JPH0792462B2 - 走査型トンネル顕微鏡の微動機構 - Google Patents

走査型トンネル顕微鏡の微動機構

Info

Publication number
JPH0792462B2
JPH0792462B2 JP63116927A JP11692788A JPH0792462B2 JP H0792462 B2 JPH0792462 B2 JP H0792462B2 JP 63116927 A JP63116927 A JP 63116927A JP 11692788 A JP11692788 A JP 11692788A JP H0792462 B2 JPH0792462 B2 JP H0792462B2
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric element
electrode group
cylinder
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63116927A
Other languages
English (en)
Other versions
JPH01287606A (ja
Inventor
直 西岡
孝夫 安江
浩 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63116927A priority Critical patent/JPH0792462B2/ja
Priority to US07/233,741 priority patent/US4945235A/en
Publication of JPH01287606A publication Critical patent/JPH01287606A/ja
Publication of JPH0792462B2 publication Critical patent/JPH0792462B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2027Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having cylindrical or annular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/872Positioner

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Lens Barrels (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、走査型トンネル顕微鏡(以下、STMと記
す)の微動機構に係り、特に円筒形の圧電素子を用いた
三次元微動機構に関するものである。
〔従来の技術〕
一般に、STMは一対の粗動機構と微動機構とを備えてお
り、例えば観察すべき試料が粗動機構に保持される一
方、探針が微動機構に設けられている。そして、まず粗
動機構により試料面を探針の先端部近傍に接近させた
後、試料と探針との間に電圧を印加しつつこれらの間に
所定の大きさのトンネル電流が流れるまで、微動機構を
用いて探針をさらに試料面に接近させる。次に、微動機
構により探針を試料面に沿って走査し、このときのトン
ネル電流の変化を利用して試料表面の凹凸形状が原子尺
度で求められる。
従来、このようなSTMの微動機構としては、 G.Binnig and D.P.E.Smith:Rev.Sci.Instrum.,Vol.
57 pp1688−1689(1986)及び K.Besocke:Sarface Science.,Vol.181 pp145153(1
987) に開示されているような円筒形の圧電素子を用いたもの
が知られている。
これらの微動機構では、圧電素子からなる円筒の外周面
上に周に沿って四分割された電極が設けられると共に内
周面全面上にも電極が設けられ、円筒の一端部側に探針
が取り付けられている。そして、円筒外周部の互いに対
向する一対の電極に極性が反対の電圧を印加することに
より、探針は円筒の軸と垂直な方向(XY方向)に走査さ
れる。一方、円筒内周部の電極と外周部の電極との間に
電圧を印加することにより、探針は円筒の軸方向(Z方
向)に走査される。
〔発明が解決しようとする課題〕
しかしながら、このような微動機構の走査の感度、すな
わち電極に印加する電圧に対する探針の位置の変位の割
