WO2014006734A1 - 力プローブ顕微鏡及び高さ分布測定方法 - Google Patents

力プローブ顕微鏡及び高さ分布測定方法 Download PDF

Info

Publication number
WO2014006734A1
WO2014006734A1 PCT/JP2012/067268 JP2012067268W WO2014006734A1 WO 2014006734 A1 WO2014006734 A1 WO 2014006734A1 JP 2012067268 W JP2012067268 W JP 2012067268W WO 2014006734 A1 WO2014006734 A1 WO 2014006734A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
vibrator
probe
liquid
probe microscope
Prior art date
Application number
PCT/JP2012/067268
Other languages
English (en)
French (fr)
Inventor
誠嗣 平家
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014523508A priority Critical patent/JPWO2014006734A1/ja
Priority to PCT/JP2012/067268 priority patent/WO2014006734A1/ja
Publication of WO2014006734A1 publication Critical patent/WO2014006734A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/045Self-actuating probes, i.e. wherein the actuating means for driving are part of the probe itself, e.g. piezoelectric means on a cantilever probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the present invention relates to a liquid force probe microscope for measuring the shape of a sample surface in a solution and a measuring method thereof.
  • a scanning probe microscope typified by this atomic force microscope is a microscopic technique that can operate in various environments such as in ultra-high vacuum and in the atmosphere.
  • the interaction between the tip of a sharp probe and the sample surface is detected, and the surface shape is observed with atomic-molecule resolution by scanning the sample surface while keeping the value of this interaction constant.
  • Non-Patent Document 1 In recent years, observation in liquids has attracted attention, and reports have been made on the arrangement of molecules at the solid-liquid interface (for example, Non-Patent Document 1).
  • the AFM when the AFM is operated in a solution, it is necessary to introduce a cantilever used as a probe into the solution for observation.
  • the force acting between the probe and the sample is detected as a change in the vibration state of the cantilever, but the Q value of the mechanical vibration of the cantilever is greatly reduced due to viscous resistance in the solution.
  • the Q value is a value obtained by dividing the resonance frequency by the half width, and is an index of the stability of vibration. There is a problem that the sensitivity to the force is lowered due to the decrease of the Q value.
  • the laser optical system for detecting the displacement of the cantilever does not like the fluctuation of the liquid level, it is necessary to operate in an environment where the sample and the cantilever are completely cut off from the outside world, and the degree of freedom of measurement is limited. .
  • An object of the present invention is to provide a force probe microscope capable of measuring in liquid without deteriorating the vibration state of the force detection probe even in liquid and with the same simplicity as measurement in the atmosphere.
  • a probe is provided on the sample table, and the length of the probe is made longer than the thickness of the means for holding the liquid on the sample stage.
  • a vibrator having a vibration component perpendicular to the sample, a probe having a length a provided at the tip of the vibrator, a sample stage on which the sample is placed, and the sample
  • a force probe microscope having a spacer having a thickness b placed on the surface and a cover having a thickness c placed on the spacer and having a condition of a> b + c.
  • the depth of the liquid is made smaller than the length of the probe by the cover and the spacer provided on the sample surface, thereby measuring the sample surface shape in the liquid without bringing the vibrator into contact with the liquid surface. It becomes possible to do.
  • FIG. 1 is a schematic configuration diagram of a force probe microscope according to an embodiment of the present invention.
  • the sample 1 is placed on the sample stage 2, the spacer 5 and the cover 6 are placed, and a liquid is injected into the inside.
  • the cover 6 is placed on the observation surface of the sample 1 via the spacer 5, and the liquid 8 is filled in the gap between the sample 1 and the cover 6 formed by the spacer 5.
  • the cover 6 is provided with an observation window 7. When the observation window 7 is sufficiently small, the liquid 8 is filled up to the top of the observation window 7 due to surface tension.
  • a vibrator 9 is arranged opposite to the surface of the sample 1, and a probe 12 is provided at the tip thereof.
  • the vibrator 9 and the probe 12 are applied with an oscillation circuit 13 by applying an alternating voltage between the first electrode 10 and the second electrode 11 provided on the vibrator 9, so that the natural frequency or the vicinity thereof can be obtained. It is vibrated in the direction perpendicular to the surface of the measurement sample 1 at a frequency (within about ⁇ 1% of the natural frequency).
  • the probe 12 is introduced into the liquid 8 from the observation window 7 and is brought close to the surface of the sample 1.
  • the vibrator 9 changes its frequency characteristic due to the interaction between the probe 12 and the sample 1, and the change is detected by using the frequency characteristic detector 14.
  • the sample 1 is fixed on the XYZ scanning mechanism 3 and the coarse movement mechanism 4 via the sample stage 2 and can be moved in the three-dimensional azimuth direction with respect to the probe 12 by the XYZ scanning mechanism 3.
  • the distance between the sample 1 and the probe 12 can be greatly changed by the moving mechanism 4.
  • the frequency characteristic displacement signal of the vibrator 9 from the frequency characteristic detector 14 is input to the control system 15.
  • the control system 15 is used via the Z drive unit 17 so that the amplitude change, phase change, and frequency change signal values from the frequency characteristic detector 14 become set constant values.
  • the distance between the probe 12 and the sample 1 is maintained at a constant value by driving the XYZ scanning mechanism 3 in the Z direction and adjusting the position of the sample 1 in the Z direction with respect to the probe 12.
  • the distance between the probe 12 and the sample 1 is always constant regardless of the unevenness of the sample surface. That is, the distance between the probe and the sample surface can be controlled by adjusting the position of the sample in the Z direction with respect to the probe by a distance control unit including the frequency characteristic detector 14 and the control system 15.
  • the control unit 16 performs coarse movement by driving the coarse movement mechanism 4 via the coarse movement unit 19 to bring the probe 12 closer to the sample 1 to about several hundred nm. Coarse motion is stopped when the signal output from the frequency characteristic detector 14 exceeds a preset threshold value, and then the probe-sample distance control by the control system 15 is started.
