JPWO2014041677A1 - 力プローブ、計測装置及び計測方法 - Google Patents

力プローブ、計測装置及び計測方法 Download PDF

Info

Publication number
JPWO2014041677A1
JPWO2014041677A1 JP2014535320A JP2014535320A JPWO2014041677A1 JP WO2014041677 A1 JPWO2014041677 A1 JP WO2014041677A1 JP 2014535320 A JP2014535320 A JP 2014535320A JP 2014535320 A JP2014535320 A JP 2014535320A JP WO2014041677 A1 JPWO2014041677 A1 JP WO2014041677A1
Authority
JP
Japan
Prior art keywords
probe
vibrator
sample
tip
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014535320A
Other languages
English (en)
Inventor
誠嗣 平家
誠嗣 平家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2014041677A1 publication Critical patent/JPWO2014041677A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/045Self-actuating probes, i.e. wherein the actuating means for driving are part of the probe itself, e.g. piezoelectric means on a cantilever probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • G01Q30/025Optical microscopes coupled with SPM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00

Abstract

振動子に視界を遮られることなく試料表面上の探針位置を光学顕微鏡で観察しながら液中測定可能なプローブ観察装置を提供する。振動子の先端に少なくとも一部が振動子の振動方向とは非平行に形成された探針を設け、光学顕微鏡で探針先端と試料表面を同時に観察しながら、力プローブ顕微鏡観察を行う。

