JPWO2011052007A1 - ブレーキ制御装置 - Google Patents

ブレーキ制御装置 Download PDF

Info

Publication number
JPWO2011052007A1
JPWO2011052007A1 JP2011538112A JP2011538112A JPWO2011052007A1 JP WO2011052007 A1 JPWO2011052007 A1 JP WO2011052007A1 JP 2011538112 A JP2011538112 A JP 2011538112A JP 2011538112 A JP2011538112 A JP 2011538112A JP WO2011052007 A1 JPWO2011052007 A1 JP WO2011052007A1
Authority
JP
Japan
Prior art keywords
valve
flow path
brake
pressure
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011538112A
Other languages
English (en)
Other versions
JP5229397B2 (ja
Inventor
栄治 中村
栄治 中村
朗 酒井
酒井  朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2011052007A1 publication Critical patent/JPWO2011052007A1/ja
Application granted granted Critical
Publication of JP5229397B2 publication Critical patent/JP5229397B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/343Systems characterised by their lay-out
    • B60T8/344Hydraulic systems
    • B60T8/3484 Channel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Regulating Braking Force (AREA)

Abstract

ブレーキ制御装置は、各車輪に液圧を供給する液圧供給源としてマニュアル液圧源と動力液圧源を有する。液圧アクチュエータは、マニュアル液圧源からの作動液を左前輪と右後輪のホイールシリンダに供給する第1流路と右前輪と左後輪のホイールシリンダに供給する第2流路を有するX配管を構成する。動力液圧源は第1流と路第2流路を用いて各輪に作動液を供給する。第1流路を含む流路系と第2流路を含む流路系は分離弁によって分離可能である。液圧アクチュエータは作動液が分離弁を経由して流入する第1流路または第2流路のいずれかの作動液供給状態と分離弁を経由しない他方の作動液供給状態との状態差が低減されるように作動液供給状態を調整する調整部を備える。調整部を設けることで、第1流路と第2流路との間で圧力差や応答時間のずれが生じることを抑制してブレーキフィーリングを向上させる。

