JPWO2013094465A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
JPWO2013094465A1
JPWO2013094465A1 JP2013550231A JP2013550231A JPWO2013094465A1 JP WO2013094465 A1 JPWO2013094465 A1 JP WO2013094465A1 JP 2013550231 A JP2013550231 A JP 2013550231A JP 2013550231 A JP2013550231 A JP 2013550231A JP WO2013094465 A1 JPWO2013094465 A1 JP WO2013094465A1
Authority
JP
Japan
Prior art keywords
negative electrode
lithium secondary
secondary battery
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013550231A
Other languages
English (en)
Other versions
JP6253411B2 (ja
Inventor
祐介 中村
祐介 中村
春樹 上剃
春樹 上剃
昌明 木部
昌明 木部
山田 將之
將之 山田
至 御書
至 御書
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2013550231A priority Critical patent/JP6253411B2/ja
Publication of JPWO2013094465A1 publication Critical patent/JPWO2013094465A1/ja
Application granted granted Critical
Publication of JP6253411B2 publication Critical patent/JP6253411B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】4.3V以上の高電圧で連続的に充電を継続しても安定に使用し得るリチウム二次電池を提供する。【解決手段】 一般組成式Li1+yNi1−a−b−cCoaMnbM1cO2〔ただし、M1はMg、Al、Ti、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Sn、W、B、PおよびBiよりなる群から選択される少なくとも1種の元素であり、−0.15≰y≰0.15、0.05≰a≰0.3、0.05≰b≰0.3、0≰c≰0.03、およびa+b+c≰0.5である〕で表されるリチウムニッケル複合酸化物を含有する正極と、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≰x≰1.5である)を含有する負極と、分子内にニトリル基を有する化合物を含有する非水電解質と、セパレータとを備えているリチウム二次電池により、前記課題を解決する。【選択図】 なし

Description

本発明は、4.3V以上の高電圧で連続的に充電を継続しても安定に使用し得るリチウム二次電池に関するものである。
近年、携帯電話、ノート型パソコンなどの携帯型電子機器の発達や、電気自動車の実用化などに伴って、小型軽量でかつ高容量のリチウム二次電池が必要とされるようになってきた。
リチウム二次電池では、通常、正極活物質に、LiCoOやLiMnOなどのリチウム含有複合酸化物が使用されており、更に、負極活物質には、黒鉛質炭素材料などの他、リチウム二次電池の高容量化を目的として、Siの超微粒子がSiO中に分散した構造を持つSiOを使用する検討が進んでいる(例えば、特許文献1〜3)。
リチウム二次電池の高容量化にあたっては、容量の大きな活物質の使用の他にも、充電電圧を高める手法が考えられる。例えば、現在汎用されているLiCoOを正極活物質とするリチウム二次電池では、充電電圧の上限値を4.2V程度とすることが一般的であるが、前記の手法は、充電電圧を前記の値よりも高めることで、更なる高容量化を図るというものである。
また、非水電解質に種々の添加剤を含有させて、リチウム二次電池の特性改善を図ることも行われている。例えば、特許文献4には、分子内にニトリル基を2以上有する化合物を非水電解質に含有させて、充放電サイクル特性などを高めたリチウム二次電池が開示されている。
特開2004−047404号公報 特開2005−259697号公報 特開2008−210618号公報 特開2008−108586号公報
ところで、携帯型電子機器では、例えば、充電を行ったまま長時間放置したり、充電を行いつつ機器を使用したりするなど、実際の使用時に連続的に充電が継続されることがある。
このような連続的に充電が継続される使用状況下では、正極活物質であるリチウム含有複合酸化物から、CoやMnといった遷移金属元素のイオンが非水電解質中に溶出して、正極活物質の劣化が進み、電池特性が損なわれたり、溶出するイオン量が非常に多くなると、電池の内部短絡が生じたりする。
こうした電池の連続充電による正極活物質の劣化に起因する問題は、負極活物質にSiOのような高容量の材料を使用したり、充電電圧を従来よりも高めたりした際に顕著に生じることが、本発明者らの検討により明らかとなった。
そこで、特に携帯型電子機器の電源用途に適用されるリチウム二次電池では、容量の大きな負極活物質の使用や充電電圧を高めることによって高容量化を図るにあたり、連続して充電が継続された際の安定性を高めることが求められる。
本発明は、前記事情に鑑みてなされたものであり、その目的は、4.3V以上の高電圧で連続的に充電を継続しても安定に使用し得るリチウム二次電池を提供することにある。
前記目的を達成し得た本発明のリチウム二次電池は、集電体の片面または両面に正極活物質を含有する正極合剤層を有する正極、集電体の片面または両面に負極活物質を含有する負極合剤層を有する負極、非水電解質およびセパレータを備えたリチウム二次電池であって、前記正極の正極合剤層は、一般組成式Li1+yNi1−a−b−cCoMn 〔ただし、MはMg、Al、Ti、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Sn、Sr、W、B、PおよびBiよりなる群から選択される少なくとも1種の元素であり、−0.15≦y≦0.15、0.05≦a≦0.3、0.05≦b≦0.3、0≦c≦0.03、およびa+b+c≦0.5である〕で表されるリチウムニッケル複合酸化物を、正極活物質として含有しており、前記負極の負極合剤層は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)を負極活物質として含有しており、前記非水電解質は、分子内にニトリル基を有する化合物を含有していることを特徴とするものである。
本発明によれば、4.3V以上の高電圧で連続的に充電を継続しても安定に使用し得るリチウム二次電池を提供することができる。
本発明のリチウム二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。 図1に示すリチウム二次電池の斜視図である。
前記の通り、リチウム二次電池において、負極活物質にSiOを使用し、かつ充電電圧を4.3V以上に設定することによる高容量化を図ると、前記のような連続的に充電が継続された場合に、正極活物質からの遷移金属元素のイオンの非水電解質中への溶出によって、電池特性が大きく損なわれる。これは、正極活物質から溶出した遷移金属元素のイオンが、負極表面のうちSiOの存在箇所で選択的に析出して、負極の容量のうちの大きな部分を担うSiOの劣化を引き起こすためであると考えられる。
本発明のリチウム二次電池では、負極活物質にSiOを使用し、特に充電電圧を4.3V以上に設定した際に、前記のような連続的に充電が継続された場合に生じ得る正極活物質からの遷移金属元素のイオンの非水電解質中への溶出の抑制を、こうしたイオンの溶出が生じ難い組成のリチウム含有複合酸化物を正極活物質に使用し、かつ非水電解質に、前記イオンの溶出を抑制する作用を有する成分を含有させることで、達成している。よって、本発明のリチウム二次電池は、高容量であり、かつ連続的に充電を継続されるような方法でも安定に使用できる。
本発明のリチウム二次電池に係る非水電解質としては、例えば、リチウム塩を有機溶媒に溶解した溶液(非水電解液)が挙げられるが、前記非水電解質には、分子内にニトリル基を有する化合物を含有するものを使用する。
分子内にニトリル基を有する化合物は、リチウム二次電池内において、正極表面に吸着して被膜を形成し、高電圧に充電された状態での正極活物質からの遷移金属元素のイオンの、非水電解質への溶出を抑制する機能を有している。よって、本発明のリチウム二次電池は、分子内にニトリル基を有する化合物による前記の作用と、後述する遷移金属元素のイオンの溶出が生じ難い正極活物質の使用による作用とが相乗的に機能することから、連続的に高電圧の充電を継続しても安定に使用することができる。
また、分子内にニトリル基を有する化合物が、正極表面に被膜を形成することで、正極と非水電解質との直接の接触を抑制することができるため、電池の充放電に伴う非水電解質成分の正極表面での分解や、それによるガス発生を抑えることができる。そのため、本発明のリチウム二次電池では、充放電サイクル特性が良好であり、また、貯蔵時の電池膨れを抑制できることから、貯蔵特性も良好である。
分子内にニトリル基を有する化合物としては、例えば、分子内にニトリル基を1つ有するモノニトリル化合物、分子内にニトリル基を2つ有するジニトリル化合物、分子内にニトリル基を3つ有するトリニトリル化合物などが挙げられる。これらの中でも、前記の作用(正極表面での被膜形成による正極活物質からの遷移金属元素のイオンの溶出抑制作用、および正極と非水電解質成分との反応抑制作用)がより良好である点で、ジニトリル化合物(すなわち、分子内にニトリル基を2つ有する化合物)が好ましく、一般式NC−R−CN(ただし、Rは炭素数1〜10の直鎖または分岐の炭化水素鎖)で表されるジニトリル化合物がより好ましい。また、前記一般式におけるRは、炭素数1〜10の直鎖状の、または分岐を有するアルキレン鎖であることが更に好ましい。
モノニトリル化合物の具体例としては、例えば、ラウリルニトリルなどが挙げられる。また、前記一般式で表されるジニトリル化合物の具体例としては、例えば、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4−ジシアノヘプタン、1,5−ジシアノペンタン、1,6−ジシアノヘキサン、1,7−ジシアノヘプタン、2,6−ジシアノヘプタン、1,8−ジシアノオクタン、2,7−ジシアノオクタン、1,9−ジシアノノナン、2,8−ジシアノノナン、1,10−ジシアノデカン、1,6−ジシアノデカン、2,4−ジメチルグルタロニトリルなどが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。前記例示のジニトリル化合物の中でも、正極活物質からの遷移金属元素のイオンの溶出を抑制する作用がより強いことから、アジポニトリルがより好ましい。