Description

本発明は、溶液中で試料表面の形状を測定する力プローブ、計測装置および計測方法に関する。
従来、溶液中試料の観察として、原子間力顕微鏡(AFM:Atomic Force Microscopy)が用いられている。この原子間力顕微鏡に代表される走査プローブ顕微鏡は、超高真空中、大気中等の多様な環境で動作が可能な顕微手法である。この手法は、鋭い探針先端と試料表面との相互作用を検出し、この相互作用の値を一定に保ちながら試料表面を走査することにより、表面形状を原子分子分解能で観察するものである。
近年は、液中観察が脚光を浴びており、固液界面における分子の配列(例えば、非特許文献1)等の報告がなされている。
福間剛志ら、フィジカル・レビュー・レターズ104巻16101頁2010年(T. Fukuma et al., Phys. Rev. Lett. 104, 16101 (2010))
ここで、AFMを溶液中で動作させる場合、振動する探針を溶液中に導入して観察する必要がある。AFMにおいては、探針-試料間に作用する力を、探針を取り付けた振動子の振動状態の変化として検出するが、通常、振動子は探針よりも大きいため、試料表面上の探針位置を直接確認することが困難であった。
本発明の目的は、振動子に視界を遮られることなく、試料表面上の探針位置を観察しながら液中測定可能なプローブ観察装置を提供することにある。
(1)力プローブ顕微鏡の振動子の振動状態は、振動子に対する探針の取り付け方には影響されないという知見に基づき、振動子の先端に探針を振動方向に対し、少なくとも一部を非平行に設け、振動子の振動方向への投影図において、探針先端の投影位置が振動子の投影図形の外側になる形状の力プローブとする。これにより、上部から、探針位置を確認することができる。
(2)装置としては、上記力プローブを試料上部の液体保持手段の開口部に挿入する構成とする。具体的には、試料に対して垂直の振動成分を有する振動子と、前記振動子の先端に前記振動子の振動方向と非平行に設けられた探針と、前記試料を載置する試料台と、前記試料表面に載置される厚さbのスペーサと、前記スペーサ上に載置される厚さcのカバーとを有し、前記振動子の振動方向と垂直な方向への投影図において、前記探針の先端の投影位置が、前記振動子の投影図形の外部であり、前記振動子の振動方向の前記探針の長さをaとすると、a>b+cの条件を備えるプローブ観察装置とする。これにより、振動子に遮られることなく、上部から試料表面を観察することができる。
(3)方法としては、前記試料と前記カバーの間に液体を満たし、前記振動子の振動方向と非平行に設けられた探針を前記カバーに設けられた観察窓に挿入することにより前記試料表面の形状を測定する計測方法とする。これにより、(1)と同様に、上部から、探針位置を確認することができる。
本発明によれば、探針を振動子の振動方向に対し非平行に取り付けることにより、振動子に遮られることなく試料表面上の探針位置を確認しながら、液体中の試料表面形状を測定することが可能となる。
本発明の実施形態に係る探針と伸縮型振動子からなる力プローブの概略構成図である。 本発明の実施形態に係る探針と音叉型振動子からなる力プローブの概略構成図である。 本発明の実施形態に係る力プローブ顕微鏡の概略構成図である。 本発明の実施形態に係る力プローブ顕微鏡における、探針の信号入出力を行う回路の概略図である。 本発明の実施形態に係る計測装置の概略構成図である。 本発明の実施形態に係る力プローブの着脱機構の概略構成図である。 本発明の実施形態に係るスリット状の観察窓を設けた試料ホルダの構成例の概略図である。 本発明の実施形態に係るプローブセット保管ホルダの構成例の概略図である。 本発明の実施形態に係る探針の洗浄手順を示したフロー図である。 本発明の実施形態に係る計測装置を用いて得られた、純水中における金表面の形状画像である。 本発明の実施形態に係る計測装置を用いて得られた、純水中における金表面の形状電位分布画像である。
図1は、本発明の実施形態に係る探針と伸縮型振動子からなる力プローブの概略構成図である。図1aは力プローブの正面図である。伸縮型の振動子1は第一の電極2と第二の電極3との間に交流電圧を印加することにより、図1aの上下方向に伸縮振動する。振動子1の先端には探針4が設けられ、導電性接着材等により第一の電極2と電気的に接続されている。図1bの側面図に示すように、探針4は振動子1の振動方向に対して角度を持って取りつけられている。探針4の振動子1の振動方向に対する角度は、接着時に調整してもよいし、また、接着後、探針4の接着部近傍を曲げることにより調整してもよい。振動子1の側面あるいは底面に第一の電極2および第二の電極3は絶縁性のプローブ支持体5に固定されている。プローブ支持体5には第一の端子6および第二の端子7が貫通しており、第一の電極2と第一の端子6は第一の接続部8により、また、第二の電極3と第二の端子7は第二の接続部9により電気的に接続されている。これにより、第一の端子6および第二の端子7を介して、振動子1を振動させることができる。プローブ支持体5にはピンセット用穴10およびピンセット用溝11が設けられており、これらにピンセットの先端を挿入することにより、力プローブを容易に扱うことができる。図1cは力プローブの上面図である。探針4が振動子1の振動方向に対して角度を持って取りつけられているため、振動子1の振動方向から、探針4の先端を観察することが可能である。