Description

本発明は、車両の車輪に付与される制動力を制御するブレーキ制御装置に関する。
例えば特許文献1には、状況に応じて4輪のホイールシリンダにおける液圧制御の自由度を高め、制動力を制御するブレーキ制御装置が記載されている。この装置においては、動力を用いて作動液による蓄圧が可能な動力液圧源と、運転者のブレーキ操作量に応じて作動液を加圧するマニュアル液圧源が含まれ、それぞれの液圧源によりホイールシリンダの液圧が制御できるようにされている。動力液圧源には、左前輪、右前輪、左後輪、右後輪の制御を共通で行う液圧経路が接続され通常制御時に4輪のホイールシリンダーを加圧する制御を行っている。
一方、マニュアル液圧源には、左前輪および右前輪の制御を行う前輪用の液圧経路と左後輪および右後輪の制御を行う後輪用の液圧経路が接続されている。また、左前輪および右前輪への経路と左後輪および右後輪への経路を分離可能にする分離弁を備えている。例えば、それぞれのホイールシリンダーに接続された液圧流路のいずれかに液漏れが生じて動力液圧源からの加圧制御が良好にできなくなった場合、マニュアル液圧源による液圧制御に切り替えると共に、液漏れを生じた液圧流路が含まれる前輪用または後輪用の液圧流路を分離弁を閉弁することによりマニュアル液圧源から切り離し、前輪用の流路のみまたは後輪用の流路のみによる制動を実施する。このように、制動力制御を前輪用の制御系統と後輪用の制御系統に分離可能にしておくで、前輪のみでの制動力の確保または後輪のみでの制動力の確保が可能になり、一方の流路系に不具合が生じた場合でも車両が制動できるようにしている。
同様に、特許文献2には、動力液圧源とマニュアル液圧源を有する制動制御装置が開示されている。この装置においてもマニュアル液圧源に前輪用の液圧流路と後輪用の液圧流路が接続され、マニュアル液圧源により前輪のみまたは後輪のみによる制動制御を可能にしている。
特開2007−203859号公報 特開2002−187537号公報
ところで、車両の前輪側は、動力源、変速機、操舵装置などの重量部品を搭載しているため後輪側に比べて制動能力の大きなブレーキ装置が搭載されている。言い換えれば、前輪側に比べ後輪側は、制動能力が小さな安価なブレーキ装置や小型のブレーキ装置が利用できた。しかし、上述した特許文献1や特許文献2のようにマニュアル液圧源からの作動液による制動力制御で前輪のみで制動力確保または後輪のみで制動力確保をする場合、前輪側のみの制動の場合と後輪側のみの制動の場合のいずれもが法規で定められた制動力を確保できる必要がある。つまり、後輪側のブレーキ装置も前輪側と同様な制動能力を持つものを搭載する必要が生じる。その結果、車両重量配分の制約や後輪用のブレーキ装置の能力上の制約が厳しくなってしまうという問題が生じる。また、後輪用のブレーキ装置として制動能力の大きなディスクブレーキ装置の利用が必要になり低コスト化や軽量化が妨げられるという問題があった。
そこで、本発明は、動力液圧源とマニュアル液圧源を備えると共に、コスト低減や小型化のために後輪側と前輪側とで異なる制動能力のブレーキ装置を搭載する場合でもブレーキフィーリングの低下を招くことなく十分な制動力を発揮できるブレーキ制御装置を提供することを目的とする。
本発明のある態様のブレーキ制御装置は、収容された作動液を運転者のブレーキ操作量に応じて加圧するマニュアル液圧源と、運転者のブレーキ操作から独立した動力を用いて作動液による蓄圧が可能な動力液圧源と、前記動力液圧源から各車輪のホイールシリンダ側に供給される作動液の液量を制御する液量制御弁と、前記マニュアル液圧源からの作動液を左前輪のホイールシリンダおよび右後輪のホイールシリンダに供給可能な第1流路と前記マニュアル液圧源からの作動液を右前輪のホイールシリンダおよび左後輪のホイールシリンダに供給可能な第2流路とに分離可能な分離弁と、前記液量制御弁を経由する作動液が前記第1流路と前記第2流路から前記各ホイールシリンダに供給されるとき、前記作動液が前記分離弁を経由して流入する前記第1流路または前記第2流路のいずれかの作動液供給状態と前記分離弁を経由しない他方の作動液供給状態との状態差が低減されるように作動液供給状態を調整する調整部と、を含む。
この態様によれば、第1流路により左前輪と右後輪の制動が行われ、第2流路により右前輪と左後輪の制動が行われる。したがって、いずれか一方の流路に不具合が生じ、他方の流路のみで制動制御を行う場合でも前輪用のブレーキ装置と後輪用のブレーキ装置の両方が利用可能になる。その結果、前輪用と後輪用で異なる制動性能のブレーキ装置を利用しても第1流路を用いた制動時と第2流路を用いた制動時とで同様なブレーキフィーリングで十分な制動力を得ることができる。また、液量制御弁を経由する作動液が分離弁の存在により分けられた第1流路と第2流路の双方に供給される場合、第1流路と第2流路で分離弁を経由する側と経由しない側の作動液供給状態を調整部の働きによりその状態差が低減されるように調整できる。ここで、作動液供給状態は、作動液の流量や圧力、供給のタイミングなど作動液を供給するときの状態を含む概念である。その結果、分離弁を経由する流路と経由しない流路での差圧や応答差の発生が抑制できるので前後左右の車輪でバランスのとれた制動が実現できる。つまり、後輪側と前輪側とで異なる制動能力のブレーキ装置を搭載する場合でもブレーキフィーリングの低下を招くことなく十分な制動力を発揮させることができる。
また、上記態様において、前記各ホイールシリンダごとに設けられ作動液を前記ホイールシリンダに供給するか否か決定する複数の開閉弁と、前記液量制御弁および前記開閉弁の開閉状態を制御する弁制御部とをさらに含み、前記弁制御部は、前記開閉弁の開閉状態を切り替えるとき、前記液量制御弁の制御状態を所定時間変更しないようにしてもよい。開閉弁の開閉状態が切り替えられることにより作動液の流動圧が急激に変化して、一時的に液量制御弁が目標とする流動圧に対して上下に大きく振れた流動圧が生じる。この一時的な流動圧の変化に追従して弁制御部が液量制御弁の制御を実行すると制御が過剰になり過ぎて振動や異音の発生原因となる。そこで、弁制御部は、開閉弁の開閉状態を切り替えるときに一時的に液量制御弁の制御状態を変更しないようにする。つまり、弁制御部は開閉弁の開閉状態が切り替わり所定時間経過して流動圧が安定してから液量制御弁の制御状態を変更する。その結果、開閉状態が切り替えられたときの過剰な開閉制御が抑制され、それに伴い液量制御弁の動作時の振動や異音の発生が抑制できる。
また、上記態様において、前記各ホイールシリンダごとに設けられ作動液を前記ホイールシリンダに供給するか否か決定する複数の開閉弁と、前記液量制御弁および前記開閉弁の開閉状態を制御する弁制御部とをさらに含み、前記弁制御部は、各開閉弁を個別に制御する場合であって、前記液量制御弁を経由した作動液を前記各ホイールシリンダ側に供給する場合、少なくとも前記開閉弁の開閉状態を切り替えるとき、同時に切り替える前記開閉弁の数に対応した制御ゲインによって前記液量制御弁を制御するようにしてもよい。この態様によれば、開閉状態が切り替えられた開閉弁の数に基づき作動液の流動圧の変動を考慮して制御ゲインを決定する。流動圧の変動に適した制御ゲインを用いるので、流動圧の変動に起因する振動や異音の発生が抑制できる。なお、制御ゲインは、開閉状態が切り替えられた開閉弁の数とそのときに発生する流動圧の変化の対応関係を予め試験等により取得しておき、流動圧の変動に起因する振動や異音の発生が抑制できる最適値を決定しておくことが好ましい。
また、上記態様において、前記各ホイールシリンダごとに設けられ作動液を前記ホイールシリンダに供給するか否か決定する複数の開閉弁と、前記マニュアル液圧源に形成され、前記動力液圧源から供給される作動液の液圧を運転者のブレーキ操作量に応じて調整するレギュレータと、前記分離弁と前記調整部の間の領域と前記レギュレータとを接続するレギュレータ流路と、前記液量制御弁および前記開閉弁の開閉状態を制御する弁制御部とをさらに含み、前記弁制御部は、前記各開閉弁を個別に制御する場合、前記液量制御弁を経由する作動液供給から前記レギュレータを経由する作動液供給に切り替えるようにしてもよい。例えば、アンチロックブレーキ制御(ABS制御)の場合、各開閉弁は液量制御弁を用いた詳細な液圧制御ではなく、各制御弁にレギュレータからレギュレータ圧を供給して開閉弁の開閉のみによる液圧制御で行うことができる。その結果、ABS制御時に液量制御弁の動作を省略できて使用頻度を軽減できるので、液量制御弁の寿命の延長に寄与できる。
また、本発明のある態様のブレーキ制御装置は、運転者のブレーキ操作から独立した動力を用いて作動液による蓄圧が可能な動力液圧源と、収容された作動液を運転者のブレーキ操作量に応じて加圧するマニュアル液圧源と、前記動力液圧源から供給される作動液の液圧を運転者のブレーキ操作量に応じて調整するレギュレータと、前記動力液圧源から各車輪のホイールシリンダ側に供給される作動液の流路を遮断可能な遮断弁と、前記レギュレータから前記各ホイールシリンダ側に供給される作動液の液量を制御する液量制御弁と、前記マニュアル液圧源からの作動液を左前輪のホイールシリンダおよび右後輪のホイールシリンダに供給可能な第1流路と前記マニュアル液圧源からの作動液を右前輪のホイールシリンダおよび左後輪のホイールシリンダに供給可能な第2流路とに分離可能な分離弁と、前記液量制御弁を経由する作動液が前記第1流路または前記第2流路から前記各ホイールシリンダ側に供給されるときまたは前記遮断弁を経由する作動液が前記第1流路または前記第2流路から前記各ホイールシリンダ側に供給されるとき、前記作動液が前記分離弁を経由して流入する前記第1流路または前記第2流路のいずれかの作動液供給状態と前記分離弁を経由しない方の作動液供給状態との状態差が低減されるように作動液供給状態を調整する調整部と、前記各弁を開閉制御する弁制御部と、を含む。
この態様によれば、第1流路により左前輪と右後輪の制動が行われ、第2流路により右前輪と左後輪の制動が行われる。したがって、いずれか一方の流路に不具合が生じ、他方の流路のみで制動制御を行う場合でも前輪用のブレーキ装置と後輪用のブレーキ装置の両方が利用可能になる。その結果、前輪用と後輪用で異なる制動性能のブレーキ装置を利用しても第1流路を用いた制動時と第2流路を用いた制動時とで同様なブレーキフィーリングで十分な制動力を得ることができる。また、液圧制御弁には、レギュレータによって動力液圧源から供給される液圧よりも小さな液圧に調整された液圧が供給され、各開閉弁に供給できるので、液圧制御弁の負荷を軽減することが可能になり、液圧制御弁の寿命の延長に寄与できる。また、液量制御弁を経由する作動液が分離弁の存在により分けられた第1流路と第2流路の双方に供給される場合、第1流路と第2流路で分離弁を経由する側と経由しない側の作動液供給状態を調整部の働きによりその状態差が低減されるように調整できる。その結果、分離弁を経由する流路と経由しない流路での差圧や応答差の発生が抑制できるので前後左右の車輪でバランスのとれた制動が実現できる。つまり、後輪側と前輪側とで異なる制動能力のブレーキ装置を搭載する場合でもブレーキフィーリングの低下を招くことなく十分な制動力を発揮させることができる。
また、上記態様において、前記調整部は、オリフィスで構成されててもよい。オリフィスの絞りによる作動液の流動抵抗を分離弁を通過するときの流動抵抗と同じにすることができる。その結果、調整部を分離弁と同様な機構で構成する場合に比べ構造を簡略化できて、低コスト化ができる。また、オリフィスは絞りにより流動抵抗を変化させるだけなので、その動作管理が不要になる。
本発明によれば、動力液圧源とマニュアル液圧源を備えると共に、コスト低減や小型化のために後輪側と前輪側とで異なる制動能力のブレーキ装置を搭載する場合でもブレーキフィーリングの低下を招くことなく十分な制動力を発揮させることができる。
本発明の一実施形態に係るブレーキ制御装置が適用された車両を示す概略構成図である。 本発明の一実施形態に係る液圧ブレーキユニットを示す系統図である。 本発明の一実施形態に係るブレーキ制御装置における保持弁の動作状態と液量制御弁の制御ゲインの関係を説明する説明図である。 本発明の一実施形態に係るブレーキ制御装置におけるABS制御モードと液量制御弁の制御ゲインの同期例を説明する説明図である。 本発明の一実施形態に係るブレーキ制御装置における動力液圧源の蓄圧制御を行うポンプの制御状態を説明するフローチャートである。 図5のS104の間欠ポンプ制御モード処理の詳細を説明するフローチャートである。 本発明の他の実施形態に係る液圧ブレーキユニットを示す系統図である。 本発明の他の実施形態に係る液圧ブレーキユニットを示す系統図である。 本発明の一実施形態に係る液圧ブレーキユニットに含まれる調整部の変形例を示す部分系統図である。
本発明の一実施形態におけるブレーキ制御装置は、各車輪に液圧を供給する液圧供給源としてマニュアル液圧源と動力液圧源を有する。このブレーキ制御装置のマニュアル液圧源は、左前輪と右後輪のホイールシリンダに作動液を供給する第1流路と右前輪と左後輪のホイールシリンダに作動液を供給する第2流路が接続された、いわゆる「X配管」タイプの液圧アクチュエータに接続されている。このようにマニュアル液圧源からの2系統の配管を「X配管」とすることで、第1流路と第2流路のいずれか一方の流路に液漏れ等のフェールが生じた場合、他方の流路により前輪の一方のブレーキ装置およびそれの対角に位置する後輪のブレーキ装置による制動が可能となる。
その結果、2系統のうちいずれの経路にフェールが生じても前輪側のブレーキ装置および後輪側のブレーキ装置がそれぞれ使用可能となり、前輪用と後輪用とで異なる制動性能のブレーキ装置を用いている場合でも、2系統のいずれでも同様な制動力が得られる。例えば、車両重量配分に対応して前輪側より後輪側のブレーキ装置を制動性能の小さいものが利用可能となり、ブレーキ装置の小型化低コスト化に寄与できる。
ところで、運転者のブレーキ操作量に基づき、または車両の自動制御に基づき動力液圧源から液量制御弁を介して各ホイールシリンダに作動液を供給するいわゆる電子制御式ブレーキシステム(ECB)において上述のような「X配管」を採用する場合、検討を要する項目がある。つまり、ECBが正常に動作している場合は、液量制御弁を経由した作動液を前後左右の4輪に共通に提供するための主流路を形成する必要がある。一方、上述したように流路にフェールが生じた場合に対応するために2系統の流路に分離するために主流路の中に分離弁を設ける必要がある。そのため、液量制御弁を経由した作動液を前後左右の4輪に共通に供給する場合に、分離弁を経由する流路と経由しない流路が生じてしまう。その結果、第1流路と第2流路とで圧力差が生じたり応答時間のずれが生じたりすることがある。
そこで、本発明の一実施形態においては、作動液が分離弁を経由して流入する第1流路または第2流路のいずれかの作動液供給状態と分離弁を経由しない他方の作動液供給状態との状態差が低減されるように作動液供給状態を調整する調整部を備えている。調整部を設けることで、第1流路と第2流路との間で圧力差や応答時間のずれが生じることを抑制してブレーキフィーリングを向上させている。
