JP2004294218A - 物性値の測定方法および走査形プローブ顕微鏡 - Google Patents

物性値の測定方法および走査形プローブ顕微鏡 Download PDF

Info

Publication number
JP2004294218A
JP2004294218A JP2003085746A JP2003085746A JP2004294218A JP 2004294218 A JP2004294218 A JP 2004294218A JP 2003085746 A JP2003085746 A JP 2003085746A JP 2003085746 A JP2003085746 A JP 2003085746A JP 2004294218 A JP2004294218 A JP 2004294218A
Authority
JP
Japan
Prior art keywords
probe
signal
modulation
sample
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003085746A
Other languages
English (en)
Inventor
Takeshi Fukuma
剛士 福間
Kei Kobayashi
圭 小林
Takafumi Yamada
啓文 山田
Kazumi Matsushige
和美 松重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2003085746A priority Critical patent/JP2004294218A/ja
Publication of JP2004294218A publication Critical patent/JP2004294218A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】試料の表面電位分布を、高感度で検出する。
【解決手段】非接触原子間力顕微鏡NC−AFMにおいて、カンチレバー3の先端部に固定された探針14を、試料4に非接触状態で、圧電アクチュエータ2によって、自励発振ループ27で共振周波数ωで自励振動する。この探針14の振動と90度ずれた位相を有する散逸力信号である励振信号を、散逸力変調装置24において、共振周波数ωよりも充分に低い変調周波数ωmを有する発振器51からの変調信号で振幅変調して交流信号を作成し、さらに直流バイアス回路によって、共振周波数ωの振動振幅Aの変化量ΔAに含まれる変調周波数ωm成分ΔAmを打ち消す直流バイアス信号Vbiasを作成し、加算回路53で加算して、探針−試料間に与える。この直流バイアス信号Vbiasに対応する接触電位差VCPDを検出する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、探針−試料間に働く静電相互作用力に基づいて、試料の表面電位や磁界分布などの物性値を測定する方法および走査形プローブ顕微鏡(Scanning Probe Microscopy、略称SPM)に関する。
【0002】
【従来の技術】
走査形プローブ顕微鏡SPMの1つである非接触原子間力顕微鏡(NC−AFM:Non−Contact Atomic Force Microscopy)は、試料表面の凹凸を原子スケールの分解能で観察するための技術である。近年、この手法を表面形状の観察だけでなく、表面の電気的・力学的・化学的物性の評価へと応用する試みが盛んに行われるようになってきている。なかでも、ケルビン表面力顕微鏡(KFM:Kelvin probe Force Microscopy)は、NC−AFMを応用した表面電位計測技術として現在最も一般的に利用されている。この手法は、探針を共振周波数ωで自励振動させ、探針−試料間電位差を、探針の振動周波数ωより充分低い周波数ωmで変調して与えるとともに、直流バイアス電圧Vbiasを与え、探針−試料間に働く保存的な静電相互作用力による周波数変化量Δfに含まれる変調周波数ωm成分を検出し、その変調周波数成分を打ち消すように直流バイアス電圧Vbiasをフィードバック制御し、この直流バイアス電圧Vbiasに対応した試料表面の表面電位を検出するものである。
【0003】
このケルビン表面力顕微鏡KFMでは、たとえば10mVの電位分解能、すなわち電位感度を達成するには、変調電圧は約1Vの高い電圧を必要とし、そのため試料表面の電位分布の観察にあたっては、変調電圧に起因した共振周波数ωの周波数変化量Δfは、たとえば10Hz以上であって、無視できない大きさである。そのため探針−試料間距離の制御によって得られる表面形状像が不正確になる。特に、導電性基板上の電気絶縁性薄膜の観察にあたっては、探針と基板間の距離や静電容量が表面において分布を持つ場合が多く、それらの影響で、前述のように変調電圧が高ければ、周波数変化量Δfの値が大きく変動し、表面電位像の観察と同時に、表面形状像を正確に観察することができないおそれが高いという問題がある。この問題を解決するには、変調電圧を低く設定しなければならず、そうすると、表面電位の測定感度が低下してしまう。
【0004】
【非特許文献1】
M.Nonnenmacher, M.P.O’Boyle, and H.K.Wickramasinghe, Applied Physics Letters, vol.58, pp.2921−2923(1991)
【0005】
【発明が解決しようとする課題】
本発明の目的は、測定感度を向上し、また試料表面の物性値の分布を高分解能で測定することができるようにした物性値の測定方法、走査形プローブ顕微鏡およびそれに用いる散逸力変調装置を提供することである。
【0006】
【課題を解決するための手段】
本発明は、探針を試料に対して非接触で、共振周波数ωで自励振動させ、
この探針−試料間に、
直流バイアス信号Vbiasと、
その共振周波数ωと同一の周波数を有しかつ探針の振動と90度ずれた位相を有する散逸力信号を、共振周波数ωよりも充分に低い変調周波数ωmを有する変調信号で振幅変調した交流信号とを、
印加し、
探針の振動振幅Aの変化量ΔAに含まれる変調周波数ωm成分ΔAmを打ち消すように、直流バイアス信号Vbiasを、フィードバック制御し、
直流バイアス信号Vbiasに対応する探針−試料間の接触電位差VCPDを検出することを特徴とする物性値の測定方法である。
【0007】
本発明の理解の便宜のためには、本発明の実施の一形態と関連して本発明を説明する。非接触原子間力顕微鏡(NC−AFM)では、圧電アクチュエータを用いてカンチレバーおよび探針を含む機械的共振部を試料に対して非接触の領域で振動させる。機械的共振部を、カンチレバーまたは探針とのみ称することがある。カンチレバーの背面に照射したレーザー光の反射光をフォトダイオードにより検出し、その信号を移相回路を含む自励発振制御装置13を通して再びアクチュエータへと戻す。つまり、カンチレバーを共振器として利用した自励発振回路を構成する。このとき、励振信号とカンチレバーの運動との位相差が−90度となるように移相回路における移相遅れを調節すれば、カンチレバーは常に共振周波数で振動することになる。
【0008】
このNC−AFMにおいては、探針の振動とその励振電圧との位相差は常に−90度に保たれている。したがって、探針の励振電圧をVexccos(ωt)とすると、探針の振動はz(t)=z+Asin(ωt)と表すことができる。このとき、探針の振動に同期した力Ftscsin(ωt)は探針の振動エネルギを散逸させることなく、探針の振動周波数ωを変化させる。それと直交する力成分Ftsdcos(ωt)は、探針の振動エネルギを散逸させるため、探針の振動振幅Aを変化させる。ここでは、前者を保存力、後者を散逸力と呼んで区別することにする。これらの力の検出限界は周波数と振幅のそれぞれに対する検出限界((Δf)min、(ΔA)min)に依存して、後述の式16,17により求められる。これらの式から、真空中における典型的な値を計算すると、(Ftsc)min≒1〜0.1pN,(Ftsd)min≒0.1〜0.01pNとなる。このように、真空中ではカンチレバーの共振のQ値が非常に高くなるために、散逸力に対する感度は保存力に対するそれよりも10倍程度高くなる。したがって、この散逸力を利用することで、非常に高感度に力を検出することが可能となる。