  • the control unit 16 drives the XYZ scanning mechanism 3 via the scanning unit 18 to scan the sample 1 in the XY direction with respect to the probe 12. Note that the distance between the sample 1 and the probe 12 is kept constant.
  • the control unit 16 captures an output signal from the control system 15 as surface shape data at each measurement point.
  • the surface shape data is two-dimensionally mapped using the XY coordinates, and an image of the surface shape is displayed on the display device 20.
  • the opening diameter of the observation window 7 is preferably as small as possible, but it must be larger than the diameter of the probe 12 and sized so as not to prevent XY in-plane scanning by the XYZ scanning mechanism 3. In consideration of operability, a diameter of about 0.5 to 2 mm is desirable.
  • the mass of the probe 12 is desirably about 0.2% or less of the mass of the vibrator 9.
  • the diameter of the probe 12 is preferably as small as possible in terms of mass and viscosity resistance by the liquid 8, but is preferably about 5 to 10 ⁇ m in consideration of the strength of the probe 12.
  • the sample stage is scanned by the scanning mechanism.
  • the vibrator and the sample stage may be moved relatively, and the vibrator may be scanned.
  • spacer 5 and the cover 6 are described as separate configurations, they may be integrated.
  • FIG. 2 is a force probe microscope according to an embodiment of the present invention.
  • the probe 12 has conductivity and is electrically coupled to the first electrode 10
  • the probe 12 is formed in the oscillation circuit 13.
  • 2 is a schematic configuration diagram of a circuit for inputting and outputting signals between the surface of the sample 1 and the surface of the sample 1.
  • the AC voltage signal output from the oscillator 21 is applied to the first electrode 10 via the coupling capacitor 22.
  • a corresponding alternating current vibration is output from the second electrode 11 and converted into an alternating voltage signal by the current voltage converter 23.
  • a signal input / output circuit 24 is connected to the first electrode 10 and processes input / output signals between the probe 12 and the sample 1.
  • the signal input / output circuit 24 is a voltage follower
  • the potential of the surface of the sample 1 can be measured via the probe 12
  • the signal voltage conversion circuit is a current-voltage conversion circuit
  • the current flowing between the probe 12 and the surface of the sample 1 can be measured.
  • a voltage can be applied between the probe 12 and the sample 1 surface.
  • FIG. 3 is a schematic diagram of a configuration example of the transducer 9 and the probe 12 in the force probe microscope according to the embodiment of the present invention.
  • 3A is an example in which the probe 12 is bonded to the side surface of the transducer 9
  • FIG. 3B is an example in which the probe 12 is bonded to the bottom surface of the transducer 9.
  • the electrical connection between the probe 12 and the sample 1 is shown.
  • the probe 12 is electrically connected to the first electrode 10.
  • FIG. 3 c shows an example of an electrode-probe integrated configuration in which the material of the first electrode 10 is extended and the tip thereof is the probe 12, and the probe 12 is electrically connected to the first electrode 10. Yes.
  • FIG. 3 c shows an example of an electrode-probe integrated configuration in which the material of the first electrode 10 is extended and the tip thereof is the probe 12, and the probe 12 is electrically connected to the first electrode 10. Yes.
  • 3d shows an example of a vibrator / probe integrated structure in which the material of the dielectric portion between the first electrode 10 and the second electrode 11 of the vibrator 9 is extended and the tip thereof is used as the probe 12.
  • the probe 12 is made conductive by metal vapor deposition or the like and is electrically connected to the first electrode 10. Further, in order to vibrate the vibrator 9 stably, the mass of the probe 12 is desirably 0.2% or less of the mass of the vibrator 9.
  • FIG. 4 is a schematic view of a shape example of the vibrator 9 in the force probe microscope according to the embodiment of the present invention.
  • FIG. 4 a shows an example of a telescopic vibrator.
  • the length of the vibrator 9 expands and contracts. Therefore, when the center of the vibrator 9 is fixed, the first vibrating portion 41 and the second vibrating portion 42 vibrate in opposite phases.
  • the probe 12 can be vibrated by attaching the probe 12 in the extending and contracting direction of the first vibrating portion 41.
  • FIG. 4 b shows an example of a tuning fork type vibrator.
  • the first electrode 10 and the second electrode 11 are provided on the front and back of the vibrator 9, but the first vibrating portion 41 and the second vibrating portion 42 are provided. Then, the front and back of the first electrode 10 and the second electrode 11 are opposite to each other. Therefore, when an AC voltage is applied between the first electrode 10 and the second electrode 11, the first vibrating portion 41 and the second vibrating portion 42 bend and vibrate in mutually opposite phases.
  • the probe 12 can be vibrated by attaching the probe 12 in the deflection direction of the first vibrating portion 41.
  • FIG. 5 is a schematic view of an example in which a balancer is provided on the vibrator 9 in the force probe microscope according to the embodiment of the present invention.
  • the first vibrating portion 41 and the second vibrating portion 42 vibrate symmetrically, thereby obtaining a high Q value while suppressing loss.
  • the probe 12 is attached to the first vibrating portion 41, the balance of the effective mass may be lost and the Q value may be reduced. Therefore, by providing a balancer having substantially the same mass as the probe 12 in the second vibrating portion 42 that is in a vibrating state symmetric with the first vibrating portion 41, a decrease in the Q value can be suppressed.
  • FIG. 1 is a schematic view of an example in which a balancer is provided on the vibrator 9 in the force probe microscope according to the embodiment of the present invention.
  • FIG. 5a shows an example in which a balancer 51 is provided for a telescopic vibrator
  • FIG. 5b shows a tuning fork vibrator. If a balancer 51 is attached to the tip of the second vibrating part 42 at a position substantially symmetrical to the probe 12, good results can be obtained.
  • FIG. 6 is a schematic configuration diagram of an example in which cover portions for the sample 1 and the probe 12 are provided in the force probe microscope according to the embodiment of the present invention.
