JPWO2012127775A1 - 非水電解質二次電池の充電方法、及び電池パック - Google Patents

非水電解質二次電池の充電方法、及び電池パック Download PDF

Info

Publication number
JPWO2012127775A1
JPWO2012127775A1 JP2012528158A JP2012528158A JPWO2012127775A1 JP WO2012127775 A1 JPWO2012127775 A1 JP WO2012127775A1 JP 2012528158 A JP2012528158 A JP 2012528158A JP 2012528158 A JP2012528158 A JP 2012528158A JP WO2012127775 A1 JPWO2012127775 A1 JP WO2012127775A1
Authority
JP
Japan
Prior art keywords
charging
voltage
current
battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012528158A
Other languages
English (en)
Other versions
JP5089825B2 (ja
Inventor
鈴木 達彦
達彦 鈴木
顕 長崎
顕 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012528158A priority Critical patent/JP5089825B2/ja
Application granted granted Critical
Publication of JP5089825B2 publication Critical patent/JP5089825B2/ja
Publication of JPWO2012127775A1 publication Critical patent/JPWO2012127775A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Power Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本方法では、nステップ(ただし、nは2以上の整数)の定電流充電により1以上の非水電解質二次電池を充電する。このとき、(1)前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)に達するまで(ただし、kは1以上、かつn−1以下の整数)、電流Ic(k)で充電し、(2)電池1個あたりの充電電圧が前記電圧Ec(k)に達すると、前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)よりも高い電圧Ec(k+1)に達するまで、電流Ic(k)よりも小さい電流Ic(k+1)で充電し、(3)前記1以上の二次電池の使用頻度または充放電回数に応じて、前記電流Ic(k)およびIc(k+1)を設定する。