電池に使用する非水電解質における分子内にニトリル基を有する化合物の含有量は、これらの化合物の使用による作用をより有効に発揮させる観点から、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。ただし、分子内にニトリル基を有する化合物の添加量が多すぎると、例えば電池の貯蔵特性がより改善されるものの、充放電サイクル特性の向上効果が小さくなる虞がある。よって、電池に使用する非水電解質における分子内にニトリル基を有する化合物の含有量は、5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。
また、非水電解質には、下記一般式(1)で表されるホスホノアセテート類化合物を含有するものを使用することが好ましい。
Figure 2013094465
前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1〜12のアルキル基であり、nは0〜6の整数である。
本発明のリチウム二次電池では、SiOを負極活物質として使用するが、このような電池では、充放電に伴う体積変化に起因して生じるSiO粒子の粉砕によって、高活性なSiが露出し(SiOの構造の詳細については後述する)、これが非水電解質を分解するため、充放電サイクル特性が低下しやすいといった問題がある。
前記一般式(1)で表されるホスホノアセテート類化合物は、負極表面に被膜を形成する機能があり、充放電に伴う体積変化によってSiOの粒子が粉砕して新生面が生じても、これを良好に被覆する。よって、かかる被膜によって負極活物質と非水電解質との反応を高度に抑制することができる。
また、前記一般式(1)で表されるホスホノアセテート類化合物は、リチウム二次電池の膨れを抑制する作用も有している。よって、前記一般式(1)で表されるホスホノアセテート類化合物も含有する非水電解質を使用した場合には、この作用と、分子内にニトリル基を含有する化合物による作用とが相乗的に機能して、リチウム二次電池の貯蔵特性を更に高めることができる。
前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1〜12の炭化水素基(例えば、アルキル基、アルケニル基、アルキニル基など)であり、nは0〜6の整数である。すなわち、前記R、RおよびRは、それぞれが異なっていてもよく、2つ以上が同一であってもよい。
前記一般式(1)で表わされるホスホノアセテート類化合物の具体例としては、例えば、以下のものが挙げられる。
<前記一般式(1)においてn=0である化合物>
トリメチル ホスホノフォルメート、メチル ジエチルホスホノフォルメート、メチル ジプロピルホスホノフォルメート、メチル ジブチルホスホノフォルメート、トリエチル ホスホノフォルメート、エチル ジメチルホスホノフォルメート、エチル ジプロピルホスホノフォルメート、エチル ジブチルホスホノフォルメート、トリプロピル ホスホノフォルメート、プロピル ジメチルホスホノフォルメート、プロピル ジエチルホスホノフォルメート、プロピル ジブチルホスホノフォルメート、トリブチル ホスホノフォルメート、ブチル ジメチルホスホノフォルメート、ブチル ジエチルホスホノフォルメート、ブチル ジプロピルホスホノフォルメート、メチル ビス(2,2,2−トリフルオロエチル)ホスホノフォルメート、エチル ビス(2,2,2−トリフルオロエチル)ホスホノフォルメート、プロピル ビス(2,2,2−トリフルオロエチル)ホスホノフォルメート、ブチル ビス(2,2,2−トリフルオロエチル)ホスホノフォルメートなど。
<前記一般式(1)においてn=1である化合物>
トリメチル ホスホノアセテート、メチル ジエチルホスホノアセテート、メチル ジプロピルホスホノアセテート、メチル ジブチルホスホノアセテート、トリエチル ホスホノアセテート、エチル ジメチルホスホノアセテート、エチル ジプロピルホスホノアセテート、エチル ジブチルホスホノアセテート、トリプロピル ホスホノアセテート、プロピル ジメチルホスホノアセテート、プロピル ジエチルホスホノアセテート、プロピル ジブチルホスホノアセテート、トリブチル ホスホノアセテート、ブチル ジメチルホスホノアセテート、ブチル ジエチルホスホノアセテート、ブチル ジプロピルホスホノアセテート、メチル ビス(2,2,2−トリフルオロエチル)ホスホノアセテート、エチル ビス(2,2,2−トリフルオロエチル)ホスホノアセテート、プロピル ビス(2,2,2−トリフルオロエチル)ホスホノアセテート、ブチル ビス(2,2,2−トリフルオロエチル)ホスホノアセテート、アリル ジメチルホスホノアセテート、アリル ジエチルホスホノアセテート、2−プロピニル ジメチルホスホノアセテート、2−プロピニル ジエチルホスホノアセテートなど。
<前記一般式(1)においてn=2である化合物>
トリメチル 3−ホスホノプロピオネート、メチル 3−(ジエチルホスホノ)プロピオネート、メチル 3−(ジプロピルホスホノ)プロピオネート、メチル 3−(ジブチルホスホノ)プロピオネート、トリエチル 3−ホスホノプロピオネート、エチル 3−(ジメチルホスホノ)プロピオネート、エチル 3−(ジプロピルホスホノ)プロピオネート、エチル 3−(ジブチルホスホノ)プロピオネート、トリプロピル 3−ホスホノプロピオネート、プロピル 3−(ジメチルホスホノ)プロピオネート、プロピル 3−(ジエチルホスホノ)プロピオネート、プロピル 3−(ジブチルホスホノ)プロピオネート、トリブチル 3−ホスホノプロピオネート、ブチル 3−(ジメチルホスホノ)プロピオネート、ブチル 3−(ジエチルホスホノ)プロピオネート、ブチル 3−(ジプロピルホスホノ)プロピオネート、メチル 3−(ビス(2,2,2−トリフルオロエチル)ホスホノ)プロピオネート、エチル 3−(ビス(2,2,2−トリフルオロエチル)ホスホノ)プロピオネート、プロピル 3−(ビス(2,2,2−トリフルオロエチル)ホスホノ)プロピオネート、ブチル 3−(ビス(2,2,2−トリフルオロエチル)ホスホノ)プロピオネートなど。
<前記一般式(1)においてn=3である化合物>
トリメチル 4−ホスホノブチレート、メチル 4−(ジエチルホスホノ)ブチレート、メチル 4−(ジプロピルホスホノ)ブチレート、メチル 4−(ジブチルホスホノ)ブチレート、トリエチル 4−ホスホノブチレート、エチル 4−(ジメチルホスホノ)ブチレート、エチル 4−(ジプロピルホスホノ)ブチレート、エチル 4−(ジブチルホスホノ)ブチレート、トリプロピル 4−ホスホノブチレート、プロピル 4−(ジメチルホスホノ)ブチレート、プロピル 4−(ジエチルホスホノ)ブチレート、プロピル ジブチルホスホノ)ブチレート、トリブチル 4−ホスホノブチレート、ブチル 4−(ジメチルホスホノ)ブチレート、ブチル 4−(ジエチルホスホノ)ブチレート、ブチル 4−(ジプロピルホスホノ)ブチレートなど。
前記例示のホスホノアセテート類化合物の中でも、2−プロピニル ジエチルホスホノアセテート(PDPA)、エチル ジエチルホスホノアセテート(EDPA)が特に好ましい。
リチウム二次電池に使用する非水電解質における前記一般式(1)で表されるホスホノアセテート類化合物の含有量は、その使用による効果をより良好に確保する観点から、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましい。ただし、非水電解質中の前記一般式(1)で表されるホスホノアセテート類化合物の含有量が多すぎると、電池の充放電サイクル特性の向上効果が小さくなる虞がある。よって、リチウム二次電池に使用する非水電解質における前記一般式(1)で表されるホスホノアセテート類化合物の含有量は、30質量%以下であることが好ましく、5.0質量%以下であることがより好ましい。
前記ホスホノアセテート類化合物を表わす前記一般式(1)のR、R、およびRのいずれかが不飽和結合を含む場合、負極表面において、炭素−炭素二重結合または炭素−炭素三重結合が開くことで重合して皮膜を形成するものと推測される。この場合に形成される皮膜は、構成分子(構成ポリマー)が柔軟な炭素−炭素結合を主鎖としていることから、柔軟性が高い。リチウム二次電池を充放電した際には、それに伴って負極活物質が膨張・収縮を起こすため、負極(負極合剤層)全体も体積変化する。しかし、負極(負極合剤層)表面にホスホノアセテート類化合物由来の皮膜が形成されている場合には、この皮膜は前記の通り柔軟性に富むものであるため、電池の充放電に伴う負極の体積変化に追随して、割れや亀裂などが生じ難いことから、電池の充放電を繰り返してもホスホノアセテート類化合物由来の皮膜による前記の効果を良好に持続させることができる。
また、非水電解質には、ハロゲン置換された環状カーボネートも含有するものを使用することが好ましい。ハロゲン置換された環状カーボネートは、負極に作用して、負極と非水電解質成分との反応を抑制する作用を有している。よって、ハロゲン置換された環状カーボネートも含有する非水電解質を使用することで、より充放電サイクル特性の良好なリチウム二次電池とすることができる。
ハロゲン置換された環状カーボネートとしては、下記の一般式(2)で表される化合物を用いることができる。
Figure 2013094465
前記一般式(2)中、R、R、RおよびRは、水素、ハロゲン元素または炭素数1〜10のアルキル基を表しており、アルキル基の水素の一部または全部がハロゲン元素で置換されていてもよく、R、R、RおよびRのうちの少なくとも1つはハロゲン元素であり、R、R、RおよびRは、それぞれが異なっていてもよく、2つ以上が同一であってもよい。R、R、RおよびRがアルキル基である場合、その炭素数は少ないほど好ましい。前記ハロゲン元素としては、フッ素が特に好ましい。
このようなハロゲン元素で置換された環状カーボネートの中でも、4−フルオロ−1,3−ジオキソラン−2−オン(FEC)が特に好ましい。
リチウム二次電池に使用する非水電解質におけるハロゲン置換された環状カーボネートの含有量は、その使用による効果をより良好に確保する観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。ただし、非水電解質中のハロゲン置換された環状カーボネートの含有量が多すぎると、貯蔵特性の向上効果が小さくなる虞がある。よって、リチウム二次電池に使用する非水電解質におけるハロゲン置換された環状カーボネートの含有量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
更に、非水電解質には、ビニレンカーボネート(VC)も含有するものを使用することが好ましい。VCは、負極(特に負極活物質として炭素材料を使用した負極)に作用して、負極と非水電解質成分との反応を抑制する作用を有している。よって、VCも含有する非水電解質を使用することで、より充放電サイクル特性の良好なリチウム二次電池とすることができる。
リチウム二次電池に使用する非水電解質におけるVCの含有量は、その使用による効果をより良好に確保する観点から、0.1質量%以上であることが好ましく、1.0質量%以上であることがより好ましい。ただし、非水電解質中のVCの含有量が多すぎると、貯蔵特性の向上効果が小さくなる虞がある。よって、リチウム二次電池に使用する非水電解質におけるVCの含有量は、10質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。
非水電解質に用いるリチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
このリチウム塩の非水電解質中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。