【0009】
本発明に従う散逸力変調の手法では、カンチレバーの励振電圧は、その振幅を周波数ωmで変調された後、フィードバック信号と加算され、サンプルバイアス電圧として探針−試料間に印加される。このとき、探針−試料間電位差(Vts)は、後述の式22のようにVts=Vdc+Vaccos(ωmt)cos(ωt)であり、この中で、式23のようにVdc=Vbias+VCPDである。VdcとVacはVtsの直流成分と交流成分の大きさを表す。VbiasとVCPDは、フィードバック回路の出力電圧と、探針−試料間の接触電位差とを、それぞれ表す。この変調電圧によって生じるカンチレバーの振動振幅Aの変化(ΔA)は、後述の式15で表わされる。散逸力変調法では、振幅変化量ΔAに含まれるωm成分ΔAmをロックイン検出し、それを打ち消すように直流バイアス電圧Vbiasをフィードバック制御する。その結果、Vbiasは、常にVbias+VCPD=0を満たすように変化するため、その値Vbiasから、探針と試料との間の接触電位差VCPDを知ることができる。カンチレバーを試料表面に近づけると、カンチレバーの共振周波数特性は探針−試料間に働く引力により負方向にシフトする。NC−AFMでは、この周波数変化量Δfを周波数検出器として働く後述の図7のPLL回路43により検出し、その周波数変化量Δfを一定に保つよう探針−試料間隔を制御する。その状態で、探針を試料に対して水平方向に走査すれば、探針の軌跡から試料表面の形状を知ることができる。試料表面の1点における表面電位のみを検出するにあたっては、前述の周波数偏差Δfが予め定める値、たとえば−10Hzとなるように探針−試料間の距離をz方向に制御するだけで充分であり、探針を水平方向に走査する必要はなく、このような構成であっても、試料の表面電位を正確に高い電位分解能で検出することができる。
【0010】
本発明では、前述のように周波数偏差Δfが一定値に保たれるように探針−試料間距離を制御することによって、試料の表面形状像を測定しつつ、これと同時に表面電位像を得ることもできる。
【0011】
また本発明は、探針を試料に対して非接触で、共振周波数ωで自励振動させ、
この試料に磁界を与える磁界発生手段を設け、
直流バイアス信号Vbiasと、
その共振周波数ωと同一の周波数を有しかつ探針の振動と90度ずれた位相を有する散逸力信号を、共振周波数ωよりも充分に低い変調周波数ωmを有する変調信号で振幅変調した交流信号とを、
磁界発生手段に与え、
探針の振動振幅Aの変化量ΔAに含まれる変調周波数ωm成分ΔAmを打ち消すように、直流バイアス信号Vbiasを、フィードバック制御し、
直流バイアス信号Vbiasに対応する試料の表面磁気物性を検出することを特徴とする物性値の測定方法である。
【0012】
本発明に従えば、前述のように散逸力を意図的に導入し、その強度を変調する散逸力変調法を利用した表面電位観察手法のほかに、本発明の散逸力変調法は、変調可能なあらゆる力成分に対して実施することができ、たとえば磁気力を利用することによって、試料の表面の磁気的な物性の計測が可能になる。これによって前述の電界の代りに、磁界を変調し、磁気的な散逸力を利用して試料表面の磁気物性を計測することができる。
【0013】
また本発明は、共振周波数ωの周波数変化量Δfが、予め定める一定値となるように、探針−試料間距離を制御して、試料の表面形状を検出することを特徴とする。
【0014】
本発明に従えば、前述のように周波数変化量Δfが、予め定める一定値、たとえば−10Hzとなるように、探針−試料間距離を制御することによって、試料の表面形状を検出することができる。
【0015】
また本発明は、探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
機械的共振部を自励振動させる発振制御手段と、
共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
発振制御手段と変調回路との出力に応答し、共振周波数ωの振動振幅Aの変化量ΔA、または探針の変位に比例する変位信号の大きさVA−Bに含まれる変調周波数ωm成分ΔAm,VA−B,mを検出し、この変調周波数ωm成分ΔAm,VA−B,mを打ち消す直流バイアス信号Vbiasを作成する直流バイアス回路と、
変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して探針−試料間に与えて、探針−試料間の接触電位差VCPDに対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする走査形プローブ顕微鏡である。
【0016】
また本発明は、探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
機械的共振部を自励振動させる発振制御手段と、
共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
試料に磁界を与える磁界発生手段と、
変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して磁界発生手段に与えて、試料の表面磁気物性に対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする走査形プローブ顕微鏡である。
【0017】
また本発明は、発振制御手段は、
機械的共振部の探針の振動に対して90度進んだ一定振幅の励振信号を発生して機械的共振部を自励振動させるとともに、
この励振信号を、前記散逸力信号として変調回路に与えることを特徴とする。
【0018】
本発明に従えば、試料に対向して近接/離反変位して振動する探針、さらには探針が固定されたカンチレバーなどの機械的共振部を、発振制御手段によって共振周波数ωで自励振動して発振させ、散逸力信号としてたとえば励振信号を用いることができ、共振信号ωよりも充分に低い変調周波数ωmを有する変調信号で振幅変調して、交流信号を作成し、直流バイアス信号Vbiasとともに、探針−試料間に、または磁界発生手段に与える。これによって探針−試料間の接触電位差VCPDまたは試料の表面磁気物性を、高感度で、またその分布を高分解能で検出することができる。共振周波数ωは、たとえば300kHzであり、変調周波数ωmは、たとえば2kHzであってもよい。
【0019】
また本発明は、探針−試料を相対的に近接/離反変位する変位駆動手段と、
前記共振周波数ωの周波数変化量Δfが、予め定める一定値となるように、変位駆動手段を制御して試料の表面形状を検出する手段とを含むことを特徴とする。
【0020】
また本発明は、探針と試料とを、探針と試料との近接/離反方向に垂直に、相対的に走査する走査手段をさらに含むことを特徴とする。
【0021】
本発明に従えば、探針と試料とを、相対的に走査し、後述の実施の形態のようにxy平面内で、試料の表面の電位分布像を得ることができ、あるいはまた表面形状像を得ることができる。
【0022】
また本発明は、探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
機械的共振部を自励振動させる発振制御手段とを含む走査形プローブ顕微鏡に用いられる散逸力変調装置であって、
共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
発振制御手段と変調回路との出力に応答し、共振周波数ωの振動振幅Aの変化量ΔA、または探針の変位に比例する変位信号の大きさVA−Bに含まれる変調周波数ωm成分ΔAm,VA−B,mを検出し、この変調周波数ωm成分ΔAm,VA−B,mを打ち消す直流バイアス信号Vbiasを作成する直流バイアス回路と、
変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して探針−試料間に与えて、探針−試料間の接触電位差VCPDに対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする散逸力変調装置である。
【0023】
また本発明は、探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