Description

本発明は、非水電解質二次電池の劣化を抑えながら充電時間を短縮するための技術に関する。
従来から、ノートパソコン、携帯電話、及びAV機器等の電子機器の電源として、高電圧及び高エネルギ密度を有するリチウムイオン二次電池が広く用いられている。リチウムイオン二次電池は、電解質として非水溶液系電解質を使用する非水電解質二次電池の一種であり、負極活物質には、リチウムを吸蔵及び放出することが可能な炭素材料等が一般的に用いられる。一方、正極活物質としては、リチウム含有複合酸化物(LiCoO2等)が用いられる。
近年、電子機器の小型化及び高性能化が進むにつれて、リチウムイオン二次電池の高容量化及び長寿命化への要望が高まっている。また、ユビキタス社会の進展に伴う電子機器の使用頻度の増大により、充電時間の短縮についての要望も非常に大きくなっている。
二次電池を高容量化するためには、一般に、活物質の充填密度を高めることが有効である。しかしながら、活物質の充填密度を高めると、リチウムイオン二次電池においては、充電時に、活物質のリチウムイオンの受け入れ性が低下し易くなる。その結果、充放電サイクル寿命特性(以下、単にサイクル特性という)が低下する場合がある。
一方、非水電解質二次電池の長寿命化、すなわちサイクル特性の向上を達成するために、従来から、充電電流を低減することが提案されている。充電電流を小さくすることで、活物質が高密度で充填されている場合にも、サイクル特性が低下するのを防止することができる。
さらには、充電電圧の上限値が高いと、非水電解質の分解が促進され、これによりサイクル特性が低下する。よって、充電電圧の上限値を抑えることで、サイクル特性が低下するのを防止することができる。
しかしながら、例えば、充電電流を低減すると、単位時間あたりに二次電池に充電することができる電気量が少なくなることから、充電時間は当然に長くなる。二次電池の充電時間については、様々な分野で短縮することが求められている。したがって、充電電流を単に小さくしてしまうと、その要求に応えることはできない。一方、充電電圧の上限値を抑えると、放電容量が小さくなるために、1回の充電で機器を使用できる時間は短くなる。
そこで、二次電池のサイクル特性の低下を招くことなく充電時間を短縮するために、従来、様々な充電方法が提案されている。
例えば、特許文献1では、電池を一定の電流で充電する定電流充電方法で充電するときに、何段階かの電流で充電することが提案されている。より具体的には、初めに高い一定の電流で、電池電圧が所定のカットオフ電圧(充電終止電圧)に達するまで充電する。電池電圧がカットオフ電圧に達すると、充電電流を低下させることで電池電圧を一旦低下させる。次いで、初めの電流値よりも低い一定の電流で、電池電圧が所定のカットオフ電圧に達するまで充電する。このように、何段階かの電流値で電池を定電流充電するとともに、電流値を順次低い電流値に切り替えている。ここで、特許文献1の充電方法においては、定電流充電の各段階で、カットオフ電圧(充電終止電圧)を、電池の内部抵抗による電圧降下分に応じて変更している。
特許文献2でも、同様に、電池を一定の電流で充電する定電流充電方法で充電するときに、何段階かの電流で充電することが提案されている。より具体的には、特許文献2の充電方法では、充電電圧が充電終止電圧よりも低い、3.8〜4.0Vの第1上限電圧に達するまで、比較的大きい第1電流で充電する。次いで、第1上限電圧よりも高い第2上限電圧(充電終止電圧以下である)に達するまで、第1電流よりも小さい第2電流で電池を充電する。以上の手順を繰り返して、電池を充電終止電圧まで充電する。
特開平10−145979号公報 特開2010−21132号公報
上述したとおり、特許文献1では、定電流充電の各段階でカットオフ電圧(充電終止電圧)を切り替えている。このとき、電池の内部抵抗を算出し、その内部抵抗に相当する電圧降下分を初期のカットオフ電圧(充電終止電圧)に加算することで、カットオフ電圧を切り替えている。ところが、特許文献1の方法でカットオフ電圧を切り替えると、電池の内部抵抗が大きくなったときに、カットオフ電圧が高くなりすぎる場合がある。そのような場合には、二次電池が過充電状態となって、サイクル特性が低下する。
一方、特許文献2では、充放電サイクル数の少ない初期の電池においては、確かに電池の劣化を抑制しながら、充電時間の短縮を図ることができるという効果が得られる。しかしながら、充放電サイクル数が増大すると、二次電池は、内部抵抗が大きくなる傾向がある。このため、充放電サイクル数が増大するにつれて、負極のリチウムイオン受入性が急速に低下して、サイクル特性の低下を招くことがある。したがって、特許文献2のように定電流充電の充電電流を何段階かに切り替えるだけでは、二次電池のサイクル特性の低下を十分に抑えることが困難な場合がある。さらに、特許文献2は、特許文献1と同様に、充電電流を切り替えるときに充電電圧の急激な低下を伴う。そのことは、充電時間を短縮するための障害となり得る。
そこで、本発明は、非水電解質二次電池のサイクル特性の低下を抑えつつ、充電時間を短縮することができる非水電解質二次電池の充電方法および電池パックを提供することを目的としている。
本発明の一局面は、nステップ(ただし、nは2以上の整数)の定電流充電により1以上の非水電解質二次電池を充電する方法であって、
(1)前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)に達するまで(ただし、kは1以上、かつn−1以下の整数)、電流Ic(k)で充電し、
(2)電池1個あたりの充電電圧が前記電圧Ec(k)に達すると、前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)よりも高い電圧Ec(k+1)に達するまで、電流Ic(k)よりも小さい電流Ic(k+1)で充電し、
(3)前記1以上の二次電池の使用頻度または充放電回数に応じて、前記電流Ic(k)およびIc(k+1)を設定する、非水電解質二次電池の充電方法に関する。
本発明の他の局面は、1以上の非水電解質二次電池と、前記二次電池を外部電源からの電力により充電する充電回路と、前記充電回路を制御する制御部とを具備した電池パックであって、
前記制御部が、nステップ(ただし、nは2以上の整数)の定電流充電により前記1以上の二次電池を充電し、かつ
(1)前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)に達するまで(ただし、kは1以上、かつn−1以下の整数)、電流Ic(k)で充電し、
(2)電池1個あたりの充電電圧が前記電圧Ec(k)に達すると、前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)よりも高い電圧Ec(k+1)に達するまで、電流Ic(k)よりも小さい電流Ic(k+1)で充電するように、前記充電回路を制御するとともに、
(3)前記1以上の二次電池の使用頻度または充放電回数に応じて、前記電流Ic(k)およびIc(k+1)を設定する、電池パックに関する。
本発明によれば、非水電解質二次電池のサイクル特性の低下を抑えつつ、充電時間を短縮することができる。
本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成及び内容の両方に関し、本発明の他の目的及び特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係るリチウムイオン二次電池の充電方法が適用される電池パックの機能ブロック図である。 同上の電池パックに含まれるリチウムイオン二次電池の一例の縦断面図である。 充放電処理のフローチャートである。 充放電処理のフローチャートである。 充電処理の処理結果を示すグラフである。 充電電流補正処理のフローチャートである。 充電電流補正テーブルの一例である。
本発明は、nステップ(ただし、nは2以上の整数)の定電流充電により1以上の非水電解質二次電池を充電する方法に関する。nステップの定電流充電では、(1)1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)に達するまで(ただし、kは1以上、かつn−1以下の整数)、電流Ic(k)で充電するとともに、(2)電池1個あたりの充電電圧が電圧Ec(k)に達すると、1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)よりも高い電圧Ec(k+1)に達するまで、電流Ic(k)よりも小さい電流Ic(k+1)で充電する。そして、電流Ic(k)およびIc(k+1)は、1以上の二次電池の使用頻度または充放電回数に応じて設定される。
上記の充電方法によれば、充電初期の低電圧領域では高率充電が実行され、充電終期の高電圧領域では低率充電が実行される。さらに、上記の充電方法によれば、充電電流が、二次電池の使用頻度または充放電回数に応じて設定される。これにより、後で詳しく説明するように、使用頻度の増大に伴う二次電池の内部抵抗の増大に対応して、適切に充電電流を設定することが可能となる。以上により、充電時間を短縮できるとともに、負極のリチウムイオンの受入性の低下によるサイクル特性の低下を抑制することができる。ここで、好ましいステップ数nは、2〜10であり、特に2及び3が好ましい。
本発明の一形態によれば、上記の充電方法において、電池1個あたりの充電電圧が電圧Ec(k)に達した後、充電電流が電流Ic(k+1)に低下するまで、1以上の二次電池を、電圧Ec(k)で充電する。そして、電池1個あたりの充電電圧が電圧Ec(k+1)に達した後、充電電流が電流Ic(k+2)に低下するまで、1以上の二次電池を、前記電圧Ec(k+1)で充電する。
すなわち、本形態では、非水電解質二次電池(以下、単に電池ともいう)を充電するときに、例えば電池が満充電状態となるまで、定電流充電と定電圧充電とを交互に複数のステップ繰り返す。このとき、1ステップ目の定電流充電の電流(値)をIc(1)とすると、2ステップ目の定電流充電の電流(値)Ic(2)は、電流Ic(1)よりも小さくする。このように、充電が進むにつれて、各ステップの定電流充電の充電電流を小さくしていく。
そして、1ステップ目の定電流充電の上限電圧(第1上限電圧)は、電池の定格容量と対応する充電終止電圧よりも低い電圧Ec(1)とし、1ステップ目の定電流充電により電池電圧が電圧Ec(1)に達すると、1ステップ目の定電流充電は終了する。次いで、一定の電圧Ec(1)で電池を充電する、1ステップ目の定電圧充電を開始する。この1ステップ目の定電圧充電により、充電電流が上記の電流Ic(1)から、第1下限電流である電流Ic(2)(Ic(2)<Ic(1))にまで減少すると、1ステップ目の定電圧充電は終了する。
