JPWO2013125668A1 - 非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池 Download PDF

Info

Publication number
JPWO2013125668A1
JPWO2013125668A1 JP2014500940A JP2014500940A JPWO2013125668A1 JP WO2013125668 A1 JPWO2013125668 A1 JP WO2013125668A1 JP 2014500940 A JP2014500940 A JP 2014500940A JP 2014500940 A JP2014500940 A JP 2014500940A JP WO2013125668 A1 JPWO2013125668 A1 JP WO2013125668A1
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particle powder
material particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014500940A
Other languages
English (en)
Other versions
JP6142868B2 (ja
Inventor
一路 古賀
一路 古賀
竜太 正木
竜太 正木
亮尚 梶山
亮尚 梶山
広明 升國
広明 升國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Publication of JPWO2013125668A1 publication Critical patent/JPWO2013125668A1/ja
Application granted granted Critical
Publication of JP6142868B2 publication Critical patent/JP6142868B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、スピネル構造を有し、少なくともLiとMnを主成分とする酸化物と少なくともLiとZrの酸化物とから成る非水電解質二次電池用正極活物質粒子粉末であって、少なくともLiとZrの酸化物が少なくとも2相以上の混相を形成し、且つ、該正極活物質粒子粉末中の少なくともLiとZrの酸化物の含有量が0.1〜4wt%であることを特徴とする非水電解質二次電池用正極活物質粒子粉末に関し、高温特性に優れた非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池を提供する。【選択図】 なし