  • the liquid 8 between the sample 1 and the cover 6 is almost sealed, but evaporates little by little from the observation window 7. Thereby, the solution concentration of the liquid 8 and the liquid level in the observation window 7 may fluctuate. Therefore, by covering the sample 1 and the probe 12 and increasing the vapor pressure of the solvent of the liquid 8 in the cover, the evaporation of the liquid 8 can be suppressed.
  • the cover 61 is fixed to the sample stage 2 and covers the space including the probe 12.
  • An opening 62 is provided in the cover 61, and the vibrator 9 fixed to the vibrator holder 63 is introduced into the cover 61 through the opening 62.
  • the whole or a part of the vibrator 9 is introduced into the cover part 61.
  • a part of the vibrator holder 63 is also introduced into the cover part 62.
  • the area of the opening 62 is preferably as small as possible, but it should be larger than the size of the vibrator 9 or the vibrator holder 63 that passes through the opening 62 and should not have a size that does not hinder scanning in the XY plane by the XYZ scanning mechanism 3. I must.
  • FIG. 7 is a schematic diagram of a configuration example for making electrical contact with the surface of the sample 1 in the force probe microscope according to the embodiment of the present invention.
  • the conductive spacer 6 is used, and the spacer 6 is folded back on the upper surface of the cover 5.
  • a conductive sample holder 72 is fixed to the conductive sample stage 2 and holds the folded portion 71 of the cover 5 together with the cover 5 and the sample 1.
  • the conductive path is formed as follows: sample 1 surface ⁇ spacer 6 ⁇ folded portion 71 ⁇ sample presser 72 ⁇ sample table 2 and electrical connection from the sample table 2 to the sample 1 surface becomes possible.
  • FIG. 8 is a schematic diagram of a configuration example in which a temperature adjustment mechanism of the sample 1 is provided in the force probe microscope according to the embodiment of the present invention.
  • the sample stage 2 is provided with a heater 81, and a temperature sensor 82 is attached to the heater 81.
  • the temperature controller 83 keeps the temperature of the sample 1 constant by adjusting the output to the heater 81 so that the temperature read from the temperature sensor 82 is substantially equal to a preset temperature.
  • temperature constant such as a biomolecule and a living cell
  • FIG. 9 is a schematic diagram of a configuration example for circulating the liquid 8 in the force probe microscope according to the embodiment of the present invention.
  • a drainage tank 91 and a liquid supply tank 92 are installed on the surface of the sample 1 together with the cover 5 via the spacer 6.
  • the spacer 6 is provided with a slit, and the liquid 8 can freely move between the inside of the cover 5 and the drainage tank 91 and the liquid supply tank 92.
  • the drainage tank 91 and the liquid supply tank 92 are connected to a circulation pump 95 via a drainage pipe 93 and a liquid supply pipe 94, respectively, and the liquid 8 in the cover 5 is circulated by operating the circulation pump 95. Can be made.
  • a liquid such as a biomolecule or a living cell
  • the configuration as shown in FIG. 9 is desirable.
  • the configuration of the force probe microscope is the same as that shown in FIG.
  • a gold thin film having a thickness of 200 nm formed on a mica substrate by vacuum deposition and annealed in a hydrogen flame was used.
  • As the vibrator a 2.75 mm ⁇ 85 ⁇ m ⁇ 120 ⁇ m telescopic crystal resonator was used.
  • the probe was prepared by electropolishing (5 V, 50 Hz) a gold wire having a diameter of 20 ⁇ m in a hydrochloric acid-ethanol mixed solution.
  • the mass of the probe (about 0.15 ⁇ g) was 0.2% or less of the mass of the crystal resonator (about 80 ⁇ g).
  • An alternating voltage was applied to one electrode of the crystal unit using an oscillator, and the crystal unit was vibrated at a constant frequency of about 1000 kHz, which is the natural frequency of the crystal unit.
  • the current from the other electrode of the crystal unit is converted into a voltage signal using a current-voltage conversion circuit, the phase of this signal is compared with the phase of the applied AC voltage signal, and the change in phase difference is used.
  • the force applied to the probe was detected.
  • the phase comparison was performed by converting the two signals into a rectangular wave of a digital signal, calculating the exclusive OR of the two signals, and removing high-frequency components using a low-pass filter.
  • a cover glass having a thickness of about 120 ⁇ m with an observation window having a diameter of about 1 mm was placed on the surface of the sample, and an aluminum stay having a thickness of 50 ⁇ m was inserted as a spacer between the sample and the cover glass. In this state, the space between the sample and the cover glass was filled with pure water.
  • the sample was fixed on an XYZ scanner using a cylindrical piezo element with the observation surface facing upward.
  • the crystal resonator was fixed to a stage that can be moved up and down by a coarse movement mechanism using a stepping motor and a screw so as to face the sample observation surface. After adjusting the probe so that it was positioned directly above the observation window of the slide glass, the stepping motor was driven to bring the probe into contact with the sample surface.
  • the stepping motor was stopped after approaching until the phase signal of the crystal resonator exceeded a preset threshold value. Further, the XYZ scanner was adjusted in the Z direction so that the phase signal became a preset constant value by the feedback control system, and the distance between the probe and the sample was kept constant.
  • the probe was separated from the sample surface by 1 ⁇ m, and the frequency characteristics of the crystal resonator were measured in the liquid.
  • atmosphere is shown in FIG.
  • the frequency with the maximum amplitude was the resonance frequency, which was 995.21 kHz in the atmosphere and 995.17 kHz in the liquid.
  • the resonance frequency of the crystal resonator is lower than the natural frequency because the effective mass of the resonator is increased by the attached probe.
  • the Q value obtained from this frequency characteristic was 2840 in the atmosphere and 2490 in the liquid, and the Q value was reduced by about 12% due to the liquid.
  • the vibration characteristic in the liquid is greatly improved in the method of the present invention compared to the Q value in the liquid being reduced to about 1/100 in the atmosphere. It was.
  • FIG. 11 shows a surface shape image obtained by mapping the stored surface shape data to the XY coordinates of the sample surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 液体中においても力プローブのQ値を低下させることなく高分解能で測定可能な力プローブ顕微鏡を提供する。 振動子9の先端に探針12を設け、この探針の長さを、試料台2上の、液体を保持する手段5、6の厚さよりも長くした力プローブ顕微鏡を用い、試料1の表面の高さ分布を測定する。