次いで、上記の電流Ic(2)により2ステップ目の定電流充電を開始し、この2ステップ目の定電流充電により電池電圧が、第2上限電圧である電圧Ec(2)(Ec(2)>Ec(1))にまで上昇すると、2ステップ目の定電流充電は終了する。次いで、一定の電圧Ec(2)で電池を充電する、2ステップ目の定電圧充電を開始する。この2ステップ目の定電圧充電により、充電電流が電流Ic(2)から、第2下限電流である電流Ic(3)(Ic(3)<Ic(2))にまで減少すると、2ステップ目の定電圧充電は終了する。
以上のようにして、本発明によれば、基本的には、複数ステップの定電流充電および定電圧充電を実行することで、電池が充電される。このとき、各ステップの定電流充電の上限電圧は、段階的に、電池の定格容量と対応する充電終止電圧と等しくなるまで高くされていく。そして、定電流充電の上限電圧が高くなるほど、その充電電流(電流Ic(k)およびIc(k+1))を小さくする。
その結果、充電初期の低電圧領域では高率充電が実行され、充電終期の高電圧領域では低率充電が実行される。これにより、充電時間を短縮できるとともに、負極のリチウムイオンの受入性の低下によるサイクル特性の低下を抑制することができる。
なお、サイクル特性とは、所定の電圧範囲、並びに所定の条件下で二次電池の充放電を繰り返したときの、サイクル数と放電容量との関係をいう。そして、放電容量が初期容量から所定割合だけ低下するまでのサイクル数を二次電池のサイクル寿命、または、単に、寿命ともいう。二次電池の寿命が短くなることをサイクル特性が低下するという。
そして、本形態では、充電電流を切り替えるときに、充電電流を直ちに小さくするのではなく、定電圧充電を実行することで、充電電流を徐々に小さくしている(図5参照)。その結果、充電電流を直ちに小さくする場合と比較して、充電電流の平均値が大きくなる。したがって、さらに充電時間を短縮することが可能となる。
さらに、本発明においては、各ステップの定電流充電の電流Ic(k)およびIc(k+1)は、電池の使用頻度または充放電回数に応じて設定される。その理由は、二次電池は、一般に、充放電回数の増加により内部抵抗が増大する。内部抵抗が増大すると、高率充電を行うためには、充電電圧を以前よりも高くする必要性が生じる。その結果、電池のサイクル特性が低下して、内部抵抗が増大するという悪循環を生じることがある。よって、電池の使用頻度または充放電回数に応じて、電流Ic(k)およびIc(k+1)を設定することで、内部抵抗の増大を考慮して、サイクル特性の低下を招かないように、充電電流を適切に設定することが可能となる。その結果、高率充電による負極でのリチウムイオンの受け入れ性の低下が緩和される。したがって、充電時間の短縮とサイクル特性の向上とを同時に実現することが可能となる。
電池の使用頻度または充放電回数に応じた電流Ic(k)およびIc(k+1)の設定は、例えば、充放電回数が一定数だけ増加する毎に、電流Ic(k)およびIc(k+1)を小さくする、という形態を取り得る。つまり、充放電回数が「1」増加する毎に、電流Ic(k)およびIc(k+1)を小さくしたり、または、充放電回数が「2」増加する毎に、電流Ic(k)およびIc(k+1)を小さくしたりすることができる。上記一定数は、特に限定されないが、充電電流のきめ細かな調節という観点からは、できるだけ小さくするのが好ましい。特に、上記一定数は、値「1」とするのが好ましい。
このとき、二次電池の使用頻度または充放電回数が一定数だけ増加する毎に、電流Ic(k)およびIc(k+1)をそれぞれ同じ低減率αで小さくするとともに、使用頻度または充放電回数が増加するにつれて、その低減率αを徐々に小さくしていくのが好ましい。充放電回数の増加に伴う非水電解質二次電池の内部抵抗の増大率は、充放電回数が比較的小さい電池の使用初期で大きく、その後、徐々に低下していく。そのことに合わせて、電流Ic(n)およびIc(n+1)をともに小さくしていく低減率αは、電池の使用初期には比較的大きくし、その後、使用頻度または充放電回数が増加するにつれて、徐々に小さくすることが合理的だからである。そのように、電流Ic(k)およびIc(k+1)を小さくする低減率αを設定することで、充電時間の短縮とサイクル特性の向上とを得る効果を、さらに大きくすることができる。
または、本発明は、充放電回数が一定数だけ増加したときに、電流Ic(k)およびIc(k+1)を、例えば1回だけ、小さくするような形態を取り得る。電池の使用初期の内部抵抗の増大率が大きく、その後の内部抵抗の増大率が小さいことから、比較的使用頻度等が小さい時期に1回だけ、電流Ic(k)およびIc(k+1)を適当な値だけ小さくすることでも、サイクル特性を向上させる効果を十分に期待し得るからである。その場合の充放電回数は、具体的な電池の構成(正極材料の種類、充填密度等)にもよるが、例えば、50〜100回の範囲の充放電回数とするのが好ましい。一般的に、充放電回数がそのような回数に達していると、それ以後の内部抵抗の増大率は電池が完全に劣化するまでの間は、かなり小さいからである。
一方、電流Ic(k+1)と電流Ic(k)との比、Ic(k+1)/Ic(k)は、0.1以上、かつ0.75以下であるのが好ましい。上記比、Ic(k+1)/Ic(k)を0.1以上とすることで充電時間を効果的に短縮することができる。上記比、Ic(k+1)/Ic(k)を0.75以下とすることで、サイクル特性の低下の影響を小さくすることができる。
ここで、非水電解質二次電池は、正極、負極及び非水電解質を具備している。そして、正極は、一般式(1):LiNixCoy1-x-y2で表されるニッケル酸リチウム系のリチウム含有複合酸化物を含むのが好ましい。ただし、Mは、長周期型周期表における、2族元素、3族元素、4族元素、7族元素及び13族元素からなる群より選択される少なくとも1つの元素であり、0.3≦x<1、0<y<0.4、である。なお、一般式(1)のxが大きくなるほど、その正極材料は、ニッケル酸リチウム(LiNiO2)に近づく。
ニッケル酸リチウム系のリチウム含有複合酸化物(以下、Ni系正極材料という)を正極活物質として使用したリチウムイオン二次電池(以下、Ni系正極電池という)は、コバルト酸リチウム系のリチウム含有複合酸化物(以下、Co系正極材料という)を正極活物質として使用したリチウムイオン二次電池(以下、Co系正極電池という)と比べて、定電流−定電圧充電により充電したときの充電時間を短縮することが容易である。
これは、同じ充電深度で比べた場合、Ni系正極材料は、Co系正極材料よりも電位が低いからである。換言すれば、Ni系正極電池は、Co系正極電池よりも充電電圧のプロファイルが低い。よって、同じ容量の電池を同じ電流で充電しても、電池電圧が上限電圧に達するまでの時間は、Ni系正極電池の方が、Co系正極電池よりも長くなる。このことは、定電流充電と定電圧充電とを1セットとして、同じだけの電気量を電池に充電する場合に、Ni系正極電池の方が、1セットの充電に占める定電流充電の割合を大きくできることを意味する。
定電流充電と定電圧充電とを比較すると、充電レート(単位時間当たりに電池に充電される電気量)は定電流充電の方が大きい。したがって、定電流充電の割合を大きくすることで、1セットの充電の充電時間を短縮することができる。以上の理由で、正極に、一般式(1)により表される材料を使用することで、充電時間を顕著に短縮することができる。
さらに、以上のことから、正極に、一般式(1)により表される材料を使用することで、たとえ充電電流を小さくしても、Co系正極電池と同程度の充電時間で充電を完了することができる。その結果、Co系正極電池と充電時間を同じに設定するならば、Ni系正極電池は、定電流充電における充電電流を、Co系正極電池のそれよりも小さな値に設定することができる。つまり、本発明により得られる充電時間短縮の効果を、Co系正極電池の場合と同程度に抑えれば、Ni系正極電池では、サイクル特性向上の効果をより大きなものとすることができる。したがって、正極に、一般式(1)により表される材料を使用することで、サイクル特性の低下を抑えながら、容易に充電時間を短縮することができる。
kが1であるときは、電流Ic(k)が、0.7It以上、かつ2It以下であり、電圧Ec(k)が、3.8V以上、かつ4V以下であるのが好ましい。このとき、充電対象の電池が組電池である場合には、組電池を構成する各電池について、上限電圧である電圧Ec(k)を3.8V以上、かつ4V以下に設定する。一方、充電電流については、充電対象の電池が組電池であれば、各電池の充電電流ではなく、組電池全体の充電電流を0.7It以上、かつ2It以下の電流Ic(k)に設定する。高率充電である1ステップ目(つまり、n=1)の定電流充電の上限電圧(電圧Ec(1))が4Vを超えると、充電時の負極のリチウムイオンの受け入れ性が低下し、サイクル寿命が低下する。一方、電圧Ec(1)が3.8V未満であると、高率充電である1ステップ目の定電流充電の充電全体に占める割合(充電電気量で見たときの割合)が小さくなり、結果として、充電時間が長くなる。以上の理由により、より優れたサイクル寿命特性と、充電時間短縮との効果を得るためには、電圧Ec(1)は、3.8V以上、かつ4V以下とするのが好ましい。
一方、1ステップ目の定電流充電の充電電流(電流Ic(1))が0.7It未満であると、充電時間が長くなる。また電流Ic(1)が2Itを超えると、充電時の負極のリチウムイオン受け入れ性が低下し易く、サイクル寿命特性が低下し易い。以上の理由により、より優れたサイクル寿命特性と、充電時間短縮との効果を得るためには、電流Ic(1)は、0.7It以上、かつ2It以下であるのが好ましい。なお、充電開始時に電池電圧が電圧Ec(1)以上であれば、2ステップ目以降の定電流充電から充電が開始される。
ここで、「It」は、充電電流または放電電流を電池の定格容量との関係で表すために使用される記号であり、式、It(A)=定格容量(Ah)/X(h)により定義される。ただし、「X」は、定格容量分の電気を充電または放電するための時間である。例えば、0.5Itとは、充電電流または放電電流が、定格容量(Ah)/2(h)と等しいことを意味する。