図2は、本発明の実施形態に係る探針と音叉型振動子からなる力プローブの概略構成図である。図2aは力プローブの正面図である。音叉型の振動子1は第一の電極2と第二の電極3との間に交流電圧を印加することにより、図2aの上下方向にたわみ振動する。振動子1の先端には探針4が設けられ、第一の電極2と電気的に接続されている。図2bの側面図に示すように、探針4は振動子1の振動方向に対して角度を持って取りつけられている。第一の電極2および第二の電極3は絶縁性のプローブ支持体5に固定されている。プローブ支持体5には第一の端子6および第二の端子7が貫通しており、第一の電極2と第一の端子6は第一の接続部8により、また、第二の電極3と第二の端子7は第二の接続部9により電気的に接続されている。これにより、第一の端子6および第二の端子7を介して、振動子1を振動させることができる。プローブ支持体5にはピンセット用穴10およびピンセット用溝11が設けられており、これらにピンセットの先端を挿入することにより、力プローブを容易に扱うことができる。図2cは力プローブの上面図である。探針4が振動子1の振動方向に対して角度を持って取りつけられているため、振動子1の振動方向から、探針4の先端を観察することが可能である。
図3は、本発明の実施形態に係る力プローブ顕微鏡の概略構成図である。振動子1の周辺部に関しては電気的な接続のみを示しており、実施例1および2で示した第一の端子6および第二の端子7は省略されている。まず、試料台21上に、試料20を置き、スペーサ24とカバー25を置いて、内部に液体27を注入する。こうして、試料20の観察面上にはスペーサ24を介してカバー25が置かれ、スペーサ24によって形成される試料20とカバー25との間の間隙には液体27が満たされることとなる。カバー25には観察窓26が設けられ、観察窓26が十分に小さい場合、表面張力により液体27は観察窓26の最上部まで満たされる。試料20の表面に対向して振動子1が配置され、振動子1は図中に矢印で示したように、試料20の表面に対して垂直方向に振動する。また、振動子1の先端には探針4が振動子1の振動方向に対して非平行に設けられている。このとき、探針4の長さの振動子1の振動方向成分をa、スペーサ24の厚さをb、カバー25の厚さをcとすると、a>b+cの関係にある。振動子1および探針4は発振回路28により、振動子1に設けられた第一の電極2と第二の電極3との間に交流電圧を印加することにより、固有振動数かその近傍の周波数(固有振動数の±1%程度以内)で、測定試料20の表面に対して垂直方向に振動させられる。探針4は観察窓26から液体27中に導入され、試料20の表面近傍まで接近させられる。振動子1は探針4と試料20との間の相互作用により周波数特性が変化し、その変化は周波数特性検出器29を用いて検出される。試料20は試料台21を介してXYZ走査機構22および粗動機構23上に固定されており、XYZ走査機構22により探針4に対して3次元方位方向に移動させることができ、また、粗動機構23により試料20と探針4の間の距離を大きく変化させることができる。
また、周波数特性検出器29からの振動子1の周波数特性変位信号は制御系30に入力される。探針4が試料20の表面と接触すると、探針4と試料20の距離にしたがって振動子1の周波数特性が変化する。具体的には、発振回路28により振動子1を一定の周波数で強制振動させた場合は、振動子1の振幅および位相が変化し、発振回路28により振動子1を自発発振させた場合は、振動子1の発振周波数が変化する。それぞれの場合に応じて、周波数特性検出器29からの振幅変化、位相変化、周波数変化信号の値が設定された一定の値となるように、制御系30を用いて、Z駆動部32を介してXYZ走査機構22をZ方向に駆動し、試料20の探針4に対するZ方向の位置を調整することにより、探針4と試料20との距離が一定値に保たれる。これにより、試料表面の凹凸によらず探針4と試料20との距離は常に一定となる。即ち、探針と試料表面との間の距離は、周波数特性検出器29と制御系30とを含む距離制御部により、試料20の探針4に対するZ方向の位置を調整することにより制御できる。
測定は次のような手順で行う。まず、制御部31は粗動部34を介して粗動機構23を駆動することにより粗動を行い、探針4を試料20に数百nm程度まで接近させる。粗動は周波数特性検出器29から出力される信号があらかじめ設定したしきい値を超えた時点で停止し、その後、制御系30による探針‐試料間距離制御を開始する。次に、制御部31は走査部33を介してXYZ走査機構22を駆動することにより、試料20を探針4に対してXY方向に走査する。なお、試料20と探針4の距離は一定に保たれている。試料20を探針4に対してXY方向に走査する際、制御部31は、各測定点において制御系30からの出力信号を表面形状データとして取り込む。最後に、表面形状データを、各XY座標を用いて2次元的にマッピングし、表面形状の画像を表示装置35に表示する。