機械的共振部を自励振動させる発振制御手段とを含む走査形プローブ顕微鏡に用いられる散逸力変調装置であって、
共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
試料に磁界を与える磁界発生手段と、
変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して磁界発生手段に与えて、試料の表面磁気物性に対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする散逸力変調装置である。
【0024】
本発明に従えば、たとえば既存の機械的共振部と発振制御手段とを含む走査形プローブ顕微鏡に、散逸力変調装置を装着することによって、試料の探針との接触電位差VCPDを検出することができ、さらに走査手段を前述のように備えて表面電位像を観察することもできる。
【0025】
【発明の実施の形態】
図1は、本発明の実施の一形態の散逸力変調法を用いた表面物性計測装置である非接触原子間力顕微鏡(NC−AFM)1の概略を示すブロック図である。本装置1では、xyz駆動機構である圧電アクチュエータ2を用いてカンチレバー3を試料4に対して非接触の領域で振動させる。カンチレバー3の背面に光源であるレーザーダイオード5から照射したレーザー光6の反射光7を、ミラー8を介して、受光素子であるフォトダイオード9により検出し、その信号を、I−V(電流−電圧)変換回路11に与え、このI−V変換回路11からライン12に変位信号が導出される。変位信号は、自励発振制御装置13に与えられ、ライン17からは、励振信号が導出され、この励振信号は、アクチュエータ2に与えられる。つまり、カンチレバー3を共振器として利用した自励発振回路を構成する。
【0026】
この自励発振ループ97により、カンチレバー3は常にその共振周波数ωで励振され、振動させられる。カンチレバー3の先端部には探針14が固定され、この探針14は試料4に近接/離反変位するz方向15に非接触領域で前述のように振動される。探針14は、カンチレバー3などを含めて称することもある。カンチレバー3とその先端部の探針14とは、機械的共振部16を構成する。
【0027】
垂直位置制御装置18では、カンチレバー3の振動周波数ωをI−V変換回路11のライン12を介する出力信号(VA−Bsin(ωt))(以下では、前述のように変位信号と呼ぶ)から検出し、その周波数ωを一定に保つように、xyz駆動手段を構成する圧電チューブスキャナ21のz電極72(図11参照)に印加する電圧を、高圧アンプ23を介して制御する。この探針−試料間距離制御ループ28により、常に探針−試料間隔が一定になるようにVzが変化してz方向の変位駆動が行われる。
【0028】
散逸力変調装置24では、ライン17から端子25を介して与えられるカンチレバー3の励振電圧(Vexccos(ωt))の振幅を、変調周波数ωmで変調して得られる交流信号と、直流バイアス電圧(Vbias)の和の信号を、試料4に対して探針14と試料4との間に、端子26およびライン96を介して印加する。探針14は、カンチレバー3を介して接地される。
【0029】
こうして探針−試料間に生じる静電的な散逸力の影響で、カンチレバー3の振動振幅Aは周波数ωmで変調される。このカンチレバー3の振幅変動ΔAにより、変位信号(VA−Bsin(ωt))の振幅にも周波数ωmで変化する成分(VA−B,m)が含まれることになる。この振幅変調された変位信号は再び散逸力変調装置24へと端子27を介して入力され、Vbiasの値を制御するために用いられる。このバイアス電圧制御ループ89により、常に、探針−試料間の直流電位差(Vbias+VCPD)(ただし、VCPDは探針−試料間の接触電位差)が零になるようにVbiasの大きさが調整される。
【0030】
散逸力変調装置24によって検出される試料4の探針14との接触電位差、したがって表面電位像を表す信号は、端子28からライン95を経て、パーソナルコンピュータなどの処理回路93に与えられ、液晶または陰極線管などによって実現される表示手段94によって、表示される。後述の既存の走査形プローブ顕微鏡74に設けられている処理回路91および表示手段92を、前述の処理回路93および表示手段94の代りにそれぞれ共用することもできる。
【0031】
本装置1では、これらの3つのループ87〜89によるフィードバック制御を行いながら、探針14を試料4に対してxy平面内の水平方向に走査する。この水平走査の間、常に、探針−試料間距離が一定に保たれるように垂直位置制御装置18の出力電圧Vzが変化する。このVzの電圧信号の変化を、波形生成回路31の出力信号VxとVyをそれぞれx,y座標とするような2次元画像として描画することで、試料の表面形状像を得ることができる。波形生成回路31からの出力信号Vx,Vyは、高圧アンプ32,33に与えられて増幅され、圧電チューブスキャナ21が駆動され、前述のようにxy平面内で試料4を走査することができる。この2次元の表面形状の画像の描画と同時に、(−Vbias=VCPD)の変化を、2次元的に描画すれば前述の表面電位像を得ることができる。
【0032】
本発明の実施の他の形態では、垂直位置制御装置18の出力電圧Vzを一定に保ったままで、すなわち圧電チューブスキャナ21のz方向の変位を停止したままで、試料4を波形生成回路31の出力信号Vx,Vyによってxy平面内で走査しつつ、バイアス電圧Vbiasの変化を、2次元的に描画して、表面電位像を得るようにしてもよい。
【0033】
図2は、図1に示される本発明の実施の一形態の装置1の原理を説明するための図である。強制励振されたカンチレバー3の運動を表すモデルが示される。カンチレバー3の先端部に設けられた探針14は、仮想線14aで示される位置との間で試料4に近接/離反するz方向に、そのカンチレバー3の基端部が圧電アクチュエータ2によって振動される。圧電アクチュエータ2によって強制励振されたカンチレバー3の挙動は、次に示す運動方程式の解として与えられる。QはQ値であり、tは時間を表す。
【0034】
【数1】
Figure 2004294218
【0035】
ただし、mはカンチレバー3の有効質量、zは探針先端の試料4の表面に垂直な方向の位置、uはカンチレバー3の母材の位置、ωは自由に振動しているカンチレバー3の共振角周波数、ωは圧電アクチュエータ2に印加する励振電圧の角周波数、kはカンチレバー3のばね定数、Ftsは探針−試料間相互作用力をそれぞれ表す。定常状態におけるカンチレバー3の母材と探針14の振動は正弦関数で近似でき、
【0036】
【数2】
Figure 2004294218
【0037】
で表される。ただし、uとzはそれぞれカンチレバー3の母材と探針14の平均位置を表し、aとAはそれらの振動振幅を表す。またFtsに含まれる力成分の中で、ω成分が主にカンチレバー3の運動状態に影響を与えるため、カンチレバー3の振動と同期した力成分Ftcsin(ωt)と、それに対して位相が90度ずれた力成分Ftsdcos(ωt)、および静的な力成分Fts0のみを考えるものとすれば、Ftsは次式で表される。Ftsc,Ftsdは定数である。
【0038】
【数3】
Figure 2004294218
ここで、式1に式2,3,4を代入すると、
【0039】
【数4】
Figure 2004294218
【0040】
となる。両辺の直流、sin(ωt)、cos(ωt)成分をそれぞれ比較して、次の3つの式を得る。
【0041】
【数5】
Figure 2004294218
ここで、式7と、ω=√(k/m)、Ftsc≪kAより、
【0042】
【数6】
Figure 2004294218
【0043】
となる。したがって、カンチレバー3の振動周波数の変位量(Δf)は、ω=2π・f0であるので、
【0044】
【数7】
Figure 2004294218
と表せる。
【0045】
【数8】
Figure 2004294218
【0046】
ここで、探針−試料間相互作用力が働いていない場合、カンチレバー3の振動振幅AはA=aQで与えられるため、振動振幅のAに対する変化量ΔAは、
【0047】
【数9】
Figure 2004294218
となる。
【0048】