さらに、定電流充電と、それに続く定電圧充電とを繰り返すステップの総数がfであるとすると、電流Ic(f)は、0.3It以上、かつ0.7It以下であり、電圧Ec(f)は、4Vを超え、かつ4.4V以下であるのが好ましい。この場合、電圧Ec(f)は、電池の定格容量により規定される充電終止電圧と等しい。充電終止電圧が、4.4Vを超えると、非水電解液の分解反応などの副反応が起こり、サイクル寿命特性が低下し易い。充電終止電圧が4Vを下回ると定格容量が小さくなり、1回の充電で機器を使用できる時間が短くなる。以上の理由により、電圧Ec(f)は、4V以上、かつ4.4V以下とするのが好ましい。
充電深度が大きいときに充電電流を大きくすると、充電時の負極のリチウムイオンの受け入れ性が低下し易い。よって、最終ステップの定電流充電の充電電流(電流Ic(f))を、0.3It以上、かつ0.7It以下の低めの電流値に設定することで、より優れたサイクル寿命特性と、充電時間短縮との効果を両立させることができる。
さらに、本発明は、1以上の非水電解質二次電池と、二次電池を外部電源からの電力により充電する充電回路と、充電回路を制御する制御部とを具備した電池パックに関する。制御部は、(1)1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)に達するまで、電流Ic(k)で充電する工程(ただし、kは1以上、かつn−1以下(n≧2)の整数である)、および(2)電池1個あたりの充電電圧が電圧Ec(k)に達すると、1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)よりも高い電圧Ec(k+1)に達するまで、電流Ic(k)よりも小さい電流Ic(k+1)で充電する工程を含む、nステップの定電流充電により1以上の二次電池を充電するように充電回路を制御する。そして、制御部は、1以上の二次電池の使用頻度または充放電回数に応じて、電流Ic(k)およびIc(k+1)を設定する。
以下、本発明の実施形態を、図面を参照して説明する。
(実施形態1)
図1に、本発明の一実施形態に係る非水電解質二次電池の充電方法が適用される、電池パックを機能ブロック図により示す。
電池パック10は、非水電解質二次電池(例えばリチウムイオン二次電池)を含む二次電池12、充放電回路14、二次電池12の電圧を検出する電圧検出部(電圧センサ)16、及び二次電池12の電流を検出する電流検出部(電流センサ)17を含む。そして、電池パック10は、負荷機器20及び外部電源22と接続可能となっている。
充放電回路14は、制御部18を含む。電池パック10の二次電池12は、1つの非水電解質二次電池であってもよいし、並列及び/または直列に接続された複数の非水電解質二次電池を含んでいてもよい。制御部18は、充放電回路14とは独立に設けてもよい。後で説明する制御部18の制御機能の一部を負荷機器20に備えさせてもよいし、電池パック10を充電するための充電器等に備えさせてもよい。
負荷機器20は、充放電回路14を介して二次電池12と接続される。二次電池12は、充放電回路14を介して商用電源等の外部電源22と接続される。電圧検出部16は、二次電池12の開回路電圧(OCV:Open Circuit Voltage)及び閉回路電圧(CCV:Closed Circuit Voltage)を検出し、その検出値を制御部18に送る。
制御部18は、基本的には所定の電圧領域で二次電池12を充放電するように制御する。そのような制御部は、CPU(Central Processing Unit:中央処理装置)、マイクロコンピュータ、MPU(Micro Processing Unit:マイクロプロセッサ)、主記憶装置及び補助記憶装置等から構成することができる。
そして、その補助記憶装置(不揮発性メモリ等)には、二次電池12の充電終止電圧に関する情報、二次電池12を定電流充電するときの上限電圧(または、定電圧充電の充電電圧)に関する情報、充電電流(または、定電圧充電の下限電流)に関する情報、放電終止電圧に関する情報、並びに充電電流(または、下限電流)を二次電池の使用頻度もしくは充放電回数に応じて補正する場合の補正量に関する情報(例えば、充電電流補正テーブル)、等が格納されている。
次に、図2を参照して、二次電池12に使用される非水電解質二次電池を説明する。図2は、非水電解質二次電池の一例であるリチウムイオン二次電池の内部構造を示す断面図である。なお、図示例のリチウムイオン二次電池24は、円筒形であるが、本発明はこれに限定されず、角形、扁平状、ピン状、等の様々な形状のリチウムイオン二次電池に適用することができる。
リチウムイオン二次電池24は、正極26と、負極28と、それらの間に介在されるセパレータ30とを渦巻き状に巻回して構成された電極群31を備えている。電極群31は、図示しない非水電解質とともに、開口部を有する有底円筒型の金属製の電池ケース32に収納される。電池ケース32の内部において、電極群31の上側および下側には、それぞれ上側絶縁板36および下側絶縁板38が配設される。
電池ケース32の開口部は組立封口板34により封口されており、これにより電極群31および非水電解質は電池ケース32の内部に密閉される。組立封口板34は、絶縁体のガスケット44により電池ケース32とは電気的に絶縁された状態で、電池ケース32の上部に設けられた小径部46の上に載置される。その状態で、組立封口板34の周縁部を、ガスケット44の上から、小径部46と開口端部とにより挟持するように、電池ケース32の開口端部をかしめることで、組立封口板34は、電池ケース32の開口部に装着される。
組立封口板34は、正極26と、正極リード40を介して接続されている。これにより、組立封口板34が正極26の外部端子として機能する。一方、負極28は、負極リード48を介して電池ケース32と接続されている。これにより、電池ケース32が負極28の外部端子として機能する。
正極は、例えば、正極集電体および正極集電体上に形成された正極活物質層からなる。正極活物質層は、例えば、正極活物質、導電材および結着剤の混合物からなる。
正極活物質には、一般式(1):LiNixCoy1-x-y2で表されるNi系正極材料を用いるのが好ましい。ただし、Mは、長周期型周期表における、2族元素、3族元素、4族元素、7族元素及び13族元素からなる群より選択される少なくとも1つの元素であり、0.3≦x<1、0<y<0.4、である。
Ni系正極材料を正極に使用すると、上述したとおり、充電時間短縮及びサイクル特性向上の効果が顕著に得られる。そのようなNi系正極材料は、公知の方法により作製することができる。なお、xを0.3以上とすることにより、充電電圧の低減効果が顕著に得られる。同様に、yを0.4未満とすることにより、充電電圧の低減効果がさらに顕著に得られる。xは、0.6≦x≦0.9、がより好ましく、yは、0.05≦y≦0.2、がさらに好ましい。
また、正極活物質に一般式(1)の元素Mを添加することにより、リチウムイオン二次電池のサイクル特性を向上させることができるとともに、高容量化が容易となる。2族元素の例としては、Mg及びCaが挙げられる。3族元素の例としては、Sc及びYが挙げられる。4族元素の例としては、Ti及びZrが挙げられる。7族元素の例としては、Mnが挙げられる。13族元素の例としては、B及びAlが挙げられる。これらの中でも、結晶構造の安定性に優れ、かつ安全性が確保される点で、MnおよびAlが最も好ましい。
導電材には、天然黒鉛、人造黒鉛、カーボンブラック、またはアセチレンブラック等の炭素材料を使用することができる。結着剤には、ポリフッ化ビニリデン(PVDF)またはポリテトラフルオロエチレン(PTFE)を使用することができる。正極集電体には、アルミニウム箔などの金属箔を使用することができる。そして、正極は、正極活物質、導電材、及び結着剤の混合物をN−メチル−2−ピロリドンなどの分散媒に分散させることにより得られる正極ペーストを、正極集電体上に塗布した後、乾燥することにより得ることができる。
負極28も正極26と同様に、負極集電体及び負極集電体上に形成された負極活物質層を含む。負極活物質層は、蒸着等により形成される堆積膜でもよく、負極活物質、導電材、及び結着剤の混合物でもよい。負極活物質には、リチウムの吸蔵及び放出が可能な炭素材料、例えば人造黒鉛または天然黒鉛を使用することができる。また、ケイ素合金や、ケイ素酸化物も使用することができる。負極集電体には、ニッケル箔や銅箔等の金属箔を使用することができる。導電材及び結着剤には、上記正極と同じものを使用することができる。そして、負極は、例えば、負極活物質、導電材、及び結着剤の混合物をN−メチル−2−ピロリドンなどの分散媒に分散させて得られる負極ペーストを、負極集電体上に塗布した後、乾燥することにより得ることができる。
非水電解質は、非水溶媒及び非水溶媒に溶解する支持塩を含む。支持塩には、六フッ化リン酸リチウム(LiPF6)等のリチウム塩を使用することができる。非水溶媒には、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)等の環状エステルと、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びメチルエチルカーボネート(MEC)等の鎖状エステルとの混合溶媒が用いられる。
以下に、図3〜図6を参照して、制御部18が実行する充電処理を説明する。図3及び図4は、制御部の例えばCPUが実行する処理のフローチャートである。
図3で、二次電池12の充電処理が開始されると、整数値を格納する変数kに値「1」が代入される(S1)。そして、電圧検出部16により検出された二次電池12の電圧Eと、制御部18のメモリ等に記憶されている、電圧Ec(k)とが比較される(S2)。最初は、電池電圧Eと、電圧Ec(1)とが比較される。ここで、電池電圧Eが電圧Ec(k)以上である場合(S2でNo)は、kステップ目(最初は1ステップ目)の定電流充電の上限電圧よりも電池電圧Eが高いものとして、続いて、変数kと定数fとが比較される(S3)。ただし、定数fは、充電の総ステップ数(整数値)を示す。充電の各ステップは、上述したとおり、1セットの定電流充電と定電圧充電とを含む。ここで、変数kが定数fよりも小さければ(S3でYes)、変数kに値「1」が加算され(S4)、上記のS2に戻る。
S2で電池電圧Eが電圧Ec(k)未満である場合(S2でYes)は、制御部18のメモリ等に記憶されている電流Ic(k)が読み出される(S5)。最初はIc(1)が読み出される。そして、読み出された電流Ic(k)に対して、充電電流を電池の使用頻度もしくは充放電回数に応じて設定するための充電電流補正処理が実行される(S6)。これにより、電流Ic(k)の補正値である補正電流Ics(k)が得られる。充電電流補正処理の詳細は後で説明する。なお、電池の使用頻度等によっては、電流Ic(k)が実質的に補正されず、Ic(k)=Ics(k)となる場合がある。この点についても後で説明する。