Description

力プローブ顕微鏡及び高さ分布測定方法
 本発明は、溶液中で試料表面の形状を測定する液中力プローブ顕微鏡とその計測方法に関する。
 従来、溶液中試料の観察として、原子間力顕微鏡(AFM:Atomic Force Microscopy)が用いられている。この原子間力顕微鏡に代表される走査プローブ顕微鏡は、超高真空中、大気中等の多様な環境で動作が可能な顕微手法である。この手法は、鋭い探針先端と試料表面との相互作用を検出し、この相互作用の値を一定に保ちながら試料表面を走査することにより、表面形状を原子分子分解能で観察するものである。
 近年は、液中観察が脚光を浴びており、固液界面における分子の配列(例えば、非特許文献1)等の報告がなされている。
(福間剛志ら、フィジカル・レビュー・レターズ104巻16101頁2010年(T. Fukuma et al., Phys. Rev. Lett. 104, 16101 (2010)))
 ここで、AFMを溶液中で動作させる場合、プローブとして用いるカンチレバーを溶液中に導入して観察する必要がある。AFMにおいては、探針-試料間に作用する力を、カンチレバーの振動状態の変化として検出するが、溶液中では粘性抵抗のためカンチレバーの機械的振動のQ値が大幅に減少する。ここで、Q値とは、共振周波数を半値幅で割った値で、振動の安定度の指標であり、Q値の減少により力に対する感度が低下するという問題がある。また、カンチレバーの変位を検出するためのレーザー光学系が液面の変動を嫌うため、試料およびカンチレバーが外界から完全に遮断された環境で動作させる必要があり、測定の自由度が制限されている。
 本発明の目的は、液中においても力検出プローブの振動状態を悪化させることなく、また、大気中での測定と同等な簡便さで液中測定可能な力プローブ顕微鏡を提供することにある。
 力プローブ顕微鏡の探針のみを液中に導入し、振動子を液体に接触させなければ、液体の粘性抵抗による振動子のQ値の低下を抑えられるという新たな知見に基づき、振動子の先端に探針を設け、この探針の長さを、試料台上の、液体を保持する手段の厚さよりも長くする、という構成とする。
 より、具体的には、試料に対して垂直の振動成分を有する振動子と、前記振動子の先端に設けられた長さaの探針と、前記試料を載置する試料台と、前記試料表面に載置される厚さbのスペーサと、前記スペーサ上に載置される厚さcのカバーを有し、a>b+cの条件を備える力プローブ顕微鏡とする。
 そして、前記試料と前記カバーの間に液体を満たし、前記探針を前記カバーに設けられた観察窓に挿入することにより前記試料表面の形状を測定するものとする。
 本発明によれば、試料表面に設けたカバーとスペーサにより液体の深さを探針の長さよりも小さくすることにより、振動子を液面に接触させることなく、液体中の試料表面形状を測定することが可能となる。
本発明の実施形態に係る力プローブ顕微鏡の概略構成図である。 本発明の実施形態に係る力プローブ顕微鏡における、探針の信号入出力を行う回路の概略図である。 本発明の実施形態に係る力プローブ顕微鏡における、振動子と探針の構成例の概略図である。 本発明の実施形態に係る力プローブ顕微鏡における、振動子の形状例の概略図である。 本発明の実施形態に係る力プローブ顕微鏡における、振動子にバランサを設けた例の概略図である。 本発明の実施形態に係る力プローブ顕微鏡における、試料および探針に対する覆い部を設けた例の概略構成図である。 本発明の実施形態に係る力プローブ顕微鏡における、試料表面の電気的接触を取るための構成例の概略図である。 本発明の実施形態に係る力プローブ顕微鏡における、試料の温度調節機構を設けた構成例の概略図である。 本発明の実施形態に係る力プローブ顕微鏡における、液体の循環機構を設けた構成例の概略図である。 本発明の実施形態に係る力プローブ顕微鏡を用いて得られた、大気中および純水中における振動子の周波数特性である。 本発明の実施形態に係る力プローブ顕微鏡を用いて得られた、純水中における金表面の形状画像である。
 図1は、本発明の実施形態に係る力プローブ顕微鏡の概略構成図である。まず、試料台2上に、試料1を置き、スペーサ5とカバー6を置いて、内部に液体を注入する。こうして、試料1の観察面上にはスペーサ5を介してカバー6が置かれ、スペーサ5によって形成される試料1とカバー6との間の間隙には液体8が満たされることとなる。カバー6には観察窓7が設けられ、観察窓7が十分に小さい場合、表面張力により液体8は観察窓7の最上部まで満たされる。試料1の表面に対向して振動子9が配置され、その先端には探針12が設けられている。このとき、探針12の長さをa、スペーサ5の厚さをb、カバー6の厚さをcとすると、a>b+cの関係にある。振動子9および探針12は発振回路13により、振動子9に設けられた第一の電極10と第二の電極11との間に交流電圧を印加することにより、固有振動数かその近傍の周波数(固有振動数の±1%程度以内)で、測定試料1の表面に対して垂直方向に振動させられる。探針12は観察窓7から液体8中に導入され、試料1の表面近傍まで接近させられる。振動子9は探針12と試料1との間の相互作用により周波数特性が変化し、その変化は周波数特性検出器14を用いて検出される。試料1は試料台2を介してXYZ走査機構3および粗動機構4上に固定されており、XYZ走査機構3により探針12に対して3次元方位方向に移動させることができ、また、粗動機構4により試料1と探針12の間の距離を大きく変化させることができる。
 また、周波数特性検出器14からの振動子9の周波数特性変位信号は制御系15に入力される。探針12が試料1の表面と接触すると、探針12と試料1の距離にしたがって振動子9の周波数特性が変化する。具体的には、発振回路13により振動子9を一定の周波数で強制振動させた場合は、振動子9の振幅および位相が変化し、発振回路13により振動子9を自発発振させた場合は、振動子9の発振周波数が変化する。それぞれの場合に応じて、周波数特性検出器14からの振幅変化、位相変化、周波数変化信号の値が設定された一定の値となるように、制御系15を用いて、Z駆動部17を介してXYZ走査機構3をZ方向に駆動し、試料1の探針12に対するZ方向の位置を調整することにより、探針12と試料1との距離が一定値に保たれる。これにより、試料表面の凹凸によらず探針12と試料1との距離は常に一定となる。即ち、探針と試料表面との間の距離は、周波数特性検出器14と制御系15とを含む距離制御部により、試料の探針に対するZ方向の位置を調整することにより制御できる。