非水電解質に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。
また、リチウム二次電池に使用する非水電解質には、充放電サイクル特性の更なる改善や、高温貯蔵性や過充電防止などの安全性を向上させる目的で、無水酸、スルホン酸エステル、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。
更に、リチウム二次電池の非水電解質には、前記の非水電解質(非水電解液)に、ポリマーなどの公知のゲル化剤を添加してゲル化したもの(ゲル状電解質)を用いることもできる。
本発明のリチウム二次電池に係る正極には、集電体の片面または両面に、正極活物質、バインダおよび導電助剤などを含有する正極合剤層を有する構造のものを使用する。
正極活物質には、一般組成式Li1+yNi1−a−b−cCoMn (ただし、MはMg、Al、Ti、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Sn、W、B、PおよびBiよりなる群から選択される少なくとも1種の元素であり、−0.15≦y≦0.15、0.05≦a≦0.3、0.05≦b≦0.3、0≦c≦0.03、およびa+b+c≦0.5)で表されるリチウムニッケル複合酸化物(a)を使用する。
リチウムニッケル複合酸化物(a)は、高容量であることに加えて、電池内において非水電解質中への金属イオンの溶出が生じ難く、また、熱安定性も高い。よって、本発明のリチウム二次電池は、リチウムニッケル複合酸化物(a)による作用と、非水電解質に含まれる分子内にニトリル基を有する化合物の作用とが相乗的に機能するため、高容量であり、かつ連続的に充電を継続されるような方法でも安定に使用できる。また、リチウムニッケル複合酸化物(a)の使用によって、電池の充放電サイクル特性や高温貯蔵特性、負荷特性、安全性も高めることができる。
リチウムニッケル複合酸化物(a)において、Niは、リチウムニッケル複合酸化物(b)の容量向上に寄与する成分である。
リチウムニッケル複合酸化物(a)において、Coは、リチウムニッケル複合酸化物(a)の容量向上に寄与すると共に、正極合剤層におけるリチウムニッケル複合酸化物(a)の充填密度向上に寄与する。また、Coは、電池の充放電でのLiのドープおよび脱ドープに伴うMnの価数変動を抑制し、Mnの平均価数を4価近傍の値に安定させ、充放電の可逆性をより高める作用も有している。よって、Coによる前記の作用を良好に発揮させる観点から、リチウムニッケル複合酸化物(a)を表す前記一般組成式において、Coの量を表すaは、0.05以上であり、0.1以上であることが好ましい。
ただし、リチウムニッケル複合酸化物(a)中のCoの量が多すぎると、他の元素の量が少なくなって、これら他の元素による作用が十分に発揮されない虞がある。よって、リチウムニッケル複合酸化物(a)を表す前記一般組成式において、Coの量を表すaは、0.3以下であり、0.2以下であることが好ましい。
リチウムニッケル複合酸化物(a)において、Mnは、リチウムニッケル複合酸化物(a)の熱安定性を高める作用を有している。よって、Mnによる前記の作用を良好に発揮させる観点から、リチウムニッケル複合酸化物(a)を表す前記一般組成式において、Mnの量を表すbは、0.05以上であり、0.1以上であることが好ましい。
ただし、リチウムニッケル複合酸化物(a)中のMnの量が多すぎると、他の元素の量が少なくなって、これら他の元素による作用が十分に発揮されない虞がある。よって、リチウムニッケル複合酸化物(a)を表す前記組成式において、Mnの量を表すbは、0.3以下であり、0.2以下であることが好ましい。
リチウムニッケル複合酸化物(a)は、Li、O、Ni、CoおよびMn以外に、Mg、Al、Ti、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Sn、W、B、PおよびBiよりなる群から選択される少なくとも1種の元素Mを含有していてもよい。ただし、リチウムニッケル複合酸化物(a)中の元素Mの量が多すぎると、NiやCo、Mnの量が少なくなって、これらによる作用が十分に発揮されない虞がある。よって、リチウムニッケル複合酸化物(a)を表す前記一般組成式において、元素Mの量を表すcは、0.03以下であり、0.01以下であることが好ましい。また、リチウムニッケル複合酸化物(a)は、元素Mを含有していなくてもよく、前記一般組成式において、元素Mの量を表すcは、0以上である。
また、リチウムニッケル複合酸化物(a)を表す前記一般組成式において、Coの量を表すaと、Mnの量を表すbと、元素Mの量を表すcとの合計量「a+b+c」は、多すぎるとNiの量が少なくなって、リチウムニッケル複合酸化物(a)の容量が小さくなる虞がある。よって、前記「a+b+c」は、0.5以下であり、0.3以下であることが好ましい。
すなわち、リチウムニッケル複合酸化物(a)を表す前記一般組成式において、Niの量を表す「1−a−b−c」は、0.5以上であり、0.6以上であることが好ましく、また、Co、Mnなどの添加による効果を良好に確保する観点から、0.9以下であり、0.8以下であることが好ましい。
リチウムニッケル複合酸化物(a)は、特に化学量論比に近い組成にときに、その真密度が大きくなり、より高いエネルギー体積密度を有する材料となるが、具体的には、前記組成式において、−0.15≦y≦0.15とすることが好ましく、yの値をこのように調節することで、真密度および充放電時の可逆性を高めることができる。
リチウムニッケル複合酸化物(a)は、Li含有化合物(水酸化リチウムなど)、Ni含有化合物(硫酸ニッケルなど)、Co含有化合物(硫酸コバルトなど)、Mn含有化合物(硫酸マンガンなど)、および必要に応じて元素Mを含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、この原料混合物を焼成するなどして製造することができる。なお、より高い純度でリチウムニッケル複合酸化物(a)を合成するには、Ni、Co、Mnおよび必要に応じて含有させる元素Mのうちの複数の元素を含む複合化合物(水酸化物、酸化物など)と、他の原料化合物(Li含有化合物など)とを混合し、この原料混合物を焼成することが好ましい。
リチウムニッケル複合酸化物(a)を合成するための原料混合物の焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。
正極活物質には、リチウムニッケル複合酸化物(a)以外にも、LiCoOなどのリチウムコバルト酸化物;LiMnO、LiMnOなどのリチウムマンガン酸化物;LiNiOなどのリチウムニッケル酸化物;LiCo1−xNiOなどの層状構造のリチウム含有複合酸化物;LiMn、Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有複合酸化物;前記の酸化物を基本組成とし各種元素で置換した酸化物〔ただし、リチウムニッケル複合酸化物(a)以外のもの〕;などを、リチウムニッケル複合酸化物(a)と共に使用することができる。
また、一般組成式Li1+oCo1−p−qMg (ただし、MはAl、Ti、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Sn、Sr、W、B、PおよびBiよりなる群から選択される少なくとも1種の元素であり、−0.3≦o≦0.3、0.001≦p≦0.1、および0≦q≦0.1)で表されるリチウムコバルト複合酸化物(b)も、リチウムニッケル複合酸化物(a)と共に使用することができる。リチウムコバルト複合酸化物(b)は、Mgを含有しており、その作用によって、例えば、リチウム二次電池の正極活物質として汎用されているLiCoOに比べて、高電圧領域での安定性が高く電池内において非水電解質中への金属(主にCo)イオンの溶出が生じ難く、また、熱安定性も高い。よって、リチウムコバルト複合酸化物(b)をリチウムニッケル複合酸化物(a)と併用した場合にも、高電圧で充電しても安定性が高く、充放電サイクル特性や、高温貯蔵特性、負荷特性、安全性がより良好なリチウム二次電池とすることができる。
リチウムコバルト複合酸化物(b)において、Coは、リチウムコバルト複合酸化物(b)の容量向上に寄与する成分である。リチウムコバルト複合酸化物(b)は、前記一般組成式で示すように、Li、OおよびCo以外に、Mgおよび元素Mを含有しており(元素Mは含有していなくてもよい)、Coの量は、Mgの量pおよび元素Mの量qを用いて「1−p−q」で表される。リチウムコバルト複合酸化物(b)におけるCoの量「1−p−q」は、具体的には、その容量を高める観点から、0.9以上であることが好ましく、0.95以上であることがより好ましく、また、Mgなどの添加による効果を良好に確保する観点から、0.999以下であることが好ましく、0.05以下であることがより好ましい。
リチウムコバルト複合酸化物(b)において、Mgは、リチウムコバルト複合酸化物(b)の高電圧領域での安定性を高め、金属イオンの溶出を抑制する作用を有しており、また、リチウムコバルト複合酸化物(b)の熱安定性を高める作用も有している。よって、Mgによる前記の作用を良好に発揮させる観点から、リチウムコバルト複合酸化物(b)を表す前記一般組成式において、Mgの量を表すpは、0.001以上であることが好ましく、0.002以上であることがより好ましい。
ただし、Mgは、リチウムコバルト複合酸化物(b)の容量向上に寄与し得ないため、リチウムコバルト複合酸化物(b)中のMg量が多すぎると、例えばCoの量が減ることになって、容量が低下する虞がある。よって、リチウムコバルト複合酸化物(b)を表す前記一般組成式において、Mgの量を表すpは、0.1以下であることが好ましく、0.05以下であることがより好ましい。
リチウムコバルト複合酸化物(b)は、Li、O、CoおよびMg以外に、Al、Ti、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Sn、Sr、W、B、PおよびBiよりなる群から選択される少なくとも1種の元素Mを含有していてもよい。ただし、リチウムコバルト複合酸化物(b)中の元素Mの量が多すぎると、CoやMgの量が少なくなって、これらによる作用が十分に発揮されない虞がある。よって、リチウムコバルト複合酸化物(b)を表す前記一般組成式において、元素Mの量を表すqは、0.1以下であることが好ましく、0.05以下であることがより好ましい。また、リチウムコバルト複合酸化物(b)は、前記の通り、元素Mを含有していなくてもよく、前記一般組成式において、元素Mの量を表すqは、0以上である。
リチウムコバルト複合酸化物(b)は、特に化学量論比に近い組成にときに、その真密度が大きくなり、より高いエネルギー体積密度を有する材料となるが、具体的には、前記組成式において、−0.3≦o≦0.3とすることが好ましく、oの値をこのように調節することで、真密度および充放電時の可逆性を高めることができる。
リチウムコバルト複合酸化物(b)は、Li含有化合物(水酸化リチウムなど)、Co含有化合物(硫酸コバルトなど)、Mg含有化合物(硫酸マグネシウムなど)、および必要に応じて元素Mを含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、この原料混合物を焼成するなどして合成することができる。なお、より高い純度でリチウムコバルト複合酸化物(b)を合成するには、CoおよびMg、更には必要に応じて元素Mを含む複合化合物(水酸化物、酸化物など)とLi含有化合物などとを混合し、この原料混合物を焼成することが好ましい。