次に、補正電流Ics(k)によるkステップ目の定電流充電を実行する(S7)。最初はIcs(1)で充電する。その状態で所定時間(例えば5ms)が経過すると、再び電池電圧Eと電圧Ec(k)とが比較される(S8)。ここで、電池電圧Eが電圧Ec(k)未満であれば(S8でNo)、上記のS7に戻る。これに対して、電池電圧Eが電圧Ec(k)以上であれば(S8でYes)、上限電圧まで電池が充電されたものとして、定電流充電は終了し、電圧Ec(k)による定電圧充電が実行される(S9)。その状態で所定時間(例えば5ms)が経過すると、制御部18のメモリ等に記憶されている電流Ic(k+1)が読み出される(S10)。最初はIc(2)が読み出される。そして、読み出された電流Ic(k+1)に対して、上記の充電電流補正処理が実行される(S11)。これにより、電流Ic(k+1)の補正値である補正電流Ics(k+1)が得られる。最初はIcs(2)が得られる。
次に、電流検出部17により検出される充電電流Iと、補正電流Ics(k+1)とが比較される(S12)。最初は、充電電流Iと、補正電流Ics(2)とが比較される。ここで、充電電流Iが補正電流Ics(k+1)を超える場合(S12でNo)は、充電電流Iがkステップ目(最初は1ステップ目)の定電圧充電の下限電流よりも高いものとして、S9に戻る。
これに対して、充電電流Iが補正電流Ics(k+1)以下である場合(S12でYes)は、充電電流Iがkステップ目の定電圧充電の下限電流まで低下したことになり、続いて、変数kと定数fとが比較される(S13)。ここで、変数kが定数fと等しければ(S13でYes)、充電が完了したものとして、処理を終了する。
これに対して、変数kが定数fと等しくない場合(S13でNo)には、充電が完了していないものとして、変数kに値「1」を加算(S14)した後、S7に戻る。その後、S7〜14を繰り返すことにより、2ステップ目以降の充電が実行される。2ステップ目の充電処理の流れを簡略化して述べると、電池電圧Eが電圧Ec(2)に達するまで、電流Ic(2)の補正電流Ics(2)により定電圧充電が実行される(S7〜S8)。電池電圧Eが電圧Ec(2)に達すると、充電電流Iが、電流Ic(3)の補正電流Ics(3)に低下するまで、電圧Ec(2)による定電圧充電が実行される(S9〜S12)。
以上の手順を繰り返すことで、変数kが定数fに等しくなると、電池電圧Eが、充電終止電圧である電圧Ec(f)に達するまで、最終のfステップ目の定電流充電が実行される。電池電圧Eが電圧Ec(f)に達すると、充電電流Iが、充電終止電流である電流Ic(f+1)(その補正電流Ics(f+1))に低下するまで、電圧Ec(f)によるfステップ目の定電圧充電処理が実行される。ここで、電流Ic(f+1)は、例えば、50〜140mAの電流値に設定することができる。
図5は、上記充電処理の処理結果の一例を示すグラフであり、図中の曲線LC1は、使用頻度が小さい初期の電池の処理結果を示している。ここでは、定電流充電の電流が、Ic(1)、Ic(2)、及びIc(f)の3段階に切り替えられている。これにより、低電圧領域では高率充電が実行され、高電圧領域では低率充電が実行される。その結果、二次電池12の劣化を抑えつつ、充電時間を短縮することが可能となる。なお、電流Ic(e)(e=f+1)は、充電終止電流である。
そして、例えば、定電流充電の電流をIc(1)からIc(2)に切り替えるときには、電圧Ec(1)で定電圧充電することで、電流を徐々に小さくしている。定電流充電の電流をIc(2)からIc(f)に切り替えるときも同様である。このように、充電電流を切り替えるときに電流を徐々に小さくすることで、電流を直ちに切り替える場合と比較すると、図5の斜線を施した部分の面積(SQ1+SQ2)に相当する電気量だけ多い電気量を、充電電流を切り替えるときに充電することが可能となる。
その結果、充電が完了するまでの時間を上記面積(SQ1+SQ2)に相当する時間(te2−te1)だけ短くすることができる。よって、二次電池12の劣化を抑えつつ、さらに充電時間を短縮することが可能となる。なお、本発明の定電流充電のステップ数は、図5のような3ステップに限らず、2ステップ以上の任意のステップ数に設定することができる。
図5中、曲線LC2は、使用頻度がある程度増大したときの電池の処理結果を示している。ここでは、各ステップの定電流充電の充電電流が小さくされているとともに、各ステップの定電圧充電の下限電流も小さくされている。この場合にも、曲線LC1の場合と同様の充電時間短縮の効果が得られることは明らかである。
次に、図6および図7を参照して、充電電流補正処理を説明する。図6は、充電電流補正処理の一例のフローチャートである。図7に、充電電流補正処理に使用される充電電流補正テーブルの一例を示す。
なお、図6および図7の例では、制御部18が二次電池12の充放電回数を計数する充放電回数計数器を有するものとしている。そして、二次電池12の使用頻度は、充放電回数計数器により計数された充放電回数により表されるものとしている。このとき、充放電回数は、例えば二次電池の公称容量の所定割合以上に相当する電気量が連続して充電された場合を「1回」として計数している。
これに限らず、二次電池12の使用頻度を表すパラメータとして、上述のように、二次電池の劣化割合、例えば容量の低下割合を使用することもできる。さらには、二次電池12の内部抵抗を測定し、その増大量を、二次電池12の使用頻度を表すパラメータとして使用することもできる。
図6の充電電流補正処理では、二次電池12の使用頻度を表すパラメータ、ここでは、上記充放電回数計数器により計数された充放電回数mが読み込まれる(S21)。充放電回数Ncと、変数kの値(1、2、・・・、f)とを使用して充電電流補正テーブルが照合され、充放電回数Ncの属する範囲(m)に対して、電流Ic(k)を最適な電流値とするための補正量ΔIc(m,k)が読み込まれる(S22)。次に、補正量ΔIc(m,k)が電流Ic(k)から減算される(S23)。これにより、各ステップの定電流充電の充電電流が、二次電池12の使用頻度(充放電回数)ないしは内部抵抗(分極電圧)の増大に対応して、最適な値となるように補正される。
次に、図7の充電電流補正テーブルについて説明する。図示例の充電電流補正テーブルでは、充放電回数Ncの属する範囲(m)(範囲(1)、範囲(2)、・・・)に対応して、ステップ(k)の定電流充電の補正量:ΔIc(m,k)が設定されている。図示例では、Nc1〜Nc2(Nc1以上、かつNc2未満)の範囲(1)に対しては、ΔIc(1,1)、ΔIc(1,2)、・・・、ΔIc(1,f+1)が設定され、Nc2〜Nc3(Nc2以上、かつNc3未満)の範囲(2)に対しては、ΔIc(2,1)、ΔIc(2,2)、・・・、ΔIc(2,f+1)が設定され、Nc3〜Nc4(Nc3以上、かつNc4未満)の範囲(3)に対しては、ΔIc(3,1)、ΔIc(3,2)、・・・、ΔIc(3,f+1)が設定されている。ただし、Nc1<Nc2<…、かつNc2−Nc1=Nc3−Nc2=…=定数:Nfである(Nf=1、2、…)。例えばNf=1であれば、充放電回数Ncが「1」増える毎に異なる補正量ΔIc(m,k)で充電電流を補正することができる。
なお、Nf=1であっても、充放電回数Ncが所定数(例えば、10回)に達するまでは、充電電流(下限電流)の補正を行わないように制御することもできる。例えば、Nc1=10として、充放電回数Ncが10未満であるときには全て値「0」の補正量としたり、Nc1=1として、範囲(1)〜範囲(9)の補正量ΔIc(m,k)を全て値「0」に設定したりすればよい。
ここで、Ic(1)>Ic(2)>・・・、という関係が成り立つ。よって、上述したように、電池の使用頻度または充放電回数に応じて定電流充電の充電電流である電流Ic(k)を低減するときの低減率αを全てのステップ(k)で同じ値に設定すると、補正量ΔIc(m,k)について、ΔIc(m,1)>ΔIc(m,2)>・・・>ΔIc(m,n)、という関係が成り立つ。つまり、上記の場合には、補正量ΔIc(m,k)は、充電のステップ数kが大きくなる程に小さくなる。
さらに、上述したとおり、充放電の繰り返しに伴う、非水電解質二次電池の内部抵抗の増加率は、充放電サイクルの初期で大きく、その後徐々に低下する。このことを考慮して、上記低減率αを、使用頻度または充放電回数が増加するにつれて徐々に小さくしていく場合には、補正量ΔIc(m,k)について、ΔIc(1,k)/ΔIc(2,k)>ΔIc(2,k)/ΔIc(3,k)>・・・>1、という関係が成り立つ。ただし、ΔIc(1,k)<ΔIc(2,k)<・・・、である。
なお、充電電流の補正方法は、上記の方法に限らない。例えば、当該二次電池についてあらかじめ得られた二次電池の劣化速度等のデータから一定の補正量もしくは補正率を算出しておく。そして、充放電回数Ncが「1」増加する毎に、初期の充電電流から上記の一定の補正量を減算したり、初期の充電電流に上記の一定の補正率を乗算したり、することでも充電電流を補正することができる。
以下、本発明の実施例を詳細に説明するが、本発明は実施例に限定されない。
(実施例1)
下記手順により、図2に示すような円筒形リチウムイオン二次電池を作製した。
(1)正極の作製
正極活物質としてのLiNi0.8Co0.15Al0.052の100重量部と、結着剤としてのポリフッ化ビニリデン1.7重量部と、導電材としてのアセチレンブラック2.5重量部と、適量のN−メチル−2−ピロリドンとを双腕式練合機にて攪拌し、正極ペーストを得た。
正極活物質を以下のようにして作製した。NiSO4水溶液に所定比率のCoおよびAlの硫酸塩を加え飽和水溶液を調製した。この飽和水溶液を攪拌しながら水酸化ナトリウム水溶液をゆっくりと滴下し、飽和水溶液を中和することで、共沈法により水酸化物Ni0.8Co0.15Al0.05(OH)2の沈殿を得た。得られた沈殿物をろ過し、水洗し、80℃で乾燥した。この水酸化物に、Ni、CoおよびAlのモル数の和とLiのモル数とが等量になるように水酸化リチウム1水和物を加え、乾燥空気中にて800℃で10時間熱処理した。このようにしてLiNi0.8Co0.15Al0.052を得た。
正極ペーストを厚み15μmのアルミニウム箔からなる正極集電体の両面に塗布し、それを乾燥することで、正極集電体の両面に正極活物質層を形成した。これにより、シート状の正極を得た。この正極を圧延した後、裁断することで帯状の正極(厚み0.128mm、幅57mm、長さ667mm)を得た。