Description

本発明は、非水電解質二次電池用正極活物質粒子粉末に関し、詳しくは、高出力で高温安定性に優れたマンガン酸リチウム粒子粉末から成る非水電解質二次電池用正極活物質粒子粉末に関する。
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。
従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、岩塩型構造のLiMnO、LiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoO2は高電圧と高容量を有する点で優れているが、コバルト原料の供給量が少ないことによる製造コスト高の問題や廃棄電池の環境安全上の問題を含んでいる。そこで、供給量が多く低コストで環境適性の良いマンガンを原料として作られるスピネル構造を有するマンガン酸リチウム粒子粉末(基本組成:LiMn−以下、同じ−)の研究が盛んに行われている。
周知の通り、スピネル構造であるマンガン酸リチウム粒子粉末は、マンガン化合物とリチウム化合物とを所定の割合で混合し、700〜1000℃の温度範囲で焼成することによって得ることができる。
しかしながら、マンガン酸リチウム粒子粉末をリチウムイオン二次電池の正極活物質として用いた場合、高電圧と高エネルギー密度を有するものの、充放電サイクル特性が劣るという問題がある。この原因は、充放電の繰り返しに伴う結晶構造中のリチウムイオンの脱離・挿入挙動によって結晶格子が伸縮して、結晶の体積変化によって格子破壊が生じることや電解液中へマンガンが溶解することと考えられている。
マンガン酸リチウム粒子粉末を用いたリチウムイオン二次電池にあっては、充放電の繰り返しによる充放電容量の劣化を抑制し、特に高温、低温での充放電サイクル特性を向上させることが現在最も要求されている。
充放電サイクル特性を向上させるためには、マンガン酸リチウム粒子粉末からなる正極活物質が充填性に優れ、適度な大きさを有すること、更にマンガン溶出を抑制することが必要である。その手段としては、マンガン酸リチウム粒子の粒子径及び粒度分布を制御する方法、焼成温度を制御して高結晶のマンガン酸リチウム粒子粉末を得る方法、異種元素を添加して結晶の結合力を強化する方法、表面処理を行うことや、添加物を混ぜることでマンガンの溶出を抑制する方法等が行われている。
これまで、マンガン酸リチウム粒子粉末にアルミニウムを含有させることが知られている(特許文献1)。また、マンガン酸リチウムを作製する際に、焼結助剤として酸化ホウ素、ホウ酸、ホウ酸リチウム、ホウ酸アンモニウム等を添加することで、焼結助剤効果を得られることが知られている(特許文献2)。また、マンガン酸リチウムの硫黄含有量を低減することが知られている(特許文献3)。
また、Zr酸化物を添加剤やコート剤として用いるによりマンガン酸リチウムの特性を向上させる試みが種々為されている。例えば、LiZrOをマンガン酸リチウムの粒子表層にコアシェル構造のように形成させることにより特性向上させる手法が示されている(特許文献4)。また、電池の中にLiZrOを含有させたシート状のものを入れることでガス吸着剤とし、ガス発生を抑制することが記載されている(特許文献5)。
特開2001−146425号公報 特開2001−48547号公報 特開2002−198047号公報 特表2004−536420号公報 特開2004−152619号公報
非水電解質二次電池用の正極活物質として出力特性と高温特性を改善する材料が、現在最も要求されているところであるが、未だ必要十分な要求を満たす材料や製造方法が得られていない。
即ち、前記特許文献1〜3には、それぞれ、金属元素をマンガンの一部をAl元素で置換したマンガン酸リチウム、焼結助剤を少量添加したマンガン酸リチウム、硫黄量を低減したマンガン酸リチウムが記載されているが、電池の高温特性が満足するものではなく実用的にまだ不十分であった。
また、前記特許文献4では、LiZrOをマンガン酸リチウム粒子表層にコアシェル構造のようにコートしてあるが、該文献の製造方法ではLiZrO中のLiがスピネル構造のマンガン酸リチウム構造に取り込まれてしまい、ZrO化してしまう。それに、Liイオン輸率が落ちてしまい、必要とされるレート特性が得られなくなってしまう。また、前記特許文献5では、電池内で発生するガスを吸収し抑制する効果について記載されているが、電池特性を向上させることについては述べていない。
そこで、本発明では、高温特性に優れた非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池を提供することを技術的課題とするものである。
前記技術的課題は、次の通りの本発明によって達成できる。