図1は、本発明の一実施形態に係るブレーキ制御装置が適用された車両を示す概略構成図である。同図に示される車両1は、いわゆるハイブリッド車両として構成されており、エンジン2と、エンジン2の出力軸であるクランクシャフトに接続された3軸式の動力分割機構3と、動力分割機構3に接続された発電可能なモータジェネレータ4と、変速機5を介して動力分割機構3に接続された電動モータ6と、車両1の駆動系全体を制御するハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」といい、電子制御ユニットは、すべて「ECU」と称する。)7とを備える。変速機5には、ドライブシャフト8を介して車両1の駆動輪たる右前輪9FRおよび左前輪9FLが連結される。
エンジン2は、例えばガソリンや軽油等の炭化水素系燃料を用いて運転される内燃機関であり、エンジンECU13により制御される。エンジンECU13は、ハイブリッドECU7と通信可能であり、ハイブリッドECU7からの制御信号や、エンジン2の作動状態を検出する各種センサからの信号に基づいてエンジン2の燃料噴射制御や点火制御、吸気制御等を実行する。また、エンジンECU13は、必要に応じてエンジン2の作動状態に関する情報をハイブリッドECU7に与える。
動力分割機構3は、変速機5を介して電動モータ6の出力を左右の前輪9FR,9FLに伝達する役割と、エンジン2の出力をモータジェネレータ4と変速機5とに振り分ける役割と、電動モータ6やエンジン2の回転速度を減速あるいは増速する役割とを果たす。モータジェネレータ4と電動モータ6とは、それぞれインバータを含む電力変換装置11を介してバッテリ12に接続されており、電力変換装置11には、モータECU14が接続されている。バッテリ12としては、例えばニッケル水素蓄電池などの蓄電池を用いることができる。モータECU14も、ハイブリッドECU7と通信可能であり、ハイブリッドECU7からの制御信号等に基づいて電力変換装置11を介してモータジェネレータ4および電動モータ6を制御する。なお、上述のハイブリッドECU7やエンジンECU13、モータECU14は、何れもCPUを含むマイクロプロセッサとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート等を備える。
ハイブリッドECU7やモータECU14による制御のもと、電力変換装置11を介してバッテリ12から電力を電動モータ6に供給することにより、電動モータ6の出力により左右の前輪9FR,9FLを駆動することができる。また、エンジン効率のよい運転領域では、車両1はエンジン2によって駆動される。この際、動力分割機構3を介してエンジン2の出力の一部をモータジェネレータ4に伝えることにより、モータジェネレータ4が発生する電力を用いて、電動モータ6を駆動したり、電力変換装置11を介してバッテリ12を充電したりすることが可能となる。
また、車両1を制動する際には、ハイブリッドECU7やモータECU14による制御のもと、前輪9FR,9FLから伝わる動力によって電動モータ6が回転させられ、電動モータ6が発電機として作動させられる。すなわち、電動モータ6、電力変換装置11、ハイブリッドECU7およびモータECU14等は、車両1の運動エネルギを電気エネルギに回生することによって左右の前輪9FR,9FLに制動力を付与する回生ブレーキユニット10として機能する。
一実施形態に係るブレーキ制御装置においては、回生制動力と摩擦制動力とを併用するブレーキ回生協調制御を実行することにより要求される制動力を発生させる。回生制動力は、車輪を駆動させるための電動機を、走行中の車輪の回転トルクを入力とする発電機として動作させることにより車輪に付与される制動力である。車両の運動エネルギーは電気エネルギーに変換され、電気エネルギーは、電動機からインバータ等を含む電力変換装置を介して蓄電池に蓄積される。蓄積された電気エネルギーは以降の車輪の駆動等に用いられ、車両の燃費向上に寄与することとなる。一方、摩擦制動力は、車輪とともに回転する回転部材に対して摩擦部材を押圧することにより車輪に付与される制動力である。以下では摩擦制動力の例として、液圧源からの作動液としてのブレーキフルードの供給により回転部材に摩擦部材が押圧される液圧制動力を挙げて説明する。燃費をより向上させるためには、回生制動力を優先的に用い、回生制動力のみでは要求制動力に不足する分を液圧制動力により補完的に生じさせることが好ましい。
車両1は回生ブレーキユニット10に加えて、図2に示されるように、動力液圧源30等からのブレーキフルードの供給により制動力を発生させる液圧ブレーキユニット20を備える。車両1は、ブレーキ回生協調制御を実行することにより回生制動力と液圧制動力とを併用して所望の制動力を発生させることができる。
図2は、本実施形態に係る液圧ブレーキユニット20を示す系統図である。液圧ブレーキユニット20は、図2に示されるように、各車輪に対応して設けられたディスクブレーキユニット21FR,21FL、21RRおよび21RLと、マスタシリンダユニット27と、動力液圧源30と、液圧アクチュエータ40とを含む。
ディスクブレーキユニット21FR,21FL、21RRおよび21RLは、車両の右前輪、左前輪、右後輪、および左後輪のそれぞれに制動力を付与する。本実施形態におけるマニュアル液圧源としてのマスタシリンダユニット27は、ブレーキ操作部材としてのブレーキペダル24の運転者による操作量に応じて加圧されたブレーキフルードをディスクブレーキユニット21FR〜21RLに対して送出する。動力液圧源30は、動力の供給により加圧されたブレーキフルードを、運転者によるブレーキペダル24の操作から独立してディスクブレーキユニット21FR〜21RLに対して送出することが可能である。液圧アクチュエータ40は、動力液圧源30またはマスタシリンダユニット27から供給されたブレーキフルードの液圧を適宜調整してディスクブレーキユニット21FR〜21RLに送出する。これにより、液圧制動による各車輪に対する制動力が調整される。
ディスクブレーキユニット21FR〜21RL、マスタシリンダユニット27、動力液圧源30、および液圧アクチュエータ40のそれぞれについて以下で更に詳しく説明する。各ディスクブレーキユニット21FR〜21RLは、それぞれブレーキディスク22とブレーキキャリパに内蔵されたホイールシリンダ23FR〜23RLを含む。そして、各ホイールシリンダ23FR〜23RLは、それぞれ異なる流体通路を介して液圧アクチュエータ40に接続されている。なお以下では適宜、ホイールシリンダ23FR〜23RLを総称して「ホイールシリンダ23」という。
ディスクブレーキユニット21FR〜21RLにおいては、ホイールシリンダ23に液圧アクチュエータ40からブレーキフルードが供給されると、車輪と共に回転するブレーキディスク22に摩擦部材としてのブレーキパッドが押し付けられる。これにより、各車輪に制動力が付与される。なお、本実施形態においてはディスクブレーキユニット21FR〜21RLを用いているが、例えばドラムブレーキ等のホイールシリンダ23を含む他の制動力付与機構を用いてもよい。
本実施形態において、マスタシリンダユニット27は、マスタシリンダが2室で構成される液圧ブースタ付きのタイプであり、液圧ブースタ31a、レギュレータ31、第1マスタシリンダ32、第2マスタシリンダ33、およびリザーバ34を含む。液圧ブースタ31aは、動力液圧源30からの高圧のブレーキフルードが導入されるレギュレータ31と連通している。液圧ブースタ31aはブレーキペダル24に連結されており、ブレーキペダル24に加えられたペダル踏力を増幅して第1マスタシリンダ32および第2マスタシリンダ33に伝達する。すなわち、動力液圧源30からレギュレータ31を介して液圧ブースタ31aにブレーキフルードが供給されることにより、ペダル踏力は増幅される。そして、第1マスタシリンダ32と第2マスタシリンダ33とは、ペダル踏力に対して所定の倍力比を有するほぼ同じマスタシリンダ圧を発生する。
第1マスタシリンダ32、第2マスタシリンダ33、レギュレータ31の上部には、ブレーキフルードを貯留するリザーバ34が配置されている。第1マスタシリンダ32、第2マスタシリンダ33は、ブレーキペダル24の踏み込みが解除されているときにリザーバ34と連通する。一方、レギュレータ31は、リザーバ34と動力液圧源30のアキュムレータ35との双方と連通しており、リザーバ34を低圧源とすると共に、アキュムレータ35を高圧源とし、マスタシリンダ圧とほぼ等しい液圧を発生する。レギュレータ31における液圧を以下では適宜、「レギュレータ圧」という。なお、マスタシリンダ圧とレギュレータ圧とは厳密に同一圧にされる必要はなく、例えばレギュレータ圧のほうが若干高圧となるようにマスタシリンダユニット27を設計することも可能である。
動力液圧源30は、アキュムレータ35およびポンプ36を含む。アキュムレータ35は、ポンプ36により昇圧されたブレーキフルードの圧力エネルギを窒素等の封入ガスの圧力エネルギ、例えば14〜22MPa程度に変換して蓄えるものである。ポンプ36は、駆動源としてモータ36aを有し、その吸込口がリザーバ34に接続される一方、その吐出口がアキュムレータ35に接続される。また、アキュムレータ35は、マスタシリンダユニット27に設けられたリリーフバルブ35aにも接続されている。アキュムレータ35におけるブレーキフルードの圧力が異常に高まって例えば25MPa程度になると、リリーフバルブ35aが開弁し、高圧のブレーキフルードはリザーバ34へと戻される。
上述のように、液圧ブレーキユニット20は、ホイールシリンダ23に対するブレーキフルードの供給源として、第1マスタシリンダ32、第2マスタシリンダ33およびアキュムレータ35を有している。そして、第1マスタシリンダ32には第1マスタ配管37が、第2マスタシリンダ33には第2マスタ配管38が、アキュムレータ35にはアキュムレータ配管39が接続されている。これらの第1マスタ配管37、第2マスタ配管38およびアキュムレータ配管39は、それぞれ液圧アクチュエータ40に接続される。
液圧アクチュエータ40は、複数の流路が形成されるアクチュエータブロックと、複数の電磁制御弁を含む。アクチュエータブロックに形成された流路には、個別流路41、42,43および44と、主流路45とが含まれる。個別流路41〜44は、それぞれ主流路45から分岐されて、対応するディスクブレーキユニット21FR、21FL,21RR,21RLのホイールシリンダ23FR、23FL,23RR,23RLに接続されている。これにより、各ホイールシリンダ23は主流路45と連通可能となる。
また、個別流路41,42,43および44の中途には、開閉弁であるABS保持弁51,52,53および54が設けられている。各ABS保持弁51〜54は、ON/OFF制御されるソレノイドおよびスプリングをそれぞれ有しており、何れもソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。開状態とされた各ABS保持弁51〜54は、ブレーキフルードを双方向に流通させることができる。つまり、主流路45からホイールシリンダ23へとブレーキフルードを流すことができるとともに、逆にホイールシリンダ23から主流路45へもブレーキフルードを流すことができる。ソレノイドに通電されて各ABS保持弁51〜54が閉弁されると、個別流路41〜44におけるブレーキフルードの流通は遮断される。
更に、ホイールシリンダ23は、個別流路41〜44にそれぞれ接続された減圧用流路46,47,48および49を介してリザーバ流路55に接続されている。減圧用流路46,47,48および49の中途には、開閉弁であるABS減圧弁56,57,58および59が設けられている。各ABS減圧弁56〜59は、ON/OFF制御されるソレノイドおよびスプリングをそれぞれ有しており、何れもソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。各ABS減圧弁56〜59が閉状態であるときには、減圧用流路46〜49におけるブレーキフルードの流通は遮断される。ソレノイドに通電されて各ABS減圧弁56〜59が開弁されると、減圧用流路46〜49におけるブレーキフルードの流通が許容され、ブレーキフルードがホイールシリンダ23から減圧用流路46〜49およびリザーバ流路55を介してリザーバ34へと還流する。なお、リザーバ流路55は、リザーバ配管77を介してマスタシリンダユニット27のリザーバ34に接続されている。
主流路45は、中途に分離弁60を有する。この分離弁60により主流路45は、個別流路41および42と接続される第1流路45aと、個別流路43および44と接続される第2流路45bとに区分けされている。第1流路45aは、個別流路41および42を介して左後輪用のホイールシリンダ23RLおよび右前輪用のホイールシリンダ23FRに接続され、第2流路45bは、個別流路43および44を介して左前輪用のホイールシリンダ23FLおよび右後輪用のホイールシリンダ23RLに接続される。つまり、2系統の流路が前後左右の4個のホイールシリンダ23にたすきがけされた、いわゆる「X配管」で接続されている。「X配管」の特徴については後述する。
分離弁60は、ON/OFF制御されるソレノイドおよびスプリングを有しており、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。分離弁60が閉状態であるときには、主流路45におけるブレーキフルードの流通は遮断される。ソレノイドに通電されて分離弁60が開弁されると、第1流路45aと第2流路45bとの間でブレーキフルードを双方向に流通させることができる。
また、分離弁60により分離された第1流路45aと第2流路45bのいずれか一方には、本実施形態の液圧アクチュエータ40の特徴的構成である調整部が設けられている。図2の場合は、調整部は第2流路45bに設けられ、第2流路45bに所定の流動抵抗を与えて流量を調整する機能を有する。図2の場合、調整部はオリフィス100で構成される例が示されている。オリフィス100は、当該オリフィス100にブレーキフルードが通過するときの流動抵抗と分離弁60が開弁しているときに当該分離弁60をブレーキフルードが通過するときの流動抵抗とを実質的に同じにするように断面積が調整されている。オリフィス100の配置による効果の詳細は後述する。なお、分離弁60の開弁方向は図2に示すように、後述する増圧リニア制御弁66からのブレーキフルードが導入し易い構造になっている。このように構成することにより通弁時の開弁遅れによるホイールシリンダ23の応答性の低下を防止している。
液圧アクチュエータ40においては、主流路45に連通する第1マスタ流路61および第2マスタ流路62が形成されている。より詳細には、第1マスタ流路61は、主流路45の第1流路45aに接続されており、第2マスタ流路62は、主流路45の第2流路45bに接続されている。また、第1マスタ流路61は、第1マスタシリンダ32と連通する第1マスタ配管37に接続される。第2マスタ流路62は、第2マスタシリンダ33と連通する第2マスタ配管38に接続される。
第1マスタ流路61は、中途に第1マスタカット弁64を有する。第1マスタカット弁64は、第1マスタシリンダ32から各ホイールシリンダ23へのブレーキフルードの供給経路上に設けられている。第1マスタカット弁64は、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により閉弁状態が保証され、ソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。開状態とされた第1マスタカット弁64は、第1マスタシリンダ32と主流路45の第1流路45aとの間でブレーキフルードを双方向に流通させることができる。ソレノイドに規定の制御電流が通電されて第1マスタカット弁64が閉弁されると、第1マスタ流路61におけるブレーキフルードの流通は遮断される。