合は、圧電素子の圧電歪定数及び圧電素子と電極の寸法
により決定されることが知られている。従って、従来の
微動機構はその構成に基づく固有の走査感度を有し、こ
の走査感度を自由に変えることはできなかった。
このため、走査領域を狭くして試料表面の詳細な観測を
しようとする場合には走査感度の小さい微動機構を、逆
に走査領域を広くして試料表面の広域を観測しようとす
る場合には走査感度の大きい微動機構をそれぞれ選択し
て用いていた。このように、従来は観測の目的によって
微動機構を取り替えなければならないという問題点があ
った。
また、電極に印加する電圧波形を変化させれば、走査感
度が一定の微動機構でも探針に細かい動きをさせたり、
粗い動きをさせることができるが、この場合には電極に
電圧を印加するための電圧供給装置が複雑となり高価に
なるという問題点があった。
この発明はこのような問題点を解消するためになされた
もので、走査の感度を変えることのできるSTMの微動機
構を得ることを目的とする。
〔課題を解決するための手段〕
この発明に係るSTMの微動機構は、機構本体と、円筒形
に形成され、その一端が前記機構本体に固定された圧電
素子と、前記圧電素子の他端側に設けられた探針と、前
記圧電素子の内壁上及び外壁上にそれぞれ設けられると
共に前記圧電素子の円筒軸方向に沿って複数の電極群に
分割され且つ各電極群は前記圧電素子の円筒の周方向に
沿って四分割された電極を有する電極手段とを備え、前
記電極手段の各電極群に対して前記圧電素子の肉厚が同
じで且つ複数の電極群は前記圧電素子の円筒軸方向の長
さが互いに異なる、あるいは前記電極手段の各電極群に
対する前記圧電素子の肉厚が互いに異なるものである。
〔作用〕
この発明においては、圧電素子の円筒軸方向に沿って分
割された複数の電極群から駆動電極群を選択してその駆
動電極群に電圧を印加することにより、感度の異なる走
査が行われる。
〔実施例〕
以下、この発明の実施例を添付図面に基づいて説明す
る。
第1図はこの発明に係るSTMの微動機構の第1実施例を
示す一部破断斜視図である。平板状の機構本体(以下、
本体と記す)(1)の上に、円筒(C)を形成する圧電
素子(2)の一端部(α)がエポキシ樹脂等の接着剤に
より固定され、この圧電素子(2)の内壁及び外壁上に
電極手段(3)が形成されている。ここで、圧電素子
(2)は例えばチタン酸ジルコン酸鉛(pb(Zr-Ti)O3)か
ら形成され、円筒(C)の側面の法線方向を電界方向、
円筒(C)の中心軸(Z軸)方向を歪方向として分極処
理が施されている。また、円筒(C)はその全長にわた
って一定の内径、外径及び肉厚Wを有している。
電極手段(3)は銀あるいはニッケルから形成され、円
筒(C)の長手方向に分割された二つの電極部から構成
されている。さらに、各電極部はそれぞれ複数の電極を
有する第1電極群(4)及び第2電極群(5)から形成
されている。第1電極群(4)は、円筒(C)の外周部
に設けられると共に周に沿って四分割された電極(4
x+)、(4x-)、(4y+)及び(4y-)と、円筒(C)の
内周全面に設けられた電極(4z)とから構成されてい
る。第1図において、電極(4x+)と(4x-)は互いにX
軸上で対向し、電極(4y+)と(4y-)は互いにY軸上で
対向している。また、第1電極群(4)の各電極はZ軸
方向の長さL1を有している。
一方、第2電極群(5)は第1電極群(4)と同様に、
円筒(C)の外周部に設けられると共に周に沿って四分
割された電極(5x+)、(5x-)、(5y+)及び(5y-
と、円筒(C)の内周全面に設けられた電極(5z)とか
ら構成され、電極(5x+)と(5x-)は互いにX軸上で対
向し、電極(5y+)と(5y-)は互いにY軸上で対向して
いる。この第2電極群(5)の各電極はZ軸方向の長さ
L2(≠L1)を有している。
これら第1電極群(4)と第2電極群(5)はZ軸方向
の長さが異なる他は、材質、形状共に同様であり、第2
電極群(5)は第1電極群(4)を円筒(C)の中心軸
(Z軸)方向に平行移動させたような位置に配置されて
いる。また、第1電極群(4)と第2電極群(5)と
は、これらの長さL1及びL2に比べて極めて小さな間隔を
隔てて配置されている。
また、円筒形の圧電素子(2)の他端部(β)側には、
探針(6)が取り付けられている。この探針(6)は第
2電極群(5)のうちの一つの電極の上あるいは円筒
(C)の外壁上に接着剤により固定されている。
