム、請求項9に記載のフレキシブルディスプレイ用基板又は請求項10に記載のフレキシブルディスプレイ用前面板を具備することを特徴とする有機エレクトロルミネッセンス表示装置。
JP2016574699A 2015-02-09 2016-01-18 透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 Pending JPWO2016129329A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015022872 2015-02-09
JP2015022872 2015-02-09
PCT/JP2016/051223 WO2016129329A1 (ja) 2015-02-09 2016-01-18 透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置

Publications (1)

Publication Number Publication Date
JPWO2016129329A1 true JPWO2016129329A1 (ja) 2017-11-16

Family

ID=56615202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016574699A Pending JPWO2016129329A1 (ja) 2015-02-09 2016-01-18 透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置

Country Status (3)

Country Link
JP (1) JPWO2016129329A1 (ja)
KR (1) KR102014627B1 (ja)
WO (1) WO2016129329A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690544B (zh) * 2016-10-28 2020-04-11 奇美實業股份有限公司 軟性基板用組成物、其製造方法及軟性基板
CN110234687B (zh) * 2017-01-25 2022-04-15 住友化学株式会社 聚酰亚胺系膜及层叠体
TWI773728B (zh) * 2017-02-01 2022-08-11 日商住友化學股份有限公司 聚醯亞胺膜
JP6891564B2 (ja) * 2017-03-16 2021-06-18 コニカミノルタ株式会社 透明耐熱性積層フィルム、透明フレキシブルプリント基板、透明電極基板、照明装置及び有機エレクトロルミネッセンス表示装置
JP6450048B1 (ja) * 2018-02-14 2019-01-09 住友化学株式会社 積層体
CN111902457B (zh) * 2018-03-28 2023-03-28 三菱瓦斯化学株式会社 聚酰亚胺树脂、聚酰亚胺清漆及聚酰亚胺薄膜
JP7375318B2 (ja) * 2018-05-16 2023-11-08 東レ株式会社 ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物およびその膜状物、それを含む積層体、ならびにフレキシブルデバイス
US11260622B2 (en) * 2018-11-13 2022-03-01 Dupont Electronics, Inc. Multilayer polymer film
JP7461145B2 (ja) 2020-01-09 2024-04-03 旭化成株式会社 樹脂組成物、ポリイミド、及びポリイミドフィルムの製造方法
WO2021241572A1 (ja) * 2020-05-29 2021-12-02 東洋紡株式会社 ポリイミドフィルムおよびその製造方法
KR20230019064A (ko) * 2020-05-29 2023-02-07 도요보 가부시키가이샤 폴리이미드 필름 및 그 제조 방법
WO2021261195A1 (ja) * 2020-06-23 2021-12-30 リンテック株式会社 光学用フィルム、光学用フィルムの製造方法、透明導電フィルム、及び、ガスバリアフィルム
KR102642298B1 (ko) * 2020-09-21 2024-02-29 주식회사 엘지화학 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체
JP2023521590A (ja) * 2020-09-21 2023-05-25 エルジー・ケム・リミテッド フレキシブルディスプレイ装置製造用複合基板、これを利用したフレキシブルディスプレイ装置の製造方法、およびフレキシブルディスプレイ装置用積層体
KR20230098789A (ko) * 2020-11-10 2023-07-04 도요보 가부시키가이샤 폴리이미드 필름 및 그 제조 방법
WO2022102449A1 (ja) * 2020-11-10 2022-05-19 東洋紡株式会社 ポリイミドフィルムおよびその製造方法
CN114432907B (zh) * 2022-02-17 2023-05-16 中国科学院苏州纳米技术与纳米仿生研究所 具有超高锂镁选择性的复合纳滤膜及其制备方法与应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162617A (en) * 1980-05-20 1981-12-14 Fuji Photo Film Co Ltd Preparation of film
JP3515792B2 (ja) * 1991-10-30 2004-04-05 東レ・デュポン株式会社 ポリイミドフィルムおよびその製造方法
JP3896392B2 (ja) * 1998-01-19 2007-03-22 富士フイルム株式会社 セルロースエステルフィルムおよびその製造方法
JP4773726B2 (ja) * 2005-01-14 2011-09-14 株式会社カネカ 多層押出ポリイミドフィルムおよびその利用
JP4825988B2 (ja) * 2005-03-25 2011-11-30 コニカミノルタオプト株式会社 光学補償フィルムの製造方法
JPWO2011033751A1 (ja) * 2009-09-18 2013-02-07 三井化学株式会社 透明熱可塑性ポリイミド、およびそれを含む透明基板
KR101907941B1 (ko) 2010-12-14 2018-10-16 가부시키가이샤 가네카 3층 공압출 폴리이미드 필름의 제조 방법
JP6457168B2 (ja) * 2012-06-19 2019-01-23 日鉄ケミカル&マテリアル株式会社 表示装置支持基材用ポリイミドフィルム、及びその積層体、並びその製造方法
JP2014232830A (ja) * 2013-05-30 2014-12-11 旭化成イーマテリアルズ株式会社 Ledチップ接続構造体及びその製法

Also Published As

Publication number Publication date
KR102014627B1 (ko) 2019-08-26
KR20170102535A (ko) 2017-09-11
WO2016129329A1 (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2016129329A1 (ja) 透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置
JP6638654B2 (ja) ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置
KR102046699B1 (ko) 폴리이미드계 광학 필름, 그의 제조 방법 및 유기 일렉트로루미네센스 디스플레이
TWI695855B (zh) 聚醯亞胺前驅體、樹脂組合物及樹脂膜之製造方法
JP5595381B2 (ja) 低熱膨張性ブロックポリイミドおよびその前駆体ならびにその用途
JP6834440B2 (ja) ポリイミドフィルムおよび当該フィルムを用いる表示装置
JP5782924B2 (ja) ポリアミドイミドフィルムの製造方法
JP6874759B2 (ja) ポリイミドフィルム及びその製造方法
TWI636077B (zh) Polyimine film and method of producing the same
WO2017169306A1 (ja) 光学フィルムの製造方法
JP2016075894A (ja) 光学フィルム、その製造方法、フレキシブルプリント基板及びled照明
WO2017099041A1 (ja) ポリイミドフィルム、フレキシブルプリント基板、led照明装置等
JP2017083669A (ja) 偏光板とその製造方法
JP2016064642A (ja) ポリイミドフィルムの製造方法、フレキシブルプリント基板の製造方法及びled照明用基板の製造方法
JP7172981B2 (ja) 透明電極用基材フィルムおよびその製造方法
JP2018103392A (ja) 透明ポリイミドフィルム積層体
WO2017057247A1 (ja) ポリイミドフィルム、フレキシブルプリント基板、led照明用基板及びフレキシブルディスプレイ用前面板
JP7352837B2 (ja) ポリマーブレンドフィルムおよび積層体
JP6891564B2 (ja) 透明耐熱性積層フィルム、透明フレキシブルプリント基板、透明電極基板、照明装置及び有機エレクトロルミネッセンス表示装置
JP6772519B2 (ja) ポリイミドフィルム、その製造方法、透明導電フィルム及びタッチパネル
JP2017186466A (ja) ポリイミドフィルム、その製造方法、及び有機エレクトロルミネッセンス表示装置
CN116490541A (zh) 具有改善的光学性能的光学膜、包括其的显示装置及其制造方法