第2マスタ流路62は、中途に第2マスタカット弁65を有する。第2マスタカット弁65は、第2マスタシリンダ33から各ホイールシリンダ23へのブレーキフルードの供給経路上に設けられている。第2マスタカット弁65も、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により閉弁状態が保証され、ソレノイドが非通電状態にある場合に開とされる常開型電磁制御弁である。開状態とされた第2マスタカット弁65は、第2マスタシリンダ33と主流路45の第2流路45bとの間でブレーキフルードを双方向に流通させることができる。ソレノイドに通電されて第2マスタカット弁65が閉弁されると、第2マスタ流路62におけるブレーキフルードの流通は遮断される。
また、第2マスタ流路62には、第2マスタカット弁65よりも上流側において、シミュレータカット弁68を介してストロークシミュレータ69が接続されている。すなわち、シミュレータカット弁68は、第2マスタシリンダ33とストロークシミュレータ69とを接続する流路に設けられている。シミュレータカット弁68は、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により開弁状態が保証され、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。シミュレータカット弁68が閉状態であるときには、第2マスタ流路62とストロークシミュレータ69との間のブレーキフルードの流通は遮断される。ソレノイドに通電されてシミュレータカット弁68が開弁されると、第2マスタシリンダ33とストロークシミュレータ69との間でブレーキフルードを双方向に流通させることができる。
ストロークシミュレータ69は、複数のピストンやスプリングを含むものであり、シミュレータカット弁68の開放時に運転者によるブレーキペダル24の踏力に応じた反力を創出する。ストロークシミュレータ69としては、運転者によるブレーキ操作のフィーリングを向上させるために、多段のバネ特性を有するものが採用されることが好ましい。
液圧アクチュエータ40には、第1マスタ流路61および第2マスタ流路62に加えて、アキュムレータ流路63も形成されている。アキュムレータ流路63の一端は、主流路45の分離弁60とオリフィス100の間に位置に接続され、他端は、アキュムレータ35と連通するアキュムレータ配管39に接続される。
アキュムレータ流路63は、中途に液圧制御弁として機能する増圧リニア制御弁66を有する。また、アキュムレータ流路63および主流路45の第2流路45bは、液圧制御弁として機能する減圧リニア制御弁67を介してリザーバ流路55に接続されている。増圧リニア制御弁66と減圧リニア制御弁67とは、それぞれリニアソレノイドおよびスプリングを有しており、何れもソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。増圧リニア制御弁66および減圧リニア制御弁67は、それぞれのソレノイドに供給される電流に比例して弁の開度が調整される。
増圧リニア制御弁66は、各車輪に対応して複数設けられた各ホイールシリンダ23に対して共通の増圧制御弁として設けられている。また、減圧リニア制御弁67も同様に、各ホイールシリンダ23に対して共通の減圧制御弁として設けられている。つまり、本実施形態においては、増圧リニア制御弁66および減圧リニア制御弁67は、動力液圧源30から送出されるブレーキフルードを各ホイールシリンダ23へ給排制御する1対の共通の制御弁として設けられている。このように増圧リニア制御弁66及び減圧リニア制御弁67を各ホイールシリンダ23に対して共通化すれば、ホイールシリンダ23ごとにリニア制御弁を設けるのと比べて、コストの観点からは好ましい。
なお、ここで、増圧リニア制御弁66の出入口間の差圧は、アキュムレータ35におけるブレーキフルードの圧力と主流路45におけるブレーキフルードの圧力との差圧に対応し、減圧リニア制御弁67の出入口間の差圧は、主流路45におけるブレーキフルードの圧力とリザーバ34におけるブレーキフルードの圧力との差圧に対応する。また、増圧リニア制御弁66および減圧リニア制御弁67のリニアソレノイドへの供給電力に応じた電磁駆動力をF1とし、スプリングの付勢力をF2とし、増圧リニア制御弁66および減圧リニア制御弁67の出入口間の差圧に応じた差圧作用力をF3とすると、F1+F3=F2という関係が成立する。従って、増圧リニア制御弁66および減圧リニア制御弁67のリニアソレノイドへの供給電力を連続的に制御することにより、増圧リニア制御弁66および減圧リニア制御弁67の出入口間の差圧を制御することができる。
液圧ブレーキユニット20において、動力液圧源30および液圧アクチュエータ40は、ブレーキECU70により制御される。ブレーキECU70は、CPUを含むマイクロプロセッサとして構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート等を備える。そして、ブレーキECU70は、上位のハイブリッドECU7などと通信可能であり、ハイブリッドECU7からの制御信号や、各種センサからの信号に基づいて動力液圧源30のポンプ36や、液圧アクチュエータ40を構成する電磁制御弁51〜54,56〜59,60,64〜68を制御する。
また、ブレーキECU70には、マスタ圧センサ71、アキュムレータ圧センサ72、および制御圧センサ73が接続される。マスタ圧センサ71は、第2マスタカット弁65の上流側で第2マスタ流路62内のブレーキフルードの圧力、すなわち第2マスタシリンダ圧を検知し、検知した値を示す信号をブレーキECU70に与える。アキュムレータ圧センサ72は、増圧リニア制御弁66の上流側でアキュムレータ流路63内のブレーキフルードの圧力、すなわちアキュムレータ圧を検知し、検知した値を示す信号をブレーキECU70に与える。制御圧センサ73は、主流路45の第1流路45a内のブレーキフルードの圧力を検知し、検知した値を示す信号をブレーキECU70に与える。各圧力センサ71〜73の検出値は、所定時間おきにブレーキECU70に順次与えられ、ブレーキECU70の所定の記憶領域に格納保持される。
分離弁60が開状態とされて主流路45の第1流路45aと第2流路45bとが互いに連通している場合、制御圧センサ73の出力値は、増圧リニア制御弁66の低圧側の液圧を示すと共に減圧リニア制御弁67の高圧側の液圧を示すので、この出力値を増圧リニア制御弁66および減圧リニア制御弁67の制御に利用することができる。また、増圧リニア制御弁66および減圧リニア制御弁67が閉鎖されていると共に、第1マスタカット弁64が開状態とされている場合、制御圧センサ73の出力値は、第1マスタシリンダ圧を示す。更に、分離弁60が開放されて主流路45の第1流路45aと第2流路45bとが互いに連通しており、各ABS保持弁51〜54が開放される一方、各ABS減圧弁56〜59が閉鎖されている場合、制御圧センサの73の出力値は、各ホイールシリンダ23に作用する作動流体圧、すなわちホイールシリンダ圧を示す。
さらに、ブレーキECU70に接続されるセンサには、ブレーキペダル24に設けられたストロークセンサ25も含まれる。ストロークセンサ25は、ブレーキペダル24の操作量としてのペダルストロークを検知し、検知した値を示す信号をブレーキECU70に与える。ストロークセンサ25の出力値も、所定時間おきにブレーキECU70に順次与えられ、ブレーキECU70の所定の記憶領域に格納保持される。なお、ストロークセンサ25以外のブレーキ操作状態検出手段をストロークセンサ25に加えて、あるいは、ストロークセンサ25に代えて設け、ブレーキECU70に接続してもよい。ブレーキ操作状態検出手段としては、例えば、ブレーキペダル24の操作力を検出するペダル踏力センサや、ブレーキペダル24が踏み込まれたことを検出するブレーキスイッチなどがある。
上述のように構成された液圧ブレーキユニット20を備える本実施形態に係るブレーキ制御装置は、ブレーキ回生協調制御を実行することができる。制動要求を受けて、ブレーキECU70は処理を開始する。制動要求は、例えば運転者がブレーキペダル24を操作した場合など、車両に制動力を付与すべきときに生起される。ブレーキECU70は、例えばブレーキペダル24の操作が解除されるまで所定の制御周期で反復して制御を実行する。
制動要求を受けてブレーキECU70は目標減速度すなわち要求制動力を演算する。ブレーキECU70は例えば、マスタシリンダ圧及びストロークの測定値に基づいて目標減速度を演算する。ここでブレーキECU70は、所望の制動力配分に従って目標減速度を各輪に分配して各輪の目標制動力を演算し、以降の処理ではその目標制動力に基づいて回生制動力及び液圧制動力を制御してもよい。
ブレーキECU70は、目標減速度に基づいて要求回生制動力を演算する。ブレーキECU70は例えば、発生可能な最大回生制動力よりも目標減速度が小さい場合には目標減速度を要求回生制動力とし、目標減速度が最大回生制動力以上である場合には最大回生制動力を要求回生制動力とする。また、ブレーキECU70は、目標減速度をそのまま要求回生制動力とするのではなく、目標減速度を補正して要求回生制動力を演算してもよい。目標減速度に対して要求回生制動力を高めに補正してもよいし、逆に低く補正してもよい。ブレーキECU70は、演算された要求回生制動力をハイブリッドECU7に送信する。ブレーキECU70及びハイブリッドECU7は車載ネットワークに接続されている。ブレーキECU70は、その車載ネットワークへ要求回生制動力を送信する。
ハイブリッドECU7は、車載ネットワークから要求回生制動力を受信する。ハイブリッドECU7は、受信した要求回生制動力を回生制動力目標値として回生ブレーキユニット10を制御する。その結果として実際に発生した回生制動力の実効値をハイブリッドECU7は車載ネットワークを通じてブレーキECU70へと送信する。
ブレーキECU70は、ハイブリッドECU7から回生制動力実効値を受信する。ブレーキECU70は、目標減速度から回生制動力実効値を減じることにより液圧ブレーキユニット20により発生させるべき制動力である要求液圧制動力を算出する。ブレーキECU70は、要求液圧制動力に基づいて各ホイールシリンダ23FR〜23RLの目標液圧を算出する。ブレーキECU70は、要求液圧制動力または目標液圧を補正してもよい。ブレーキECU70は、ホイールシリンダ圧が目標液圧となるように液圧アクチュエータ40を制御する。ブレーキECU70は例えば、フィードバック制御により増圧リニア制御弁66や減圧リニア制御弁67に供給する制御電流の値を決定する。
その結果、液圧ブレーキユニット20においては、ブレーキフルードが動力液圧源30から増圧リニア制御弁66を介して各ホイールシリンダ23に供給され、車輪に制動力が付与される。また、各ホイールシリンダ23からブレーキフルードが減圧リニア制御弁67を介して必要に応じて排出され、車輪に付与される制動力が調整される。本実施形態においては、動力液圧源30、増圧リニア制御弁66及び減圧リニア制御弁67等を含んでホイールシリンダ圧制御系統が構成されている。ホイールシリンダ圧制御系統によりいわゆるブレーキバイワイヤ方式の制動力制御が行われる。ホイールシリンダ圧制御系統は、マスタシリンダユニット27からホイールシリンダ23へのブレーキフルードの供給経路に並列に設けられている。
ブレーキバイワイヤ方式の制動力制御を行う場合には、ブレーキECU70は、第1マスタカット弁64を閉状態とし、第1マスタシリンダ32から送出されるブレーキフルードがホイールシリンダ23へ供給されないようにする。更にブレーキECU70は、第2マスタカット弁65を閉状態とするとともにシミュレータカット弁68を開状態とする。これは、運転者によるブレーキペダル24の操作に伴って第2マスタシリンダ33から送出されるブレーキフルードがホイールシリンダ23ではなくストロークシミュレータ69へと供給されるようにするためである。ブレーキ回生協調制御中は、第1マスタカット弁64および第2マスタカット弁65の上下流間には、回生制動力の大きさに対応する差圧が作用する。
なお、上述のブレーキ回生協調制御においては、回生制動力を優先的に発生させ、要求制動力に対する回生制動力の不足を摩擦制動力で補填している。本実施形態はこのような回生優先モードには限られない。例えば、制御部は、回生制動力を補助的に使用する回生補助モードにより制動力を制御してもよいし、予め設定された回生目標値及び摩擦目標値の配分に目標減速度を分配し、回生制動力及び摩擦制動力を発生する回生併用モードで制動力を制御してもよい。
上述したように、本実施形態では、第1マスタシリンダ32に接続される第1マスタ流路61と第2マスタシリンダ33に接続される第2マスタ流路62が形成されている。そして、第1マスタ流路61が左後輪用のホイールシリンダ23RLと右前輪用のホイールシリンダ23FRと連通可能であり、第2マスタ流路62が左前輪用のホイールシリンダ23FLと右後輪用のホイールシリンダ23RRと連通可能である、いわゆる「X配管」を形成している。
このような「X配管」を採用することで、例えば、第1マスタ流路61を含む流路系または第2マスタ流路62を含む流路系で液漏れ等のフェールが生じた場合に、一方の流路系のみで十分な制動力を発生するようなフェールセーフ機能を実現できる。例えば、第2マスタ流路62を含む流路系で液漏れが生じた場合に運転者のブレーキペダル24の操作による制動要求がなされた場合、増圧リニア制御弁66および第2マスタカット弁65を閉弁して、第1マスタカット弁64を開弁する。その場合、第1マスタシリンダ32から流出したブレーキフルードが左後輪用のホイールシリンダ23RLと右前輪用のホイールシリンダ23FRに供給される。つまり、対角位置にある一方の前輪と一方の後輪とで制動力が発生できる。同様に、第1マスタ流路61を含む流路系で液漏れが生じた場合でも、増圧リニア制御弁66および第1マスタカット弁64を閉弁して、第2マスタカット弁65を開弁する。その結果、第2マスタシリンダ33から流出したブレーキフルードが左前輪用のホイールシリンダ23FLと右後輪用のホイールシリンダ23RRに供給される。つまり、対角位置にある一方の前輪と一方の後輪とで制動力が発生できる。この場合、第1マスタ流路61と第2マスタ流路62のいずれの流路系を用いても前輪のディスクブレーキユニット21を利用可能となる。つまり、車両の重量配分等の関係で、前輪側のディスクブレーキユニット21の制動能力が後輪側のディスクブレーキユニット21の制動能力より大きく設定されている場合、いずれの流路系を用いても制動能力の大きな前輪側のディスクブレーキユニット21が利用され、十分な制動能力を発揮できる。言い換えれば、車両の重量配分等の条件を満たせば後輪側のディスクブレーキユニット21を前輪側のディスクブレーキユニット21より制動能力が小さなものが利用可能となる。その結果、ディスクブレーキユニット21のコスト軽減や小型化に寄与できる。また、後輪用のブレーキ装置として、安価なディスクブレーキやドラムブレーキ等を利用可能となりコストの面で有利となる。