このような微動機構の電極手段(3)に電圧を印加する
ことにより、例えば次の二つの動作(I)及び(II)を
行わせることができる。
(I)まず、第2電極群(5)の各電極を接地して0電
位とする。
この状態で、第1電極群(4)の円筒(C)外周部の四
つの電極(4x+)、(4x-)、(4y+)及び(4y-)を接地
して0電位とすると共に円筒(C)内周部の電極(4z)
に電圧±Vを印加すると、圧電素子(2)はZ軸方向に δ1=±d×(L1/W)×V ・・・[1] の変位で伸縮する。ただし、dは圧電素子(2)の圧電
歪定数である。
また、円筒(C)外周部の一対の電極(4x+)及び(4
x-)と円筒(C)内周部の電極(4z)とを接地すると共
に円筒(C)外周部の一対の電極(4y+)及び(4y-)に
互いに逆極性の電圧±Vを印加すると、電極(4y+)と
電極(4z)との間及び電極(4y-)と電極(4z)との間
に位置する圧電材料がZ軸方向において互いに逆向きに
伸縮するので、円筒(C)はY−Z面内で湾曲すること
になる。
同様に、電極(4y+)、(4y-)及び(4z)を接地すると
共に一対の電極(4x+)及び(4x-)に互いに逆極性の電
圧±Vを印加すると、今度は円筒(C)はX−Z面内で
湾曲する。
(II)第1電極群(4)の各電極を接地して0電位とす
る。
この状態で、第2電極群(5)の円筒(C)外周部の四
つの電極(5x+)、(5x-)、(5y+)及び(5y-)を接地
して0電位とすると共に円筒(C)内周部の電極(5z)
に電圧±Vを印加すると、圧電素子(2)はZ軸方向に δ2=±d×(L2/W)×V ・・・[2] の変位で伸縮する。ただし、dは圧電素子(2)の圧電
歪定数である。
また、円筒(C)外周部の一対の電極(5x+)及び(5
x-)と円筒(C)内周部の電極(5z)とを接地すると共
に円筒(C)外周部の一対の電極(5y+)及び(5y-)に
互いに逆極性の電圧±Vを印加すると、電極(5y+)と
電極(5z)との間及び電極(5y-)と電極(5z)との間
に位置する圧電材料がZ軸方向において互いに逆向きに
伸縮するので、円筒(C)はY−Z面内で湾曲すること
になる。
同様に、電極(5y+)、(5y-)及び(5z)を接地すると
共に一対の電極(5x+)及び(5x-)に互いに逆極性の電
圧±Vを印加すると、今度は円筒(C)はX−Z面内で
湾曲する。
従って、第1電極群(4)あるいは第2電極群(5)の
各電極に選択的に電圧を印加することにより、圧電素子
(2)の他端部(β)側に取り付けられた探針(6)を
三次元走査させることができる。ただし、上記の動作
(I)と(II)とでは次の点が異なる。すなわち、第1
電極群(4)の長さL1と第2電極群(5)の長さL2が異
なるので、第1電極群(4)に電圧±Vを印加した場合
と第2電極群(5)に電圧±Vを印加した場合の円筒
(C)の伸縮量には差が生じる。また、動作(I)では
円筒(C)の湾曲時に圧電素子(2)の一端部(α)が
固定点に、第1電極群(4)と第2電極群(5)の間の
隙間部(γ)が変位点になるのに対して、動作(II)で
は隙間部(γ)が固定点に、圧電素子(2)の他端部
(β)が変位点になる。従って、動作(I)と(II)と
では探針(6)のZ軸方向の走査感度(垂直感度)及び
XY平面内での走査感度(水平感度)共に異なることにな
る。
このように、この実施例によれば、第1電極群(4)と
第2電極群(5)のいずれに電圧を印加するかを選択す
るだけで、容易に走査感度を変えることができる。この
ため、一定の波形の電圧を供給する簡単且つ安価な電圧
供給装置を用いながらも、探針に観測の目的に合った動
きをさせることが可能となる。
次に、この発明の微動機構の第2実施例を第2図に示
す。
この実施例では、金属等の導体からなる直線状の細管
(7)が第2電極群(5)のうちの一つの電極の上ある
いは円筒(C)の外壁上に接着剤(8)により固定され
ている。そして、細管(7)内に探針(6)が着脱自在
に挿入されている。探針(6)と細管(7)とは、互い
に機械的に接触することにより、電気的な接続がなされ
ている。従って、探針(6)の細管(7)内に挿入され
る部分を予め少し曲げておけば、探針(6)の弾力性に
よって探針(6)と細管(7)との電気的な接続がより
確実なものとなる。
この第2実施例のような構造とすることにより、使用さ
れて先端の傷ついた探針(6)を容易に新しい探針
(6)に交換することが可能となる。