リチウムコバルト複合酸化物(b)を合成するための原料混合物の焼成条件も、リチウムニッケル複合酸化物(a)の場合と同様に、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。
正極活物質に、リチウムニッケル複合酸化物(a)と他の正極活物質とを併用する場合の他の正極活物質には、リチウムコバルト複合酸化物(b)を使用することがより好ましい。
正極活物質に、リチウムニッケル複合酸化物(a)と他の正極活物質〔例えば、リチウムコバルト複合酸化物(b)〕とを併用する場合、リチウムニッケル複合酸化物(a)の使用による効果をより良好に確保する観点から、正極活物質全量中のリチウムニッケル複合酸化物(a)の含有量を10質量%以上とすることが好ましい。
また、正極活物質に、リチウムニッケル複合酸化物(a)と、リチウムコバルト複合酸化物(b)とを併用する場合には、正極活物質全量中のリチウムニッケル複合酸化物(a)の含有量を80質量%以下〔すなわち、正極活物質全量中のリチウムコバルト複合酸化物(b)の含有量を20質量%以上〕とすることが好ましい。
正極合剤層に係るバインダには、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好適に用いられる。また、正極合剤層に係る導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛(黒鉛質炭素材料);アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック;炭素繊維;などの炭素材料などが挙げられる。
正極は、例えば、正極活物質、バインダおよび導電助剤などを、N−メチル−2−ピロリドン(NMP)などの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、正極は、前記の製造方法で製造されたものに限定される訳ではなく、他の方法で製造したものであってもよい。
また、正極には、必要に応じて、リチウム二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。
正極合剤層の厚みは、例えば、集電体の片面あたり10〜100μmであることが好ましい。
また、正極合剤層の組成としては、例えば、正極活物質の量が60〜95質量%であることが好ましく、バインダの量が1〜15質量%であることが好ましく、導電助剤の量が3〜20質量%であることが好ましい。
正極の集電体は、従来から知られているリチウム二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10〜30μmのアルミニウム箔が好ましい。
本発明のリチウム二次電池に係る負極には、例えば、負極活物質やバインダなどを含有する負極合剤層を、集電体の片面または両面に有する構造のものを使用する。そして、負極に係る負極活物質には、SiOを使用する。
SiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。
そして、SiOは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。前記の通り、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。
SiOと炭素材料との複合体としては、前記のように、SiOの表面を炭素材料で被覆したものの他、SiOと炭素材料との造粒体などが挙げられる。
また、前記の、SiOの表面を炭素材料で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、より電池特性(例えば、充放電サイクル特性)に優れたリチウム二次電池の実現が可能となる。炭素材料で被覆されたSiOと炭素材料との複合体としては、例えば、炭素材料で被覆されたSiOと炭素材料との混合物を更に造粒した造粒体などが挙げられる。
また、表面が炭素材料で被覆されたSiOとしては、SiOとそれよりも比抵抗値が小さい炭素材料との複合体(例えば造粒体)の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でSiOと炭素材料とが分散した状態であると、より良好な導電ネットワークを形成できるため、SiOを負極活物質として含有する負極を有するリチウム二次電池において、重負荷放電特性などの電池特性を更に向上させることができる。
SiOとの複合体の形成に用い得る前記炭素材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。
前記炭素材料の詳細としては、繊維状またはコイル状の炭素材料、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック,ケッチェンブラックを含む)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、さらに、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。
また、詳しくは後述するように、本発明においては、黒鉛質炭素材料を負極活物質としてSiOと共に使用することが好ましいが、この黒鉛質炭素材料をSiOと炭素材料との複合体に係る炭素材料として使用することもできる。黒鉛質炭素材料も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、さらに、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有しているため、SiOとの複合体形成に好ましく使用することができる。
前記例示の炭素材料の中でも、SiOとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いために電池の充放電に伴うSiOの膨張収縮に追従でき、また、嵩密度が大きいために、SiO粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。
なお、繊維状の炭素材料は、例えば、気相法にてSiO粒子の表面に形成することもできる。
SiOの比抵抗値が、通常、10〜10kΩcmであるのに対して、前記例示の炭素材料の比抵抗値は、通常、10−5〜10kΩcmである。
また、SiOと炭素材料との複合体は、粒子表面の炭素材料被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。
負極にSiOと炭素材料との複合体を使用する場合、SiOと炭素材料との比率は、炭素材料との複合化による作用を良好に発揮させる観点から、SiO:100質量部に対して、炭素材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、SiOと複合化する炭素材料の比率が多すぎると、負極合剤層中のSiO量の低下に繋がり、高容量化の効果が小さくなる虞があることから、SiO:100質量部に対して、炭素材料は、50質量部以下であることが好ましく、40質量部以下であることがより好ましい。
前記のSiOと炭素材料との複合体は、例えば下記の方法によって得ることができる。
まず、SiOを複合化する場合の作製方法について説明する。SiOが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。
なお、SiOと、SiOよりも比抵抗値の小さい炭素材料との造粒体を作製する場合には、SiOが分散媒に分散した分散液中に前記炭素材料を添加し、この分散液を用いて、SiOを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOと炭素材料との造粒体を作製することができる。
次に、SiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で被覆して複合体とする場合には、例えば、SiO粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素材料被覆層)を形成できることから、少量の炭素材料によってSiO粒子に均一性よく導電性を付与できる。
炭素材料で被覆されたSiOの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600〜1200℃が適当であり、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。
炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやアセチレンガスなどを用いることもできる。
また、気相成長(CVD)法にてSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化性樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素材料を含む被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。
具体的には、炭素材料で被覆されたSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。
前記ピッチとしては等方性ピッチを、熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。
炭素材料で被覆されたSiO粒子と前記有機化合物とを分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600〜1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOの融点以下であることを要する。
本発明のリチウム二次電池に係る負極活物質には、SiOと共に黒鉛質炭素材料を使用することが好ましい。黒鉛質炭素材料を使用して負極活物質中のSiOの比率を下げることで、SiOの減量による高容量化効果の低下を可及的に抑制しつつ、電池の充放電に伴う負極(負極合剤層)の体積変化を抑えて、かかる体積変化によって生じ得る電池特性の低下を抑制することが可能となる。
SiOと共に負極活物質として使用する黒鉛質炭素材料としては、例えば、鱗片状黒鉛などの天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;などが挙げられる。
なお、本発明に係る負極においては、SiOを使用することによる高容量化の効果を良好に確保する観点から、負極活物質中におけるSiOの含有量は、0.01質量%以上であることが好ましく、3質量%以上であることがより好ましい。また、充放電に伴う負極の体積変化による問題をより良好に回避する観点から、負極活物質中におけるSiOの含有量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
負極合剤層に係るバインダには、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好適に用いられる。更に、負極合剤層には、導電助剤として、アセチレンブラックなどの各種カーボンブラックやカーボンナノチューブ、炭素繊維などを添加してもよい。
負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤を、NMPや水などの溶剤に分散させた負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、負極は、前記の製造方法により製造されたものに限定される訳ではなく、他の製造方法により製造したものであってもてもよい。