なお、本実施形態では、マスタシリンダユニット27のマスタシリンダ部分を第1マスタシリンダ32と第2マスタシリンダ33の2室に分離して実質的に同じ液圧状態のブレーキフルードを実質的に同じタイミングで第1マスタ流路61および第2マスタ流路62に供給できるようにしている。したがって、第1マスタ流路61を含む流路系のみで制動した場合と、第2マスタ流路62を含む流路系のみで制動した場合の制動力が実質的に同じになり、ブレーキフィーリングに関する違和感を運転者に与えることが抑制できる。
ところで、上述したような「X配管」を採用する場合、動力液圧源30からブレーキフルードを供給するブレーキバイワイヤ方式の制動力制御を実行する場合に、考慮する必要のある項目がある。すなわち、「X配管」を実現するために、主流路45に分離弁60を設けて、第1流路45aと第2流路45bに分けている。そして、動力液圧源30からブレーキフルードを供給する場合、分離弁60を開弁して第1流路45aと第2流路45bを連通させるが、第1流路45aは、分離弁60を経由した流路系となり、第2流路45bは分離弁60を経由しない流路系となる。分離弁60は開弁していると場合でも流動抵抗の原因となるため、分離弁60を経由することにより制御時間差や圧力差の発生の原因となる。「X配管」において、第1流路45aと第2流路45bとで制御時間差や圧力差が生じると車両の制動バランスが崩れる場合がありブレーキフィーリングの低下を招くことがある。
そこで、本実施形態では、液量制御弁である増圧リニア制御弁66を経由するブレーキフルードが第1流路45aおよび第2流路45bから各ホイールシリンダ23に供給されるときに、第1流路45a側と第2流路45b側で制御時間差や圧力差が生じないようにしている。具体的には、ブレーキフルードが分離弁60を経由して流入する第1流路45aと経由しない第2流路45bのブレーキフルードの供給状態との状態差が低減されるようにブレーキフルードの供給状態を調整する調整部として機能するオリフィス100を設けている。なお、調整部であるオリフィス100により調整されるブレーキフルードの供給状態は、例えば、ブレーキフルードを供給するときの流量や圧力、ブレーキフルードの供給のタイミングなどブレーキフルードを供給するときの状態を表すものとすることができる。オリフィス100の流動抵抗は、分離弁60の開弁時の流動抵抗と実質的に同じにする。この調整は、オリフィス100の断面積の調整によって容易に実現できる。なお、調整部をオリフィス100で構成する場合、当該オリフィス100は分離弁60のように開閉状態の確認を必要としないため、それを確認するための圧力センサを設ける必要がなく流路構成を簡略化できるというメリットがある。この場合、第1流路45aおよび第2流路45bにおける圧力の管理は制御圧センサ73で行うことができる。
このように主流路45に、アキュムレータ流路63の接続位置を挟んで、分離弁60の流動抵抗と同じ流動抵抗を発生するオリフィス100を配置することで、増圧リニア制御弁66から第1流路45aおよび第2流路45bにブレーキフルードを供給するときに制御時間差や圧力差が発生することを抑制できる。その結果、「X配管」を採用する場合でも動力液圧源30を用いた通常制動時のブレーキフィーリングの低下を抑制できる。なお、分離弁60を閉弁して第2流路45bのみを使用する場合でもオリフィス100の存在は個別流路43,44に影響しないので、第2マスタ流路62を用いた制動力の発生を良好に行うことができる。
ところで、図2に示すような液圧ブレーキユニットの構成の場合、ABS制御を行うときは、ホイールシリンダ23に対して増圧リニア制御弁66からブレーキフルードを供給することになる。ABS制御時の液圧の保持、減圧は、ABS保持弁51〜54の閉弁によって行われるので、その上流の容積が増圧リニア制御弁66までの容積のみとなり非常に小さくなる。つまり、増圧リニア制御弁66から各ホイールシリンダ23までの間で形成できるブレーキフルードの流動可能容積が非常に小さくなる。このように流動可能容積が非常に小さい状態で増圧リニア制御弁66により液圧制御をしようとする場合、制御感度が非常に高くなってしまう。その結果、液圧ハンチングや増圧リニア制御弁66の頻繁動作(制御ハンチング)を発生させてしまい動作音や振動の増大を招くと共に、液圧の応答差や液圧差によるブレーキフィーリングの低下の原因になってしまうことがある。また、増圧リニア制御弁66が頻繁に動作することになり増圧リニア制御弁66の寿命を短くしてしまう原因になることがある。
そこで、本実施形態においては、増圧リニア制御弁66の動作をABS保持弁51〜54の開閉動作に同期させている。例えば、ABS制御を実施するときに、閉弁しているABS保持弁の数、すなわち、ホイールシリンダ23と連通していないABS保持弁の数に応じて増圧リニア制御弁66のフェードバックの制御ゲインを変化させる。
図3は、閉弁しているABS制御弁の数と増圧リニア制御弁66の制御ゲインの関係を説明する説明図である。図3に示すように、ABS制御弁の開閉状態の組合せは16通りある。そして、増圧リニア制御弁66とABS制御弁との間の容積が同じと見なせる「制御モード」で分類すると9種類となる。図3において、ABS制御モード1がブレーキフルードの流動可能容積が最も小さく、ABS制御モード9に向かい流動可能容積が大きくなる。そこで、ABS制御モード1〜9に対して増圧リニア制御弁66のゲインを設定する。つまり、制御ゲイン1が制御が最も鈍感で、制御ゲイン9に向かい制御が敏感になるように設定する。なお、本実施形態において、前輪側のディスクブレーキユニット21の制動能力が後輪側のディスクブレーキユニット21より大きいものを搭載しているので、前輪側のホイールシリンダ23の容積が後輪側のホイールシリンダ23より大きい。そのため、前輪側のABS保持弁が開弁している数が多い方が容積が大きいものとしてABS制御モードを定めている。
例えば、ABS制御モード9のように全てのABS保持弁が開弁して増圧リニア制御弁66からホイールシリンダ23に至るまでの容積、つまり、ブレーキフルードの流動可能容積が大きい場合、ABS制御モード2のように増圧リニア制御弁66からホイールシリンダ23に至るまでの流動可能容積が小さい場合に比べてブレーキフルードの流れは緩慢になる。したがって、制御圧センサ73で検出される液圧変化に敏感に反応するように高い制御ゲインを適用して、スムーズに目標の液圧値に到達させるようにする。この場合、増圧リニア制御弁66の制御ゲインを大きくして液圧変動を大きくしても大きな流動可能容積でその変動を吸収できるので、液圧ハンチングや制御ハンチングが抑制できる。
一方、ABS制御モード2のように増圧リニア制御弁66からホイールシリンダ23に至るまでの流動可能容積が小さい場合、ABS制御モード9に比べてブレーキフルードの流れは敏感になる。したがって、制御圧センサ73で検出される液圧変化に対し鈍感になるように小さな制御ゲインを適用する。この場合、増圧リニア制御弁66の制御ゲインを小さくすることにより過剰な液圧変動を抑制できるので、液圧ハンチングや制御ハンチングが抑制できる。図4には、ABS制御モードの変化に対応して増圧リニア制御弁66の制御ゲインを変化させることが示されている。
なお、別の実施例においては、ABS保持弁の開閉の数にかかわりなく、ABS保持弁のいずれかが閉弁するときに、小さい専用の制御ゲインを適用するようにしてもよい。制御ゲインは、開閉状態が切り替えられたABS保持弁の数とそのときに発生する流動圧の変化の対応関係を予め試験等により取得しておき、流動圧の変動に起因する振動や異音の発生が抑制できるように最適値を決定しておくことが好ましい。
また、ABS制御モードの変化に対応して増圧リニア制御弁66の制御ゲインを変化させる場合、制御ゲインの変更後直ちに、変更後の制御ゲインを有効にして増圧リニア制御弁66の制御を開始してもよい。この場合、制御ゲインの変更を敏感に増圧リニア制御弁66に反映させることができる。また、別の実施例では、制御ゲインを変更した後、増圧リニア制御弁66の制御状態を所定時間変更しないようにして、所定時間経過後に、変更された制御ゲインを有効にするようにしてもよい。前述したように、ブレーキフルードの流動可能容積が小さい場合、ABS保持弁の開閉動作に伴う流路内のブレーキフルードの液圧変動が大きくなり、その過渡期で不必要な液圧の上下変動が生じる。この一時的な液圧の変化に追従して増圧リニア制御弁66が制御を実行すると制御が過剰になり過ぎて振動や異音の発生原因となる。また、さらなる液圧の変動を招いたり、変動の収束の遅れを招く場合もある。そこで、ABS保持弁の開閉状態に応じて制御ゲインを変更した後、増圧リニア制御弁66の制御状態を所定時間変更しないようにして、過渡期における液圧変動に対応する増圧リニア制御弁66へのフィードバック制御を一時的に停止する。例えば、図4において、制御ゲインを変化させる部分A1〜A4において、変更後の制御ゲインの有効化を例えば数msec遅らせる。そして、ABS保持弁の開閉動作に伴う流路内のブレーキフルードの液圧変動が安定してから、変更後の制御ゲインを有効にして増圧リニア制御弁66の制御を行う。その結果、少ない増圧リニア制御弁66の制御回数によりABS保持弁の開閉動作に伴う液圧変動へ追従させることができる。つまり、液圧ハンチングや制御ハンチングの抑制効率を向上させることができる。なお、増圧リニア制御弁66の制御状態を所定時間変更しないようにするため、制御ゲインの変更自体を所定時間遅らせるようにしてもよい。このように、制御ゲインに基づく制御状態を所定時間変更しないように遅延させることで、遅延させない場合に比べ少ない制御ゲインの種類で対応できるというメリットもある。なお、制御ゲインを変更することなくABS保持弁の開閉動作から所定時間経過後にABS保持弁の開閉動作に伴う流路内のブレーキフルードの液圧変動が安定してから増圧リニア制御弁66の制御を実行するようにしてもよい。この場合も増圧リニア制御弁66の過剰な制御が抑制可能であり、液圧ハンチングや制御ハンチングの抑制効果を得ることができる。
ところで、図2に示すようなオリフィス100を含む液圧ブレーキユニットにおいて、増圧リニア制御弁66が開弁状態で固定されてしまう開故障が発生した場合、アキュムレータ圧が低下する。つまり、増圧リニア制御弁66が開故障した場合、アキュムレータ35から供給されるブレーキフルードは、アキュムレータ流路63を介し分離弁60とオリフィス100の間に提供される。このとき、分離弁60を閉弁したとしてもオリフィス100側には流れてしまう。そして、第2マスタカット弁65は通常開弁されるので、アキュムレータ35から供給されるブレーキフルードは第2マスタシリンダ33を介してリザーバ34に戻ってしまい、結果的に、アキュムレータ35のアキュムレータ圧が低下してしまう。
このように、アキュムレータ圧が低下した場合、動力液圧源30を液圧源とする制動力制御が期待できないためブレーキECU70は、マスタシリンダユニット27を液圧源とするバックアップ制御に移行することになる。このとき、増圧リニア制御弁66が開故障しているので、第2マスタシリンダ33から送出されたブレーキフルードは、増圧リニア制御弁66を逆流しリザーバ34に戻ってしまうため左前輪のホイールシリンダ23FLおよび右後輪のホイールシリンダ23RRには制動力が発生しない。つまり、第1マスタシリンダ32から送出されたブレーキフルードにより動作する左後輪のホイールシリンダ23RLおよび右前輪のホイールシリンダ23FRのみでの制動となる。さらに、この場合、アキュムレータ圧の供給がなく液圧ブースタ31aによる踏力助勢が得られないので、ホイールシリンダ23には、運転者の踏力のみで発生した液圧を導入することになるので、運転者の労力の増大を招くことになる。
一般的にアキュムレータを備える動力液圧源では、アキュムレータ圧が低下した場合、ポンプが連続作動してアキュムレータ圧を所定の目標圧力まで増圧するようになっている。この制御モードを通常ポンプ制御モードという。この通常ポンプ制御モード実行中にモータの駆動時間が予め設定された所定時間を超えて連続駆動した場合、ポンプの過剰発熱による動作不良やモータの焼き付きを防止するためにポンプを間欠駆動するように設定されている。このような制御モードを間欠ポンプ制御モードという。この間欠ポンプ制御モードのような保護目的の制御ロジックは重要であるが、本実施形態においては、ブレーキフィーリングの向上を優先させて、アキュムレータ圧の低下時にポンプが停止している場合は、ブレーキペダル24の操作を検出したらポンプを例外的に作動させるようにしている。
つまり、ブレーキECU70は、間欠ポンプ制御モードにおいて、アキュムレータ圧の低下時にポンプが停止している場合、ブレーキペダル24の踏み込みをストロークセンサ25により検出すると、モータ36aの駆動によりポンプ36を作動させてる。この場合、増圧リニア制御弁66の上流のアキュムレータ35の封入圧は瞬時に上昇する。アキュムレータ圧が回復することにより液圧ブースタ31aへのアキュムレータ圧の供給が可能になり、ブレーキペダル24の踏力助勢が可能となり運転者の操作負担を軽減できる。また、アキュムレータ35に蓄圧されたアキュムレータ圧は、開弁している増圧リニア制御弁66を介して左前輪のホイールシリンダ23FLおよび右後輪のホイールシリンダ23RRにも供給可能となる。すなわち、ブレーキペダル24の操作により第1マスタシリンダ32および第2マスタシリンダ33の出力ポートが閉鎖されるので、左前輪のホイールシリンダ23FLおよび右後輪のホイールシリンダ23RRに供給されたブレーキフルードはリザーバ34に戻らない。したがって、左前輪のホイールシリンダ23FLおよび右後輪のホイールシリンダ23RRは、アキュムレータ圧により制動力が発生できる。
図5は、ポンプ36の制御状態を説明するフローチャートである。なお、車両のイグニッションスイッチ等がオンになった初期状態では、ブレーキECU70は、通常ポンプ制御モードになっているものとして説明する。まず、ブレーキECU70は、ポンプ36の制御状態が通常ポンプ制御実行中か否か確認する(S100)。S100において、ポンプ36の制御状態が通常ポンプ制御実行中の場合(S100のY)、つまり、アキュムレータ圧が所定の目標圧以下になった場合にモータ36aによりポンプ36を駆動してアキュムレータ圧を目標圧まで昇圧させる。このとき、ブレーキECU70はポンプ36の連続駆動時間が「Xsec以下」か確認する(S102)。Xsecは、予め試験等によりモータ36aやポンプ36の能力により決定できる値であり、連続駆動による焼き付きや発熱が問題にならない値を設定する。S102において、ポンプ36の連続駆動時間がXsec以下の場合(S102のY)、通常ポンプ制御の継続が可能であり、S100に移行しフローの処理を繰り返す。一方、ブレーキECU70は、アキュムレータ圧が目標圧に到達しない状態でポンプ36の連続駆動時間がXsecを越えた場合(S102のN)、または、S100で通常ポンプ制御実行中でない場合(S100のN)、間欠ポンプ制御モード処理を実行する(S104)。その後、S100に戻りこのフローを繰り返す。なお、間欠ポンプ制御モード処理は、例えば、上述したような増圧リニア制御弁66の不具合や流路系内の液漏れ発生時、システムが正常な場合でも頻繁な制動要求によるアキュムレータ圧の大幅減の場合など通常より蓄圧に時間を要する場合に実行される。