(2)負極の作製
負極活物質としてのグラファイト100重量部と、結着剤としてのポリフッ化ビニリデン0.6重量部と、増粘剤としてのカルボキシメチルセルロース1重量部と、適量の水とを双腕式練合機にて攪拌し、負極ペーストを得た。この負極ペーストを厚み8μmの銅箔からなる負極集電体の両面に塗布し、それを乾燥することで負極集電体の両面に負極活物質層を形成した。これにより、シート状の負極を得た。この負極を圧延した後、裁断することで帯状の負極(厚み0.155mm、幅58.5mm、長さ745mm)を得た。
(3)非水電解液の調製
エチレンカーボネートと、メチルエチルカーボネートと、ジメチルカーボネートとを体積比1:1:8の割合で混合した非水溶媒に、LiPF6を1mol/Lの濃度で溶解することで、非水電解液を調製した。
(4)電池の組み立て
上記(1)および(2)で得られた正極と負極と、両電極を隔離するセパレータとを渦巻き状に捲回して電極群を構成した。セパレータには、厚み16μmのポリプロピレン製の微多孔膜を用いた。この電極群を有底円筒形の電池ケース(径18mm、高さ65mm)内に挿入した。このとき、電極群の上部および下部にそれぞれ上側絶縁板および下側絶縁板を配置した。上記で得られた非水電解液を電池ケース内に注入した。負極より引き出された負極リードを電池ケースの内底面に溶接し、正極より引き出された正極リードを組立封口板の下面に溶接した。電池ケースの開口端部を、ガスケットを介して組立封口板の周縁部にかしめつけ、電池ケースの開口部を封口した。このようにして、18650サイズの円筒形リチウムイオン二次電池(径18mm、高さ65mm、定格容量2000mAh)を作製した。
(5)電池パックの組み立て
上記で得られた6個の電池を2並列×3直列で電気的に接続して、組電池を作製した。そして、その組電池にBMU(電池管理ユニット)を備えさせることで電池パックを作製した。
(6)充放電サイクル寿命試験
上記で作製した電池パックに対して以下の内容の充放電サイクル寿命試験を実施した。すなわち、電池パックを、充電電圧が12.0Vの上限電圧に達するまで(このとき、各電池に対する上限電圧は4.0Vである)、0.7Itの一定の電流で充電した(1ステップ目の定電流充電)。
続いて、上記の電池パックを、充電電流が0.5Itの下限電流に低下するまで、12.0Vの一定の電圧で充電した(1ステップ目の定電圧充電)。
次に、上記の電池パックを、充電電圧が12.3Vの上限電圧に達するまで(このとき、各電池に対する上限電圧は4.1Vである)、0.5Itの一定の電流で充電した(2ステップ目の定電流充電)。
続いて、上記の電池パックを、充電電流が0.3Itの下限電流に低下するまで、12.3Vの一定の電圧で充電した(2ステップ目の定電圧充電)。
次に、上記の電池パックを、充電電圧が12.6Vの上限電圧(充電終止電圧)に達するまで(このとき、各電池に対する充電終止電圧は4.2Vである)、0.3Itの一定の電流で充電した(3ステップ目の定電流充電)。
続いて、上記の電池パックを、充電電流が50mAの下限電流(充電停止電流)に低下するまで、12.6Vの一定の電圧で充電した(3ステップ目の定電圧充電)。
以上のようにして、3ステップの定電流充電および定電圧充電をそれぞれ実行することで、1回目の充電を完了した。その組電池を20分間放置した後、各電池の放電電流を1.0Itとして一定の電流で放電し、放電電圧が7.5Vの放電終止電圧まで低下すると(このとき、各電池に対する放電終止電圧は2.5Vである)、放電を停止した。
以上を充放電の1サイクルとする充放電処理を300サイクル繰り返した。
このとき、以下のようにして充電電流補正処理を実施した。上記の300サイクルの充放電処理を実行したときの容量維持率を76%と仮定して、1サイクル毎の充電電流の補正率Ics(=1−α、固定値)を算出した。その結果、Ics≒0.99908を得た。この補正率Icsをサイクル数が「1」増える毎に上記のIc(1)、Ic(2)、およびIc(3)にそれぞれ乗ずることで、各サイクルにおける各ステップの充電電流を得た。例えば、mサイクル目における1ステップ目の充電電流をI(m,1)で表すと、I(m,1)は下記式(1)により算出することができる。
I(m,1)=Ic(1)×Icsm-1 …(1)
ここで、サイクル数は、電池パックのBMUの充放電回数計数機能を利用してカウントした。
(実施例2)
正極活物質をLiCoO2とした電池(定格容量1800mAh)を使用したこと、並びに、放電終止電圧を9.0Vとしたこと(このとき、各電池に対する放電終止電圧は3.0Vである)以外は実施例1と同様の手順で上記の充放電サイクル寿命試験を実施した。
(実施例3)
1ステップ目の定電流充電の上限電圧を11.4Vとしたこと(このとき、各電池に対する上限電圧は3.8Vである)以外は実施例1と同様の手順で上記の充放電サイクル寿命試験を実施した。
(実施例4)
1ステップ目の定電流充電の充電電流を2.0Itとしたこと以外は実施例1と同様の手順で上記の充放電サイクル寿命試験を実施した。
(実施例5)
2ステップ目の定電流充電の上限電圧を12.6Vとする(このとき、各電池に対する上限電圧は4.2Vである)とともに、充電電流を0.3Itとした。2ステップ目の定電圧充電の充電電圧を12.6Vとする(このとき、各電池に対する充電電圧は4.2Vである)とともに、各電池の下限電流(充電終止電流)を50mAとした。3ステップ目の定電流充電および定電圧充電は実行しなかった。以上のこと以外は、実施例1と同様の手順で上記の充放電サイクル寿命試験を実施した。
(実施例6)
正極活物質にLiCoO2を使用した。2ステップ目の定電流充電の上限電圧を13.2Vとする(このとき、各電池に対する上限電圧は4.4Vである)とともに、充電電流を0.3Itとした。2ステップ目の定電圧充電の充電電圧を13.2Vとする(このとき、各電池に対する充電電圧は4.4Vである)とともに、各電池の下限電流(充電終止電流)を50mAとした。3ステップ目の定電流充電および定電圧充電は実行しなかった。以上のこと以外は、実施例1と同様の手順で上記の充放電サイクル寿命試験を実施した。
(比較例1)
上記の充電電流補正処理で、1ステップ目の定電流充電の充電電流だけを補正し、2ステップ目以降の定電流充電の上限電圧、並びに、1ステップ目以降の全ての定電圧充電の下限電圧を補正しなかったこと以外は、実施例1と同様の手順で上記の充放電サイクル寿命試験を実施した。
(比較例2)
上記の充電電流補正処理で、1ステップ目の定電流充電の充電電流だけを補正し、2ステップ目以降の定電流充電の上限電圧、並びに、1ステップ目以降の全ての定電圧充電の下限電圧を補正しなかったこと以外は、実施例2と同様の手順で上記の充放電サイクル寿命試験を実施した。
(比較例3)
上記の充電電流補正処理で、1ステップ目の定電流充電の充電電流だけを補正し、2ステップ目以降の定電流充電の上限電圧、並びに、1ステップ目以降の全ての定電圧充電の下限電圧を補正しなかったこと以外は、実施例3と同様の手順で上記の充放電サイクル寿命試験を実施した。
(比較例4)
上記の充電電流補正処理で、1ステップ目の定電流充電の充電電流だけを補正し、2ステップ目以降の定電流充電の上限電圧、並びに、1ステップ目以降の全ての定電圧充電の下限電圧を補正しなかったこと以外は、実施例4と同様の手順で上記の充放電サイクル寿命試験を実施した。
(比較例5)
上記の充電電流補正処理で、1ステップ目の定電流充電の充電電流だけを補正し、2ステップ目以降の定電流充電の上限電圧、並びに、1ステップ目以降の全ての定電圧充電の下限電圧を補正しなかったこと以外は、実施例5と同様の手順で上記の充放電サイクル寿命試験を実施した。
(比較例6)
上記の充電電流補正処理で、1ステップ目の定電流充電の充電電流だけを補正し、2ステップ目以降の定電流充電の上限電圧、並びに、1ステップ目以降の全ての定電圧充電の下限電圧を補正しなかったこと以外は、実施例6と同様の手順で上記の充放電サイクル寿命試験を実施した。
(比較例7)
上記の充電電流補正処理を全てのステップの定電流充電および定電圧充電で実行しなかったこと以外は、実施例1と同様の手順で上記の充放電サイクル寿命試験を実施した。
実施例1〜6、および比較例1〜7の各電池パックについて、1サイクル目の充電時間、300サイクル目の充電時間、および容量維持率を調べた。その結果を表1および2に示す。なお、容量維持率Cc(%)は、下記式(2)により算出した。
Cc=[Cd(300)/Cd(1)]×100
…(2)
ただし、Cd(300):300サイクル目の放電容量、Cd(1):1サイクル目の放電容量、である。
Figure 2012127775
Figure 2012127775
表1より、実施例1〜7は、全て良好な容量維持率を達成し得ることが確かめられた。放電容量の低下割合に応じて、各ステップの定電流充電の充電電流を小さくした実施例1は、各ステップの定電流充電の充電電流を一定とした比較例7よりも、300サイクル目の充電時間の増加を短くすることができた。また容量維持率も良くなった。
以上の結果より、サイクル数の増大とともに各ステップの定電流充電の充電電流を低減することにより、充電時間を短縮し得るとともに、サイクル特性の低下を抑えられることが確かめられた。
また、1ステップ目の定電流充電の充電電流だけを小さくした比較例1の電池パックと比べると、実施例1は、サイクル特性の低下を抑える効果が大きいことが確かめられた。同様に、実施例3および4も、比較例3および4に対して、サイクル特性の低下を抑える効果が大きかった。定電流充電を2ステップだけとした実施例5、さらに、正極活物質としてLiCoO2を使用した実施例2および6においても、比較例5、2、および6に対して、同様の傾向が見られた。
以上の結果により、本発明の充電方法によれば、充電時間の短縮とサイクル寿命特性の向上とを同時に実現することができることが確かめられた。
本発明の充電方法を採用する非水電解質二次電池は、携帯機器および情報機器等の電子機器の電源として好適に用いられる。
本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形及び改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神及び範囲から逸脱することなく、すべての変形及び改変を包含する、と解釈されるべきものである。
10 電池パック
12 二次電池
14 充放電回路
16 電圧検出部
17 電流検出部
18 制御部
24 リチウムイオン二次電池
26 正極