負極合剤層の厚みは、集電体の片面あたり、集電体の片面あたり10〜100μmであることが好ましく、負極合剤層の密度(集電体に積層した単位面積あたりの負極合剤層の質量と、厚みから算出される)は、1.0〜1.9g/cmであることが好ましい。また、負極合剤層の組成としては、例えば、負極活物質の量が80〜95質量%であることが好ましく、バインダの量が1〜20質量%であることが好ましく、導電助剤を使用する場合には、その量が1〜10質量%であることが好ましい。
負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。
本発明のリチウム二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常のリチウム二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
なお、本発明のリチウム二次電池に係るセパレータには、融点が140℃以下の樹脂を主体とした多孔質層(I)と、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とを有する積層型のセパレータを使用することが好ましい。ここで、「融点」とはJIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。また、「150℃以下の温度で溶融しない」とは、JIS K 7121の規定に準じて、DSCを用いて測定される融解温度が150℃を超えているなど、前記融解温度測定時に150℃以下の温度で融解挙動を示さないことを意味している。更に、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。
前記積層型のセパレータに係る多孔質層(I)は、主にシャットダウン機能を確保するためのものであり、リチウム二次電池が多孔質層(I)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(I)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。
多孔質層(I)の主体となる融点が140℃以下の樹脂としては、例えばPEが挙げられ、その形態としては、前述のリチウム二次電池に用いられる微多孔膜や、不織布などの基材にPEの粒子を含む分散液を塗布し、乾燥するなどして得られるものが挙げられる。ここで、多孔質層(I)の全構成成分中において、主体となる融点が140℃以下の樹脂の体積は、50体積%以上であり、70体積%以上であることがより好ましい。なお、例えば多孔質層(I)を前記PEの微多孔膜で形成する場合は、融点が140℃以下の樹脂の体積が100体積%となる。
前記積層型のセパレータに係る多孔質層(II)は、リチウム二次電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。すなわち、電池が高温となった場合には、喩え多孔質層(I)が収縮しても、収縮し難い多孔質層(II)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止することがでる。また、この耐熱性の多孔質層(II)がセパレータの骨格として作用するため、多孔質層(I)の熱収縮、すなわちセパレータ全体の熱収縮自体も抑制できる。
多孔質層(II)を融点が150℃以上の樹脂を主体として形成する場合、例えば、150℃以下の温度で溶融しない樹脂で形成された微多孔膜(例えば前述のPP製の電池用微多孔膜)を多孔質層(I)に積層させる形態、150℃以下の温度で溶融しない樹脂の粒子などを含む分散液を多孔質層(I)に塗布し、乾燥して多孔質層(I)の表面に多孔質層(II)を形成する塗布積層型の形態が挙げられる。
150℃以下の温度で溶融しない樹脂としては、PP;架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの各種架橋高分子微粒子;ポリスルフォン;ポリエーテルスルフォン;ポリフェニレンスルフィド;ポリテトラフルオロエチレン;ポリアクリロニトリル;アラミド;ポリアセタールなどが挙げられる。
150℃以下の温度で溶融しない樹脂の粒子を使用する場合、その粒径は、平均粒子径で、例えば、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、10μm以下であることが好ましく、2μm以下であることがより好ましい。なお、本明細書でいう各種粒子の平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、堀場製作所製「LA−920」)を用い、樹脂を溶解しない媒体に、これら微粒子を分散させて測定した平均粒子径D50%である。
多孔質層(II)を耐熱温度が150℃以上の無機フィラーを主体として形成する場合、例えば、耐熱温度が150℃以上の無機フィラーなどを含む分散液を、多孔質層(I)に塗布し、乾燥して多孔質層(II)を形成する塗布積層型の形態が挙げられる。
多孔質層(II)に係る無機フィラーは、耐熱温度が150℃以上で、電池の有する非水電解質に対して安定であり、更に電池の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであればよいが、分散などの点から微粒子であることが好ましく、また、アルミナ、シリカ、ベーマイトが好ましい。アルミナ、シリカ、ベーマイトは、耐酸化性が高く、粒径や形状を所望の数値などに調整することが可能であるため、多孔質層(II)の空孔率を精度よく制御することが容易となる。なお、耐熱温度が150℃以上の無機フィラーは、例えば前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。また、耐熱温度が150℃の無機フィラーを、前述の150℃以下の温度で溶融しない樹脂と併用しても差し支えない。
多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの形状については特に制限はなく、略球状(真球状を含む)、略楕円体状(楕円体状を含む)、板状などの各種形状のものを使用できる。
また、多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの平均粒子径は、小さすぎるとイオンの透過性が低下することから、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。また、耐熱温度が150℃以上の無機フィラーが大きすぎると、電気特性が劣化しやすくなることから、その平均粒子径は、5μm以下であることが好ましく、2μm以下であることがより好ましい。
多孔質層(II)において、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーは、多孔質層(II)に主体として含まれるものであるため、これらの多孔質層(II)における量[多孔質層(II)が150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーのうちのいずれか一方のみを含有する場合は、その量であり、両者を含有する場合は、それらの合計量。150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量について、以下同じ。]は、多孔質層(II)の構成成分の全体積中、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層(II)中の無機フィラーを前記のように高含有量とすることで、リチウム二次電池が高温となった際にも、セパレータ全体の熱収縮を良好に抑制することができ、正極と負極との直接の接触による短絡の発生をより良好に抑制することができる。
なお、後述するように、多孔質層(II)には有機バインダも含有させることが好ましいため、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量は、多孔質層(II)の構成成分の全体積中、99.5体積%以下であることが好ましい。
多孔質層(II)には、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラー同士を結着したり、多孔質層(II)と多孔質層(I)との一体化などのために、有機バインダを含有させることが好ましい。有機バインダとしては、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素系ゴム、SBR、CMC、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。
前記例示の有機バインダの中でも、EVA、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高い有機バインダの具体例としては、三井デュポンポリケミカル社の「エバフレックスシリーズ(EVA)」、日本ユニカー社のEVA、三井デュポンポリケミカル社の「エバフレックス−EEAシリーズ(エチレン−アクリル酸共重合体)」、日本ユニカー社のEEA、ダイキン工業社の「ダイエルラテックスシリーズ(フッ素ゴム)」、JSR社の「TRD−2001(SBR)」、日本ゼオン社の「BM−400B(SBR)」などがある。
なお、前記の有機バインダを多孔質層(II)に使用する場合には、後述する多孔質層(II)形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。
前記塗布積層型のセパレータは、例えば、150℃以下の温度で溶融しない樹脂の粒子や耐熱温度が150℃以上の無機フィラーなどを含有する多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を、多孔質層(I)を構成するための微多孔膜の表面に塗布し、所定の温度に乾燥して多孔質層(II)を形成することにより製造することができる。
多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラーの他、必要に応じて有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。なお、有機バインダについては溶媒に溶解させることもできる。多孔質層(II)形成用組成物に用いられる溶媒は、150℃以下の温度で溶融しない樹脂の粒子や無機フィラーなどを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般的な有機溶媒が好適に用いられる。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。
多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラー、更には有機バインダなどを含む固形分含量を、例えば10〜80質量%とすることが好ましい。
なお、前記積層型のセパレータにおいて、多孔質層(I)と多孔質層(II)とは、それ
ぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、多孔質層(II)の両面に多孔質層(I)を配置した構成としたり、多孔質層(I)の両面に多孔質層(II)を配置した構成としてもよい。ただし、層数を増やすことで、セパレータの厚みを増やして電池の内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、前記積層型のセパレータ中の多孔質層(I)と多孔質層(II)との合計層数は5層以下であることが好ましい。