図6は、図5いおける間欠ポンプ制御モード処理の詳細を説明するフローチャートである。ブレーキECU70は間欠ポンプ制御モード処理の実行中、ストロークセンサ25からの信号に基づき制動判定がなされたか否か監視する(S106)。制動判定がON状態でない場合(S106のN)、間欠ポンプ制御が実行中でない場合は(S108のN)、間欠ポンプ制御を実行する(S110)。つまり、ポンプ36の連続駆動時間がXsecに到達したらポンプ36の駆動を所定時間、例えばYsec停止する制御を実行する。その後、再びXsecを上限としてポンプ36の駆動を行い、Xsec経過した場合はYsecを上限とする停止を繰り返す制御を実行する。S108において、既に間欠ポンプ制御が実行されている場合は(S108のY)、S110の処理をスキップする。ブレーキECU70は、間欠ポンプ制御中にアキュムレータ圧が目標圧に達した場合(S112のY)、制御モードを通常ポンプ制御モードに復帰させて(S114)、このフローを終了する。また、S112において、アキュムレータ圧が目標圧に達していない場合(S112のN)、S114の処理をスキップして間欠ポンプ制御モードの処理を継続する。
S106において、制動判定がON状態である場合(S106のY)、ブレーキECU70は間欠ポンプ制御中であっても例外的にそのタイミングでポンプ36を駆動してアキュムレータ圧を昇圧させる(S116)。ブレーキECU70は、制動判定がOFF状態に移行したら(S118のY)、例外的に動作させていたポンプ36の駆動を停止して(S120)、このフローを終了して間欠ポンプ制御を継続する。また、S118において、制動判定がON状態のままの場合(S118のN)、ブレーキECU70はS120の処理をスキップして、ポンプ36の例外的な連続駆動を継続して、このフローを終了する。
このように、ポンプ36の間欠ポンプ制御を含み、調整部としてオリフィス100を備えるブレーキ制御装置において、増圧リニア制御弁66にフェールが生じた場合でも間欠ポンプ制御に例外モードを設けることにより、良好なブレーキフィーリングが得られる。
図7は、他の実施形態の液圧ブレーキユニットを示す系統図である。
図7に示す液圧ブレーキユニット200は、レギュレータ31から延びるレギュレータ配管74が液圧アクチュエータ40に接続されると共に、レギュレータカット弁75を途中に有するレギュレータ流路76が第2流路45bの分離弁60とオリフィス100の間に接続されている。この点以外は、図2に示す液圧ブレーキユニット20と液圧ブレーキユニット200の構成は実質的に同じである。したがって、同様な機能を有する部材には同じ符号を付しその説明は省略する。
図3や図4で説明したように、液圧ブレーキユニット20でABS制御を行う場合、ホイールシリンダ23に対して増圧リニア制御弁66からブレーキフルードを供給することになる。このとき、ABS制御時の液圧の保持、減圧は、ABS保持弁51〜54の閉弁によって行われるので、その上流の容積が増圧リニア制御弁66までの容積のみとなり、ブレーキフルードの流動可能容積が非常に小さくなる。その結果、ABS制御時に制御ハンチングが生じて動作音や振動の増大の原因になっていた。また、ブレーキフィーリングの低下の原因にもなっていた。そこで、液圧ブレーキユニット200は、ABS制御時には、増圧リニア制御弁66を閉弁して、増圧リニア制御弁66を経由するブレーキフルードの供給からレギュレータ31を経由するブレーキフルードの供給に切り替えて、レギュレータ31から直接調圧されたレギュレータ圧を供給するようにしている。
レギュレータカット弁75は、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により開弁状態が保証され、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。閉状態とされたレギュレータカット弁75により、レギュレータ31と主流路45の第2流路45bとの間でブレーキフルードの流通は遮断される。ソレノイドに通電されてレギュレータカット弁75が開弁されると、レギュレータ31と主流路45の第2流路45bとの間でブレーキフルードを双方向に流通させることができる。レギュレータ31は、アキュムレータ35のアキュムレータ圧をブレーキペダル24の踏力に応じた液圧に減圧する。したがって、安定したレギュレータ圧を各ホイールシリンダ23に提供できると共に、ブレーキフルードはレギュレータカット弁75によって遮断されるか通過するかのいずれかのみとなるので、ABS制御時に液圧ブレーキユニット20で考慮する必要なあった制御ハンチングの発生はない。したがって、ABS制御時の動作音や振動の発生を容易に抑制できる。
また、液圧ブレーキユニット200の場合、ABS制御時は増圧リニア制御弁66を閉弁して動作させないので、液圧ブレーキユニット20に比べて耐久性能を落とした増圧リニア制御弁66の利用が可能となりコスト軽減に寄与できる。また、増圧リニア制御弁66をABS制御時に使用しないので制御回数が低減できて制御音や振動の軽減にも寄与できると共に、寿命の延長に寄与できる。また、ABS制御時に、レギュレータ31からブレーキフルードを供給する場合でも、主流路45には分離弁60と同等の流動抵抗を発生するオリフィス100が存在するので、第1流路45aと第2流路45bとで液圧の応答差や液圧差を生じることがない。その結果、ブレーキフィーリングの低下を抑制できる。
なお、ABS制御以外の通常のブレーキバイワイヤ方式による制動制御を実行する場合は、レギュレータカット弁75を閉弁して、液圧ブレーキユニット20と同様に増圧リニア制御弁66を経由する流路で制御が実行される。
図8は、他の実施形態の液圧ブレーキユニットを示す系統図である。
図8に示す液圧ブレーキユニット202は、レギュレータ31から延びるレギュレータ配管74が液圧アクチュエータ40に接続されると共に、増圧リニア制御弁66を途中に有するレギュレータ流路76が第2流路45bの分離弁60とオリフィス100の間に接続されている。また、第2流路45bの分離弁60とオリフィス100の間に接続されるアキュムレータ流路63の経路中には、当該アキュムレータ流路63を途中で遮断するアキュムレータカット弁78が設けられている。また、第2流路45bに接続されたレギュレータ流路76中に設けられた減圧リニア制御弁67は、リザーバ流路55に接続されている。この点以外は、図2に示す液圧ブレーキユニット20と液圧ブレーキユニット202の構成は実質的に同じである。したがって、同様な機能を有する部材には同じ符号を付しその説明は省略する。
液圧ブレーキユニット202における増圧リニア制御弁66および減圧リニア制御弁67は、液圧ブレーキユニット20のそれと同様にそれぞれリニアソレノイドおよびスプリングを有しており、何れもソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。増圧リニア制御弁66および減圧リニア制御弁67は、それぞれのソレノイドに供給される電流に比例して弁の開度が調整される。なお、レギュレータ圧センサ79は、増圧リニア制御弁66の上流側でレギュレータ流路76内のブレーキフルードの圧力、すなわちレギュレータ圧を検知し、検知した値を示す信号をブレーキECU70に与える。
増圧リニア制御弁66は、各車輪に対応して複数設けられた各ホイールシリンダ23に対して共通の増圧制御弁として設けられている。また、減圧リニア制御弁67も同様に、各ホイールシリンダ23に対して共通の減圧制御弁として設けられている。つまり、液圧ブレーキユニット202においては、増圧リニア制御弁66および減圧リニア制御弁67は、レギュレータ31から送出されるブレーキフルードを各ホイールシリンダ23へ給排制御する1対の共通の制御弁として設けられている。このように増圧リニア制御弁66及び減圧リニア制御弁67を各ホイールシリンダ23に対して共通化すれば、ホイールシリンダ23ごとにリニア制御弁を設けるのと比べて、コストの観点からは好ましい。
アキュムレータカット弁78は、ON/OFF制御されるソレノイドおよびスプリングを有しており、規定の制御電流の供給を受けてソレノイドが発生させる電磁力により開弁状態が保証され、ソレノイドが非通電状態にある場合に閉とされる常閉型電磁制御弁である。閉状態とされたアキュムレータカット弁78により、アキュムレータ35と主流路45の第2流路45bとの間でブレーキフルードの流通は遮断される。ソレノイドに通電されてアキュムレータカット弁78が開弁されると、アキュムレータ35と主流路45の第2流路45bとの間でブレーキフルードを双方向に流通させることができる。
液圧ブレーキユニット202において、ブレーキペダル24を操作しないときに制御されるトラクションコントロール時の制動力制御や横滑りを防止する車両安定性制御システム動作時の制動力制御等の特殊な制御は、アキュムレータカット弁78を介してアキュムレータ35から供給されるアキュムレータ圧によって制御される。一方、それ以外のブレーキペダル24を操作する制動制御は、増圧リニア制御弁66と減圧リニア制御弁67を介して供給されるレギュレータ圧によって制御される。つまり、増圧リニア制御弁66と減圧リニア制御弁67のリニア制御によって制動力制御を行う場合は、アキュムレータ35からのブレーキフルードの供給をアキュムレータカット弁78により遮断する。
この場合、増圧リニア制御弁66と減圧リニア制御弁67には、運転者のブレーキペダル24の操作に基づきレギュレータ31により減圧調整されたレギュレータ圧が供給される。したがって、液圧ブレーキユニット20における増圧リニア制御弁66および減圧リニア制御弁67のように高圧のアキュムレータ圧が供給されるものより耐久性能の小さき制御弁が利用可能である。また、制御圧力がアキュムレータ圧より遙かに低いので増圧リニア制御弁66および減圧リニア制御弁67の制御性が向上できると共に、負荷が低くなるので寿命の延長にも寄与できる。また、ブレーキペダル24の操作量に応じて調整されるレギュレータ圧はアキュムレータ圧より低いので増圧リニア制御弁66における動作音や振動を軽減できるという利点がある。
なお、液圧ブレーキユニット202の構成において、ABS制御を行う場合、ブレーキペダル24の操作量に応じてレギュレータ圧を提供できるので、増圧リニア制御弁66は全開とすることができる。その結果、ABS制御時の増圧リニア制御弁66の制御が非常に容易になると共に、増圧リニア制御弁66の詳細制御を必要とする液圧ブレーキユニット20の構成より制御回数が軽減できるというメリットがあると共に、この点においても耐久性能の低減化や寿命の延長に寄与できる。
なお、トラクションコントロール時や車両安定性制御システム動作時には、アキュムレータカット弁78を開弁してABS保持弁51〜54およびABS減圧弁56〜59の制御によって必要な液圧供給を行う。
図9は、上述した各実施形態における調整部の変形例である。図9は一例として図2の調整部周辺のみを拡大した部分拡大図である。図9の場合、調整部としてオリフィスに代えて、分離弁60と実質的に同じ常閉型電磁制御弁である調整弁80を採用している。調整弁80は、ON/OFF制御されるソレノイドおよびスプリングを有しており、ソレノイドが非通電状態にある場合に閉とされる。調整弁80が閉状態であるときには、第2流路45bへのブレーキフルードの流通は遮断される。ソレノイドに通電されて調整弁80が開弁されると、第1流路45aと第2流路45bとの間でブレーキフルードを双方向に流通させることができる。調整弁80は、分離弁60とオリフィス100との関係と同様に、分離弁60と調整弁80の流動抵抗は実質的に同じもの、望ましくは、調整弁80と分離弁60は同一の型番の制御弁を用いる。その結果、オリフィス100を利用する場合と同様に、増圧リニア制御弁66からブレーキフルードが供給されるときに制御時間差や圧力差の発生を抑制できる。その結果、「X配管」を採用する場合でも動力液圧源30を用いた通常制動時のブレーキフィーリングの低下を抑制できる。また、調整弁80と分離弁60は同一の型番の制御弁が利用できるので、調整部の部品選定が容易になる。なお、調整弁80を用いる場合、当該調整弁80の開閉確認のために例えば、制御圧センサ82を設けることが望ましい。
オリフィス100に代えて調整弁80を用いることにより、増圧リニア制御弁66の開故障時には、調整弁80を閉弁することによりブレーキフルードがリザーバ34に逆流することを防止できる。したがって、アキュムレータ圧が急激に低下してしまうことが抑制できる。
図3で説明した閉弁しているABS制御弁の数と増圧リニア制御弁の制御ゲインを同期させる制御や図4で説明した増圧リニア制御弁の制御ゲインの有効化の遅延処理は、マスタシリンダユニット27から送出される2系統の流路がそれぞれ前輪側左右と後輪側左右に接続されたいわゆる「前後配管」の場合にも適用可能である。図3や図4を用いて説明した制御を「前後配管」に適用した場合でも「X配管」に適用した場合と同様に液圧ハンチングや制御ハンチングが抑制できる。
また、図7で説明したABS制御時に使用するレギュレータ31およびレギュレータカット弁75を用いた流路系は、液圧ブレーキユニット200が「前後配管」されている場合にも適用可能である。そして、「X配管」に適用した場合と同様にABS制御時の液圧の応答差、液圧差によるブレーキフィーリングの低下や動作音や振動の発生を容易に抑制できる。
同様に、図8で説明したレギュレータ31からのブレーキフルードを増圧リニア制御弁66を介して各ホイールシリンダ23に供給する構成は、液圧ブレーキユニット202が「前後配管」されている場合にも適用可能である。そして、「X配管」に適用した場合と同様に耐久性能を落としたリニア制御弁の利用や制御性の向上、動作音や振動を軽減等を実現できる。
なお、図2、図7、図8では、ブレーキ装置を4輪ともディスクブレーキとした例を示したが、例えば、後輪側をドラムブレーキとしてもよいし、4輪ともドラムブレーキとしてもよい。この場合も上述した各実施形態と同様の効果を得ることができると共に、ドラムブレーキの利用により低コスト化がし易くなる。また、本実施形態では、ブレーキ回生協調制御を含むブレーク制御装置を一例として示したが、ブレーキ回生協調制御を含まないブレーキバイワイヤ方式のシステムにも適用可能であり、同様の効果を得ることができる。
本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能である。各図に示す構成は、一例を説明するためのもので、同様な機能を達成できる構成であれば、適宜変更可能であり、同様な効果を得ることができる。
本発明によれば、動力液圧源とマニュアル液圧源を備えると共に、コスト低減や小型化のために後輪側に前輪側と異なる制動能力のブレーキ装置を搭載する場合でもブレーキフィーリングの低下を招くことなく十分な制動力を発揮させることができる。
20 液圧ブレーキユニット、 27 マスタシリンダユニット、 30 動力液圧源、 35 アキュムレータ、 36 ポンプ、 37 第1マスタ配管、 38 第2マスタ配管、 40 液圧アクチュエータ、 51〜54 ABS保持弁、 56〜59 ABS減圧弁、 60 分離弁、 66 増圧リニア制御弁、 67 減圧リニア制御弁、 70 ブレーキECU、 100 オリフィス。