ここで、この第2実施例における微動機構の各部材の材
質及び寸法等を詳細に述べる。
圧電素子(2)の材料としては、強誘電体のチタン酸鉛
(PbTiO3)と反強誘電体のジルコン酸鉛(PbZrO3)との
固溶体のうち、円筒形圧電素子として周囲環境の変化に
安定で且つ適切な機械的変位の電圧感度が得られるよう
に、キューリ温度、クリープ特性、ヒステリシス特性及
び圧電歪定数を考慮した混合比のものを用いる。また、
圧電素子(2)の寸法は、適切な機械的変位が得られる
よう圧電歪定数と関連させて決定する。例えば、圧電歪
定数d=−300×10-12m/V、キューリ温度約200℃のチタ
ン酸ジルコン酸鉛(pb(Zr-Ti)O3)を、内径10mm、外径12m
m、厚さ1mm、長さ19mmの円筒形状にして用いる。
電極手段(3)は、圧電素子(2)の円筒(C)の表面
上に銀の焼き付け、あるいはニッケルの無電解メッキの
より例えば厚さ3μm程度に形成される。第1電極群
(4)を構成する各電極(4x+)、(4x-)、(4y+)、
(4y-)及び(4z)はZ軸方向の長さL1=12mmを有し、
第2電極群(5)を構成する各電極(5x+)、(5x-)、
(5y+)、(5y-)及び(5z)はZ軸方向の長さL2=6mm
を有している。また、円筒(C)外周部において四分割
された第1電極群(4)の電極(4x+),(4x-),(4y
+)及び(4y-)間の間隔、第2電極群(5)の電極(5x
+),(5x-),(5y+)及び(5y-)間の間隔、及び第1
電極群(4)と第2電極群(5)との間隔はそれぞれ1m
mである。
これら第1電極群(4)及び第2電極群(5)の各電極
にはそれぞれ直径0.2mmの銅線からなるリード線(9)
に一端が中性のヤニ入りハンダ(10)により接続されて
いる。また、これらリード線(9)の他端は図示しない
電圧供給装置に電気的に接続される。
本体(1)は、例えば温度30〜100℃での熱膨張係数が
2×10-6/℃以下のインバール(Fe:64%、Ni:36%)あ
るいは温度30〜100℃での熱膨張係数が1.3×10-6/℃以
下のスーパー・インバール(Fe:63%、Ni:32%、Co:5
%)等を用いる。
この本体(1)上に圧電素子(2)を固定するための接
着剤(8)、及び細管(7)を第2電極群(5)のうち
の一つの電極の上あるいは円筒(C)の外壁上に固定す
るための接着剤(8)としては、例えば液たれを防止す
るために揺変性(thixotropic性)を備えたエポキシ樹
脂と、芳香族アミン系の硬化剤とを用いる。
細管(7)の外周部には、例えば直径0.5mmの軟銅線か
らなるトンネル電流測定導線(11)の一端が中性のヤニ
入りハンダ(10)により接続されている。このトンネル
電流測定導線(11)の他端は図示しないトンネル電流測
定装置に電気的に接続される。
探針(6)は直径0.25mmのタングステン(w)や白金・
イリジウム(Pt90%−Ir10%)合金からなるワイヤの先
端を機械加工あるいは電解研摩でとがらせて用いる。
この実施例の動作を以下に述べる。
(III)第1電極群(4)のみを駆動させてみる。
第2電極群(5)の各電極を接地してO電位とする。こ
の状態で、第1電極群(4)の円筒(C)外周部の四つ
の電極(4x+)、(4x-)、(4y+)及び(4y-)を接地し
てO電位とすると共に円筒(C)内周部の電極(4z)に
電圧±Vを印加すると、[1]式より圧電素子(2)は
3.6nm/Vの電圧感度でZ軸方向に伸縮する。
また、円筒(C)外周部の一対の電極(4x+)及び(4
x-)と円筒(C)内周部の電極(4z)とを接地すると共
に円筒(C)外周部の一対の電極(4y+)及び(4y-)に
互いに逆極性の電圧±Vを印加すると、電極(4y+)と
電極(4z)との間及び電極(4y-)と電極(4z)との間
に位置する圧電材料がZ軸方向において互いに逆向きに
電圧感度3.6nm/Vで伸縮する。その結果、円筒(C)は
一端部(α)を固定点、第1電極群(4)と第2電極群
(5)の間の隙間部(γ)を変位点としてY−Z面内で
湾曲することになる。
同様に、電極(4y+)、(4y-)及び(4z)を接地すると
共に一対の電極(4x+)及び(4x-)に互いに逆極性の電
圧±Vを印加すると、今度は円筒(C)はX−Z面内で
湾曲する。
(IV)第2電極群(5)のみを駆動させてみる。
第1電極群(4)の各電極を接地してO電位とする。こ
の状態で、第1電極群(5)の円筒(C)外周部の四つ
の電極(5x+)、(5x-)、(5y+)及び(5y-)を接地し