観察窓26の開口径は可能な限り小さいことが好ましいが、探針4の直径よりも大きく、かつ、XYZ走査機構22によるXY面内走査を妨げないサイズでなければならない。また、操作性を考慮すると、直径0.5〜2mm程度が望ましい。振動子1のQ値低下を抑えるためには、探針4の質量は、振動子1の質量の0.2%程度以下が望ましい。また、探針4の直径は、質量的にも液体27による粘性抵抗的にも、可能な限り小さいことが好ましいが、探針4の強度を考慮して、5〜10μm程度が望ましい。また、探針4の振動子1の振動方向に対する取り付け角度は、探針4の先端の観察し易さと先端の曲率半径を考慮して、10〜20°程度が望ましい。
なお、本実施例では、試料台を走査機構により走査する例を示したが、振動子と試料台を相対的に移動させれば良く、振動子を走査するようにしてもよい。
また、スペーサ24、カバー25別々の構成として記載したが、一体化させた構成としても良い。
図4は、本発明の実施形態に係る力プローブ顕微鏡で、探針4が導電性を持ち、第一の電極2と電気的に結合されている場合において、発振回路28内で、探針4と試料20表面との間で信号の入出力を行う回路の概略構成図である。振動子1は、第一の電極2、第二の電極3と、これらに挟まれた誘電体から構成される。発振器40から出力された交流電圧信号は、結合コンデンサ41を介して、第一の電極2に印加される。第二の電極3からは対応した交流電流振動が出力され、電流電圧変換器42によって交流電圧信号に変換される。第一の電極2には信号入出力回路43が接続されており、探針4と試料20との間の入出力信号を処理する。信号入出力回路43が、電圧フォロワの場合、試料20の表面電位を探針4を介して測定できる。
図5は、本発明の実施形態に係る計測装置の概略構成図である。本発明の計測装置は、力プローブ顕微鏡と光学観察装置からなり、力プローブ顕微鏡は実施例3に示したものと同様である。光学顕微鏡50が観察窓26の上方に対向して設けられ、観察された画像はカメラ51によって電気信号に変換され、光学系表示装置52に表示される。光学顕微鏡50の観察視野の中心線53は試料20の表面に対しほぼ垂直となっているため、光学顕微鏡50は観察窓26を介して試料20の表面を観察することができる。また、探針4が観察窓26から挿入された場合、探針4が振動子1の振動方向に対して角度を持って取りつけられているため、振動子1に視野をさえぎられることなく、探針4の先端を光学顕微鏡50で観察することができる。力プローブ顕微鏡測定に先立ち、試料4表面の目的の領域を光学顕微鏡50で観察した上で、観察窓26から挿入した探針4の先端のXY面内の位置が目的の領域内にとなるように、探針4と試料20との相対位置を調整することにより、試料20表面の所望の領域を力プローブ顕微鏡観察することができる。
図6は、本発明の実施形態に係る力プローブ顕微鏡における、力プローブの着脱機構の概略構成図である。図6aは探針4や振動子1などからなるプローブセット60がプローブセット60を保持するプローブセットホルダ61へ装着される前、図6bは装着後の状態を示す。このプローブセットホルダ61は装置本体側にあって、振動子の電気的な接続を取るためのものである。プローブセットホルダ61は、絶縁性のプローブセット支持体62およびそれを貫通する第一のソケット63と第二のソケット64からなる。第一のソケット63と第二のソケット64には、プローブセット60の第一の端子6と第二の端子7がそれぞれ挿入できる。第一のソケット63と第二のソケット64の内部にはバネ65が設けられている。プローブセット60を装着した際に、第一の端子6と第二の端子7をバネ65が押さえることにより、プローブセット60がプローブセットホルダ61に機械的に固定され、かつ、第一の端子6が第一のソケット63と、また、第二の端子7が第二のソケット64と電気的に接続される。これにより、第一のソケット63および第二のソケット64を介して、振動子1の駆動および電気信号の入出力が可能となる。また、プローブセット60のプローブセットホルダ61への着脱は、ピンセット用穴10とピンセット用溝11にピンセットの先端を挿入することにより行う。
図7は、本発明の実施形態に係るスリット状の観察窓を設けた試料ホルダの概略図である。図7aは試料台21上に置かれた試料20に対し、試料カバー部70をかぶせる前の状態を示したものである。試料カバー部70はカバー25とスペーサ24で構成される。カバー25は円形で中央に円形の平坦な窪みがあり、窪みの底にスリット状の観察窓26が設けられ、裏面にスペーサ24が固定されている。また、液体導入孔71が設けられ、ここからカバー25内部に液体を導入できる。試料台21は試料カバー部70と同サイズのシャーレ状容器で、この中に試料20を置き、試料カバー部70をかぶせると、図7bのような状態となる。この状態で液体導入孔より液体を導入したものを、スリット状の観察窓26の長手方向を横切る方向で切った断面図を図7cに示す。観察窓26では、表面張力により、導入する液体の量によらず、観察窓26の上面まで液体に満たされる。また、試料台21の深さが、カバー25の窪みの深さとスペーサの厚みと試料の厚みの合計よりも小さいため、試料20表面にスペーサ24が接触し、観察窓26における試料20表面までの液深は、カバー25の厚みとスペーサ24の厚みの和に固定される。スリット状の観察窓26の長手方向のサイズに制限はないが、表面張力で液面が保持されるためにはスリット幅は2mm程度以下である必要がある。また、探針4の直径よりも大きく、かつ、XYZ走査機構22によるXY面内走査を妨げないサイズでなければならないため、スリット幅は0.5mm程度以上が望ましい。