 測定は次のような手順で行う。まず、制御部16は粗動部19を介して粗動機構4を駆動することにより粗動を行い、探針12を試料1に数百nm程度まで接近させる。粗動は周波数特性検出器14から出力される信号があらかじめ設定したしきい値を超えた時点で停止し、その後、制御系15による探針‐試料間距離制御を開始する。次に、制御部16は走査部18を介してXYZ走査機構3を駆動することにより、試料1を探針12に対してXY方向に走査する。なお、試料1と探針12の距離は一定に保たれている。試料1を探針12に対してXY方向に走査する際、制御部16は、各測定点において制御系15からの出力信号を表面形状データとして取り込む。最後に、表面形状データを、各XY座標を用いて2次元的にマッピングし、表面形状の画像を表示装置20に表示する。
 観察窓7の開口径は可能な限り小さいことが好ましいが、探針12の直径よりも大きく、かつ、XYZ走査機構3によるXY面内走査を妨げないサイズでなければならない。また、操作性を考慮すると、直径0.5~2mm程度が望ましい。振動子9のQ値低下を抑えるためには、探針12の質量は、振動子9の質量の0.2%程度以下が望ましい。また、探針12の直径は、質量的にも液体8による粘性抵抗的にも、可能な限り小さいことが好ましいが、探針12の強度を考慮して、5~10μm程度が望ましい。
 なお、本実施例では、試料台を走査機構により走査する例を示したが、振動子と試料台を相対的に移動させれば良く、振動子を走査するようにしてもよい。
 また、スペーサ5、カバー6を別々の構成として記載したが、一体化させた構成としても良い。
 図2は、本発明の実施形態に係る力プローブ顕微鏡で、探針12が導電性を持ち、第一の電極10と電気的に結合されている場合において、発振回路13内で、探針12と試料1表面との間で信号の入出力を行う回路の概略構成図である。発振器21から出力された交流電圧信号は、結合コンデンサ22を介して、第一の電極10に印加される。第二の電極11からは対応した交流電流振動が出力され、電流電圧変換器23によって交流電圧信号に変換される。第一の電極10には信号入出力回路24が接続されており、探針12と試料1との間の入出力信号を処理する。例えば、信号入出力回路24が、電圧フォロワの場合、試料1表面の電位を探針12を介して測定でき、電流電圧変換回路の場合、探針12と試料1表面間を流れる電流を測定でき、電圧源の場合、探針12と試料1表面間に電圧を印加できる。
 図3は、本発明の実施形態に係る力プローブ顕微鏡における、振動子9と探針12の構成例の概略図である。図3aは探針12を振動子9の側面に接着した例、図3bは探針12を振動子9の底面に接着した例であり、いずれの場合も、探針12と試料1の電気的相互作用を測定する場合は、探針12を第一の電極10と電気的に接続する。図3cは第一の電極10の材料を延長し、その先端を探針12とした電極‐探針一体型の構成例であり、探針12は第一の電極10と電気的に接続されている。図3dは振動子9の第一の電極10と第二の電極11との間の誘電体部の材料を延長し、その先端を探針12とした振動子‐探針一体型の構成例であり、探針12と試料1の電気的相互作用を測定する場合は、金属蒸着等により探針12に導電性を持たせ、第一の電極10と電気的に接続する。また、振動子9を安定に振動させるためには、探針12の質量は振動子9の質量の0.2%以下であることが望ましい。
 図4は、本発明の実施形態に係る力プローブ顕微鏡における、振動子9の形状例の概略図である。図4aは伸縮型振動子の例であり、第一の電極10と第二の電極11との間に交流電圧を印加することにより、振動子9の長さが伸縮する。そのため、振動子9の中心を固定すると、第一の振動部41と第二の振動部42は互いに逆位相で振動する。第一の振動部41の伸縮方向に探針12を取り付けることにより、探針12を振動させることができる。図4bは音叉型振動子の例であり、振動子9の表裏には第一の電極10と第二の電極11が設けられているが、第一の振動部41および第二の振動部42では、第一の電極10と第二の電極11の表裏が互いに逆となっている。そのため、第一の電極10と第二の電極11との間に交流電圧を印加すると、第一の振動部41と第二の振動部42が互いに逆位相でたわみ振動する。第一の振動部41のたわみ方向に探針12を取り付けることにより、探針12を振動させることができる。
 図5は、本発明の実施形態に係る力プローブ顕微鏡における、振動子9にバランサを設けた例の概略図である。振動子9は第一の振動部41と第二の振動部42が対称に振動することにより、損失を抑えて高いQ値を得ている。しかし、探針12を第一の振動部41に取り付けたことにより、有効質量のバランスが崩れ、Q値が低下する可能性がある。そこで、第一の振動部41と対称な振動状態にある第二の振動部42に探針12とほぼ同質量のバランサを設けることにより、Q値低下が抑えられる。図5aは伸縮型振動子、図5bは音叉型振動子に対して、バランサ51を設けた例である。第二の振動部42の先端に探針12とほぼ対称な位置にバランサ51を取り付けると良好な結果が得られる。
 図6は、本発明の実施形態に係る力プローブ顕微鏡において、試料1および探針12に対する覆い部を設けた例の概略構成図である。試料1とカバー6との間の液体8はほぼ密閉されているが、観察窓7から少量ずつ蒸発する。これにより液体8の溶液濃度や観察窓7内の液面が変動する可能性がある。そこで、試料1および探針12をカバーし、カバー内の液体8の溶媒の蒸気圧を高めることにより、液体8の蒸発が抑えられる。覆い部61は試料台2に固定され、探針12を含む空間を覆っている。覆い部61には開口部62が設けられ、振動子ホルダ63に固定された振動子9は、開口部62を介して覆い部61の内部に導入される。振動子9は全体あるいは一部が覆い部61内部に導入され、前者の場合には、振動子ホルダ63の一部も覆い部62内に導入される。開口部62の面積は可能な限り小さいことが好ましいが、通過する振動子9あるいは振動子ホルダ63のサイズよりも大きく、また、XYZ走査機構3によるXY面内の走査の妨げとならないサイズでなければならない。