てO電位とすると共に円筒(C)内周部の電極(5z)に
電圧±Vを印加すると、[2]式より圧電素子(2)は
1.8nm/Vの電圧感度でZ軸方向に伸縮する。
また、円筒(C)外周部の一対の電極(5x+)及び(5
x-)と円筒(C)内周部の電極(5z)とを接地すると共
に円筒(C)外周部の一対の電極(5y+)及び(5y-)に
互いに逆極性の電圧±Vを印加すると、電極(5y+)と
電極(5z)との間及び電極(5y-)と電極(5z)との間
に位置する圧電材料がZ軸方向において互いに逆向きに
電圧感度1.8nm/Vで伸縮する。その結果、円筒(C)は
第1電極群(4)と第2電極群(5)の間の隙間部
(γ)を固定点、他端部(β)を変位点としてY−Z面
内で湾曲することになる。
同様に、電極(5y+)、(5y-)及び(5z)を接地すると
共に一対の電極(5x+)及び(5x-)に互いに逆極性の電
圧±Vを印加すると、今度は円筒(C)はX−Z面内で
湾曲する。
すなわち、第2電極群(5)を駆動させると、圧電素子
(2)は第1電極群(4)を駆動させた場合と同様に伸
縮あるいは湾曲するが、その電圧感度は1/2となる。
(V)第1電極群(4)及び第2電極群(5)の双方を
同時に駆動させてみる。
電極(4x+)と(5x+)、(4z)と(5z)等のように、第
1電極群(4)及び第2電極群(5)の相対応する電極
の電位を常に等しくさせた状態で、上記の動作(III)
あるいは(IV)と同様に各電極を駆動させる。この場
合、動作(III)と(IV)とが同時に行なわれることに
なるので、圧電素子(2)は一端部(α)を固定点、他
端部(β)を変位点として、電圧感度5.4nm/Vで伸縮・
湾曲する。
以上の動作(III)〜(V)のように、第1電極群
(4)のみ駆動、第2電極群(5)のみ駆動、第1電極
群(4)及び第2電極群(5)の双方の駆動という三種
の駆動方法から一つを選択することにより、容易に圧電
素子(2)の走査感度を三通りに変化させることができ
る。従って、一定の波形の電圧を供給する簡単且つ安価
な電圧供給装置を用いながらも、一つの微動機構で三種
類の感度の観測が可能となる。
尚、この実施例では電極手段(3)を二つの電極部すな
わち第1電極群(4)と第2電極群(5)とに分割する
ことにより三種類の走査感度を実現したが、電極手段
(3)を圧電素子(2)の長手方向に沿って三種以上の
互いに長さの異なる電極部に分割すれば、より多くの種
類の走査感度を選択し得る微動機構が構成される。
本発明の第3実施例を第3図に示す。
この第3実施例では、圧電素子(2)の厚さがZ軸方向
に一様ではなく、圧電素子(2)の一端部(α)側と他
端部(β)側とで異なっている。圧電素子(2)は、例
えば圧電歪定数d=−300×10-12m/Vの圧電材料からな
り、外径12mm、全長19mmの円筒(C)を形成している。
この圧電素子(2)の一端部(α)側は長さ9mmにわた
って厚さW1=2mm、他端部(β)側は長さ9mmにわたって
厚さW2=1mmを有し、全長の中間部(γ)の長さ1mmのと
ころで厚さが変化している。
このような圧電素子(2)の内周部及び外周部に、第1
図及び第2図の実施例と同様に圧電素子(2)の長手方
向に二分割された第1電極群(4)及び第2電極群
(5)が形成されている。ただし、第1電極群(4)の
各電極と第2電極群(5)の各電極は共にZ軸方向の長
さL=9mmを有している。すなわち、圧電素子(2)の
厚い(W1=2mm)部分の内周部及び外周部に第1電極群
(4)が、薄い(W2=1mm)部分の内周部及び外周部に
第2電極群(5)が形成されている。
これら第1電極群(4)及び第2電極群(5)はそれぞ
れ、円筒(C)の外周部に設けられると共に周に沿って
四分割された電極(4x+)、(4x-)、(4y+)、(4y-
及び(5x+)、(5x-)、(5y+)、(5y-)と、円筒
(C)の内周全周に設けられた電極(4z)及び(5z)と
から構成されている。また、円筒(C)外周部において
四分割された第1電極群(4)の電極(4x+),(4
x-),(4y+)及び(4y-)間の間隔、第2電極群(5)
の電極(5x+),(5x-),(5y+)及び(5y-)間の間
隔、及び第1電極群(4)と第2電極群(5)との間隔
はそれぞれ1mmである。
この実施例によれば、[1]式あるいは[2]式より、
第1電極群(4)のみを駆動させた場合には1.35nm/Vの
電圧感度で、第2電極群(5)のみを駆動させた場合に