なお、ここでは、円柱状の試料ホルダの形状を説明したが、他の任意の形状であっても良い。
図8は、本発明の実施形態に係るプローブセット保管ホルダの構成例の概略図である。プローブ保管箱80は図8aの正面図における手前の面が開放された直方体の箱であり、開放面に垂直な面の内側にプローブホルダ台座81が設けられている。プローブホルダ台座81には、プローブホルダ支持部82を貫通して等間隔に複数個並んだプローブホルダソケット83が固定されている。プローブホルダソケット83は、プローブセット60の第一の端子6あるいは第二の端子7を挿入し、内部に設けられたバネで固定することが可能である。このように、保管箱の内部に、開放面と平行な方向に、力プローブの端子を固定する複数の、並列して設けられたソケットとを有し、記箱の内部は、力プローブを収納するのに十分な空間を有するように構成した。また、プローブホルダソケット83の間隔は、プローブセット60の第一の端子6と第二の端子7との間隔と等しいので、隣り合う二個のプローブホルダソケット83を用いてプローブセット60を固定することができる。図8aには伸縮振動型振動子のプローブセットを挿入した例を示した。図8bはこれに対応する側面図であり、蓋84によりプローブ保管箱80の開放面を閉じることにより、振動子1および探針4を安全に保管することができる。図8cは音叉型振動子を挿入した場合の側面図である。プローブセット60の振動子1部分をプローブ保管箱80の底面に向けて取りつけられるので、より安全な保管が可能である。
図9は、本発明の実施形態に係る探針の洗浄手順を示したフロー図である。まず、探針4が設けられたプローブセット60をプローブセットホルダ61に装着する(ステップS90)。次に、試料台21に導電性基板試料20を固定し(ステップS91)、試料20表面に洗浄液を滴下する(ステップS92)。ここから、探針4先端を光学顕微鏡50で観察開始する(ステップS93)。粗動機構23を用いるか、あるいは手動で粗動を行い、試料20と探針4を接近させる(ステップS94)。光学顕微鏡50で確認しながら、探針4の洗浄したい部分を洗浄液中に導入する(ステップS95)。探針4と試料20との間に交流電圧を印加し洗浄する(ステップS96)。粗動により、探針4と試料20を離して終了する(ステップS97)。
洗浄液として電解研磨液を用いた場合、探針4先端はエッチングによって洗浄される。例えば、探針がタングステンの場合、洗浄液として水酸化カリウム水溶液(1M)を用い、交流電圧(1V、50Hz)を100ms程度印加する。また、探針が金の場合、洗浄液として塩酸とエタノールの混合液を用い、交流電圧(1V、50Hz)を100ms程度印加する。電解研磨で洗浄した場合、探針4先端がエッチングされるので、異物の洗浄のみならず、変形した先端形状を改善することも可能である。洗浄液として水を用いた場合、交流電圧(2V、50Hz)を数s程度印加することにより、探針4先端は水の電気分解によるバブリングで洗浄される。
実際に、マイカ上の金薄膜表面を測定した。力プローブ顕微鏡の構成は図5と同様である。真空蒸着によりマイカ基板上に厚さ200nmの金薄膜を形成し、水素炎中でアニール処理したものを用いた。振動子として、固有振動数が32.768kHzの音叉型水晶振動子を用いた。水晶振動子の先端には長さ500μm、直径10μmの金探針を振動子の振動方向から約10°傾けて接着した。探針は、直径20μmの金線を塩酸‐エタノール混合液中で電解研磨(5V、50Hz)することによって作製した。このとき、探針の質量(約0.25μg)は水晶振動子の質量(約170μg)の0.2%以下とした。発振器を用いて水晶振動子の一方の電極に交流電圧を印加し、水晶振動子の固有振動数である約32kHzの一定の周波数で振動させた。また、水晶振動子の他方の電極からの電流を電流電圧変換回路を用いて電圧信号に変換し、この信号の位相と印加した交流電圧信号の位相とを比較し、その位相差変化を用いて探針に加わる力を検出した。位相比較は、二つの信号をデジタル信号の矩形波に変換後、両者の排他的論理和を演算し、ローパスフィルタにより高周波成分を除去することにより行った。
試料表面には、中央に幅約1mm、長さ約10mmのスリット状観察窓を設けた厚さ約120μmのカバーガラスをかぶせ、試料とカバーガラスの間には、同じカバーガラス片をスペーサとして挿入した。この状態で、試料‐カバーガラス間を純水で満たした。試料は円柱型のピエゾ素子を用いたXYZスキャナ上に観察面を上方に向けて固定した。水晶振動子は、ステッピングモータとネジを用いた粗動機構によって上下移動可能なステージに、試料観察面に対向して固定した。探針先端は、スライドガラスの観察窓の真上方向に設置した光学顕微鏡で観察しながら、観察窓中の金表面の比較的清浄な表面の真上に位置するように調整後、ステッピングモータを駆動し、探針を試料表面に接近させた。水晶振動子の位相信号が、あらかじめ設定されたしきい値を超えるまで接近させた後、ステッピングモータを停止した。さらに、フィードバック制御系により位相信号があらかじめ設定した一定の値となるようにXYZスキャナをZ方向に調整し、探針‐試料間の距離を一定に保持した。この状態でXYZスキャナをXY方向に駆動して、探針を試料表面の1μm×1μmの領域に対してラスター走査した。各測定座標において、探針‐試料間距離のフィードバック制御系からの出力値をD/Aコンバータで制御用PCに読み込み、表面形状データとして記憶した。試料表面のXY座標に対して、記憶した表面形状データをマッピングすることにより得られた表面形状画像を図10に示す。直径200nm程度の金結晶粒が明瞭に観察され、また、結晶粒表面のテラス領域にコンタミネーションと思われる微小な構造も観察された。