Claims (10)

  1. (1)1以上の非水電解質二次電池を、電池1個あたりの充電電圧が電圧Ec(k)に達するまで、電流Ic(k)で充電する工程(ただし、kは1以上、かつn−1以下(n≧2)の整数である)、および
    (2)電池1個あたりの充電電圧が前記電圧Ec(k)に達すると、前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)よりも高い電圧Ec(k+1)に達するまで、電流Ic(k)よりも小さい電流Ic(k+1)で充電する工程を含む、nステップの定電流充電により前記1以上の二次電池を充電する方法であって、
    前記1以上の二次電池の使用頻度または充放電回数に応じて、前記電流Ic(k)およびIc(k+1)を設定する、非水電解質二次電池の充電方法。
  2. 電池1個あたりの充電電圧が前記電圧Ec(k)に達した後、充電電流が電流Ic(k+1)に低下するまで、前記1以上の二次電池を、前記電圧Ec(k)で充電する工程、および
    電池1個あたりの充電電圧が前記電圧Ec(k+1)に達した後、充電電流が電流Ic(k+2)に低下するまで、前記1以上の二次電池を、前記電圧Ec(k+1)で充電する工程をさらに含む、請求項1記載の非水電解質二次電池の充電方法。
  3. 前記使用頻度または充放電回数が一定数だけ増加する毎に、前記電流Ic(k)およびIc(k+1)をそれぞれ小さくする、請求項1または2記載の非水電解質二次電池の充電方法。
  4. 前記使用頻度または充放電回数が一定数だけ増加する毎に、前記電流Ic(k)およびIc(k+1)をそれぞれ同じ低減率で小さくするとともに、前記使用頻度または充放電回数が増加するにつれて、前記低減率を徐々に小さくしていく、請求項3記載の非水電解質二次電池の充電方法。
  5. 前記使用頻度または充放電回数が一定数に達しているときに、前記電流Ic(k)およびIc(k+1)をそれぞれ初期値よりも小さくする、請求項1または2記載の非水電解質二次電池の充電方法。
  6. 前記電流Ic(k+1)と前記電流Ic(k)との比、Ic(k+1)/Ic(k)が、0.1以上、かつ0.75以下である、請求項1〜5のいずれか1項に記載の非水電解質二次電池の充電方法。
  7. 前記1以上の二次電池が、正極、負極及び非水電解質を具備し、
    前記正極が、一般式:LiNixCoy1-x-y2(ただし、Mは、長周期型周期表における、2族元素、3族元素、4族元素、7族元素及び13族元素からなる群より選択される少なくとも1つの元素であり、0.3≦x<1、0<y<0.4)で表される材料を含む、請求項1〜6のいずれか1項に記載の非水電解質二次電池の充電方法。
  8. kが1であるとき、前記電流Ic(k)が、0.7It以上、かつ2It以下であり、前記電圧Ec(k)が、3.8V以上、かつ4V以下である、請求項1〜6のいずれか1項に記載の非水電解質二次電池の充電方法。
  9. 前記定電流充電のステップの総数がfであり、前記電流Ic(f)が、0.3It以上、かつ0.7It以下であり、前記電圧Ec(f)が、4Vを超え、かつ4.4V以下である、請求項7記載の非水電解質二次電池の充電方法。
  10. 1以上の非水電解質二次電池と、前記二次電池を外部電源からの電力により充電する充電回路と、前記充電回路を制御する制御部とを具備した電池パックであって、
    前記制御部が、
    (1)前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)に達するまで、電流Ic(k)で充電する工程(ただし、kは1以上、かつn−1以下(n≧2)の整数である)、および
    (2)電池1個あたりの充電電圧が前記電圧Ec(k)に達すると、前記1以上の二次電池を、電池1個あたりの充電電圧が電圧Ec(k)よりも高い電圧Ec(k+1)に達するまで、前記電流Ic(k)よりも小さい電流Ic(k+1)で充電する工程を含む、nステップの定電流充電により前記1以上の二次電池を充電するように前記充電回路を制御するとともに、前記1以上の二次電池の使用頻度または充放電回数に応じて、前記電流Ic(k)およびIc(k+1)を設定する、電池パック。
JP2012528158A 2011-03-18 2012-02-20 非水電解質二次電池の充電方法、及び電池パック Active JP5089825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012528158A JP5089825B2 (ja) 2011-03-18 2012-02-20 非水電解質二次電池の充電方法、及び電池パック