式12,15から、力成分Ftscsin(ωt)は、カンチレバー3の振動エネルギーを散逸させることなく共振周波数のみを変化させ、力成分Ftsdcos(ωt)はカンチレバー3の振動エネルギーを散逸させるために振動振幅を変化させる。したがって、ここでは、前者を保存的な相互作用力(保存力)、後者を散逸的な相互作用力(散逸力)と呼んで区別する。
【0049】
式12,15より、保存力と散逸力に対する検出限界((Ftsc)min、(Ftsd)min)は、
【0050】
【数10】
Figure 2004294218
【0051】
で与えられる。ただし、(Δf)minと(ΔA)minは、ΔfとΔAに対する検出限界である。これらは、検出帯域幅や温度などの様々なパラメータに依存するが、典型的な実験条件においては、(Δf)minは、0.1〜1Hz程度であり、(ΔA)minは0.01〜0.1nm程度となっている。ここで、真空中における典型的な実験パラメータとして、表1に示した値を仮定した場合、(Ftsc)min≒0.1〜1pN、(Ftsd)min≒0.01〜0.1pNとなる。つまり、真空中においてはカンチレバーのQ値が高くなるために、保存力に対する感度に比べて散逸力に対する感度の方が約10倍程度高くなる。
【0052】
【表1】
Figure 2004294218
【0053】
本発明の散逸力変調法の原理を述べる。探針−試料間に働く静電相互作用力(Fes)は、
【0054】
【数11】
Figure 2004294218
【0055】
で表される。ただし、ε0は真空中の誘電率、Rは前述のように探針先端の半径、Vtsは探針−試料間電位差を表している。ここで、簡単のためにA≪z0で表される“小振幅近似”を適用すると、
【0056】
【数12】
Figure 2004294218
【0057】
となる。この近似は実際の実験条件に必ずしも当てはまらないため、比較的大きな誤差を生む可能性がある。しかしここでは、解析的な解を得るためにこの近似式を用いて計算を進める。
【0058】
図3は、本発明の散逸力変調法の原理を示す簡略化した電気回路図である。本発明の散逸力変調法では、カンチレバー3の励振信号と同期した電圧信号の振幅を周波数ωm(ただし、ωm≪ω)で変調し、それと直流バイアス電圧Vbiasの和を探針−試料間に印加する。したがって、探針−試料間電位差Vtsは次式のように表される。
【0059】
【数13】
Figure 2004294218
【0060】
ここで、Vdcは探針−試料間直流電位差であり、次式で与えられる。
【数14】
Figure 2004294218
【0061】
CPDは探針−試料間の接触電位差であり、次式24で定義される。
【数15】
Figure 2004294218
【0062】
ここで、Φ、Φは、探針と試料表面の仕事関数をそれぞれ表し、eは電気素量を表す。ただし、ΦとΦには、試料14の表面の吸着層などによる仕事関数の変化も含まれるものとする。
【0063】
式21,22から、保存力Fescsin(ωt)と散逸力Fesdcos(ωt)の大きさは、
【0064】
【数16】
Figure 2004294218
【0065】
で与えられる。これらの式25,26から、保存力Fescsin(ωt)には直流成分のみが含まれ、散逸力Ftsdcos(ωt)にはωm成分のみが含まれることが判る。
【0066】
図4は、図3に示される本発明の散逸力変調法の原理を説明するための波形図である。図4(1)は、散逸力Fesdcos(ωt)を示す。前述のようにライン17を介する励振信号は、共振周波数ωを有し、この励振信号は、共振周波数ωよりも充分に小さい変調周波数ωmを有する変調信号によって、たとえば変調度100%で深く変調される。図4(2)は、探針14の振動振幅Aの変化量ΔAに含まれる変調周波数ωm成分ΔAを示す。
【0067】
式15,26より、ΔAに含まれるωm成分(ΔA)は、
【数17】
Figure 2004294218
となる。
【0068】
本発明の散逸力変調法では、探針−試料間相互作用によって誘起されたΔAを後述の図9に示されるRMS−DC(実効値−直流)変換回路55を利用した振幅検出器により検出し、そこに含まれるωm成分をロックインアンプにより検出する。このωm成分を打ち消すようにVbiasをフィードバック制御するため、常にVdc=0すなわちVCPD=−Vbiasが成り立っている。したがって、−Vbiasの変化を2次元的にマッピングすることで表面電位像を得ることができる。
【0069】
こうして本発明では、前述の静電的散逸力を意図的に導入し、その大きさを変調周波数ωmで変調し、振幅変化量ΔAのωm成分ΔAを検出し、この成分ΔAを打ち消すように、直流バイアス電圧Vbiasを制御することによって、直流バイアス電圧Vbiasに対応した探針14と試料4との接触電位差VCPDを検出することができる。
【0070】
式27より、VCPDの最小検出限界(VCPD)minは、
【数18】
Figure 2004294218
【0071】
ただし、(ΔA)minはΔAに対する最小検出限界を表している。ここで、典型的な実験パラメータとして表1に示した値を仮定し、Vac=0.1Vとすると、(VCPD)min=14mVとなる。この結果は、散逸力変調法によって10mV程度の電位分解能を達成するためには、Vacは0.1V程度で充分であって、前述のケルビン表面力顕微鏡KFMにおける約1Vに比べて、小さいことを示している。
【0072】
式12,25より、静電相互作用によって誘起される周波数変化量Δfは
【数19】
Figure 2004294218
【0073】
上記の実験パラメータとVdc=0Vを仮定すれば、Δf=−0.07Hzとなる。この周波数変化量Δfは、多くの実験において問題とならない程度の大きさであり、本発明の散逸力変調法を用いることで、探針−試料間距離制御による表面形状観察と表面電位計測とを、同時にかつ正確に行うこともできるが、独立して行うことも可能である。
【0074】
図5は、自励発振制御装置13を含む自励発振ループ87の構成を示すブロック図である。自励発振制御装置13は、ライン12を介する変位信号(VA−Bsin(ωt))を入力信号とし、カンチレバー3の励振信号(Vexccos(ωt))を出力信号としてライン17に導出する。まず、入力された変位信号は、移相回路36により位相を90°進められ、VA−Bcos(ωt)となる。さらに、ゼロ電位をしきい値とするコンパレータ37により、振幅が一定の方形波に変換される。LPF(ローパスフィルタ)38においては、その方形波に含まれる3次以上の高調波成分が除去され、基本周波数成分である、Vexccos(ωt)が得られる。つまり、自励発振制御装置13は、変位信号と同じ周波数で位相の90°進んだ、一定振幅の信号を出力する回路である。この自励発振ループ27により、カンチレバー3の振動(Asin(ωt))の位相は、励振信号の位相に対して常に90o遅れるように保たれる。
【0075】
図6は、圧電アクチュエータ2によって強制振動させられるカンチレバー3の振動振幅と、励振電圧に対する位相差の振動周波数に対する依存性を共振周波数近傍においてプロットした共振曲線を示す図である。図6(1)は、振動周波数に対応する振動振幅Aを示す。図6(2)は、振動周波数に対応する位相を示す。実線で示されるラインに対して共振周波数ωが、試料4の表面形状、したがって探針14と試料4との間の距離に対応して、変化し、周波数変化量Δfが生じる。この図6に示すようにカンチレバー3の共振周波数ωにおいて、振動振幅は最大となり、そのときの励振電圧に対する位相差は−90°となる。したがって、自励発振ループ87によって、位相差を常に−90°に保つと、結果として、カンチレバー3は常に共振周波数ωで励振され、振動させられることになる。
【0076】
図7は、探針−試料間距離制御ループ88の構成を示すブロック図である。垂直位置制御装置18はライン12を介する変位信号(VA−Bs in(ωt))を入力信号とし、高圧アンプ23を通して圧電チューブスキャナ21のz電極72(図11参照)に印加されるz信号Vzを出力信号とし、これによって圧電チューブスキャナ21のz方向に試料4を往復変位する変位駆動手段47が制御される。まず、PLL(Phase Locked Loop)回路43により変位信号の周波数変化量(Δf)に比例する電圧信号(Vω)を得る。差動アンプ44では、直流電圧源45からの一定の電圧値を有する直流電圧信号Vω,refとVωの差を増幅して電圧V′zを得る。ローパスフィルタLPF46は、V′zの中に含まれる高周波成分を除去し、異常な発振を抑制する働きをする。