本発明のリチウム二次電池に係るセパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、前記積層型のセパレータ)の厚みは、例えば、10〜30μmであることが好ましい。
また、前記積層型のセパレータにおいては、多孔質層(II)の厚み[セパレータが多孔質層(II)を複数有する場合は、その総厚み]は、多孔質層(II)による前記の各作用をより有効に発揮させる観点から、3μm以上であることが好ましい。ただし、多孔質層(II)が厚すぎると、電池のエネルギー密度の低下を引き起こすなどの虞があることから、多孔質層(II)の厚みは、8μm以下であることが好ましい。
更に、前記積層型のセパレータにおいては、多孔質層(I)の厚み[セパレータが多孔質層(I)を複数有する場合は、その総厚み。以下同じ。]は、多孔質層(I)の使用による前記作用(特にシャットダウン作用)をより有効に発揮させる観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。ただし、多孔質層(I)が厚すぎると、電池のエネルギー密度の低下を引き起こす虞があることに加えて、多孔質層(I)が熱収縮しようとする力が大きくなり、セパレータ全体の熱収縮を抑える作用が小さくなる虞がある。そのため、多孔質層(I)の厚みは、25μm以下であることが好ましく、20μm以下であることがより好ましく、14μm以下であることが更に好ましい。
セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。なお、セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(3)式を用いて各成分iについての総和を求めることにより計算できる。
P ={1−(m/t)/(Σa・ρ)}×100 (3)
ここで、前記(3)式中、a:全体の質量を1としたときの成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
また、前記積層型のセパレータの場合、前記(3)式において、mを多孔質層(I)の単位面積あたりの質量(g/cm)とし、tを多孔質層(I)の厚み(cm)とすることで、前記(3)式を用いて多孔質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(I)の空孔率は、30〜70%であることが好ましい。
更に、前記積層型のセパレータの場合、前記(3)式において、mを多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを多孔質層(II)の厚み(cm)とすることで、前記(3)式を用いて多孔質層(II)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(II)の空孔率は、20〜60%であることが好ましい。
前記セパレータとしては、機械的な強度の高いものが好ましく、例えば突き刺し強度が3N以上であることが好ましい。例えば、SiやSnの合金や酸化物などは、容量の大きな負極活物質として電池の高容量化に寄与する一方で、充放電に伴う体積変化が大きい。よって、このような負極活物質を使用した場合、充放電を繰り返すことで、負極全体の伸縮によって、対面させたセパレータにも機械的なダメージが加わることになる。セパレータの突き刺し強度が3N以上であれば、良好な機械的強度が確保され、セパレータの受ける機械的ダメージを緩和することができる。
突き刺し強度が3N以上のセパレータとしては、前述した積層型のセパレータが挙げられ、特に、融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータが好適である。それは、前記無機フィラーの機械的強度が高いため、多孔質層(I)の機械的強度を補って、セパレータ全体の機械的強度を高めることができるからであると考えられる。
前記突き刺し強度は以下の方法で測定できる。直径2インチの穴があいた板上にセパレータをしわやたわみのないように固定し、先端の直径が1.0mmの半円球状の金属ピンを、120mm/minの速度で測定試料に降下させて、セパレータに穴があく時の力を5回測定する。そして、前記5回の測定値のうち最大値と最小値とを除く3回の測定について平均値を求め、これをセパレータの突き刺し強度とする。
前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明のリチウム二次電池に使用することができる。
前記の積層電極体や巻回電極体においては、前記積層型のセパレータ、特に融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータを使用する場合、多孔質層(II)が少なくとも正極と面するように配置することが好ましい。なお、この場合、耐熱温度が150℃以上の無機フィラーを主体として含み、より耐酸化性に優れる多孔質層(II)が正極と面することで、正極によるセパレータの酸化をより良好に抑制できるため、電池の高温時の保存特性や充放電サイクル特性を高めることもできる。また、VCやシクロヘキシルベンゼンなどの添加剤を非水電解質中に加えた場合、正極側で皮膜形成してセパレータの細孔を詰まらせ、電池特性の低下を引き起こす虞もある。そこで比較的ポーラスな多孔質層(II)を正極に対面させることで、細孔の目詰まりを抑制する効果も期待できる。
他方、前記積層型セパレータの一方の表面が多孔質層(I)である場合には、多孔質層(I)が負極に面するようにすることが好ましく、これにより、例えば、シャットダウン時に多孔質層(I)から溶融した熱可塑性樹脂が電極の合剤層に吸収されることを抑制して、効率よくセパレータの空孔の閉塞に利用することができるようになる。
本発明のリチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
本発明のリチウム二次電池は、使用前の充電時における上限電圧を、通常のリチウム二次電池で採用されている4.2Vと程度としてもよいが、4.3V以上と高電圧で充電する方法であっても、安定に使用することができる。
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<正極の作製>
Li1.0Ni0.5Co0.2Mn0.3〔リチウムニッケル複合酸化物(a)〕とLi1.036Co0.991Al0.004Mg0.002Sr0.001Ti0.002Zr0.001〔リチウムコバルト複合酸化物(b)〕とを3:7の割合(質量比)で混合した正極活物質100質量部と、結着剤であるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
前記正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節し、アルミニウム箔の露出部にニッケル製のリード体を溶接して、長さ375mm、幅43mmの帯状の正極を作製した。得られた正極における正極合剤層は、片面あたりの厚みが55μmであった。
<負極の作製>
負極活物質である平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmである黒鉛とを、SiO表面を炭素材料で被覆した複合体の量が3.75質量%となる量で混合した混合物:97.5質量部と、結着剤であるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
前記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さおよび密度を調節し、銅箔の露出部にニッケル製のリード体を溶接して、長さ380mm、幅44mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚みが65μmであった。
<非水電解質の調製>
エチレンカーボネート(EC)とジエチルカーボネート(DEC)との容積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させて、更にアジポニトリルを0.1質量%となる量、EDPAを1.25質量%となる量、FECを2.0質量%となる量、およびVCを2.0質量%となる量で、それぞれ添加して、非水電解質を調製した。
<電池の組み立て>
前記帯状の正極を、厚みが16μmの以下に示すセパレータを介して前記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極巻回体とし、この電極巻回体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚み4.0mm、幅34mm、高さ50mmのアルミニウム合金製の角形の電池ケースに前記電極巻回体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から前記非水電解質を注入し、1時間静置した後注入口を封止して、図1に示す構造で、図2に示す外観のリチウム二次電池を得た。
<セパレータの作製>
平均粒子径D50%が1μmのベーマイト5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。
前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー〔多孔質層(II)形成用スラリー、固形分比率50質量%〕を調製した。
リチウム二次電池用PE製微多孔質セパレータ〔多孔質層(I):厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃〕の片面にコロナ放電処理(放電量40W・min/m)を施し、この処理面に多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの多孔質層(II)を形成して、積層型のセパレータを得た。このセパレータにおける多孔質層(II)の単位面積あたりの質量は5.5g/mで、ベーマイトの体積含有率は95体積%であり、空孔率は45%であった。
ここで図1および図2に示す電池について説明すると、図1の(a)は平面図、(b)はその部分断面図であって、図1(b)に示すように、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の電極巻回体6として、角形(角筒形)の電池ケース4に非水電解質と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解質などは図示していない。
電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状電極巻回体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解質注入口14が設けられており、この非水電解質注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図1および図2の電池では、実際には、非水電解質注入口14は、非水電解質注入口と封止部材であるが、説明を容易にするために、非水電解質注入口14として示している)。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって外装缶5と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図1では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。