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011060216 2011-03-18
JP2011060216 2011-03-18
JP2012528158A JP5089825B2 (ja) 2011-03-18 2012-02-20 非水電解質二次電池の充電方法、及び電池パック
PCT/JP2012/001121 WO2012127775A1 (ja) 2011-03-18 2012-02-20 非水電解質二次電池の充電方法、及び電池パック

Publications (2)

Publication Number Publication Date
JP5089825B2 JP5089825B2 (ja) 2012-12-05
JPWO2012127775A1 true JPWO2012127775A1 (ja) 2014-07-24

Family

ID=46878959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012528158A Active JP5089825B2 (ja) 2011-03-18 2012-02-20 非水電解質二次電池の充電方法、及び電池パック

Country Status (3)

Country Link
US (1) US9246344B2 (ja)
JP (1) JP5089825B2 (ja)
WO (1) WO2012127775A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882403B2 (en) * 2012-11-23 2018-01-30 Htc Corporation Battery module
WO2014147973A1 (ja) * 2013-03-19 2014-09-25 三洋電機株式会社 二次電池の充電システム及び方法並びに電池パック
US20140320085A1 (en) * 2013-04-24 2014-10-30 Dynapack International Technology Corporation Charging device and control method thereof
WO2015064735A1 (ja) * 2013-11-01 2015-05-07 日本電気株式会社 充電装置、蓄電システム、充電方法及びプログラム
JP6311616B2 (ja) * 2015-01-14 2018-04-18 株式会社豊田自動織機 充電電流制御装置及び充電電流制御方法
JP6383704B2 (ja) * 2015-07-02 2018-08-29 日立オートモティブシステムズ株式会社 電池制御装置
DE102015111195A1 (de) * 2015-07-10 2017-01-12 Technische Universität München Ladeverfahren für Lithium-Ionen-Batterien
KR102181918B1 (ko) * 2015-08-06 2020-11-23 가부시키가이샤 무라타 세이사쿠쇼 이차 전지의 충전 방법, 충전 제어 장치 및 이차 전지
US10211659B2 (en) 2015-09-24 2019-02-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and apparatus for rechargeable battery
JP2018046667A (ja) 2016-09-14 2018-03-22 株式会社東芝 充電パターン作成装置、充電制御装置、充電パターン作成方法、プログラム、及び蓄電システム
JP6455497B2 (ja) * 2016-11-16 2019-01-23 トヨタ自動車株式会社 車両の電池システム及びその制御方法
JP6864536B2 (ja) * 2017-04-25 2021-04-28 株式会社東芝 二次電池システム、充電方法、プログラム、及び車両
KR20190025320A (ko) * 2017-09-01 2019-03-11 주식회사 엘지화학 리튬-황 이차전지의 수명특성 및 충전속도 개선방법
FR3076663B1 (fr) * 2018-01-05 2020-01-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Batterie a accumulateurs commutes
JP7035591B2 (ja) * 2018-02-14 2022-03-15 東京電力ホールディングス株式会社 リチウム硫黄固体電池の充電方法
MX2019014925A (es) * 2018-05-31 2020-02-13 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de carga y aparato de carga.
JP7311588B2 (ja) * 2018-12-21 2023-07-19 オッポ広東移動通信有限公司 充電制御方法及び装置、コンピューター記憶媒体
CA3073381C (en) 2018-12-21 2022-07-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method, charging control device and device to be charged
CN110085936B (zh) * 2019-06-05 2021-11-09 安普瑞斯(无锡)有限公司 一种快速充电方法
US11063448B2 (en) * 2019-09-16 2021-07-13 Zebra Technologies Corporation Methods and system for dynamically modifying charging settings for a battery assembly
KR20210079085A (ko) * 2019-12-19 2021-06-29 주식회사 엘지에너지솔루션 급속 충전용 전류 패턴 업데이트 장치, 방법 및 이를 수행하는 저장매체에 저장된 컴퓨터 프로그램
CN113497288B (zh) * 2020-03-19 2022-12-13 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
JP2021164302A (ja) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 充電システム、充電方法、及びプログラム
KR20220021277A (ko) 2020-08-13 2022-02-22 주식회사 엘지에너지솔루션 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
KR20220023244A (ko) 2020-08-20 2022-03-02 주식회사 엘지에너지솔루션 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692547B2 (ja) * 1994-04-22 2005-09-07 ソニー株式会社 充電方法
JP3884802B2 (ja) * 1996-11-07 2007-02-21 日産自動車株式会社 リチウムイオン電池の充電方法
JP4112478B2 (ja) 2003-11-14 2008-07-02 松下電器産業株式会社 電池パックの充電装置
CN101809805A (zh) 2008-06-12 2010-08-18 松下电器产业株式会社 锂离子二次电池的充电方法以及充放电方法
JP5289558B2 (ja) * 2009-09-18 2013-09-11 パナソニック株式会社 非水電解質二次電池の充電方法及び充電装置
JPWO2011065009A1 (ja) 2009-11-27 2013-04-11 パナソニック株式会社 リチウムイオン二次電池の充電方法、及び電池パック
JP4818491B2 (ja) * 2009-12-14 2011-11-16 パナソニック株式会社 非水電解質二次電池の充電方法、及び電池パック

Also Published As

Publication number Publication date
US9246344B2 (en) 2016-01-26
US20130335034A1 (en) 2013-12-19
JP5089825B2 (ja) 2012-12-05
WO2012127775A1 (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5089825B2 (ja) 非水電解質二次電池の充電方法、及び電池パック
US8912762B2 (en) Charging method for non-aqueous electrolyte secondary battery by repeating a set of constant current charge and constant voltage charge and battery pack implementing the charging method
WO2009150773A1 (ja) リチウムイオン二次電池の充電方法および充放電方法
US8610408B2 (en) Lithium ion secondary battery charging method and battery pack
JP5810320B2 (ja) リチウムイオン電池の充電方法及び電池搭載機器
EP2905831B1 (en) Cathode additive for high-capacity lithium secondary battery
US9083062B2 (en) Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
KR100802851B1 (ko) 비수 전해액 이차전지
JP5210776B2 (ja) リチウムイオン二次電池の充放電制御装置
JP5394578B2 (ja) 非水電解質二次電池及び非水電解質二次電池用正極
JP2008204810A (ja) 非水電解質二次電池の充電方法および充電装置
JP2017059386A (ja) 電池パックおよび充電制御方法
US20140272552A1 (en) Nonaqueous electrolyte battery
KR101520118B1 (ko) 리튬이차전지의 사이클 성능 개선 방법
JP2012124026A (ja) 非水電解液二次電池
JP2012252951A (ja) 非水電解質二次電池
JP2013131426A (ja) 非水電解質二次電池の充電方法、及び電池パック
JP2008113545A (ja) 放電制御装置
JP2011124166A (ja) リチウムイオン二次電池の充電方法
JP2010225394A (ja) 非水電解質二次電池および非水電解質二次電池充電方法
JP2001052760A (ja) 非水電解液二次電池の充電方法
CN106605330B (zh) 非水电解质二次电池的控制方法
CN111837291A (zh) 非水电解质二次电池的充电方法和非水电解质二次电池的充电系统
JP2012209026A (ja) 組電池の製造方法
CN116830418A (zh) 非水电解质二次电池的充电方法及充放电方法、以及非水电解质二次电池的充电系统

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150