以上、本実施例によれば、探針を振動子の振動方向に対して非平行に取り付けても高分解能で試料表面の液中観察が可能であり、また、探針先端の様子を光学顕微鏡で観察することが可能である。
実際に、マイカ上の金薄膜表面において表面電位を測定した。力プローブ顕微鏡の構成は図5と同様である。真空蒸着によりマイカ基板上に厚さ200nmの金薄膜を形成し、水素炎中でアニール処理したものを用いた。振動子として、2.75mm×85μm×120μmの伸縮型水晶振動子を用いた。水晶振動子の先端には長さ300μm、直径10μmの金探針を接着した。探針は、直径20μmの金線を塩酸‐エタノール混合液中で電解研磨(5V、50Hz)することによって作製した。このとき、探針の質量(約0.15μg)は水晶振動子の質量(約80μg)の0.2%以下とした。発振器を用いて水晶振動子の一方の電極に1μFの結合コンデンサを介して交流電圧を印加し、水晶振動子の固有振動数である約1MHzの一定の周波数で振動させた。この電極には電圧フォロワ回路を直接接続した。また、水晶振動子の他方の電極からの電流を電流電圧変換回路を用いて電圧信号に変換し、この信号の位相と印加した交流電圧信号の位相とを比較し、その位相差変化を用いて探針に加わる力を検出した。位相比較は、二つの信号をデジタル信号の矩形波に変換後、両者の排他的論理和を演算し、ローパスフィルタにより高周波成分を除去することにより行った。
試料表面には、中央に直径約1mmの観察窓を設けた厚さ約120μmのカバーガラスをかぶせ、試料とカバーガラスの間には、厚さ50μmのアルミ泊をスペーサとして挿入した。このアルミ箔をカバーガラスの表面に折り返すことによって、アルミ箔を介して試料表面に電圧を印加できるようにした。この状態で、試料‐カバーガラス間を純水で満たした。試料は円柱型のピエゾ素子を用いたXYZスキャナ上に観察面を上方に向けて固定した。水晶振動子は、ステッピングモータとネジを用いた粗動機構によって上下移動可能なステージに、試料観察面に対向して固定した。探針がスライドガラスの観察窓の真上に位置するように調整後、ステッピングモータを駆動し、探針を試料表面に接針させた。水晶振動子の位相信号が、あらかじめ設定されたしきい値を超えるまで接近させた後、ステッピングモータを停止した。さらに、フィードバック制御系により位相信号があらかじめ設定した一定の値となるようにXYZスキャナをZ方向に調整し、探針‐試料間の距離を一定に保持した。
この状態で、XYZスキャナをXY方向に駆動して、探針を試料表面の1μm×1μmの領域に対してラスター走査した。各測定座標において、探針‐試料間距離のフィードバック制御を停止し、探針を試料表面に10nm接近させることにより試料表面の電位を探針が検出し、探針と接続された水晶振動子の電極を介して電圧フォロワで読み取った電圧値をD/Aコンバータで制御用PCに読み込み、電位データとして記憶した。試料表面のXY座標に対して、記憶した電位データをマッピングすることにより得られた電位分布画像を図11aに示す。測定中、試料には、0.5mV、1Hzの交流電圧が印加されており、この信号に対応する縞模様が画像として観察された。また、図11a中の破線に沿った電位プロファイルを図11bに示す。振幅0.5mVの電位変動が明瞭に観察されており、これから電位分解能が0.5mV以下であることがわかった。
以上、本実施例によれば、振動子の電極に接続された探針を試料表面に接近させ、電極の電位を電圧フォロワで検出することにより、高分解能で試料表面の電位分布観察が可能となる。
固液界面の電気化学反応および触媒反応の評価、また、生体分子および生体細胞の評価に適用できる。
1…振動子、 2…第一の電極、 3…第二の電極、 4…探針、 5…プローブ支持部、 6…第一の端子、 7…第二の端子、 8…第一の接続部、 9…第二の接続部、 10…ピンセット用穴、 11…ピンセット用溝、 20…試料、 21…試料台、 22…XYZ走査機構、 23…粗動機構、 24…スペーサ、 25…カバー、 26…観察窓、 27…液体、 28…発振回路、 29…周波数特性検出器、 30…制御系、 31…制御部、 32…Z駆動部、 33…走査部、 34…粗動部、 35…表示装置、 40…発振器、 41…結合コンデンサ、 42…電流電圧変換器、 43…信号入出力回路、 50…光学顕微鏡、 51…カメラ、 52…光学系表示装置、 53…観察視野の中心線、 60…プローブセット、 61…プローブセットホルダ、 62…プローブセット支持部、 63…第一のソケット、 64…第二のソケット、 65…バネ、 70…試料カバー部、 71…液体導入孔、 80…プローブ保管箱、 81…プローブホルダ台座、 82…プローブホルダ支持部、 83…プローブホルダソケット、 84…蓋、 S90…プローブセットステップ、 S91…導電性基板セットステップ、 S92…洗浄液滴下ステップ、 S93…光学顕微鏡観察開始ステップ、 S94…粗動前進ステップ、 S95…探針液中導入ステップ、 S96…電圧印加ステップ、 S97…粗動後退ステップ。