実施例2
アジポニトリルの添加量を0.25質量%に変更した以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例3
アジポニトリルの添加量を0.5質量%に変更した以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例4
アジポニトリルの添加量を1.0質量%に変更した以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例5
アジポニトリルの添加量を2.5質量%に変更した以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例6
アジポニトリルの添加量を5.0質量%に変更した以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例7
アジポニトリルの添加量を0.5質量%に変更し、EPDAを添加しなかった以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例8
アジポニトリルの添加量を7.5質量%に変更した以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例9
アジポニトリルをスクシノニトリルに変更した以外は、実施例4と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例4と同様にしてリチウム二次電池を作成した。
実施例10
EDPAをPDPAに変更した以外は、実施例4と同様にして非水電解質を調製し、この非水電解質を用いた以外は実施例4と同様にしてリチウム二次電池を作成した。
比較例1
アジポニトリルを添加しなかった以外は、実施例1と同様にして非水電解質を調製し、この非水電解質を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
<50℃・DOD5%試験>
実施例および比較例の電池について、1.0Cの電流値で4.35Vまで定電流充電を行い、続いて4.35Vの電圧で定電圧充電を行った。なお、定電流充電と定電圧充電の総充電時間は2.5時間とした。その後、0.2Cの電流値で3.0Vまで放電を行い、初期容量を測定した。
続いて、初期容量測定後の各電池を、初期容量測定と同じ条件で充電して満充電状態とした。そして、満充電状態の各電池について、50℃で、1.0Cの電流値で定格容量の5%(DOD5%)だけ放電を行い、再度1.0Cの電流値で満充電状態にまで充電する一連の操作を1サイクルとして、800サイクルの充放電を繰り返した。その後の各電池について、初期容量測定と同じ条件で充放電を行って、800サイクル経過後の各電池の容量を測定し、これを初期容量で除した値を百分率で表して、容量維持率を求めた。
この50℃・DOD5%試験は、満充電状態の電池について、容量のごく一部のみの放電と、満充電状態までの充電とを繰り返す試験であり、連続的に充電を継続する使用方法を想定したものである。よって、この試験における容量維持率が高いほど、連続的に充電を継続する方法で電池を使用しても安定性が高いことを意味している。
<連続充電後の短絡試験>
実施例および比較例の各電池(50℃・DOD5%試験を行ったものとは別の電池)について、45℃で、1.0Cの電流値で4.4Vまで充電する定電流充電と、続いて4.4Vの電圧で定電圧充電を行う定電流−定電圧充電を継続し、500時間後の各電池の短絡の有無を調べた。
この試験も、連続的に充電を継続する使用方法を想定したものであり、この試験後に短絡が認められなかった電池は、連続的に充電を継続する方法で使用しても安定性が高いことを意味している。
<充放電サイクル特性>
実施例および比較例の各電池(前記の各評価を行ったものとは別の電池)について、50℃・DOD5%試験の初期容量測定と同じ条件で充放電を行って、初期容量を測定した。
次に、初期容量測定後の各電池について、1Cの電流値で4.35Vまで定電流充電を行い、続いて4.35Vの電圧で定電圧充電を行う充電(定電流充電と定電圧充電の総充電時間は2.5時間)と、その後に1Cの電流値で3.0Vまでの放電とを行う一連の操作を1サイクルとして、500サイクルの充放電を繰り返した。その後の各電池について、初期容量測定時と同じ条件で充電および放電を行って、500サイクル経過後の各電池の放電容量を測定し、これを初期容量で除した値を百分率で表して、容量維持率を求めた。この容量維持率が高いほど、電池の充放電サイクル特性が優れているといえる。
<貯蔵試験>
実施例および比較例の電池(前記の各評価を行ったものとは別の電池)について、50℃・DOD5%試験の初期容量測定と同じ条件で充電を行った。充電後の各電池を恒温槽に入れ、槽内温度を85℃にして24時間放置した。その後、恒温槽から各電池を取り出し、室温になるまで放冷してから厚みを測定し、初期厚み(4.0mm)との差を算出して、貯蔵試験後の電池の膨れ量を求めた。
<負荷特性>
実施例および比較例の電池(前記の各評価を行ったものとは別の電池)について、50℃・DOD5%試験の初期容量測定と同じ条件で充放電を行って放電容量(0.2C 放電容量)を測定した。また、0.2C放電容量測定後の各電池について、0.2C放電容量測定時と同じ条件で充電を行い、1.5Cの電流値で3.0Vまで放電を行って、放電容量(1.5C放電容量)を測定した。そして、各電池について、1.5C放電容量を0.2C放電容量で除した値を百分率で表して、容量維持率を求めた。この容量維持率が高いほど、電池の負荷特性が優れているといえる。
実施例および比較例のリチウム二次電池に使用した非水電解質中の各添加剤の含有量を表1に示し、前記の各評価結果を表2に示す。
Figure 2013094465
Figure 2013094465
表1および表2に示す通り、リチウムニッケル複合酸化物(a)を正極活物質に使用し、SiOを負極活物質に使用し、かつ分子内にニトリル基を有する化合物を含有する非水電解質を使用した実施例1〜10のリチウム二次電池は、分子内にニトリル基を有する化合物を含有していない非水電解質を使用した比較例1の電池に比べて、50℃・DOD5%試験における容量維持率が高く、また、連続充電後に短絡も生じていない。よって、実施例1〜10のリチウム二次電池は、4.3V以上の高電圧で連続的に充電が継続されるような方法であっても、安定に使用できる。更に、実施例1〜10のリチウム二次電池は、負荷特性も良好である。
なお、前記一般式(1)で表されるホスホノアセテート類化合物も含有する非水電解質を用いた実施例1〜6、8、9、10のリチウム二次電池は、これを含有しない非水電解質を用いた実施例7の電池に比べて、貯蔵試験後の膨れ量が小さく、貯蔵特性も優れている。
また、分子内にニトリル基を有する化合物の含有量が好適な非水電解質を用いた実施例1〜7、9、10のリチウム二次電池は、この含有量が非常に多い非水電解質を用いた実施例8のリチウム二次電池に比べて、充放電サイクル特性評価時の容量維持率が高く、充放電サイクル特性も優れている。
本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
本発明のリチウム二次電池は、連続的に充電が継続されても安定に使用し得ることから、こうした方法で使用される可能性が高い携帯型電子機器の電源用途に好適に用い得る他、従来から知られているリチウム二次電池が適用されている各種用途と同じ用途に用いることができる。
1 正極
2 負極
3 セパレータ

Claims (10)

  1. 集電体の片面または両面に正極活物質を含有する正極合剤層を有する正極、集電体の片面または両面に負極活物質を含有する負極合剤層を有する負極、非水電解質およびセパレータを備えたリチウム二次電池であって、
    前記正極の正極合剤層は、一般組成式Li1+yNi1−a−b−cCoMn 〔ただし、MはMg、Al、Ti、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Sn、W、B、PおよびBiよりなる群から選択される少なくとも1種の元素であり、−0.15≦y≦0.15、0.05≦a≦0.3、0.05≦b≦0.3、0≦c≦0.03、およびa+b+c≦0.5である〕で表されるリチウムニッケル複合酸化物を、正極活物質として含有しており、
    前記負極の負極合剤層は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)を負極活物質として含有しており、
    前記非水電解質は、分子内にニトリル基を有する化合物を含有していることを特徴とするリチウム二次電池。
  2. 下記一般式(1)で表されるホスホノアセテート類化合物を、0.5〜30質量%含有する非水電解質を使用した請求項1に記載のリチウム二次電池。
    Figure 2013094465
    〔前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1〜12の炭化水素基であり、nは0〜6の整数である。〕
  3. 分子内にニトリル基を有する化合物の含有量が、0.1〜5.0質量%の非水電解質を使用した請求項1または2に記載のリチウム二次電池。
  4. 分子内にニトリル基を有する化合物は、分子内にニトリル基を2以上有している請求項1〜3のいずれかに記載のリチウム二次電池。
  5. 分子内にニトリル基を有する化合物が、アジポニトリルである請求項1〜4のいずれかに記載のリチウム二次電池。
  6. 負極の負極合剤層は、SiとOとを構成元素に含む材料と炭素材料との複合体を含有している請求項1〜5のいずれかに記載のリチウム二次電池。
  7. 負極の負極合剤層は、負極活物質として黒鉛質炭素材料を更に含有している請求項1〜6のいずれかに記載のリチウム二次電池。
  8. ハロゲン置換された環状カーボネートを更に含有する非水電解質を使用した請求項1〜7のいずれかに記載のリチウム二次電池。
  9. ビニレンカーボネートを更に含有する非水電解質を使用した請求項1〜8のいずれかに記載のリチウム二次電池。
  10. 充電の上限電圧を4.3V以上に設定したものである請求項1〜9のいずれかに記載のリチウム二次電池。
JP2013550231A 2011-12-19 2012-12-11 リチウム二次電池 Active JP6253411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013550231A JP6253411B2 (ja) 2011-12-19 2012-12-11 リチウム二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011276967 2011-12-19
JP2011276967 2011-12-19
JP2013550231A JP6253411B2 (ja) 2011-12-19 2012-12-11 リチウム二次電池
PCT/JP2012/082012 WO2013094465A1 (ja) 2011-12-19 2012-12-11 リチウム二次電池

Publications (2)

Publication Number Publication Date