 図7は、本発明の実施形態に係る力プローブ顕微鏡において、試料1表面の電気的接触を取るための構成例の概略図である。試料1が表面のみ導電性を有している場合、試料1表面に対して電気的接触を形成する必要がある。導電性のスペーサ6を用い、さらに、スペーサ6をカバー5の上面に折り返す。導電性の試料台2には導電性の試料押さえ72が固定され、カバー5の折り返し部71を、カバー5および試料1と共に押さえる。これにより、導電経路が、試料1表面 → スペーサ6 → 折り返し部71 → 試料押さえ72 → 試料台2、と形成され、試料台2~試料1表面への電気的接続が可能となる。
 図8は、本発明の実施形態に係る力プローブ顕微鏡において、試料1の温度調節機構を設けた構成例の概略図である。試料台2にはヒータ81が設けられ、ヒータ81には温度センサ82が取り付けられている。温度制御部83は温度センサ82から読み取った温度が、あらかじめ設定された温度とほぼ等しくなるようにヒータ81への出力を調整することにより、試料1の温度を一定に保つ。生体分子、生体細胞など、温度を一定に保つ必要がある場合には、図8のような構成とするのが望ましい。
 図9は、本発明の実施形態に係る力プローブ顕微鏡において、液体8を循環させるための構成例の概略図である。試料1表面には、スペーサ6を介したカバー5と共に、排液タンク91および給液タンク92が設置されている。スペーサ6にはスリットが設けられ、カバー5内部と排液タンク91および給液タンク92との間は、液体8が自由に行き来できる。排液タンク91および給液タンク92はそれぞれ排液管93および給液管94を介して、循環ポンプ95に接続されており、循環ポンプ95を動作させることにより、カバー5内の液体8を循環させることができる。生体分子、生体細胞など、液体を循環させることが好ましい場合には、図9のような構成とするのが望ましい。
 実際に、マイカ上の金薄膜表面を測定した。力プローブ顕微鏡の構成は図1と同様である。真空蒸着によりマイカ基板上に厚さ200nmの金薄膜を形成し、水素炎中でアニール処理したものを用いた。振動子として、2.75mm×85μm×120μmの伸縮型水晶振動子を用いた。水晶振動子の先端には長さ300μm、直径10μmの金探針を接着した。探針は、直径20μmの金線を塩酸‐エタノール混合液中で電解研磨(5V、50Hz)することによって作製した。このとき、探針の質量(約0.15μg)は水晶振動子の質量(約80μg)の0.2%以下とした。発振器を用いて水晶振動子の一方の電極に交流電圧を印加し、水晶振動子の固有振動数である約1000kHzの一定の周波数で振動させた。また、水晶振動子の他方の電極からの電流を電流電圧変換回路を用いて電圧信号に変換し、この信号の位相と印加した交流電圧信号の位相とを比較し、その位相差変化を用いて探針に加わる力を検出した。位相比較は、二つの信号をデジタル信号の矩形波に変換後、両者の排他的論理和を演算し、ローパスフィルタにより高周波成分を除去することにより行った。
 試料表面には、中央に直径約1mmの観察窓を設けた厚さ約120μmのカバーガラスをかぶせ、試料とカバーガラスの間には、厚さ50μmのアルミ泊をスペーサとして挿入した。この状態で、試料‐カバーガラス間を純水で満たした。試料は円柱型のピエゾ素子を用いたXYZスキャナ上に観察面を上方に向けて固定した。水晶振動子は、ステッピングモータとネジを用いた粗動機構によって上下移動可能なステージに、試料観察面に対向して固定した。探針がスライドガラスの観察窓の真上に位置するように調整後、ステッピングモータを駆動し、探針を試料表面に接針させた。水晶振動子の位相信号が、あらかじめ設定されたしきい値を超えるまで接近させた後、ステッピングモータを停止した。さらに、フィードバック制御系により位相信号があらかじめ設定した一定の値となるようにXYZスキャナをZ方向に調整し、探針‐試料間の距離を一定に保持した。
 この状態から、探針を試料表面から1μm離し、水晶振動子の周波数特性を液中で測定した。あらかじめ大気中で測定した周波数特性と比較した結果を図10に示す。振幅が最大となる周波数が共振周波数で、大気中では995.21kH、液中では995.17kHzであった。大気中においても、水晶振動子の共振周波数が本来の固有振動数よりも低下しているのは、取り付けられた探針により振動子の有効質量が増加したためである。この周波数特性から得られたQ値は、大気中で2840、液中で2490であり、液体によりQ値が12%程度低下した。カンチレバーを液中で振動させる従来方式の場合、液中のQ値は大気中の1/100程度に低下するのと比較して、本発明の方式においては液中の振動特性が大幅に改善された。
 再び、探針を試料表面に接近させ、フィードバック制御系により探針‐試料間の距離を一定に保持した。この状態で、XYZスキャナをXY方向に駆動して、探針を試料表面の500nm×500nmの領域に対してラスター走査した。各測定座標において、探針‐試料間距離のフィードバック制御系からの出力値をD/Aコンバータで制御用PCに読み込み、表面形状データとして記憶した。試料表面のXY座標に対して、記憶した表面形状データをマッピングすることにより得られた表面形状画像を図11に示す。直径300nm程度の金結晶粒が明瞭に観察され、また、結晶粒表面のテラス領域にコンタミネーションと思われる微小な構造も観察されており、これらから分解能が5nm以下であることがわかった。
 以上、本実施例によれば、試料表面を覆うカバーとスペーサを用いて液体の深さを制御し、探針のみを液体中に導入することにより、力プローブのQ値低下を抑えることができ、また、高分解能で試料表面の液中観察が可能となる。
 固液界面の電気化学反応および触媒反応の評価、また、生体分子および生体細胞の評価に適用できる。
 1…試料、 2…試料台、 3…XYZ走査機構、 4…粗動機構、 5…スペーサ、 6…カバー、 7…観察窓、 8…液体、 9…振動子、 10…第一の電極、 11…第二の電極、 12…探針、 13…発振回路、 14…周波数特性検出器、 15…制御系、 16…制御部、 17…Z駆動部、 18…走査部、 19…粗動部、 20…表示部、 21…発振器、 22…結合コンデンサ、 23…電流電圧変換器、 24…信号入出力回路、 41…第一の振動部、 42…第二の振動部、 51…バランサ、 61…覆い部、 62…開口部、 63…振動子ホルダ、 71…折り返し部、 72…試料押さえ、 81…ヒータ、 82…温度センサ、 83…温度制御部、 91…排液タンク、 92…給液タンク、 93…排液管、 94…給液管、 95…循環ポンプ。