【0077】
垂直位置制御装置18の出力電圧Vzは高圧アンプ23を介して圧電チューブスキャナのz電極72へと印加される。これによって圧電チューブスキャナ21の試料4をz方向に往復変位する変位駆動手段47が制御される。圧電チューブスキャナ21の変位駆動手段47は、この電圧Vzの大きさに比例した大きさのz方向への変位を生ずる。その結果、探針−試料間の距離が変化する。
【0078】
図8は、探針−試料間距離に対するカンチレバー3の共振周波数ωの変化を模式的に示す図である。このように、探針−試料間距離が減少するにしたがって、探針−試料間に働く引力が増大するために共振周波数ωが低下する。したがって、電圧Vzの変化によって生じる圧電チューブスキャナ21の変位駆動手段47による変位は、探針−試料間距離を変化させ、結果的にカンチレバー3の共振周波数ωを変化させる。その共振周波数ωの変化は、PLL回路43に入力される変位信号の周波数変化Δfとして垂直位置制御装置18へとフィードバックされる。この探針−試料間距離制御ループは、Vω,ref=Vωとなるように働く、比例ゲインを有するフィードバック制御ループ88を構成している。
【0079】
VωはΔfに比例するので、このフィードバック制御ループ88により、Δfが予め定める値、たとえば−10Hzとなってカンチレバー3の共振周波数ωが一定となるように、すなわち探針−試料間距離が一定となるように電圧Vzが制御される。
【0080】
ローパスフィルタ46の出力Vzは、マイクロコンピュータなどの処理回路91に与えられ、これによって波形生成回路31の出力Vx,Vyによるxy平面内の各座標位置における探針−試料間距離をメモリにストアして、液晶表示パネルまたは陰極線管などの表示手段92に表示し、試料4の表面形状像を目視表示する。
【0081】
図9は、バイアス電圧制御ループ89の構成を示すブロック図である。散逸力変調装置24は、カンチレバー3のライン17を介する励振電圧(Vexccos(ωt))とライン12を介する変位信号(VA−Bsin(ωt))を入力信号とし、試料4に印加するバイアス電圧信号をライン96に出力する。カンチレバー3の励振信号(Vexccos(ωt))と発振器51の出力信号(V′accos(ωmt))の積(Vaccos(ωmt)cos(ωt))を乗算回路52により得る。発振器51と乗算回路52とは、ライン17を介する共振周波数ωを有する励振信号を、変調周波数ωmを有する発振器51からの変調信号によって振幅変調する変調回路54を構成する。それと直流バイアス電圧Vbiasの和(Vbias+Vaccos(ωmt)cos(ωt))を、加算回路53により得る。この電圧信号は、散逸力変調装置24の出力信号として、ライン96から試料4に印加される。その結果、探針−試料間の電位差Vtsは、式22のようになるため、カンチレバー3の振動振幅Aの散逸力による変化量(ΔA)には、式27で表されるωm成分が含まれることになる。したがって、ライン12の変位信号の振幅VA−Bにも、周波数ωmで変化する成分VA−B,mcos(ωmt)が含まれることになり、次式30のように表すことができる。
【0082】
【数20】
Figure 2004294218
【0083】
ここで、VA−B,0はVA−Bの直流成分を、VA−B,mはωm成分の大きさ(ただし、符号も含む)を表すものとする。RMS−DC(実効値−直流)変換回路55では、変位信号の振幅に比例した信号(VA−B/√2)を得る。その信号は、発振器51の出力(V′accos(ωmt))を参照信号とするロックインアンプ56に入力され、変位信号の振幅に含まれるωm成分(VA−B,m)のみが検出される。さらに、アンプ57により増幅され、ローパスフィルタLPF58により高周波成分を除去された後、加算回路53において交流バイアス信号と加算され、散逸力変調装置24の出力信号として試料4に印加される。ただし、LPF58は高周波成分に対するループゲインを低減させ、その異常な発振を抑制する目的で挿入されたものである。アンプ57とローパスフィルタ58とは、フィードバック回路61を構成する。RMS−DC変換回路55、ロックインアンプ56およびフィードバック回路61は、直流バイアス回路62を構成する。
【0084】
A−B,mの大きさは、ΔAの大きさに比例するため、式27より、VA−B,mは、Vdc(=VCPD+Vbias)に比例する。したがって、Vbiasの変化は再びVA−B,mの変化として散逸力変調装置24にフィードバックされる。
【0085】
このバイアス電圧制御ループ89は、VA−B,mを零とするように、すなわち、Vbias+VCPD=0となるように働く、比例ゲインを有するフィードバックループを構成している。そのため、Vbiasの値は、常にVbias=−VCPDを満たすように制御される。
【0086】
図10は、ロックインアンプ56の内部の構成を示すブロック図である。ロックインアンプ56には、発振器51の出力信号V′accos(ωmt)と、RMS−DC変換回路55の出力信号VA−B/√2が入力される。乗算回路64によってこれらの2つの入力信号の積に比例する電圧信号(VA−BV′accos(ωmt)/√2)が得られる。この信号は、式30より、次式31,32のように表される。
【0087】
【数21】
Figure 2004294218
【0088】
この式31,32から、この信号には直流成分、ωm成分、2ωm成分の3つの周波数成分が含まれることが判る。後段のLPF65のカットオフ周波数を、ωmに比べて充分低く設定すれば、これらの中から直流成分のみを取り出すことができる。これをアンプ66で増幅することにより、VA−Bのωm成分(VA−B,m)のみを出力信号として取り出すことができる。
【0089】
図11は圧電チューブスキャナ21の斜視図であり、図12は図11に示される圧電チューブスキャナ21の平面図であり、図13は圧電チューブスキャナ21の底面図である。圧電チューブスキャナ21は、チタン酸ジルコン酸鉛(PZT:Pb(Zr・Ti)O)などの圧電体66を含む。圧電体66に電界を印加すると、電界方向や、それに対して垂直な方向に圧電体66が歪むため、電気信号を用いて機械的変位を得る、いわゆるアクチュエータとして利用できる。圧電チューブスキャナ21の場合、直円筒状に形成された圧電体61の内周面にグランド電極67を設け、外側の電極68〜71に高電圧を印加する。
【0090】
図14は、圧電アクチュエータ21のz方向の変位状態を示す図である。電極68〜71よりも軸線方向にずれて図14の下方にz方向のための外側電極72とグランド電極67との間に高電圧を印加して、z方向の伸縮駆動を行う。圧電チューブスキャナ21の頂部には、前述のように試料4が装着される。
【0091】
図15は、圧電チューブアクチュエータ21がx方向またはy方向に走査する動作を説明するための図である。グランド電極67と外側電極68〜71の1つとの間に、電圧を印加することによって、圧電体のチューブ66が変形し、水平方向にチューブ66の上面が走査される。x方向あるいはy方向の対向電極68,69;70,71同士は互いに逆向きにポーリング処理を施してあり、たとえばx方向の外側電極68,69に同じ電圧を印加しても、一方68は伸び、他方69は縮むようになっており、y方向の外側電極70,71とグランド電極67との間に同じ電圧を印加しても、一方70は延び、他方71は縮む。水平方向の変位は正確には2次曲線となるが、非常に微小な変位であるために、ほぼ直線的な変位として近似することができる。こうして圧電体66とグランド電極67と一対のx電極68,69と一対のy電極70,71とは、x方向およびy方向の走査手段を構成する。
【0092】