は2.7nm/Vの電圧感度で、第1電極群(4)と第2電極
群(5)の双方を駆動させた場合には4.05nm/Vの電圧感
度でそれぞれ圧電素子(2)が伸縮・湾曲する。
このように、圧電素子(2)の厚さをZ軸方向に二段階
に変化させることにより、三種類の走査感度を選択し得
る微動機構が構成される。
また、この第3実施例では、圧電素子(2)の本体
(1)に固定される端部(α)側が厚く形成されている
ので、圧電素子(2)と本体(1)との結合がより強固
なものになる。
尚、第1及び第2実施例のように第1電極群(4)と第
2電極群(5)の長さを異なったものとすると共に、こ
れら電極群がそれぞれ形成されている部分の圧電素子
(2)の厚さに違いを持たせても、同様の効果が得られ
ることは言うまでもない。
さらに、圧電素子(2)の厚さをZ軸方向に沿って三段
階以上に変化させ、それぞれの厚さの部分に電極を設け
れば、より多くの種類の走査感度を選択し得る微動機構
が構成される。
〔発明の効果〕
以上説明したようにこの発明に係るSTMの微動機構は、
機構本体と、円筒形に形成され、その一端が前記機構本
体に固定された圧電素子と、この圧電素子の他端側に設
けられた探針と、圧電素子の内壁上及び外壁上にそれぞ
れ設けられると共に圧電素子の円筒軸方向に沿って複数
の電極群に分割され且つ各電極群は圧電素子の円筒の周
方向に沿って四分割された電極を有する電極手段とを備
え、電極手段の各電極群に対して圧電素子の肉厚が同じ
で且つ複数の電極群は圧電素子の円筒軸方向の長さが互
いに異なる、あるいは電極手段の各電極群に対する圧電
素子の肉厚が互いに異なっているので、この電極手段の
複数の電極群に選択的に電圧を印加することにより感度
の異なる走査を行うことが可能となる。
【図面の簡単な説明】
第1図はこの発明の第1実施例に係るSTMの微動機構を
示す一部破断斜視図、第2図はこの発明の第2実施例を
示す一部破断斜視図、第3図は第3実施例を示す一部破
断斜視図である。 図において、(1)は機構本体、(2)は圧電素子、
(3)は電極手段、(4)は第1電極群、(5)は第2
電極群、(6)は探針である。 なお、各図中同一符号は同一または相当部分を示す。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】機構本体と、 円筒形に形成され、その一端が前記機構本体に固定され
    た圧電素子と、 前記圧電素子の他端側に設けられた探針と、 前記圧電素子の内壁上及び外壁上にそれぞれ設けられる
    と共に前記圧電素子の円筒軸方向に沿って複数の電極群
    に分割され且つ各電極群は前記圧電素子の円筒の周方向
    に沿って四分割された電極を有する電極手段と を備え、前記電極手段の各電極群に対して前記圧電素子
    の肉厚が同じで且つ複数の電極群は前記圧電素子の円筒
    軸方向の長さが互いに異なる、あるいは前記電極手段の
    各電極群に対する前記圧電素子の肉厚が互いに異なるこ
    とを特徴とする走査型トンネル顕微鏡の微動機構。
JP63116927A 1988-05-16 1988-05-16 走査型トンネル顕微鏡の微動機構 Expired - Lifetime JPH0792462B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63116927A JPH0792462B2 (ja) 1988-05-16 1988-05-16 走査型トンネル顕微鏡の微動機構
US07/233,741 US4945235A (en) 1988-05-16 1988-08-19 Fine adjustment mechanism for a scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116927A JPH0792462B2 (ja) 1988-05-16 1988-05-16 走査型トンネル顕微鏡の微動機構

Publications (2)

Publication Number Publication Date
JPH01287606A JPH01287606A (ja) 1989-11-20
JPH0792462B2 true JPH0792462B2 (ja) 1995-10-09

Family