JPWO2013094465A1 true JPWO2013094465A1 (ja) 2015-04-27
JP6253411B2 JP6253411B2 (ja) 2017-12-27

Family

ID=48668359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013550231A Active JP6253411B2 (ja) 2011-12-19 2012-12-11 リチウム二次電池

Country Status (4)

Country Link
JP (1) JP6253411B2 (ja)
KR (1) KR101984810B1 (ja)
CN (2) CN108199035B (ja)
WO (1) WO2013094465A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905831B1 (en) 2013-09-05 2017-12-20 LG Chem, Ltd. Cathode additive for high-capacity lithium secondary battery
JP6396153B2 (ja) * 2013-11-11 2018-09-26 マクセルホールディングス株式会社 リチウム二次電池
JP6202106B2 (ja) 2014-01-24 2017-09-27 日産自動車株式会社 電気デバイス
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
JPWO2015141179A1 (ja) * 2014-03-17 2017-04-06 三洋電機株式会社 非水電解質二次電池
JP6396136B2 (ja) * 2014-09-18 2018-09-26 マクセルホールディングス株式会社 リチウム二次電池
KR102232185B1 (ko) * 2014-10-29 2021-03-26 맥셀 홀딩스 가부시키가이샤 리튬 이온 이차 전지
CN104538612B (zh) * 2014-12-20 2017-03-08 贵州中伟正源新材料有限公司 一种镍铝锂正极材料的制备方法
JP6528985B2 (ja) * 2015-03-17 2019-06-12 株式会社Gsユアサ 蓄電素子の製造方法。
CN110249471A (zh) * 2017-01-26 2019-09-17 日本电气株式会社 二次电池
CN108232300A (zh) * 2018-01-05 2018-06-29 宁德新能源科技有限公司 一种锂离子电池及其电解液
CN108682800B (zh) * 2018-04-24 2021-07-30 西安建筑科技大学 一种高镍三元改性正极材料及其制备方法
CN109461926B (zh) * 2018-11-09 2022-03-11 万华化学集团股份有限公司 一种锂离子电池正极材料及其制备方法、正极和锂离子电池
CN109888271B (zh) * 2019-02-28 2020-12-22 蜂巢能源科技有限公司 正极活性材料及其制备方法、正极片和锂离子电池
JP2024508186A (ja) * 2021-07-21 2024-02-22 エルジー エナジー ソリューション リミテッド リチウム二次電池
EP4276928A1 (en) 2022-03-31 2023-11-15 Contemporary Amperex Technology Co., Limited Positive active material, preparation method therefor, positive electrode plate containing positive active material, and secondary battery and electric device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510270A (ja) * 2004-01-15 2007-04-19 エルジー・ケム・リミテッド 脂肪族ニトリル化合物を含む電気化学素子
JP2007519186A (ja) * 2004-02-16 2007-07-12 エルジー・ケム・リミテッド リチウム2次電池用電極
JP2008010414A (ja) * 2006-06-02 2008-01-17 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2010015968A (ja) * 2008-07-07 2010-01-21 Samsung Sdi Co Ltd リチウム二次電池
JP2010073367A (ja) * 2008-09-16 2010-04-02 Sony Corp 非水電解質および非水電解質電池
JP2010212228A (ja) * 2009-02-13 2010-09-24 Hitachi Maxell Ltd 非水二次電池
JP2010245020A (ja) * 2009-04-01 2010-10-28 Samsung Sdi Co Ltd 添加剤を含むリチウム2次電池用電解液及びこれを含むリチウム2次電池
JP2010287431A (ja) * 2009-06-11 2010-12-24 Sony Corp 電池
JP2011198530A (ja) * 2010-03-18 2011-10-06 Sanyo Electric Co Ltd 非水電解液二次電池
JP2011233369A (ja) * 2010-04-27 2011-11-17 Hitachi Maxell Energy Ltd 非水二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952180B2 (ja) 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
KR100588288B1 (ko) * 2004-02-16 2006-06-09 주식회사 엘지화학 리튬 이차 전지용 전극
JP4401984B2 (ja) 2004-03-08 2010-01-20 三星エスディアイ株式会社 リチウム二次電池用負極活物質、リチウム二次電池用負極活物質、およびリチウム二次電池
US20070077496A1 (en) * 2005-10-05 2007-04-05 Medtronic, Inc. Lithium-ion battery
EP2790258A1 (en) * 2006-06-02 2014-10-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
JP4936440B2 (ja) * 2006-10-26 2012-05-23 日立マクセルエナジー株式会社 非水二次電池
JP5165258B2 (ja) 2007-02-26 2013-03-21 日立マクセルエナジー株式会社 非水電解質二次電池
JP5239473B2 (ja) * 2008-04-14 2013-07-17 ソニー株式会社 二次電池用電解液、二次電池および電子機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510270A (ja) * 2004-01-15 2007-04-19 エルジー・ケム・リミテッド 脂肪族ニトリル化合物を含む電気化学素子
JP2007519186A (ja) * 2004-02-16 2007-07-12 エルジー・ケム・リミテッド リチウム2次電池用電極
JP2008010414A (ja) * 2006-06-02 2008-01-17 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2010015968A (ja) * 2008-07-07 2010-01-21 Samsung Sdi Co Ltd リチウム二次電池
JP2010073367A (ja) * 2008-09-16 2010-04-02 Sony Corp 非水電解質および非水電解質電池
JP2010212228A (ja) * 2009-02-13 2010-09-24 Hitachi Maxell Ltd 非水二次電池
JP2010245020A (ja) * 2009-04-01 2010-10-28 Samsung Sdi Co Ltd 添加剤を含むリチウム2次電池用電解液及びこれを含むリチウム2次電池
JP2010287431A (ja) * 2009-06-11 2010-12-24 Sony Corp 電池
JP2011198530A (ja) * 2010-03-18 2011-10-06 Sanyo Electric Co Ltd 非水電解液二次電池
JP2011233369A (ja) * 2010-04-27 2011-11-17 Hitachi Maxell Energy Ltd 非水二次電池

Also Published As

Publication number Publication date
CN103975474A (zh) 2014-08-06
KR101984810B1 (ko) 2019-05-31
CN108199035A (zh) 2018-06-22
CN108199035B (zh) 2021-05-28
WO2013094465A1 (ja) 2013-06-27
JP6253411B2 (ja) 2017-12-27
KR20140105753A (ko) 2014-09-02

Similar Documents

Publication Publication Date Title
JP6253411B2 (ja) リチウム二次電池
JP4868556B2 (ja) リチウム二次電池
JP5042400B2 (ja) 非水二次電池
KR101982682B1 (ko) 리튬 2차 전지
CN105576279B (zh) 锂二次电池
WO2015111710A1 (ja) 非水二次電池
WO2012014998A1 (ja) リチウム二次電池
KR102419885B1 (ko) 비수 전해질 이차 전지용 정극, 비수 전해질 이차 전지 및 그 시스템
JP2011243558A (ja) リチウム二次電池用正極およびリチウム二次電池
JP5872055B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP2013222612A (ja) 非水二次電池
JP5341280B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP2014127256A (ja) 非水電解質二次電池
JP5031065B2 (ja) リチウムイオン二次電池
JP2013118069A (ja) リチウム二次電池
JP5851801B2 (ja) リチウム二次電池
JP5793411B2 (ja) リチウム二次電池
JP5566825B2 (ja) リチウム二次電池
TWI622199B (zh) Lithium secondary battery
JP2015133193A (ja) 非水電解質二次電池
JP2013118068A (ja) リチウム二次電池
JP5658122B2 (ja) リチウム二次電池
JP5785653B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250