図16は、圧電チューブスキャナ21のx電極68,69およびy電極70,71に与える波形生成回路31から高圧アンプ32,33を介して与える電圧Vx,Vyの波形を示す図である。図16(1)はx電極68,69に与えられ電圧Vxの時間経過を示し、図16(2)はy電極70,71に与えられる電圧Vyの時間経過を示す図である。予め定める第1の周期W1内で、x電極68,69に与える電圧を、正の電圧Vx1と負の電圧Vx2とに第2の周期W2(ただしW2<W1)で変化させる。y電極70,71に、前記期間W1中で、正の電圧Vy1から負の電圧Vy2まで変化する電圧を与える。
【0093】
図17は、圧電チューブスキャナ21によってxy平面内で試料4が走査され、これによって探針14が試料4の表面の上方で描く軌跡を示す図である。波形生成回路31から、図16(1)に示されるx電極68,69のための電圧Vxが与えられ、また図16(2)に示されるy電極70,71のための電圧が与えられることによって、探針14は、試料4の表面の下方に、周期的にジグザクに移動して走査する。こうして試料4の表面電位像および表面形状像を、得ることができる。
【0094】
図18は、本発明の実施の他の形態の全体の構成を簡略化して示す図である。図18に示される実施の形態は、前述の図1〜図17に関連して前述した実施の形態に類似し、対応する部分には同一の参照符を付す。注目すべきはこの実施の形態では、既存の走査形プローブ顕微鏡74の端子75〜77に散逸力変調装置24の端子25〜28をそれぞれ接続する。これによって試料4の表面形状像を検出する既存の走査形プローブ顕微鏡74に、本発明に従う散逸力変調装置24を接続することによって、試料4の表面電位像を検出することが容易に可能になる。
【0095】
図19は、本発明の実施の他の形態の一部の構成を示すブロック図である。この実施の形態は、前述の実施の形態に類似し、対応する部分には同一の参照符を付すとともに、図19の実施の形態において省略されている部分は、前述の図1〜図18の実施の形態と同様である。注目すべきはこの実施の形態では、試料4に磁界を与える磁界発生手段であるコイル81が、試料4の下方に配置される。このコイル81の軸線は、試料4の下方に配置される。試料4は、前述の実施の形態と同様に、圧電チューブスキャナ21によってxy平面内で走査可能であり、またz方向に変位駆動されることができる。コイル81には、散逸力変調装置24からライン26に前述の直流バイアス電圧Vbiasと前記交流信号とが加算された信号が与えられて励磁される。これによって試料4の表面の磁気的な散逸力を利用して、試料4の表面の磁気物性の計測を行うことができる。本発明の散逸力変調法によれば、変調可能なあらゆる力成分に対して本発明を実施することができ、上述のように磁気力を利用することによる表面の磁気的な物性の計測が可能である。
【0096】
図1〜図18に示される実施の形態による本件発明者の実験結果を説明する。本実験では、表面電位計測のためのモデル系として、SiO(500nm)/Si(0.01Ωcm)基板上に蒸着したメチル置換オリゴチオフェン5量体(M5T)の単分子膜を、試料4として用いた。測定には、市販の超高真空NC−AFM装置(商品名JEOL:JSTM/AFM−4500XT)に散逸力を導入および変調するための改良を施して用いた。
【0097】
図20は、散逸力変調法を用いて測定したM5T薄膜の表面形状像と表面電位像を示す図である。図20(1)は表面形状像を示し、図20(2)は表面電位像を示す。図20(1)および図20(2)における各画像は、試料4の表面上、縦800nm×横800nmの観察領域であり、周波数変位量Δf=−20Hzを一定に保ちつつ観察を行い、前述の変調電圧Vac=0.1Vである。この表面電位像から見積もった薄膜/基板間の電位差は約400mVであった。この結果は、ケルビン表面力顕微鏡KFMを用いて同一試料4に対して行った測定結果と良く一致しており、散逸力変調法により局所表面電位分布計測が可能であることを示している。この測定は、変調電圧の振幅をVac=0.1Vとして行ったが、約400mV程度の薄膜/基板間の電位差を正確に測定することができた。通常のKFMがVac=1.0Vとして測定を行っていることを考えると、約10分の1程度の静電相互作用力の変化を散逸力として検出していることが判る。これは、従来問題となっていたKFM観察時に残留するV acに比例する静電相互作用力のDC(直流)成分を200分の1に低減できることを意味する。また、電位感度は帯域に依存するため、ゆっくり探針14を走査すればそれだけ信号対ノイズ比が向上する。図20の電位像は約5分程度の時間で取得したものであり、通常のKFMと同程度か、あるいはやや速い応答速度を有している。
【0098】
図21は、図20の各画像が得られた試料4の構成の概略を示す図である。基板83上には、前述のように単分子膜84が形成されている。
【0099】
【発明の効果】
本発明によれば、試料の表面電位などの物性値の測定の測定感度を大きく向上することができる。したがって表面電位像などの物性値の分布の分解能を向上することができる。
【0100】
また散逸力信号を変調する変調信号のレベル、たとえば前述の電圧Vacを低く設定することができる。したがって変調信号に起因した共振周波数ωの周波数変調量Δfは、試料の表面形状の観察を行うにあたっては無視することができる程度に小さい。したがって表面電位などの物性値の測定と同時に、表面形状の観察も正確に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の散逸力変調法を用いた表面物性計測装置である非接触原子間力顕微鏡(NC−AFM)1の概略を示すブロック図である。
【図2】図1に示される本発明の実施の一形態の装置1の原理を説明するための図である。
【図3】本発明の散逸力変調法の原理を示す簡略化した電気回路図である。
【図4】図3に示される本発明の散逸力変調法の原理を説明するための波形図である。
【図5】自励発振制御装置13の構成を示すブロック図である。
【図6】圧電アクチュエータ2によって強制振動させられるカンチレバー3の振動振幅と、励振電圧に対する位相差の振動周波数に対する依存性を共振周波数近傍においてプロットした共振曲線を示す図である。
【図7】探針−試料間距離制御ループ28の構成を示すブロック図である。
【図8】探針−試料間距離に対するカンチレバー3の共振周波数ωの変化を模式的に示す図である。
【図9】バイアス電圧制御ループ29の構成を示すブロック図である。
【図10】ロックインアンプ56の内部の構成を示すブロック図である。
【図11】圧電チューブスキャナ21の斜視図である。
【図12】図11に示される圧電チューブスキャナ21の平面図である。
【図13】圧電チューブスキャナ21の底面図である。
【図14】圧電アクチュエータ21のz方向の変位状態を示す図である。
【図15】圧電チューブアクチュエータ21がx方向またはy方向に走査する動作を説明するための図である。
【図16】圧電チューブスキャナ21のx電極68,69およびy電極70,71に与える波形生成回路31から高圧アンプ32,33を介して与える電圧Vx,Vyの波形を示す図である。
【図17】圧電チューブスキャナ21によってxy平面内で試料4が走査され、これによって探針14が試料4の表面の上方で描く軌跡を示す図である。
【図18】本発明の実施の他の形態の全体の構成を簡略化して示す図である。
【図19】本発明の実施の他の形態の一部の構成を示すブロック図である。
【図20】散逸力変調法を用いて測定したM5T薄膜の表面形状像と表面電位像を示す図である。
【図21】図20の各画像が得られた試料4の構成の概略を示す図である。
【符号の説明】
1 非接触原子間力顕微鏡
2 圧電アクチュエータ
3 カンチレバー
4 試料
11 I−V変換回路
13 自励発振制御装置
14 探針
16 機械的共振部
18 垂直位置制御装置
21 圧電チューブスキャナ
24 散逸力変調装置
27 自励発振ループ
28 探針−試料間制御ループ
29 バイアス電圧制御ループ
31 波形生成回路
41 変位駆動手段
53 加算回路
54 変調回路
61 フィードバック回路
62 直流バイアス回路
66 圧電体
74 走査形プローブ顕微鏡

Claims (10)

  1. 探針を試料に対して非接触で、共振周波数ωで自励振動させ、
    この探針−試料間に、
    直流バイアス信号Vbiasと、