Claims (15)

  1.  試料を載置する試料台と、
     振動子と、
     前記振動子先端に設けられた探針と、
     前記試料と前記探針との距離を所定値に保ち、前記試料表面を走査することによって、前記試料表面の高さ分布を測定する手段と、
     前記試料台上に液体を保持する手段と、
     前記探針の長さは前記液体を保持する手段の厚さよりも長いことを特徴とする力プローブ顕微鏡。
  2.  前記液体を保持する手段は、スペーサと、観察窓部を有するカバーとを有し、
     前記探針の長さをa、前記スペーサの厚さをb、前記カバーの厚さをcとしたときに、a>b+cの関係にあることを特徴とする請求項1記載の力プローブ顕微鏡。
  3.  前記高さ分布を測定する手段は、
     前記振動子を振動させる発振器と、
     前記発振器と前記振動子との間に設けられた結合コンデンサと、
     前記振動子からの出力電流信号を電圧信号に変換する電流電圧変換器と、
     前記振動子に対し信号を入出力する信号入出力回路を備え、
     前記振動子は、第一の電極と誘電体と第二の電極から構成され、
     前記振動子の第一の電極と前記探針が電気的に接続され、前記第一の電極に対し前記結合コンデンサを介して前記発振器から前記振動子に振動信号を入力し、前記振動子の第二の電極からの出力電流を前記電流電圧変換器で電圧信号に変換し、前記信号入出力回路を用いて前記第一の電極の信号を入出力することを特徴とする請求項1記載の力プローブ顕微鏡。
  4.  前記探針は、前記振動子の下方側面または下面に設けられていることを特徴とする請求項1記載の力プローブ顕微鏡。
  5.  前記探針は、前記振動子の第一の電極が延伸されたものであることを特徴とする請求項1記載の力プローブ顕微鏡。
  6.  前記探針は、前記振動子の誘電体が延伸されたものであることを特徴とする請求項1記載の力プローブ顕微鏡。
  7.  前記振動子は伸縮型振動子であることを特徴とする請求項1記載の力プローブ顕微鏡。
  8.  前記振動子が音叉型振動子であることを特徴とする請求項1記載の力プローブ顕微鏡。
  9.  前記振動子の、前記探針とほぼ対称な位置に、ほぼ同質量のバランサを設けたことを特徴とする請求項1記載の力プローブ顕微鏡。
  10.  前記試料台と前記振動子をカバーする覆い部を備えたことを特徴とする請求項1記載の力プローブ顕微鏡。
  11.  前記液体を保持する手段は、導電性のスペーサと、観察窓部を有するカバーとを有し、
     前記導電性のスペーサは前記カバー上に延伸し折り返して形成され、
     前記試料台に固定され、前記折り返し部で前記試料と前記スペーサと前記カバーを抑える、導電性の試料押さえ部を備え、
     前記試料表面と前記試料台を電気的に導通させたことを特徴とする請求項1記載の力プローブ顕微鏡。
  12.  前記探針の質量は、前記振動子の質量の0.2%以下であることを特徴とする請求項1記載の力プローブ顕微鏡。
  13.  前記試料を加熱するヒータと、
     前記試料の温度を検出する温度センサと、
     前記ヒータへの出力を操作することにより前記温度センサの出力信号をほぼ一定に制御する温度制御部と、
    を備えたことを特徴とする請求項1記載の力プローブ顕微鏡。
  14.  前記スペーサに設けられたスリットと、
     前記カバーに接続された排液タンクおよび給液タンクと、
     前記排液タンクに接続された排液管と、
     前記給液タンクに接続された給液管と、
     前記排液管および前記給液管に接続された循環ポンプを備え、
     前記循環ポンプにより前記排液タンクから前記給液タンクへ前記液体を移動させることにより、前記カバー内の前記液体を循環させることを特徴とする請求項1記載の力プローブ顕微鏡。
  15.  試料台上に試料を設置するステップと、
     前記試料上の液体保持手段の内部に液体を注入するステップと、
     先端に探針が設けられた振動子を用い、前記液体の深さよりも長い長さの前記探針を前記液体に挿入し、前記試料表面を走査することによって、前記試料表面の高さ分布を測定するステップと
    を有することを特徴とする高さ分布測定方法。
PCT/JP2012/067268 2012-07-06 2012-07-06 力プローブ顕微鏡及び高さ分布測定方法 WO2014006734A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014523508A JPWO2014006734A1 (ja) 2012-07-06 2012-07-06 力プローブ顕微鏡及び高さ分布測定方法
PCT/JP2012/067268 WO2014006734A1 (ja) 2012-07-06 2012-07-06 力プローブ顕微鏡及び高さ分布測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067268 WO2014006734A1 (ja) 2012-07-06 2012-07-06 力プローブ顕微鏡及び高さ分布測定方法

Publications (1)

Publication Number Publication Date
WO2014006734A1 true WO2014006734A1 (ja) 2014-01-09

Family

ID=49881523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067268 WO2014006734A1 (ja) 2012-07-06 2012-07-06 力プローブ顕微鏡及び高さ分布測定方法

Country Status (2)