ID=14699131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116927A Expired - Lifetime JPH0792462B2 (ja) 1988-05-16 1988-05-16 走査型トンネル顕微鏡の微動機構

Country Status (2)

Country Link
US (1) US4945235A (ja)
JP (1) JPH0792462B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015850A (en) * 1989-06-20 1991-05-14 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated microscope assembly
US4992660A (en) * 1989-06-26 1991-02-12 Jeol Ltd. Scanning tunneling microscope
GB8928952D0 (en) * 1989-12-21 1990-02-28 Queensgate Instr Ltd Piezo-electric actuators
JP2891510B2 (ja) * 1990-05-09 1999-05-17 日本電子株式会社 圧電素子駆動体
JP2501945B2 (ja) * 1990-08-28 1996-05-29 三菱電機株式会社 原子間力顕微鏡のカンチレバ―及びその製造方法
JPH0758193B2 (ja) * 1990-09-14 1995-06-21 三菱電機株式会社 原子間力顕微鏡の微動走査機構
US5173605A (en) * 1991-05-02 1992-12-22 Wyko Corporation Compact temperature-compensated tube-type scanning probe with large scan range and independent x, y, and z control
US5200617A (en) * 1991-05-02 1993-04-06 Wyko Corporation PMN translator and linearization system in scanning probe microscope
US5103094A (en) * 1991-05-02 1992-04-07 Wyko Corporation Compact temperature-compensated tube-type scanning probe with large scan range
US5204531A (en) * 1992-02-14 1993-04-20 Digital Instruments, Inc. Method of adjusting the size of the area scanned by a scanning probe
US5267471A (en) * 1992-04-30 1993-12-07 Ibm Corporation Double cantilever sensor for atomic force microscope
US5426302A (en) * 1993-04-28 1995-06-20 Board Of Regents, University Of Texas Optically guided macroscopic-scan-range/nanometer resolution probing system
DE19712923A1 (de) * 1997-03-27 1998-10-01 Bosch Gmbh Robert Piezoelektrischer Aktor
WO2010080634A2 (en) * 2008-12-18 2010-07-15 Discovery Technology International, Lllp Piezoelectric quasi-resonance motors based on acoustic standing waves with combined resonator
US9527732B2 (en) * 2010-09-23 2016-12-27 Seagate Technology Llc Methods and devices for correcting errors in atomic force microscopy
CA2972427C (en) 2011-03-21 2018-01-30 Polaris Industries Inc. Three wheeled vehicle
FR2988518B1 (fr) * 2012-03-22 2015-03-20 Centre Nat Rech Scient Procede de micropositionnement a multi degres de liberte pour actionneurs piezoelectriques et dispositif associe
JPWO2014006734A1 (ja) * 2012-07-06 2016-06-02 株式会社日立製作所 力プローブ顕微鏡及び高さ分布測定方法
JPWO2014041677A1 (ja) * 2012-09-14 2016-08-12 株式会社日立製作所 力プローブ、計測装置及び計測方法
CN105043986A (zh) * 2015-08-05 2015-11-11 上海交通大学 用于介观组织原位在线观测的显微镜安装支架

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610540A1 (de) * 1986-03-27 1987-10-01 Kernforschungsanlage Juelich Bewegungseinrichtung zur mikrobewegung von objekten
JPH088405Y2 (ja) * 1987-10-05 1996-03-06 工業技術院長 圧電素子微小位置決め機構

Also Published As

Publication number Publication date
JPH01287606A (ja) 1989-11-20
US4945235A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
JPH0792462B2 (ja) 走査型トンネル顕微鏡の微動機構
JPH04122806A (ja) 原子間力顕微鏡の微動走査機構
US4880975A (en) Fine adjustment mechanism for a scanning tunneling microscope
JP2923813B2 (ja) カンチレバー型変位素子、及びこれを用いた走査型トンネル顕微鏡、情報処理装置
KR20060016118A (ko) 주사 프로브 현미경 및 샘플면 주사 방법
JPH07122831B2 (ja) 2次元位置調整装置
EP1639657B1 (en) Method of producing piezoelectric tubes
EP0248233B1 (en) Cathode mounting a high-frequency piezoelectric chip
JPH039713B2 (ja)
JP2001108605A (ja) 走査型プローブ顕微鏡用カンチレバー及びその製造方法、並びに走査型プローブ顕微鏡及び表面電荷測定顕微鏡
JPH06194157A (ja) 位置だし制御法および面合わせ方法およびそれを用いたトンネル顕微鏡および記録再生装置
KR100660185B1 (ko) 마이크로 구동기와 그 구동방법
JP3776084B2 (ja) マイクロポジショニング装置
JPH067042B2 (ja) 圧電素子微動機構
Miller et al. Micromechanical cantilevers and scanning probe microscopes
JP2651462B2 (ja) 圧電アクチュエータ
JP2631297B2 (ja) 圧電アクチュエーター
DE102017202455B4 (de) MEMS- oder NEMS-basierter Sensor und Verfahren zum Betrieb eines solchen
JP2789244B2 (ja) 微小プローブの形成方法
JPH01214279A (ja) 圧電アクチュエーター
JPH0150194B2 (ja)
RU2248628C1 (ru) Пьезосканер многофункциональный и способ сканирования в зондовой микроскопии
JPH0757108B2 (ja) 移動テーブル及びその駆動方法
JP2001108595A (ja) 微小領域走査装置
JPS62203573A (ja) 圧電式アクチユエ−タ