    その共振周波数ωと同一の周波数を有しかつ探針の振動と90度ずれた位相を有する散逸力信号を、共振周波数ωよりも充分に低い変調周波数ωmを有する変調信号で振幅変調した交流信号とを、
    印加し、
    探針の振動振幅Aの変化量ΔAに含まれる変調周波数ωm成分ΔAmを打ち消すように、直流バイアス信号Vbiasを、フィードバック制御し、
    直流バイアス信号Vbiasに対応する探針−試料間の接触電位差VCPDを検出することを特徴とする物性値の測定方法。
  2. 探針を試料に対して非接触で、共振周波数ωで自励振動させ、
    この試料に磁界を与える磁界発生手段を設け、
    直流バイアス信号Vbiasと、
    その共振周波数ωと同一の周波数を有しかつ探針の振動と90度ずれた位相を有する散逸力信号を、共振周波数ωよりも充分に低い変調周波数ωmを有する変調信号で振幅変調した交流信号とを、
    磁界発生手段に与え、
    探針の振動振幅Aの変化量ΔAに含まれる変調周波数ωm成分ΔAmを打ち消すように、直流バイアス信号Vbiasを、フィードバック制御し、
    直流バイアス信号Vbiasに対応する試料の表面磁気物性を検出することを特徴とする物性値の測定方法。
  3. 共振周波数ωの周波数変化量Δfが、予め定める一定値となるように、探針−試料間距離を制御して、試料の表面形状を検出することを特徴とする請求項1または2記載の物性値の測定方法。
  4. 探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
    機械的共振部を自励振動させる発振制御手段と、
    共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
    共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
    発振制御手段と変調回路との出力に応答し、共振周波数ωの振動振幅Aの変化量ΔA、または探針の変位に比例する変位信号の大きさVA−Bに含まれる変調周波数ωm成分ΔAm,VA−B,mを検出し、この変調周波数ωm成分ΔAm,VA−B,mを打ち消す直流バイアス信号Vbiasを作成する直流バイアス回路と、
    変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して探針−試料間に与えて、探針−試料間の接触電位差VCPDに対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする走査形プローブ顕微鏡。
  5. 探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
    機械的共振部を自励振動させる発振制御手段と、
    共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
    共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
    試料に磁界を与える磁界発生手段と、
    変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して磁界発生手段に与えて、試料の表面磁気物性に対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする走査形プローブ顕微鏡。
  6. 発振制御手段は、
    機械的共振部の探針の振動に対して90度進んだ一定振幅の励振信号を発生して機械的共振部を自励振動させるとともに、
    この励振信号を、前記散逸力信号として変調回路に与えることを特徴とする請求項4または5記載の走査形プローブ顕微鏡。
  7. 探針−試料を相対的に近接/離反変位する変位駆動手段と、
    前記共振周波数ωの周波数変化量Δfが、予め定める一定値となるように、変位駆動手段を制御して試料の表面形状を検出する手段とを含むことを特徴とする請求項4〜6のうちの1つに記載の走査形プローブ顕微鏡。
  8. 探針と試料とを、探針と試料との近接/離反方向に垂直に、相対的に走査する走査手段をさらに含むことを特徴とする請求項4〜7のうちの1に記載の走査形プローブ顕微鏡。
  9. 探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
    機械的共振部を自励振動させる発振制御手段とを含む走査形プローブ顕微鏡に用いられる散逸力変調装置であって、
    共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
    共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
    発振制御手段と変調回路との出力に応答し、共振周波数ωの振動振幅Aの変化量ΔA、または探針の変位に比例する変位信号の大きさVA−Bに含まれる変調周波数ωm成分ΔAm,VA−B,mを検出し、この変調周波数ωm成分ΔAm,VA−B,mを打ち消す直流バイアス信号Vbiasを作成する直流バイアス回路と、
    変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して探針−試料間に与えて、探針−試料間の接触電位差VCPDに対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする散逸力変調装置。
  10. 探針と試料とを有し、共振周波数ωで探針が振動可能な機械的共振部と、
    機械的共振部を自励振動させる発振制御手段とを含む走査形プローブ顕微鏡に用いられる散逸力変調装置であって、
    共振周波数ωよりも充分小さい変調周波数ωmを有する変調信号を発生する変調信号発生回路と、
    共振周波数ωと同一の周波数を有し、かつ探針の振動と90度ずれた位相を有する散逸力信号を、変調信号発生回路からの変調信号で振幅変調して交流信号を作成する変調回路と、
    試料に磁界を与える磁界発生手段と、
    変調回路からの前記交流信号と直流バイアス回路からの直流バイアス信号Vbiasとを加算して磁界発生手段に与えて、試料の表面磁気物性に対応する直流バイアス信号Vbiasのフィードバック制御を行う加算回路とを含むことを特徴とする散逸力変調装置。
JP2003085746A 2003-03-26 2003-03-26 物性値の測定方法および走査形プローブ顕微鏡 Pending JP2004294218A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085746A JP2004294218A (ja) 2003-03-26 2003-03-26 物性値の測定方法および走査形プローブ顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085746A JP2004294218A (ja) 2003-03-26 2003-03-26 物性値の測定方法および走査形プローブ顕微鏡

Publications (1)

Publication Number Publication Date
JP2004294218A true JP2004294218A (ja) 2004-10-21

Family

ID=33400585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085746A Pending JP2004294218A (ja) 2003-03-26 2003-03-26 物性値の測定方法および走査形プローブ顕微鏡

Country Status (1)

Country Link
JP (1) JP2004294218A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2264647A1 (es) * 2005-06-24 2007-01-01 Consejo Superior Investigaciones Cientificas Metodo de utilizacion de un microscopio de fuerzas atomicas y microscopio.
JP2008051554A (ja) * 2006-08-22 2008-03-06 Sii Nanotechnology Inc 走査型プローブ顕微鏡
JP2008122091A (ja) * 2006-11-08 2008-05-29 National Institute Of Advanced Industrial & Technology カンチレバー共振特性評価法
WO2009101991A1 (ja) * 2008-02-12 2009-08-20 Akita University 表面状態計測装置及び該装置を用いた表面状態計測方法
JP2009544019A (ja) * 2006-07-14 2009-12-10 シュペックス・チューリヒ・ゲーエムベーハー 走査プローブ顕微鏡及びその動作方法
JP2010512518A (ja) * 2006-12-15 2010-04-22 スペックス・チューリヒ・ゲーエムベーハー 周期的に位相シフトされたac励起を有する走査型プローブ顕微鏡
JP2011053154A (ja) * 2009-09-03 2011-03-17 Sii Nanotechnology Inc 誘電率の測定方法及び走査型非線形誘電率顕微鏡
JP2011075465A (ja) * 2009-09-30 2011-04-14 Sii Nanotechnology Inc 誘電率の測定方法及び走査型非線形誘電率顕微鏡
JP2013088186A (ja) * 2011-10-14 2013-05-13 Olympus Corp 走査型プローブ顕微鏡およびその位相調整方法
CN105102989A (zh) * 2013-03-28 2015-11-25 国立大学法人秋田大学 磁场值测定装置以及磁场值测定方法
US9335341B2 (en) 2011-10-14 2016-05-10 Olympus Corporation Scanning probe microscope and control method thereof
CN111398638A (zh) * 2020-03-30 2020-07-10 哈尔滨工业大学 基于正交探针的开尔文探针力显微镜系统及样品侧壁扫描方法
WO2021193799A1 (ja) * 2020-03-26 2021-09-30 国立大学法人大阪大学 振動成分測定装置、ケルビンプローブ力顕微鏡、振動成分測定方法
CN113614508A (zh) * 2019-03-28 2021-11-05 国立大学法人东北大学 共振切变测定装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036591A1 (es) * 2005-06-24 2007-04-05 Consejo Superior De Investigaciones Científicas Método de utilización de un microscopio de fuerzas atómicas y microscopio
ES2264647A1 (es) * 2005-06-24 2007-01-01 Consejo Superior Investigaciones Cientificas Metodo de utilizacion de un microscopio de fuerzas atomicas y microscopio.
JP4960451B2 (ja) * 2006-07-14 2012-06-27 シュペックス・チューリヒ・ゲーエムベーハー 走査プローブ顕微鏡及びその動作方法
US8347411B2 (en) 2006-07-14 2013-01-01 Specs Zürich GmbH Scanning probe microscope and method for operating the same
JP2009544019A (ja) * 2006-07-14 2009-12-10 シュペックス・チューリヒ・ゲーエムベーハー 走査プローブ顕微鏡及びその動作方法
JP2008051554A (ja) * 2006-08-22 2008-03-06 Sii Nanotechnology Inc 走査型プローブ顕微鏡
JP2008122091A (ja) * 2006-11-08 2008-05-29 National Institute Of Advanced Industrial & Technology カンチレバー共振特性評価法
US8245316B2 (en) 2006-12-15 2012-08-14 Specs Zürich GmbH Scanning probe microscope with periodically phase-shifted AC excitation
JP2010512518A (ja) * 2006-12-15 2010-04-22 スペックス・チューリヒ・ゲーエムベーハー 周期的に位相シフトされたac励起を有する走査型プローブ顕微鏡
JP5424404B2 (ja) * 2008-02-12 2014-02-26 国立大学法人秋田大学 表面状態計測装置及び該装置を用いた表面状態計測方法
WO2009101991A1 (ja) * 2008-02-12 2009-08-20 Akita University 表面状態計測装置及び該装置を用いた表面状態計測方法
US8490209B2 (en) 2008-02-12 2013-07-16 Akita University Surface state measuring device, and surface state measuring method using the device
JP2011053154A (ja) * 2009-09-03 2011-03-17 Sii Nanotechnology Inc 誘電率の測定方法及び走査型非線形誘電率顕微鏡
JP2011075465A (ja) * 2009-09-30 2011-04-14 Sii Nanotechnology Inc 誘電率の測定方法及び走査型非線形誘電率顕微鏡
JP2013088186A (ja) * 2011-10-14 2013-05-13 Olympus Corp 走査型プローブ顕微鏡およびその位相調整方法
US9335341B2 (en) 2011-10-14 2016-05-10 Olympus Corporation Scanning probe microscope and control method thereof
US9977049B2 (en) 2011-10-14 2018-05-22 Olympus Corporation Scanning probe microscope and control method thereof
CN105102989A (zh) * 2013-03-28 2015-11-25 国立大学法人秋田大学 磁场值测定装置以及磁场值测定方法
CN105102989B (zh) * 2013-03-28 2017-06-23 国立大学法人秋田大学 磁场值测定装置以及磁场值测定方法
CN113614508A (zh) * 2019-03-28 2021-11-05 国立大学法人东北大学 共振切变测定装置
WO2021193799A1 (ja) * 2020-03-26 2021-09-30 国立大学法人大阪大学 振動成分測定装置、ケルビンプローブ力顕微鏡、振動成分測定方法
CN111398638A (zh) * 2020-03-30 2020-07-10 哈尔滨工业大学 基于正交探针的开尔文探针力显微镜系统及样品侧壁扫描方法

Similar Documents

Publication Publication Date Title
JP3594927B2 (ja) 物性値の測定方法および走査型プローブ顕微鏡
JP3402512B2 (ja) 走査型プローブ顕微鏡
JP2004294218A (ja) 物性値の測定方法および走査形プローブ顕微鏡
JPH0626855A (ja) 原子間力顕微鏡
CN108802431B (zh) 一种具有磁-电信号探测功能的扫描探针显微镜的探测方法
JP5737640B2 (ja) 電位計測装置、及び原子間力顕微鏡
JP5813966B2 (ja) 変位検出機構およびそれを用いた走査型プローブ顕微鏡
WO2013192617A1 (en) Method and apparatus of electrical property measurement using an afm operating in peak force tapping mode
JPH1048224A (ja) 走査型プローブ顕微鏡
JP2010210609A (ja) 走査型プローブ顕微鏡における探針とサンプルの近接方法
JP5594795B2 (ja) 液中電位計測装置、及び、原子間力顕微鏡
JP2011053018A (ja) 液中電位計測方法及び液中電位計測装置
JP5765146B2 (ja) 原子間力顕微鏡におけるカンチレバー励振方法及び原子間力顕微鏡
JP5418413B2 (ja) 原子間力顕微鏡におけるカンチレバー励振方法
JP4024451B2 (ja) 走査型ケルビンプローブ顕微鏡
WO2009139238A1 (ja) ダイナミックモードafm装置
JP5672200B2 (ja) 原子間力顕微鏡を用いた誘電特性測定方法
JP2002116132A (ja) 信号検出装置、該信号検出装置によって構成した走査型原子間力顕微鏡、および信号検出方法
JP3637297B2 (ja) 磁気記録ヘッド測定装置及び同装置に適用する測定方法
JP2016099220A (ja) 走査型プローブ顕微鏡
US20150276795A1 (en) Atomic force microscopy using correlated probe oscillation and probe-sample bias voltage
JP2005227139A (ja) 原子間力顕微鏡用カンチレバー
JP6001728B2 (ja) 変位検出機構およびそれを用いた走査型プローブ顕微鏡
JP2013011471A (ja) 間隙測定装置、表面形状測定装置、間隙測定方法および表面形状測定方法
JP2002286613A (ja) 高周波特性測定装置