Country Link
JP (1) JPWO2014006734A1 (ja)
WO (1) WO2014006734A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103338A1 (ja) * 2014-12-24 2016-06-30 株式会社日立製作所 走査プローブ顕微鏡及びその試料ホルダ
JP2017044664A (ja) * 2015-08-28 2017-03-02 国立大学法人金沢大学 液中原子間力顕微鏡
JPWO2018220768A1 (ja) * 2017-05-31 2020-03-26 株式会社島津製作所 分析装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287606A (ja) * 1988-05-16 1989-11-20 Mitsubishi Electric Corp 走査型トンネル顕微鏡の微動機構
JPH03181802A (ja) * 1989-12-12 1991-08-07 Seiko Instr Inc 走査型トンネル顕微鏡
JPH04359575A (ja) * 1991-06-06 1992-12-11 Canon Inc 集積化アクチュエーターの製造方法
JPH09229948A (ja) * 1996-02-20 1997-09-05 Seiko Instr Inc 走査型近視野原子間力顕微鏡
JP2006071534A (ja) * 2004-09-03 2006-03-16 Sii Nanotechnology Inc 長尺体の試料観察に適したプローブ顕微鏡システム
JP2007120975A (ja) * 2005-10-25 2007-05-17 Univ Nagoya 音叉型原子間力顕微鏡プローブ、その調整方法及び製造方法
JP2009133721A (ja) * 2007-11-30 2009-06-18 Jeol Ltd 走査プローブ顕微鏡
WO2010123120A1 (ja) * 2009-04-24 2010-10-28 並木精密宝石株式会社 液中測定用プローブ及びカンチレバー及び液中測定方法
JP2010271297A (ja) * 2009-05-20 2010-12-02 Inha-Industry Partnership Inst 音叉−走査探針結合振動計

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108605A (ja) * 1999-10-14 2001-04-20 Nikon Corp 走査型プローブ顕微鏡用カンチレバー及びその製造方法、並びに走査型プローブ顕微鏡及び表面電荷測定顕微鏡

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287606A (ja) * 1988-05-16 1989-11-20 Mitsubishi Electric Corp 走査型トンネル顕微鏡の微動機構
JPH03181802A (ja) * 1989-12-12 1991-08-07 Seiko Instr Inc 走査型トンネル顕微鏡
JPH04359575A (ja) * 1991-06-06 1992-12-11 Canon Inc 集積化アクチュエーターの製造方法
JPH09229948A (ja) * 1996-02-20 1997-09-05 Seiko Instr Inc 走査型近視野原子間力顕微鏡
JP2006071534A (ja) * 2004-09-03 2006-03-16 Sii Nanotechnology Inc 長尺体の試料観察に適したプローブ顕微鏡システム
JP2007120975A (ja) * 2005-10-25 2007-05-17 Univ Nagoya 音叉型原子間力顕微鏡プローブ、その調整方法及び製造方法
JP2009133721A (ja) * 2007-11-30 2009-06-18 Jeol Ltd 走査プローブ顕微鏡
WO2010123120A1 (ja) * 2009-04-24 2010-10-28 並木精密宝石株式会社 液中測定用プローブ及びカンチレバー及び液中測定方法
JP2010271297A (ja) * 2009-05-20 2010-12-02 Inha-Industry Partnership Inst 音叉−走査探針結合振動計

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103338A1 (ja) * 2014-12-24 2016-06-30 株式会社日立製作所 走査プローブ顕微鏡及びその試料ホルダ
JPWO2016103338A1 (ja) * 2014-12-24 2017-06-29 株式会社日立製作所 走査プローブ顕微鏡及びその試料ホルダ
US10073116B2 (en) 2014-12-24 2018-09-11 Hitachi, Ltd. Scanning probe microscope and its sample holder
JP2017044664A (ja) * 2015-08-28 2017-03-02 国立大学法人金沢大学 液中原子間力顕微鏡
JPWO2018220768A1 (ja) * 2017-05-31 2020-03-26 株式会社島津製作所 分析装置

Also Published As

Publication number Publication date
JPWO2014006734A1 (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
Giessibl The qPlus sensor, a powerful core for the atomic force microscope
US5559328A (en) Small cavity analytical instruments
US9213047B2 (en) Method and apparatus of electrical property measurement using an AFM operating in peak force tapping mode
Ichii et al. Frequency modulation atomic force microscopy in ionic liquid using quartz tuning fork sensors
EP2864798B1 (en) Method and apparatus of electrical property measurement using an afm operating in peak force tapping mode
US8443461B2 (en) Interatomic force measurements using passively drift compensated non-contact in situ calibrated atomic force microscopy—quantifying chemical bond forces between electronic orbitals by direct force measurements at subatomic lateral resolution
WO2014006734A1 (ja) 力プローブ顕微鏡及び高さ分布測定方法
JP2008500555A (ja) ねじれ共振モードにおいて電気的な特性を測定するための方法及び装置
WO2014041677A1 (ja) 力プローブ、計測装置及び計測方法
US7954165B2 (en) Scanning probe microscope
JP5765146B2 (ja) 原子間力顕微鏡におけるカンチレバー励振方法及び原子間力顕微鏡
JP5672200B2 (ja) 原子間力顕微鏡を用いた誘電特性測定方法
JP5418413B2 (ja) 原子間力顕微鏡におけるカンチレバー励振方法
JP5585965B2 (ja) カンチレバー励振装置及び走査型プローブ顕微鏡
JP2003329565A (ja) 走査プローブ顕微鏡
US20110321202A1 (en) Dynamic mode nano-scale imaging and position control using deflection signal direct sampling of higher mode-actuated microcantilevers
JP2005164544A (ja) プローブ装置、走査型プローブ顕微鏡および試料表示方法
Zhao et al. Piezoelectric bimorph-based scanner in the tip-scan mode for high speed atomic force microscope
Tsunemi et al. Development of multi-environment dual-probe atomic force microscopy system using optical beam deflection sensors with vertically incident laser beams
JP4805752B2 (ja) 誘電率測定装置
Stieg et al. A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface
JP2004109052A (ja) 走査型プローブ顕微鏡用プローブ及びそれを用いた走査型プローブ顕微鏡
Abrahamians et al. Contributed Review: Quartz force sensing probes for micro-applications
JP2005227139A (ja) 原子間力顕微鏡用カンチレバー
JP4975546B2 (ja) 誘電率測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880494

Country of ref document: EP

Kind code of ref document: A1