Claims (7)

  1. 収容された作動液を運転者のブレーキ操作量に応じて加圧するマニュアル液圧源と、
    運転者のブレーキ操作から独立した動力を用いて作動液による蓄圧が可能な動力液圧源と、
    前記動力液圧源から各車輪のホイールシリンダ側に供給される作動液の液量を制御する液量制御弁と、
    前記マニュアル液圧源からの作動液を左前輪のホイールシリンダおよび右後輪のホイールシリンダに供給可能な第1流路と前記マニュアル液圧源からの作動液を右前輪のホイールシリンダおよび左後輪のホイールシリンダに供給可能な第2流路とに分離可能な分離弁と、
    前記液量制御弁を経由する作動液が前記第1流路と前記第2流路から前記各ホイールシリンダに供給されるとき、前記作動液が前記分離弁を経由して流入する前記第1流路または前記第2流路のいずれかの作動液供給状態と前記分離弁を経由しない他方の作動液供給状態との状態差が低減されるように作動液供給状態を調整する調整部と、
    を含むことを特徴とするブレーキ制御装置。
  2. 前記各ホイールシリンダごとに設けられ作動液を前記ホイールシリンダに供給するか否か決定する複数の開閉弁と、
    前記液量制御弁および前記開閉弁の開閉状態を制御する弁制御部とをさらに含み、
    前記弁制御部は、前記開閉弁の開閉状態を切り替えるとき、前記液量制御弁の制御状態を所定時間変更しないことを特徴とする請求項1記載のブレーキ制御装置。
  3. 前記各ホイールシリンダごとに設けられ作動液を前記ホイールシリンダに供給するか否か決定する複数の開閉弁と、
    前記液量制御弁および前記開閉弁の開閉状態を制御する弁制御部とをさらに含み、
    前記弁制御部は、各開閉弁を個別に制御する場合であって、前記液量制御弁を経由した作動液を前記各ホイールシリンダ側に供給する場合、少なくとも前記開閉弁の開閉状態を切り替えるとき、同時に切り替える前記開閉弁の数に対応した制御ゲインによって前記液量制御弁を制御することを特徴とする請求項1記載のブレーキ制御装置。
  4. 前記弁制御部は、前記開閉弁の開閉状態を切り替えるとき、前記液量制御弁の制御状態を所定時間変更しないことを特徴とする請求項3記載のブレーキ制御装置。
  5. 前記各ホイールシリンダごとに設けられ作動液を前記ホイールシリンダに供給するか否か決定する複数の開閉弁と、
    前記マニュアル液圧源に形成され、前記動力液圧源から供給される作動液の液圧を運転者のブレーキ操作量に応じて調整するレギュレータと、
    前記分離弁と前記調整部の間の領域と前記レギュレータとを接続するレギュレータ流路と、
    前記液量制御弁および前記開閉弁の開閉状態を制御する弁制御部とをさらに含み、
    前記弁制御部は、前記各開閉弁を個別に制御する場合、前記液量制御弁を経由する作動液供給から前記レギュレータを経由する作動液供給に切り替えることを特徴とする請求項1記載のブレーキ制御装置。
  6. 運転者のブレーキ操作から独立した動力を用いて作動液による蓄圧が可能な動力液圧源と、
    収容された作動液を運転者のブレーキ操作量に応じて加圧するマニュアル液圧源と、
    前記動力液圧源から供給される作動液の液圧を運転者のブレーキ操作量に応じて調整するレギュレータと、
    前記動力液圧源から各車輪のホイールシリンダ側に供給される作動液の流路を遮断可能な遮断弁と、
    前記レギュレータから前記各ホイールシリンダ側に供給される作動液の液量を制御する液量制御弁と、
    前記マニュアル液圧源からの作動液を左前輪のホイールシリンダおよび右後輪のホイールシリンダに供給可能な第1流路と前記マニュアル液圧源からの作動液を右前輪のホイールシリンダおよび左後輪のホイールシリンダに供給可能な第2流路とに分離可能な分離弁と、
    前記液量制御弁を経由する作動液が前記第1流路または前記第2流路から前記各ホイールシリンダ側に供給されるときまたは前記遮断弁を経由する作動液が前記第1流路または前記第2流路から前記各ホイールシリンダ側に供給されるとき、前記作動液が前記分離弁を経由して流入する前記第1流路または前記第2流路のいずれかの作動液供給状態と前記分離弁を経由しない方の作動液供給状態との状態差が低減されるように作動液供給状態を調整する調整部と、
    を含むことを特徴とするブレーキ制御装置。
  7. 前記調整部は、オリフィスで構成されていることを特徴とする請求項1から請求項6のいずれか1項に記載のブレーキ制御装置。
JP2011538112A 2009-10-28 2009-10-28 ブレーキ制御装置 Expired - Fee Related JP5229397B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005686 WO2011052007A1 (ja) 2009-10-28 2009-10-28 ブレーキ制御装置