即ち、本発明は、スピネル構造を有し、少なくともLiとMnを主成分とする酸化物と少なくともLiとZrの酸化物とから成る非水電解質二次電池用正極活物質粒子粉末であって、少なくともLiとZrの酸化物が少なくとも2相以上の混相を形成し、且つ、該正極活物質粒子粉末中の少なくともLiとZrの酸化物の含有量が0.1〜4wt%であることを特徴とする非水電解質二次電池用正極活物質粒子粉末である(本発明1)。
また、本発明は、少なくともLiとZrの酸化物がLiZrOを主の相とし、LiZrO、LiZr、LiZrOの少なくとも一種以上と混相を形成しており、且つその混相の存在比が、99:1〜92:8の割合である本発明1に記載の非水二次電池用正極活物質粒子粉末である(本発明2)。
また、本発明は、少なくともLiとZrの酸化物の結晶子サイズが100〜600nmである本発明1又は2に記載の非水二次電池用正極活物質粒子粉末である(本発明3)。
また、本発明は、前記非水二次電池用正極活物質粒子粉末を正極として使用し、対極にリチウム金属を使用して成る二次電池において、レート特性改善率が1%以上であり、且つサイクル特性改善率が1%以上である本発明1〜3の何れかに記載のリチウム電池正極活物質粒子粉末である(本発明4)。
また、本発明は、本発明1〜4のいずれかに記載の非水二次電池用正極活物質粒子粉末の製造方法であって、スピネル構造を有し少なくともLiとMnを主成分とするリチウムマンガン複合酸化物に、少なくともLiとZrの酸化物を0.1〜4wt%の範囲で混合することを特徴とする非水二次電池用正極活物質粒子粉末の製造方法である(本発明5)。
また、本発明は、本発明1〜4のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末を使用した非水電解質二次電池である(本発明6)。
本発明に係る非水電解質二次電池用正極活物質粒子粉末は、高出力であり、高温安定性に優れているので、非水電解質二次電池用の正極活物質として好適である。
図1は実施例で合成したLiとZrの酸化物のXRD回折である((a)1000℃で焼成したもの、(b)1200℃で焼成したもの)。 図2は実施例1で得られた正極活物質粒子粉末の走査型電子顕微鏡写真である。
本発明の構成をより詳しく説明すれば次の通りである。
先ず、本発明に係る非水電解質二次電池用正極活物質粒子粉末について述べる。
本発明に係る正極活物質粒子粉末は、スピネル構造を有し少なくともLiとMnを主成分とする酸化物と、少なくともLiとZrの酸化物により構成される正極活物質粒子粉末である。なお、「少なくともLiとZrの酸化物」とは、少なくともLi及びZrを含有する複合酸化物を意味し、「少なくとも」を省略することもある。
スピネル構造を有し少なくともLiとMnを主成分とする酸化物は、例えばマンガン酸リチウムや5V領域で電池作動するニッケル置換マンガン酸リチウムがある。本発明における該マンガン酸リチウムは、Mnが遷移金属で一部置換されていてもよい。また、XRD回折にて異相が見られない限りは、出発原料や製造方法は問わない。
本発明における少なくともLiとZrの酸化物はXRD回折より相を同定したときに2相以上を有する混相を形成する。その主の相はLiZrOであり、主の相以外は例えばLiZrO、LiZr、LiZrOがある。本発明においては好ましくはLiZrである。
本発明に係る非水電解質二次電池用正極活物質粒子粉末において、LiとZrの酸化物の含有量は0.1〜4.0wt%である。0.1wt%未満のとき、添加効果、すなわち電池特性にて出力特性やサイクル特性の改善が見られない。4.0wt%を超えるときは電池特性が悪化してしまう。また、Mn溶出量が大きくなってしまう。好ましい範囲は、0.5〜3.5wt%である。
また、本発明に係るLiとZrの酸化物の主の相であるLiZrOと主の相以外の相の存在比率は99:1〜92:8が好ましい。本発明の範囲より外れると電池特性が悪化してしまう。より好ましい範囲は、99:1〜94:6であり、更に好ましくは99:1〜96:4である。
本発明に係るLiとZrの酸化物の結晶子サイズは100〜600nmが好ましい。100nmより小さいときはLiとZrの酸化物以外の相が発生していて特性が悪化する。600nmを超えるときはLiとZrの酸化物による特性向上効果が弱まってしまう。より好ましい範囲は200〜600nmである。
一般的にZrOは、高温において電子が空孔を伝わる電子ホッピングにより電子伝導性が向上することが知られている。LiとZrの酸化物は、この電子ホッピングを室温にて発揮させることができるのではないかと発明者は考えている。そのため、本発明における該非水電解質二次電池用正極活物質粒子粉末のように、LiとZrの酸化物が本発明に記載の範囲で存在することで、電池として電子伝導性を向上させることができると考えられる。
また、本発明に係るLiとZrの酸化物は、非水電解質二次電池用正極活物質粒子に対してコアシェルであったりアイランド状で存在する必要は無いことがわかった。これは、前記特許文献4で記載されていることとは全くの反対の結果である。すなわち、本発明においては、スピネル構造を有し少なくともLiとMnを主成分とする酸化物とLiとZrの酸化物とは、それぞれ独立した粒径を有する粒子であり、それらが単純に所定の比率で混合している構成を有する。発明者らの鋭意検討の結果、本発明において重要であることは、LiとZrの酸化物が本発明の範囲にあるような混相を形成し、本発明にある結晶子サイズを持っており、該正極活物質粒子粉末と所定の量で存在していることを見出した。
本発明に係る正極活物質粒子粉末の平均粒径D50が2μm未満の場合、電解液との接触面積が上がりすぎることによって電解液との反応性が高くなり、充電時の安定性が低下する可能性がある。平均粒径D50が20μmを超えると、電極内の抵抗が上昇して、充放電レート特性が低下する可能性がある。
次に、正極活物質粒子粉末の製造法について述べる。
本発明に係る非水電解質用二次電池正極活物質粒子粉末は、スピネル構造を有し少なくともLiとMnを主成分とする酸化物に対して、少なくともLiとZrを主成分とする酸化物を0.1〜4wt%の範囲で混合させることで得ることができる。
上記のスピネル構造を有し少なくともLiとMnを主成分とする酸化物を製造する方法としては、特に制限はなく、例えば、マンガン原料、リチウム原料、必要により異種元素の原料を所定のモル比で混合した後、750℃〜1000℃で焼成して得ることができる。本発明におけるスピネル構造を有し少なくともLiとMnを主成分とする酸化物の平均粒径D50は、通常2〜20μm、好ましくは3〜18μmである。
上記の少なくともLiとZrの酸化物を製造する方法としては、特に制限はなく、例えば、Li化合物には炭酸リチウム、硝酸リチウム、酢酸リチウム、酸化リチウム、水酸化Liなどを使用できる。また、Zr化合物には酸化ジルコニウム、水酸化ジルコニウム、酢酸ジルコニウムなどを使用できる。前記Li化合物と前記Zr化合物とをLi/Zr=2:1となるように秤量・混合し、920℃〜1200℃の範囲で焼成することにより、上記の結晶子サイズを有し、2相以上を有する混相を形成したLiとZrの酸化物を製造できる。
次いで、マンガン酸リチウムを代表とした少なくともLiとMnを主成分とする酸化物に、少なくともLiとZrの酸化物を混合させる。混合方法としては、特に制限はなく、例えば、ボールミル、サンドミル、ミックスマーラーを使用した方法で混合できる。
仮に、LiとZrの酸化物を用意して、マンガン酸リチウム合成時に添加剤として添加し焼成したとすると、Liがマンガン酸リチウムに取り込まれ、その結果LiとZrの酸化物はZrOといったZr酸化物となってしまう。そのため、本発明では、マンガン酸リチウムを代表とした少なくともLiとMnを主成分とする酸化物に、少なくともLiとZrの酸化物を混合させる必要がある。
次に、本発明に係る非水電解質二次電池用正極活物質粒子粉末からなる正極活物質を用いた正極について述べる。
本発明に係る正極活物質粒子粉末を含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
本発明に係る正極活物質粒子粉末を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。
負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。
また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。
さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。
本発明に係る正極活物質粒子粉末を含有する正極を用いて製造した非水電解質二次電池は、後述する評価法でレート特性改善率が1%以上で、且つサイクル特性改善率が1%以上である。
本発明に係る正極活物質粒子粉末を用いたとき、LiとZrの酸化物の電子伝導性が向上する効果とともに、電解液中に発生するHFをトラップし正極活物質の劣化を抑える効果があると考えられる。また、活物質粒子表層にコアシェル構造ではなくバルクとして存在していることにより、正極活物質のバルク/界面におけるイオンの輸率も低下することなく、寧ろ電子伝導性の低下やHFによる劣化を防ぐことができるために、レート特性やサイクル特性が向上すると考えられる。
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。以下の実施例および比較例における評価方法を示す。
組成は、0.2gの試料を20%塩酸溶液25mlの溶液で加熱溶解させ、冷却後100mlメスフラスコに純水を入れ調整液を作製し、測定にはICAP[SPS−4000
セイコー電子工業(株)製]を用いて各元素を定量して決定した。
Mn溶出量は、グローブボックス内で2gの試料に20mlの電解液(1M LiPF6/EC:DEC(3:7))を添加し封をし、80℃の恒温槽で7日間放置した後に、上澄み液を抽出、フィルタリングしてICAP[SPS−4000 セイコー電子工業(株)製]を用いて測定した。
試料のX線回折は、株式会社リガク製 SmartLabで、ターゲットにCuを用いて、0.02度ステップスキャン(0.6秒ホールド)により測定した。
結晶子サイズは、前記粉末X線回折結果からリートベルト法(RIETAN2000)で算出した。
LiとZrの酸化物の相の同定は、前記粉末X線回折結果からPDXL(リガク製)にあるRIR法を用いて算出した。
粒子の平均粒径D50は レーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて湿式レーザー法で測定した。
本発明に係る正極活物質粒子粉末については、2032型コインセルを用いて電池評価を行った。
電池評価に係るコインセルについては、正極活物質粒子粉末として複合酸化物を92重量%、導電材としてアセチレンブラックを2.5重量%、グラファイトを2.5重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン3重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、1.5t/cmで圧着したものを正極に用いた。負極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いて2032型コインセルを作製した。
レート特性について、25℃とした環境下で0.1Cで4.3VまでCC−CV条件で充電し、その後3.0VまでCC条件で放電した(そのときの放電容量をaとする)。その後、0.1Cで4.3VまでCC−CV条件で充電し、3.0Vまで10CでCC条件で放電した(そのときの放電容量をbとする)。このとき、レート特性=100×b/aとした。
また、レート特性向上率について、本発明におけるLiとZrの酸化物を添加していないもの(参考例1、参考例2)のレート特性をv%として、本発明にあるようなLiとZrの酸化物を適宜添加されているもののレート特性をw%としたときに、レート特性向上率=w−vとした。
サイクル特性について、60℃とした環境下で1サイクル目において1Cで4.3VまでCC−CV条件で充電し、その後3.0VまでCC条件で放電した(そのときの放電容量をcとする)。その後、1Cで3.0−4.3Vまで充電はCC−CV条件で放電はCC条件で行い、同条件を30サイクルまで繰り返し操作した。それから31サイクル目に1Cで4.3VまでCC−CV条件で充電し、その後3.0VまでCC条件で放電した(そのときの放電容量をdとする)。このとき、サイクル特性=100×d/cとした。
また、サイクル特性向上率について、本発明におけるLiとZrの酸化物を添加していないもの(参考例1、参考例2)のサイクル特性をx%として、本発明にあるようなLiとZrの酸化物を適宜添加されているもののサイクル特性をy%としたときに、レート特性向上率=y−xとした。
以下に本発明によるスピネル構造でLiとMnが主成分である酸化物の例として、マンガン酸リチウムの例ついて述べる。
参考例1(マンガン酸リチウム粒子粉末の製造1):
窒素通気のもと、3.5モルの水酸化ナトリウムに0.5モルの硫酸マンガンを加え全量を1Lとし、得られた水酸化マンガンを90℃で1時間熟成させた。熟成後、空気を通気させ90℃で酸化させ、水洗、乾燥後することで酸化マンガン粒子粉末を得た。
前記酸化マンガン粒子粉末、炭酸リチウム及び水酸化アルミニウムをLi:Mn:Al=1.07:1.83:0.10の割合になるようにボールミルにて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で960℃、3時間保持することでマンガン酸リチウム粒子粉末を得た。
ここで得たマンガン酸リチウム粒子粉末のMn溶出量は577ppmであり、当該粒子粉末からなる正極活物質を用いて作製したコイン型電池は、初期放電容量が105mAh/gであった。レート特性は95.9%でサイクル特性は96.6%であった。
(LiとZrの酸化物の製造):
炭酸リチウムとZrO(D50:0.6μm)をLi/Zr=2:1となるように秤量して乳鉢で1時間混合した。この混合物を大気中で1000℃、1200℃、1400℃で5時間焼成した。
このとき1000℃で焼成したもの(図1の(a))は、XRD測定の結果主相がLiZrOで、それ以外の相としてLiZrがあり、存在比率をRIR法により算出すると、97:3の比であった。また、1200℃で焼成したもの(図1の(b))はXRD測定の結果主相がLiZrOで、それ以外の相としてLiZrがあり、RIR法により算出すると、99:1の比であった。また、1400℃で焼成したものはXRD測定の結果主相がLiZrOで、それ以外の相は見当たらなかった。
実施例1:
参考例1で得られたマンガン酸リチウムに対し、1000℃で焼成したLiとZrの酸化物を該マンガン酸リチウムに対し1wt%秤量添加し、両粉末をボールミルにて1hr乾式混合した。得られたマンガン酸リチウム粒子粉末のMn溶出量は423ppmで、当該粒子粉末からなる正極活物質を用いて作製したコイン型電池は、レート特性は97.7%でサイクル特性は99.0%であった。得られた正極活物質粒子粉末の諸特性を表1に示す。
実施例2:
参考例1で得られたマンガン酸リチウムに、1000℃で焼成したLiとZrの酸化物を2wt%秤量添加し、ボールミルにて1hr乾式混合した。得られた正極活物質粒子粉末の諸特性を表1に示す。
実施例3:
参考例1で得られたマンガン酸リチウムに、1000℃で焼成したLiとZrの酸化物
を4wt%秤量添加し、ボールミルにて1hr乾式混合した。得られた正極活物質粒子粉末の諸特性を表1に示す。
実施例4:
参考例1で得られたマンガン酸リチウムに、1200℃で焼成したLiとZrの酸化物を2wt%秤量添加し、ボールミルにて1hr乾式混合した。得られた正極活物質粒子粉末の諸特性を表1に示す。
比較例1:
参考例1で得られたマンガン酸リチウムに、1000℃で焼成したLiとZrの酸化物を6wt%秤量添加し、ボールミルにて1hr乾式混合した。得られた正極活物質粒子粉末の諸特性を表1に示す。
比較例2:
参考例1で得られたマンガン酸リチウムに、1400℃で焼成したLiとZrの酸化物を2wt%秤量添加し、ボールミルにて1hr乾式混合した。得られた正極活物質粒子粉末の諸特性を表1に示す。
比較例3:
参考例1で得られたマンガン酸リチウムに、ZrO(D50:0.6μm)を1wt%添加した。得られた正極活物質粒子粉末の諸特性を表1に示す。
参考例2(マンガン酸リチウム粒子粉末の製造2):
窒素通気のもと、3.5モルの水酸化ナトリウムに0.5モルの硫酸マンガンを加え全量を1Lとし、得られた水酸化マンガンを90℃で1時間熟成させた。熟成後、空気を通気させ90℃で酸化させ、水洗、乾燥後することで酸化マンガン粒子粉末を得た。
前記酸化マンガン粒子粉末、炭酸リチウム及び酸化マグネシウムをLi:Mn:Mg=1.07:1.88:0.05の割合になるようにボールミルにて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で870℃、3時間保持することでマンガン酸リチウム粒子粉末を得た。
ここで得たマンガン酸リチウム粒子粉末からなる正極活物質を用いて作製したコイン型電池は、初期放電容量が107mAh/gであった。レート特性は94.8%でサイクル特性は95.7%であった。
実施例5:
参考例2で得られたマンガン酸リチウムに、1000℃で焼成したLiとZrの酸化物を2wt%秤量添加し、ボールミルにて1hr乾式混合した。
ここで得たマンガン酸リチウム粒子粉末からなる正極活物質を用いて作製したコイン型電池は、レート特性は97.1%でサイクル特性は97.1%であった。得られた正極活物質粒子粉末の諸特性を表1に示す。
比較例4:
参考例2で得られたマンガン酸リチウムに、1200℃で焼成したLiとZrの酸化物を6wt%秤量添加し、ボールミルにて1hr乾式混合した。得られた正極活物質粒子粉末の諸特性を表1に示す。
実施例1で得られた正極活物質粒子粉末の走査型電子顕微鏡写真を図1に示す。図1から明らかなとおり、実施例1の正極活物質粒子は、マンガン酸リチウム粒子とLiとZrの酸化物とが単独で存在していることが分かる(コアシェル構造であったり、アイランド構造ではない)。
LiとZrの酸化物がこのような存在形態であるために、電池としてLiの移動における輸率の低下が発生することもなく、しかしながらマンガン酸リチウム粒子との接点があることで電子伝導性が向上すると考えられる。
本発明に係る非水電解質二次電池用正極活物質粒子粉末は、電池としたときにHFをトラップしたり電子伝導性を向上させることにより、レート特性が高く、サイクル特性に優れた二次電池用の正極活物質として好適である。

Claims (6)

  1. スピネル構造を有し、少なくともLiとMnを主成分とする酸化物と少なくともLiとZrの酸化物とから成る非水電解質二次電池用正極活物質粒子粉末であって、少なくともLiとZrの酸化物が少なくとも2相以上の混相を形成し、且つ、該正極活物質粒子粉末中の少なくともLiとZrの酸化物の含有量が0.1〜4wt%であることを特徴とする非水電解質二次電池用正極活物質粒子粉末。
  2. 少なくともLiとZrの酸化物がLiZrOを主の相とし、LiZrO、LiZr、LiZrOの少なくとも一種以上と混相を形成しており、且つその混相の存在比が、99:1〜92:8の割合である請求項1に記載の非水二次電池用正極活物質粒子粉末。
  3. 少なくともLiとZrの酸化物の結晶子サイズが100〜600nmである請求項1又は2に記載の非水二次電池用正極活物質粒子粉末。
  4. 前記非水二次電池用正極活物質粒子粉末を正極として使用し、対極にリチウム金属を使用して成る二次電池において、レート特性改善率が1%以上であり、且つサイクル特性改善率が1%以上である請求項1〜3の何れかに記載のリチウム電池正極活物質粒子粉末。
  5. 請求項1〜4のいずれかに記載の非水二次電池用正極活物質粒子粉末の製造方法であって、スピネル構造を有し少なくともLiとMnを主成分とするリチウムマンガン複合酸化物に、少なくともLiとZrの酸化物を0.1〜4wt%の範囲で乾式混合し、該混合粉末を用いて電極用塗料を作製することを特徴とする非水二次電池用正極活物質粒子粉末の製造方法。
  6. 請求項1〜4のいずれかに記載の非水電解質二次電池用正極活物質粒子粉末を使用した非水電解質二次電池。
JP2014500940A 2012-02-23 2013-02-22 非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池 Active JP6142868B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012037134 2012-02-23
JP2012037134 2012-02-23
PCT/JP2013/054462 WO2013125668A1 (ja) 2012-02-23 2013-02-22 非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池

Publications (2)

Publication Number Publication Date
JPWO2013125668A1 true JPWO2013125668A1 (ja) 2015-07-30
JP6142868B2 JP6142868B2 (ja) 2017-06-07

Family

ID=49005845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014500940A Active JP6142868B2 (ja) 2012-02-23 2013-02-22 非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池

Country Status (7)

Country Link
US (1) US9515315B2 (ja)
EP (1) EP2819224B1 (ja)
JP (1) JP6142868B2 (ja)
KR (1) KR102024409B1 (ja)
CN (1) CN104160531B (ja)
TW (1) TW201347278A (ja)
WO (1) WO2013125668A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153248B2 (ja) * 2013-05-23 2017-06-28 国立研究開発法人産業技術総合研究所 全固体リチウム二次電池用正極活物質およびこれを用いた全固体リチウム二次電池
US11145923B2 (en) * 2016-10-13 2021-10-12 Prologium Technology Co., Ltd. Battery structure
TWI770603B (zh) * 2019-09-13 2022-07-11 德商贏創運營有限公司 藉由噴霧熱解製備奈米結構的混合鋰鋯氧化物
CN113548893B (zh) * 2020-04-23 2022-08-09 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷电解质
CN113991100A (zh) * 2021-09-18 2022-01-28 浙江理工大学 一种复相锆酸锂改性高镍三元正极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502161A (ja) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション 二次電池用正極活物質およびその製造方法
JP2006202702A (ja) * 2005-01-24 2006-08-03 Hitachi Maxell Ltd 非水電解質二次電池
JP2009152197A (ja) * 2007-12-18 2009-07-09 Samsung Sdi Co Ltd カソード及びこれを採用したリチウム電池
JP2011233234A (ja) * 2010-04-23 2011-11-17 Toyota Industries Corp リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199522B2 (ja) 1999-08-17 2013-05-15 日揮触媒化成株式会社 スピネル型リチウム・マンガン複合酸化物、その製造方法および用途
JP3900328B2 (ja) 1999-11-12 2007-04-04 日本化学工業株式会社 リチウムマンガン複合酸化物の製造方法
JP2002198047A (ja) 2000-12-27 2002-07-12 Shin Kobe Electric Mach Co Ltd リチウム二次電池
US6558844B2 (en) * 2001-01-31 2003-05-06 Wilmont F. Howard, Jr. Stabilized spinel battery cathode material and methods
JP2004152619A (ja) 2002-10-30 2004-05-27 Sony Corp 非水電解質電池
JP5153135B2 (ja) 2006-03-09 2013-02-27 三洋電機株式会社 非水電解質二次電池
KR20090006753A (ko) 2007-07-11 2009-01-15 도다 고교 가부시끼가이샤 비수전해질 이차 전지용 복합 정극 활성 물질의 제조 방법
JP2009146822A (ja) 2007-12-17 2009-07-02 Panasonic Corp 非水電解質二次電池
KR101154876B1 (ko) * 2009-01-06 2012-06-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질
JP5509918B2 (ja) * 2009-03-27 2014-06-04 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
JP5218782B2 (ja) 2009-11-27 2013-06-26 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
US9764962B2 (en) 2011-04-14 2017-09-19 Toda Kogyo Corporation Li—Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502161A (ja) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション 二次電池用正極活物質およびその製造方法
JP2006202702A (ja) * 2005-01-24 2006-08-03 Hitachi Maxell Ltd 非水電解質二次電池
JP2009152197A (ja) * 2007-12-18 2009-07-09 Samsung Sdi Co Ltd カソード及びこれを採用したリチウム電池
JP2011233234A (ja) * 2010-04-23 2011-11-17 Toyota Industries Corp リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG-MAO LIN ET AL.: "Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 152, no. 8, JPN6016029155, 2005, US, pages 1526 - 1532, ISSN: 0003369405 *

Also Published As

Publication number Publication date
JP6142868B2 (ja) 2017-06-07
CN104160531A (zh) 2014-11-19
KR102024409B1 (ko) 2019-09-23
EP2819224A1 (en) 2014-12-31
TW201347278A (zh) 2013-11-16
US20150037677A1 (en) 2015-02-05
CN104160531B (zh) 2016-09-21
US9515315B2 (en) 2016-12-06
EP2819224B1 (en) 2018-04-25
TWI560931B (ja) 2016-12-01
WO2013125668A1 (ja) 2013-08-29
EP2819224A4 (en) 2015-10-21
KR20140135163A (ko) 2014-11-25

Similar Documents

Publication Publication Date Title
JP6665060B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5573081B2 (ja) 非水電解液二次電池用マンガン酸リチウム粒子粉末の製造方法、並びに非水電解液二次電池
JP5472602B2 (ja) マンガン酸リチウム粒子粉末の製造方法及び非水電解質二次電池
JP6167822B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
JP6693415B2 (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電地
JP6053982B1 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
JP2018014322A (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6142868B2 (ja) 非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池
JP2015056382A (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6341095B2 (ja) 非水電解質二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2015220220A (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6109399B1 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
JP6826447B2 (ja) 正極活物質粒子中の残存リチウム量の低減方法
JP2004002066A (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池
JP5594500B2 (ja) 非水電解液二次電池用マンガン酸リチウム、並びに非水電解液二次電池
JP2013232438A (ja) リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6142868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250