Claims (16)

  1. 振動子と、
    前記振動子の先端に、前記振動子と導通するように接続された探針とを有し、
    前記探針の少なくとも一部が、前記振動子の振動方向とは非平行に形成され、前記振動方向と垂直な方向への投影図において、前記探針の先端の投影位置が、前記振動子の投影図形の外部であることを特徴とする力プローブ。
  2. 試料を載置する試料台と、
    振動子と、
    前記振動子先端に設けられた、少なくとも一部が前記振動子の振動方向とは非平行に形成され、前記振動方向と垂直な方向への投影図において、先端の投影位置が、前記振動子の投影図形の外部である探針と、
    前記試料台上に設けられた、前記探針を挿入する開口部を有し、液体を保持する手段と、
    前記試料と前記探針との距離を所定値に保ち、前記試料表面を走査する手段とを有することを特徴とする計測装置。
  3. 前記液体を保持する手段は、スペーサと、前記開口部を有するカバーとを有し、
    前記振動子の振動方向成分の前記振動子から突出した部分の前記探針の長さのをa、前記スペーサの厚さをb、前記カバーの厚さをcとしたときに、a>b+cの関係にあることを特徴とする請求項2記載の計測装置。
  4. 前記試料表面を走査する手段は、
    前記振動子を振動させる発振器と、
    前記発振器と前記振動子との間に設けられた結合コンデンサと、
    前記振動子からの出力電流信号を電圧信号に変換する電流電圧変換器と、
    前記振動子に対し信号を入出力する信号入出力回路を備え、
    前記振動子は、第一の電極と誘電体と第二の電極から構成され、
    前記振動子の第一の電極と前記探針が電気的に接続され、前記第一の電極に対し前記結合コンデンサを介して前記発振器から前記振動子に振動信号を入力し、前記振動子の第二の電極からの出力電流を前記電流電圧変換器で電圧信号に変換し、前記信号入出力回路を用いて前記第一の電極の信号を入出力することを特徴とする請求項2記載の計測装置。
  5. 前記信号入出力回路が電圧フォロワであることを特徴とする請求項4記載の計測装置。
  6. 前記探針を前記試料に接近させ、前記電圧フォロワにより前記試料表面の電位を検出することを特徴とする請求項5記載の計測装置。
  7. 前記試料表面上の各測定点において、前記探針を前記試料に接近させ、前記電圧フォロワにより前記試料表面の電位を検出しながら、前記試料表面を走査することによって、前記試料表面の電位分布を測定することを特徴とする請求項5記載の計測装置。
  8. 前記振動子と前記探針からなるプローブ部が着脱可能であることを特徴とする請求項2記載の計測装置。
  9. 前記開口部がスリット状であることを特徴とする請求項3記載の計測装置。
  10. 前記探針の先端の上部に設けられた、前記試料を光学的に観察する手段と、
    前記光学的に観察する手段により観察された画像を表示する手段とを有することを特徴とする請求項2記載の計測装置。
  11. 前記光学的に観察する手段の観察視野の中心線は、前記試料の表面に対しほぼ垂直となるように構成されていることを特徴とする請求項10記載の計測装置。
  12. 試料台上に試料を載置するステップと、
    前記試料台上の開口部を有する液体保持手段に、液体を満たすステップと、
    振動子と、前記振動子先端に設けられた、少なくとも一部が前記振動子の振動方向とは非平行に形成され、前記振動方向と垂直な方向への投影図において、先端の投影位置が、前記振動子の投影図形の外部である探針とを有する力プローブを、前記開口部に挿入できるように相対位置を調整し、前記開口部に挿入するステップと、
    前記試料と前記探針との距離を所定値に保ち、前記試料表面を走査するステップとを有することを特徴とする計測方法。
  13. 前記走査により、電圧フォロワを用いて、前記試料の表面電位を計測することを特徴とする請求項12記載の計測方法。
  14. 試料台上に導電性基板を設置するステップと、
    前記導電性基板上に洗浄液を滴下するステップと、
    先端に探針が設けられた振動子の、前記探針を前記洗浄液に挿入するステップと、
    前記導電性基板と前記探針との間に電圧を印加し、前記探針の先端を洗浄するステップを有することを特徴とする探針洗浄方法。
  15. 前記洗浄は、電解研磨または水の電気分解によるバブリングにより行われることを特徴とする請求項14記載の探針洗浄方法。
  16. 一つの開放面を持つ直方体の箱と、
    前記開放面を閉じる蓋と、
    前記箱の内部に、前記開放面と平行な方向に、力プローブの端子を固定する複数の、並列して設けられたソケットとを有し、
    前記箱の内部は、前記力プローブを収納するのに十分な空間を有することを特徴とするプローブホルダ。
JP2014535320A 2012-09-14 2012-09-14 力プローブ、計測装置及び計測方法 Pending JPWO2014041677A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073572 WO2014041677A1 (ja) 2012-09-14 2012-09-14 力プローブ、計測装置及び計測方法

Publications (1)

Publication Number Publication Date
JPWO2014041677A1 true JPWO2014041677A1 (ja) 2016-08-12

Family

ID=50277830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014535320A Pending JPWO2014041677A1 (ja) 2012-09-14 2012-09-14 力プローブ、計測装置及び計測方法

Country Status (2)

Country Link
JP (1) JPWO2014041677A1 (ja)
WO (1) WO2014041677A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322295B2 (ja) * 2014-12-24 2018-05-09 株式会社日立製作所 走査プローブ顕微鏡及びその試料ホルダ
CN107636475A (zh) 2015-02-26 2018-01-26 沙朗特有限责任公司 用于制造纳电子机械系统探针的系统和方法
KR102097351B1 (ko) 2015-02-26 2020-04-06 살렌트, 엘엘씨 다중 통합 팁들 스캐닝 프로브 현미경
US10866273B2 (en) 2016-03-09 2020-12-15 Xallent, LLC Functional prober chip
US10663484B2 (en) 2018-02-14 2020-05-26 Xallent, LLC Multiple integrated tips scanning probe microscope with pre-alignment components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108605A (ja) * 1999-10-14 2001-04-20 Nikon Corp 走査型プローブ顕微鏡用カンチレバー及びその製造方法、並びに走査型プローブ顕微鏡及び表面電荷測定顕微鏡
JP2006071534A (ja) * 2004-09-03 2006-03-16 Sii Nanotechnology Inc 長尺体の試料観察に適したプローブ顕微鏡システム
JP2010217153A (ja) * 2009-02-23 2010-09-30 Horiba Ltd 走査型プローブ顕微鏡用プローブ及び走査型プローブ顕微鏡
WO2010123120A1 (ja) * 2009-04-24 2010-10-28 並木精密宝石株式会社 液中測定用プローブ及びカンチレバー及び液中測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792462B2 (ja) * 1988-05-16 1995-10-09 三菱電機株式会社 走査型トンネル顕微鏡の微動機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108605A (ja) * 1999-10-14 2001-04-20 Nikon Corp 走査型プローブ顕微鏡用カンチレバー及びその製造方法、並びに走査型プローブ顕微鏡及び表面電荷測定顕微鏡
JP2006071534A (ja) * 2004-09-03 2006-03-16 Sii Nanotechnology Inc 長尺体の試料観察に適したプローブ顕微鏡システム
JP2010217153A (ja) * 2009-02-23 2010-09-30 Horiba Ltd 走査型プローブ顕微鏡用プローブ及び走査型プローブ顕微鏡
WO2010123120A1 (ja) * 2009-04-24 2010-10-28 並木精密宝石株式会社 液中測定用プローブ及びカンチレバー及び液中測定方法

Also Published As

Publication number Publication date
WO2014041677A1 (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
WO2014041677A1 (ja) 力プローブ、計測装置及び計測方法
JP3402512B2 (ja) 走査型プローブ顕微鏡
JPH0754249B2 (ja) サンプルの表面を検査する方法及び装置
JP5269725B2 (ja) 液中電位計測方法
JP2006091002A (ja) 走査型プローブ顕微鏡用カンチレバーホルダおよびそれを用いた走査型プローブ顕微鏡
JPH1048224A (ja) 走査型プローブ顕微鏡
JP2009257913A (ja) 液中観察用センサ及び液中観察装置
JP2015032463A (ja) 質量分析装置、質量分析方法および画像化システム
WO2014006734A1 (ja) 力プローブ顕微鏡及び高さ分布測定方法
JP4697709B2 (ja) 電気化学測定装置
JP2004294218A (ja) 物性値の測定方法および走査形プローブ顕微鏡
JP5765146B2 (ja) 原子間力顕微鏡におけるカンチレバー励振方法及び原子間力顕微鏡
JP4660772B2 (ja) 検体動作制御装置、検体動作用のパラメータの取得方法、及び検体動作制御方法
JP5418413B2 (ja) 原子間力顕微鏡におけるカンチレバー励振方法
JP5672200B2 (ja) 原子間力顕微鏡を用いた誘電特性測定方法
JP4899162B2 (ja) 走査型プローブ顕微鏡用プローブ及びそれを用いた走査型プローブ顕微鏡
JP2009192370A (ja) 導電率測定装置及び導電率測定方法
WO1994024575A1 (en) Electrooptic instrument
JP2003329565A (ja) 走査プローブ顕微鏡
US11835548B2 (en) Vibration component measurement device, Kelvin probe force microscope, and vibration component measurement method
JP2008233053A (ja) 圧電振動素子の周波数特性測定方法
JP2016082291A (ja) 静電容量型トランスデューサ及びその駆動方法
JP2014049430A (ja) 試料ホルダおよび試料ホルダを用いた観察方法
JP4942181B2 (ja) 物質供給プローブ装置及び走査型プローブ顕微鏡
JP5356148B2 (ja) プローバー装置及び検査方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405