Publications (2)

Publication Number Publication Date
JPWO2011052007A1 true JPWO2011052007A1 (ja) 2013-03-14
JP5229397B2 JP5229397B2 (ja) 2013-07-03

Family

ID=43921452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011538112A Expired - Fee Related JP5229397B2 (ja) 2009-10-28 2009-10-28 ブレーキ制御装置

Country Status (5)

Country Link
US (1) US8991939B2 (ja)
EP (1) EP2495143B1 (ja)
JP (1) JP5229397B2 (ja)
CN (1) CN102596664B (ja)
WO (1) WO2011052007A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180184B (zh) 2010-10-25 2015-03-11 丰田自动车株式会社 制动器控制装置
DE102011075968A1 (de) * 2011-05-17 2012-11-22 Robert Bosch Gmbh Steuervorrichtung für ein Bremssystem eines Fahrzeugs und Verfahren zum Betreiben eines Bremssystems eines Fahrzeugs
JP5960461B2 (ja) * 2012-03-21 2016-08-02 トヨタ自動車株式会社 ブレーキ装置
DE102012211278A1 (de) * 2012-06-29 2014-01-02 Robert Bosch Gmbh Verfahren zum Betreiben eines rekuperativen Bremssystems eines Fahrzeugs, Steuervorrichtung für ein rekuperatives Bremssystem eines Fahrzeugs und rekuperatives Bremssystem
JP6344338B2 (ja) * 2015-08-28 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両
US10870418B2 (en) 2017-02-15 2020-12-22 Mando Corporation Electronic brake system and control method thereof
KR102334113B1 (ko) * 2017-03-27 2021-12-03 주식회사 만도 전자식 브레이크 시스템
JP6819550B2 (ja) * 2017-11-17 2021-01-27 トヨタ自動車株式会社 車両用制動力制御装置
US10875367B2 (en) * 2018-02-19 2020-12-29 Ford Global Technologies, Llc All-wheel drive line lock for warming tires during track usage
CN113423622A (zh) * 2018-12-20 2021-09-21 爱皮加特股份公司 用于电动车辆和具有3阶(had)至5阶(ad)自主驾驶的车辆的具有两个压力供应单元的冗余制动系统
JP7476494B2 (ja) * 2019-08-08 2024-05-01 株式会社アドヴィックス 車両の制動制御装置
KR102227220B1 (ko) * 2019-08-19 2021-03-12 현대모비스 주식회사 Esc 통합형 회생제동 시스템의 제어 장치 및 방법
KR20230065817A (ko) * 2021-11-05 2023-05-12 현대모비스 주식회사 차량용 전동식 브레이크 및 그 제어방법
CN114523946B (zh) * 2022-03-29 2023-03-24 浙江工业大学 一种多模式的液压制动系统及其控制方法
WO2024177157A1 (ja) * 2023-02-24 2024-08-29 株式会社アドヴィックス 液圧発生装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104655A1 (de) 1991-02-15 1992-08-20 Cassella Ag Verfahren zum faerben von polyester und polyesterhaltigen textilmaterialien
JP2566961Y2 (ja) * 1991-06-24 1998-03-30 株式会社ユニシアジェックス 車両用スリップ制御装置
JPH0519041A (ja) 1991-07-15 1993-01-26 Nec Corp 送波装置
DE4314448A1 (de) * 1993-05-03 1994-11-10 Teves Gmbh Alfred Bremsanlage für Kraftfahrzeuge mit elektrischem Antrieb
JPH11321612A (ja) * 1998-05-18 1999-11-24 Akebono Brake Ind Co Ltd 車両用ブレーキシステム
JP2002130449A (ja) 2000-10-27 2002-05-09 Toyota Motor Corp 車両の油圧制御装置
JP3941388B2 (ja) 2000-12-21 2007-07-04 トヨタ自動車株式会社 車輌の制動制御装置
JP4099982B2 (ja) * 2001-03-23 2008-06-11 トヨタ自動車株式会社 ブレーキ装置
CN100404339C (zh) * 2004-09-30 2008-07-23 丰田自动车株式会社 液压制动装置
JP4760246B2 (ja) 2004-09-30 2011-08-31 トヨタ自動車株式会社 液圧ブレーキ装置
US7325883B2 (en) * 2004-10-04 2008-02-05 Continental Teves, Inc. Hydraulic braking system featuring selectively-coupled pump suction circuits
JP4502826B2 (ja) 2005-01-13 2010-07-14 本田技研工業株式会社 車両用ブレーキ装置
JP4333677B2 (ja) * 2006-02-01 2009-09-16 トヨタ自動車株式会社 ブレーキ制御装置
JP2009234490A (ja) * 2008-03-27 2009-10-15 Toyota Motor Corp ブレーキ制御装置およびブレーキ制御方法

Also Published As

Publication number Publication date
WO2011052007A1 (ja) 2011-05-05
US20120212044A1 (en) 2012-08-23
CN102596664B (zh) 2014-09-24
EP2495143B1 (en) 2014-11-26
CN102596664A (zh) 2012-07-18
US8991939B2 (en) 2015-03-31
JP5229397B2 (ja) 2013-07-03
EP2495143A4 (en) 2013-09-04
EP2495143A1 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5229397B2 (ja) ブレーキ制御装置
JP5370594B2 (ja) ブレーキ制御装置
US8931856B2 (en) Brake control apparatus and method for controlling the same
JP4297151B2 (ja) ブレーキ制御装置
JP4215074B2 (ja) ブレーキ制御装置及びブレーキ制御方法
JP4375408B2 (ja) ブレーキ制御装置及びブレーキ制御方法
JP2009208486A (ja) ブレーキ制御装置
US20120056471A1 (en) Braking System for a Land Vehicle with Regenerative Braking Functionality
JP5402578B2 (ja) ブレーキ制御装置
JP4333713B2 (ja) ブレーキ制御装置
JP2007203859A (ja) ブレーキ制御装置
JP5062020B2 (ja) ブレーキ制御装置
JP5293862B2 (ja) ブレーキ制御装置
JP2006168460A (ja) 車両用ブレーキ制御装置
JP4497107B2 (ja) ブレーキ制御装置
JP5347689B2 (ja) ブレーキ制御装置
JP5556245B2 (ja) ブレーキ制御装置
JP2012153266A (ja) ブレーキ制御装置
JP5532639B2 (ja) ブレーキ制御装置
JP5115014B2 (ja) ブレーキ制御装置
JP5040745B2 (ja) ブレーキ制御装置
JP5521657B2 (ja) ブレーキ制御装置
JP2010089759A (ja) ブレーキ制御装置
JP5251248B2 (ja) ブレーキ制御装置
JP2011168079A (ja) ブレーキ装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees