JPWO2010016429A1 - 電気・電子部品用銅合金材料の製造方法 - Google Patents

電気・電子部品用銅合金材料の製造方法 Download PDF

Info

Publication number
JPWO2010016429A1
JPWO2010016429A1 JP2010507744A JP2010507744A JPWO2010016429A1 JP WO2010016429 A1 JPWO2010016429 A1 JP WO2010016429A1 JP 2010507744 A JP2010507744 A JP 2010507744A JP 2010507744 A JP2010507744 A JP 2010507744A JP WO2010016429 A1 JPWO2010016429 A1 JP WO2010016429A1
Authority
JP
Japan
Prior art keywords
compound
copper alloy
alloy material
electrical
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010507744A
Other languages
English (en)
Other versions
JP4913902B2 (ja
Inventor
邦照 三原
邦照 三原
亮佑 松尾
亮佑 松尾
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2010507744A priority Critical patent/JP4913902B2/ja
Publication of JPWO2010016429A1 publication Critical patent/JPWO2010016429A1/ja
Application granted granted Critical
Publication of JP4913902B2 publication Critical patent/JP4913902B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

添加元素としてCoおよびSiを含有する電気電子部品用銅合金材料であって、CoとSiからなる平均粒子径が5nm以上50nm未満の化合物Aが分散し、さらに、CoとSiの一方もしくは両方を含有しない平均粒子径が50nm以上500nm以下の化合物Bが分散と、CoとSiの両方およびさらに他の元素を含有する平均粒子径が50nm以上500nm以下の化合物Cと、CoとSiからなる平均粒子径が50nm以上500nm以下の化合物Dとからなる群から選ばれる少なくとも1種の化合物が分散し、また、母材の銅合金の結晶粒径が3〜35μmであり、かつ導電率が50%IACS以上である電気電子部品用銅合金材料。

Description

本発明は電気・電子機器用のコネクタ、端子材等、特に、高導電性が所望される高周波リレーやスイッチ、あるいは、自動車車載用などのコネクタや端子材およびリードフレームなどの電気電子部品に適用される銅合金材料に関する。
これまで、電子・電気機器用のコネクタ、端子、リレー、スイッチなどには黄銅(C26000)やリン青銅(C51910、C52120、C52100)ならびにベリリウム銅(C17200、C17530)やコルソン系銅合金(以下、単にコルソン銅ともいう。例えば、C70250)などが使用されてきた。
近年、これらが使用される電子・電気機器で使用される電流の周波数が高くなり、材料にも高導電性が要求されるようになっている。そこで、元々、黄銅やリン青銅は導電性が低く、コルソン銅はコネクタ材として、中導電性(EC≒40%IACS)を示すが、さらに高導電性が求められている。また、ベリリウム銅は高価であることも周知である。一方、高導電性である純銅(C11000)やSn入銅(C14410)などは強度が低い欠点がある。そこで、従来のコルソン銅を越える導電性と同等の引張強度、曲げ加工性を備えた銅合金が所望されている。
ここで、CXXXXXとはCDA(Copper Development Association)で規定された銅合金の種類である。また、%IACSは材料の導電性を示す単位であって、「IACS」とは”international annealed copper standard”の略である。
特に、近年の電子機器部品では、機器の小型化に伴い複雑かつ厳しい曲げ加工がされたコネクタや端子が多く見られる。これは、小型化に伴いコネクタのサイズもダウンサイズするが、接触の信頼性を保つためにはできるだけ長いコンタクト長をとりたいためである。このような設計思想を持つコネクタや端子をベローズ(蛇腹)曲げコネクタまたは端子と呼ぶことが多い。つまり、小さな部品の中に複雑に曲げられた端子・コネクタが装備・設置される要求が高い。一方で、小型化に伴い使用されるコネクタ・端子の材料はより薄くなる。これは、軽量化、省資源の観点からも進んでいる。薄い材料は厚い材料と比べて、同じ接圧を保つためには強度の高い材料が求められる。
銅合金材料の強度を高める方法として固溶強化、加工強化、析出強化などの様々な強化方法があるが、一般的に導電性と強度は相反する特性である。この中で、銅合金において導電性を低下させずに強度を高める方法として、析出強化が有望であることが知られている。この析出強化とは析出を起こす元素を添加した合金を高温で熱処理して、銅母相へそれらの元素を固溶させた後、その固溶させた際の温度より低温で熱処理して、固溶させた元素を析出させる手法である。例えば、ベリリウム銅、コルソン銅などはその強化方法を採用している。
ところで、上記した曲げ加工性と強度は相反する特性であり、一般的に強度の高い材料は曲げ加工性が悪く、曲げ加工性の良い材料は逆に強度が低い。強度を高めるためには冷間圧延率を高めることが効果的であるとされるが、冷間圧延率を高めると曲げ加工性が著しく劣化する傾向がある。これまで、析出型の銅合金として、ベリリウム銅、コルソン銅、チタン銅などが、曲げ加工性と強度のバランスがよいとされてきた。しかし、ベリリウム銅は添加元素であるベリリウムが環境負荷物質とされており、代替材料が求められている。また、コルソン銅やチタン銅は一般に50%IACS以上の導電性を有しない。50%IACS以上の高い導電性の要求される用途としては、例えば、高電流が印加されるバッテリー端子やリレー接点などがある。また、一般に導電率が高い材料は熱伝導特性も優れているため、放熱性を要求されるCPU(集積演算素子)のソケットやヒートシンクなどの材料にも高い導電性の要求がある。特に、最近のハイブリッド車や高速処理が行われるCPUでは、高い導電性と高い強度を備えた材料が要求されている。
このような背景から、強度、曲げ加工性、導電性(熱伝導性)を加味し、コバルト(Co)とシリコン(Si)からなる金属間化合物を利用した銅合金が注目されつつある。CoとSiを必須に含む銅合金やこれに関連する技術が、以下のとおり知られている。
まず、CoとSiを必須に含む銅合金の先行技術について述べる。
特許文献1には、CoとSiと、Zn(亜鉛)、Mg(マグネシウム)、S(硫黄)を必須に含む合金が記載されている。特許文献1における目的は熱間加工性の改善である。
特許文献2には、CoとSiと、Mg、Zn、Sn(スズ)を含む合金が記載されている。また、特許文献3はCoとSiと、Sn、Znを必須に含む合金が記載されている。なお、特許文献2および特許文献3には、CoとSiの析出物(化合物)についてCoSi化合物との記載がある。
特許文献4には、Cu−Co−Si系合金が記載されている。特許文献4の合金の用途はリードフレームであり、合金の種類が析出強化型合金であると記載されている。
特許文献5には、Cu−Co−Si合金中に析出する介在物の大きさが2μm以下であると記載されている。
特許文献6には、Cu−Co−Si合金中にCoSi化合物を析出させることが記載されている。
特許文献1〜6に記載された技術は、いずれもCoとSiからなる金属間化合物の1種類(または、1サイズ)のみについて説明されているものである。ところで、他の合金系、特にNiとSiを必須の添加元素としたいわゆるコルソン銅に関しては、2種類以上の金属間化合物を銅合金中に分散させると、曲げ特性などが向上するとの知見がある。この技術として、特許文献7〜11が知られている。
特開昭61−87838号公報 特開昭63−307232号公報 特開平02−129326号公報 特開平02−277735号公報 特開2008−88512号公報 特開2008−56977号公報 特開2006−161148号公報 特開2006−265731号公報 特開2007−314847号公報 特開2008−75151号公報 特開2008−75152号公報
しかし、各特許文献に記載された技術は、いずれも強度、曲げ加工性、導電性(熱伝導性)のすべてを高いレベルで満足するものではない。
特許文献1は熱間加工性の改善を目的としており、CoとSiの析出物(化合物)については記載がなく、さらに強度や導電性についての記載がない。
特許文献2には、再結晶処理を行うとの記載がなく、曲げ加工性は悪いと考えられる。
特許文献3には、その実施例に導電率は30%IACS以下と比較的低い値が示されている。
特許文献4には、析出強化型合金と記載されているが具体的な化合物やそのサイズが記載されていない。また、再結晶処理を行うとの記載がなく、曲げ加工性は悪いと考えられる。
特許文献5および特許文献6には、材料の内側曲げ半径をR、板厚をtとした際に、R/t=1の条件で曲げ加工性を評価した例があるが、この程度のレベルでは今後要求される曲げ加工性には必ずしも対応できない場合があると考えられる。
また、特許文献7〜11に記載された技術は、いずれもNiとSiを主元素としたいわゆるコルソン銅である。コルソン銅とCu−Co−Si系合金とは、成分が異なっているために、たとえば溶体化処理を行う温度が違うなどの相違点がある。たとえば、コルソン銅の場合はNi量が3mass%以上の場合、900℃程度の溶体化処理温度が必要となるが、Cu−Co−Si合金の場合、900℃程度の溶体化温度では、Co量が約1.0〜1.2mass%しか溶体化処理が十分にできないということがわかってきた。また、Ni量が3mass%以上のコルソン銅は、強度や曲げ特性を高い状態にしたい場合、導電率を20%IACS以上とすることが事実上困難で、高導電率の銅合金を得ることができない。つまり、コルソン銅とCu−Co−Si合金では、溶体化処理温度や合金としての特性に大きな相違点があり、従来技術の延長線上ではない新たな技術が必要となる。
そこで、本発明者らは、銅合金材料における高導電性、高強度、良好な曲げ加工性を同時に満足させるため、Cu−Co−Si系銅合金中に2種類以上の析出物(化合物)を分散させ、それらの析出物のサイズを(必要によりその密度も)制御することで結晶粒径との特定の好適な関係を見出し、さらに検討を重ね本発明を完成させるに至った。
本発明によれば、以下の手段が提供される:
(1)添加元素としてCoおよびSiを含有する電気電子部品用銅合金材料であって、
CoとSiからなる平均粒子径が5nm以上50nm未満の化合物Aが分散し、さらに、CoとSiの一方もしくは両方を含有しない平均粒子径が50nm以上500nm以下の化合物Bと、CoとSiの両方およびさらに他の元素を含有する平均粒子径が50nm以上500nm以下の化合物Cと、CoとSiからなる平均粒子径が50nm以上500nm以下の化合物Dとからなる群から選ばれる少なくとも1種の化合物が分散し、母材の銅合金の結晶粒径が3〜35μmであり、かつ導電率が50%IACS以上であることを特徴とする電気電子部品用銅合金材料。
(2)添加元素としてCoおよびSiを含有する電気電子部品用銅合金材料であって、
CoとSiからなる平均粒子径が5nm以上50nm未満の化合物Aと、CoとSiの一方もしくは両方を含有しない平均粒子径が50nm以上500nm以下の化合物Bと、CoとSiの両方およびさらに他の元素を含有する平均粒子径が50nm以上500nm以下の化合物Cと、CoとSiからなる平均粒子径が50nm以上500nm以下の化合物Dが分散し、
前記化合物A〜Dの分散密度の比が0.0001≦{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}≦0.1であり、
母材の銅合金の結晶粒径が3〜35μmであり、かつ導電率が50%以上であることを特徴とする電気電子部品用銅合金材料。
(3)さらに、Al、Ag、Sn、Zn、Mg、Mn、Inから選ばれた少なくとも1種を合計で0.05〜1.0mass%含有し、残部がCuと不可避不純物からなる、(1)または(2)に記載の電気電子部品用銅合金材料。
(4)さらに、Fe、Cr、Ni、Zr、Tiから選ばれた少なくとも1種を合計で0.05〜1.0mass%含有し、残部がCuと不可避不純物からなる、(1)〜(3)のいずれか1項に記載の電気電子部品用銅合金材料。
(5)添加元素としてCoおよびSiを含有し、残部がCuと不可避不純物からなる、(1)または(2)に記載の電気電子部品用銅合金材料。
(6)Coの含有量が0.4〜2.0mass%、Siの含有量が0.1〜0.5mass%である、(1)〜(5)のいずれか1項に記載の電気電子部品用銅合金材料。
(7)鋳塊製造時における固相温度から500℃までの平均冷却速度が5〜100℃/秒であることを特徴とする(1)〜(6)のいずれか1項に記載の電気電子部品用銅合金材料。
ここで、「析出物(化合物)の平均粒子径(サイズ)」とは、後述する方法で求めた析出物の平均粒子径である。また、「結晶粒径」とは、後述するJIS−H0501(切断法)に基づいて測定した値である。
本発明は、高い導電性を示すCu−Co−Si合金中の2種類以上の析出物(化合物)を制御することにより、結晶粒径を最適化し、導電率が高く、強度が高く、曲げ加工性に優れた電気電子部品用途に好適な銅合金材料を提供することができる。
本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材(ここでは形状の概念がない銅合金の各成分元素の混合物を意味する)が、所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。また、「母材の銅合金」とは形状の概念を含まない銅合金を意味する。
なお、銅合金材料の好ましい具体例として板材、条材について説明するが、銅合金材料の形状は板材や条材に限られるものではない。
まず、本発明の技術思想について述べる。本発明者らの検討により、強度が高く、高い導電性を有し、曲げ加工性の良好な銅合金材料を得るためには、Cu−Co−Si系合金中に2種類以上のサイズの異なる析出物(化合物)が必要であり、母材の銅合金の結晶粒径を3〜35μmに整えることが重要であることがわかった。さらに析出物(化合物)の密度を制御することが、母材の銅合金の結晶粒径を3〜35μmに整えるために好ましいことがわかった。また、2種類のサイズの異なる析出物の中で、平均粒子径が50nm以上500nm以下の粗大な化合物は、好ましくは、鋳塊製造時の冷却速度を適正に設定することで得ることができることがわかった。
また、電気電子部品用途に適した銅合金材料として、導電性が50%IACS以上であって、さらに引張強度と曲げ加工性との関係については、引張強度が550MPa以上650MPa未満の場合は、曲げ加工性の指針となるR/t≦0.5、引張強度が650MPa以上700MPa未満の場合は、R/t≦1、引張強度が700MPa以上750MPa未満の場合は、R/t≦2、引張強度が750MPa以上800MPa未満の場合は、R/t≦3となることが好ましい。
ここで、R/tとは、日本伸銅協会技術標準「銅および銅合金薄板条の曲げ加工性評価方法(JBMA T307)」に準拠した曲げ角度90°のW曲げ試験を行った結果を意味し、圧延垂直方向に切り出した板材を所定の曲げ半径(R)で曲げ試験を行って、その頂点にクラック(割れ)が生じない限界のRを求め、その時の板厚(t)で規格化した値である。一般にR/tが小さいほど、曲げ加工性が良好であるとされる。
本発明の電気電子部品用銅合金材料では、導電率が50%IACS以上である。導電率は、より好ましくは55%IACS以上、さらに好ましくは60%IACS以上であり、高い程好ましいが、その上限は通常75%IACS程度である。また、本発明の電気電子部品用銅合金材料では、引張強度と曲げ加工性(R/t)が、前記の関係を有するものが好ましい。また、曲げ加工性(R/t)の下限は0である。
電気電子部品用途に適した銅合金材料として、導電率が高く、強度が高く、曲げ加工性が優れた材料を得るために、2種類以上のサイズの異なる金属間化合物をCu−Co−Si系合金中に分散させる技術が有用である。
まず、この技術の背景を述べるが、ここで述べる銅合金は、金属間化合物がCoとSiを含む化合物1種類である場合の例である。CoとSiを銅へ添加し、適切な熱処理を施すと、CoとSiからなる金属間化合物が析出する、いわゆる析出型銅合金となる。
析出型銅合金の機能を発揮させる熱処理方法として、次の2回の熱処理を必ず行うことが一般的に行われている。1回目の熱処理は、溶体化(もしくは再結晶)処理または均質化処理と呼ばれ、比較的高温で、かつ、短時間の熱処理が行われる。2回目の熱処理は、時効熱処理または析出処理と呼ばれ、前記の溶体化処理温度より低温で、かつ、長時間の熱処理を行う。
まず、1回目の熱処理は圧延された銅合金の薄板を熱処理炉の中を通板させる連続焼鈍炉を用いて行われる。これは、薄板をコイル状に巻いた状態で高温にて熱処理すると密着が発生すること、その後の冷却速度が遅いと固溶された元素が制御なく析出を起こし、強度に寄与しない析出となるためである。また、高温の炉を通板するため板切れも懸念されるため、短時間の熱処理が行われている。
一方、2回目の熱処理は強度に寄与する析出物(化合物)を銅合金中に均一かつ微細に分散させたいため、銅合金の薄板をコイル状に巻いた状態で温度制御を行った熱処理炉の中で比較的長時間(具体的には数分〜数十時間)の熱処理を行い十分に固相拡散処理で最適な析出物(化合物)を分散させる。
よって、析出型銅合金では、できるだけ溶体化処理(1回目の熱処理)の際の温度を高くして、銅母相に固溶させる溶質元素を増やして、その後の時効熱処理(2回目の熱処理)との温度差を利用して析出物(化合物)を析出させて銅合金を強化する。この溶体化処理(1回目の熱処理)の温度が高いほど溶質元素の固溶量が増える(これによって、後の2回目の熱処理時に析出する析出量が増える)ため、1回目の熱処理では高温の熱処理が有利であるが、逆に、同時に起こる再結晶の組織の粗大化が曲げ加工性に悪影響を及ぼす。強度が高い銅合金で結晶粒径が粗大であれば、曲げ加工を行ったときに、その部分でクラック(割れ)が発生したり、シワ(肌荒れ)の凹凸が大きくなり、必要な接圧が得られなかったり、接点部が不安定となり、コネクタ・端子等の用途に適した銅合金材料とはならない。また、再結晶時の粒径は高温ほど粗大になり、前記したように溶質元素を増やそうとしたときに1回目の熱処理で高温の熱処理を行うと、逆に曲げ加工性が劣化することになる。このように、金属間化合物がCoとSiを含む化合物1種類である銅合金材料において、高い導電率、高い強度、良好な曲げ加工性をすべて満たすのはきわめて困難であるといえる。
そこで、本発明では、高い導電率、高い強度、良好な曲げ加工性をすべて満足させるために、Cu−Co−Si系合金中にサイズの異なる2種類以上の金属間化合物を分散させる技術を開発した。CoとSiからなる5nm以上50nm未満の微細な化合物は析出強化に寄与する化合物である。一方、50nm以上500nm以下の粗大な化合物は析出強化には寄与せず、上記の高温溶体化処理時に効果を発揮する化合物である。この粗大な化合物は、高温溶体化処理時にも銅母相へ固溶することができず、銅母相内に存在する。よって、粒成長が起こってもその粗大な化合物が障害となり、粒界移動ができにくい状態を起こし、結果として結晶粒径の粗大化は抑制される。
銅合金の場合、原料を溶解(溶製)後、凝固した鋳塊を出発材料として、熱間圧延や冷間圧延、種々の熱処理が行われて所望の特性が引き出された銅合金材料が完成する。この鋳塊の凝固時や熱間圧延中、その冷却中ならびに種々の熱処理やその冷却中に様々なサイズの金属間化合物が形成するが、それを銅母相へ再固溶させる処理が溶体化処理である。その溶体化処理は時効熱処理の前に行われる処理であるが、溶体化処理時には粗大な化合物のみが残存し、それ以外は銅母相に固溶する。つまり、溶体化処理後に銅母相中に残存するのは粗大な化合物のみである。
次工程の時効熱処理で微細な析出物(化合物)を析出させることになるが、この温度では前熱処理で高温にさらされていた粗大な化合物のサイズと密度は変化しない。なお、溶体化熱処理と時効熱処理を続けて行う場合とこれらの間に冷間圧延工程を挟む場合とがあるが、いずれの場合のこれらの熱処理工程でも粗大な化合物のサイズと密度には変化は無い。
析出強化に寄与する化合物である、平均粒子径が5nm以上50nm未満の化合物Aは時効熱処理で析出し、強度を向上させる化合物である。化合物AはCoSiが望ましいが、CoSiの組成比とならない化合物(例えば、CoSi、CoSiなど)を含んでいてもよい。化合物Aの平均粒子径が5nm以上であれば析出硬化量が十分であり、平均粒子径が50nm未満であれば整合歪が消失することなく強度が十分となる。そのため、化合物Aのサイズは5nm以上50nm未満と規定され、望ましいサイズは10nm以上30nm以下である。しかし、この化合物Aは観察方法で変わるため後掲の「実施例」にその詳細を示す。
次に、化合物BはCoとSiの一方もしくは両方を含有しない化合物で、これは強度への寄与は小さい。化合物Bの組成として、例えば、Co−x、Si−x、または、x−yなどがあげられる。ここで、xやyは、Co以外かつSi以外の元素である。この化合物Bは溶体化処理温度で銅母相に固溶して消失してしまえば、母材の銅合金の結晶粒径の制御に活用できない。よって、この化合物Bは、化合物Aの主要素であるCoSiの固溶温度(つまり、融点)より高い融点を持つ化合物である。
化合物Bの平均粒子径は、50nm以上500nm以下の場合に高温での粒界移動を抑制(ピンニング)する効果を発揮する。化合物Bは、50nm以上の平均粒子径を有するため非整合な化合物であり、母材の銅合金の粒界移動を抑制するためには、化合物Bの平均粒子径は50nm以上500nm以下が好ましい。なお、化合物Bの平均粒子径はより好ましくは100nm以上300nm以下である。溶体化処理後の組織観察で、化合物Bが分散している場合が最も粒成長を抑制していることが確認された。
次に、化合物CはCoとSiの両方およびさらに他の元素を含有する化合物で、これも強度への寄与は小さい。上記の化合物Bとの違いは、例えば、Co−Si−x、または、Co−Si−x−yなどの組成となる化合物である。ここで、xやyは、Co以外かつSi以外の元素である。化合物Cも、化合物Bと同じく高温溶体化処理時に銅母相に固溶して消失しないことが望まれるため、CoSiの固溶温度(つまり、融点)より高い融点を持つ化合物である。化合物Cの平均粒子径は、化合物Bと同じ効果を求めているために、50nm以上500nm以下が好ましい。なお、化合物Cの平均粒子径は、より好ましくは100nm以上300nm以下である。
ここで、化合物Bまたは化合物Cが化合物Aと同じ平均粒子径である5nm以上50nm未満の大きさで存在することがある。平均粒子径が5nm以上50nm未満である化合物Bや化合物Cと同様の組成の化合物は、溶体化処理で一旦固溶した元素が析出を起こしたときに、主元素であるCoと置換を行ってSiと化合物を形成し、強度向上に寄与する。例えば、添加元素のうちFe、Ni、Crは、主析出相のCoの一部と置換して、(Co、x)Si化合物(x=Fe、Ni、Cr)を形成して強度を向上させる働きがある。
最後に、化合物DはCoおよびSiのみからなる化合物で、化合物Aとは含有成分は同じである。しかしながら、サイズが異なると共に、CoSiの組成比とならない化合物(例えば、CoSi、CoSi)も存在する。化合物Dが化合物Aと違うのはそのサイズが粗大なために、高温短時間の溶体化処理では母相へ固溶する時間が足りず、結果として銅母相に残留し、粒成長の抑制をする機能を発揮する。なお、この化合物Dは角張った形状をしていることが多いが、その粒子径は平均粒子径として定義する。
よって、化合物Dの平均粒子径も、化合物Dが化合物Bや化合物Cと同じ効果を求めているために、50nm以上500nm以下が好ましい。なお、化合物Dの平均粒子径は、より好ましくは100nm以上300nm以下である。
前記化合物B、化合物C、化合物Dは、透過電子顕微鏡付属のEDS(エネルギー分散型検出器)にてその成分分析を行うことにより、どの化合物(析出物)であるかを判別して、それぞれについてそのサイズを測定することができる。
また、本発明で母材の銅合金の結晶粒径を3〜35μmとする理由は、結晶粒径が3μm以上であれば、再結晶が十分となり、不十分な再結晶部分がみられる未再結晶を含む混粒となるおそれがなく、曲げ加工性が良好となるためである。また、結晶粒径が35μm以下であれば、粒界密度が高く、曲げ応力(負荷された歪)を十分に吸収することができ、加工性が向上するためである。なお、銅合金の結晶粒径は、好ましくは10nm以上30μm以下である。
更に、本発明では材料の導電率を50%IACS以上としている。この特性は、好ましくは例えば、Coの含有量を0.4〜2.0mass%、Siの含有量を0.1〜0.5mass%とし、CoSiの金属間化合物を析出させることなどによって得られる特性である。
ここで、各化合物の分散密度の比を好ましくは0.0001≦{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}≦0.1とする理由を述べる。まず、母材の銅合金の粒界移動を抑制する粗大な化合物B、化合物C、化合物Dは、化合物Aと共に2種類以上存在してもかまないが、その分散密度の比は、好ましくは、0.0001≦{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}≦0.1とする。この範囲であれば粒界移動の抑制効果が大きく、かつ移動を抑制する強度に寄与しない粗大な析出物(化合物)の比率が少なくなるため、高強度の目的を十分達成できる。各化合物の分散密度の比は、好ましくは、0.0001≦{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}≦0.01であり、より好ましくは0.0001≦{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}≦0.001である。
化合物Bと化合物Cと化合物Dの数(特に、これらの合計数)が少なすぎると、結晶粒粗大化などにより得られる銅合金材料の曲げ性の劣化などが起こる場合がある。
本発明の銅合金材料においては、化合物Aがその析出数が多い程、つまり銅合金材料中での化合物Aの分散密度が高い程、強度が向上する。また、化合物Bと化合物Cと化合物Dの析出数(特に、これらの合計数)が多い程、つまり銅合金材料中での(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)が高い程、強度向上に対して良好な曲げ性を有する銅合金材料が得られる。これらの化合物数(その分散密度)については、溶体化処理や時効処理での条件を適正に調整すれば、通常は、添加合金元素成分が多い程、得られる化合物も増えると考えられる。
本発明の銅合金材料におけるCoおよびSiの添加量について、Coを0.4〜2.0mass%とした理由は、0.4mass%以上であれば所望の強度を得ることができ、2.0mass%以下では溶体化温度が適切な範囲となり、極端に難度の高い製造技術を要しないためである。一方、SiはこのCu−Co−Si合金の析出強化相であるCoSiの化学量論比がCo/Si≒4.2であり、これに準じたSi添加範囲とした。Co/Siの値は、3.5以上4.8以下であれば実用上問題はない。Fe、Ni、Crの各元素は、主析出相のCoの一部と置換して、(Co、x)Si化合物 (x=Fe、Ni、Cr)を形成した場合、その比の計算は、(Co+x)/Si≒4.2 (x=Fe、Ni、Cr)の計算となる。その場合でも、(Co+x)/Si≒3.5〜4.8であれば実用上問題はない。
本発明の銅合金材料は、Co、Si以外の元素を含んでいてもよい。
Al、Ag、Sn、Zn、Mg、Mn、Inは銅母相に固溶して強化する特徴がある。その添加量が合計で0.05mass%以上であれば効果を奏し、1.0mass%以下であれば導電性を阻害することもない。好ましい添加量はこれらの元素の少なくとも1種を合計で0.2〜0.4mass%である。
なお、Znには半田密着性を向上させる効果、Mnは熱間加工性を改善する効果もある。また、Sn、Mgの添加は耐応力緩和特性の改善に効果がある。個々のSn、Mg添加でもその効果は見られるが、同時に添加することにより、相乗的にその効果を発揮する元素である。その添加量が合計で0.1mass%以上であれば効果を奏し、1.0mass%以下であれば導電性を阻害することもなく、50%IACS以上の導電性が確保される。一方、SnとMgの添加比にも知見がある。Sn/Mg≧1の場合の方が耐応力緩和特性は優れる結果が多い。また、Zn、Mn、Sn、Mgの各元素は、化合物B、化合物Cのx、yとなる働きも兼ね備えているため、化合物B、化合物Cとしての粒界移動抑制効果を発揮する。
Fe、Cr、Ni、Zr、Tiは、Coと置換を行ってSiと化合物を形成し、強度向上に寄与する元素である。つまり、Fe、Ni、Cr、Zr、Tiの各元素は、主析出相のCoの一部と置換して、(Co、z)Si化合物(z=Fe、Ni、Cr、Zr、Ti)を形成して強度を向上させる働きがある。その添加量はこれらの元素の少なくとも1種を合計で0.05mass%以上であれば添加したことによる効果が発揮され、1.0mass%以下であれば鋳造時に晶出を起こしたり、強度に寄与しない金属間化合物を形成したりすることもない。なお、Fe、Cr、Ni、Zr、Tiの各元素は、化合物B、化合物Cのx、yとなる働きも兼ね備えているため、化合物B、化合物Cとしての粒界移動抑制効果を発揮する。なお、これらの元素は複合して添加しても、単独で添加してもほぼ同じような効果がみられる。その添加量で望ましいのは、これらの元素の少なくとも1種を合計で0.5〜0.8mass%である。
なお、Al、Ag、Sn、Zn、Mg、Mn、Inからなる群の各元素と、Fe、Cr、Ni、Zr、Tiからなる群の各元素とをそれぞれ複合添加しても、前述の範囲内であれば、個々の特性を阻害することはない。
本発明の電気電子部品用銅合金材料における不可避不純物としては、H、C、O、S等が挙げられる。
次に、本発明の銅合金材料を製法の観点から説明する。
本発明の銅合金材料は、例えば、例えば次の工程により製造することができる。本発明の銅合金材料の主な製造工程の概略は、溶解→鋳造→均質化処理→熱間圧延→面削→冷間圧延→溶体化熱処理→時効熱処理→最終冷間圧延→低温焼鈍である。時効熱処理と最終冷間圧延は逆の順序でも良い。また、最終の低温焼鈍(歪取り焼鈍)は省略してもよい。各工程の条件としては、ここで特に述べた工程以外については常法により行うことができる。
本発明において、銅合金鋳塊の製造時における、固相温度から500℃までの平均冷却速度が5〜100℃/秒であることも、化合物B、化合物C、化合物Dの適正なサイズ、量の析出に寄与する。この平均冷却速度が5℃/秒以上100℃/秒以下であれば化合物B、化合物C、化合物Dが適切に形成され、結果として母材の銅合金の結晶粒径を適切な範囲とすることができる。ここで固相温度とは凝固が開始される温度であり、500℃より低温では化合物Aが析出する温度帯となるため、温度範囲の下限を500℃とした。
なお、前記鋳造後の冷却速度が遅すぎると、粗大析出物の増加により強度が低下する場合がある。
溶体化熱処理温度は、好ましくは、Co量が0.4〜1.2mass%であれば800〜950℃、1.0〜1.5mass%であれば900〜950℃、1.3〜2.0mass%であれば900〜1000℃で、それぞれ十分に溶体化と再結晶を行わせることができる。この温度の熱処理によって母材の銅合金の結晶粒径が決定する。また、その温度からの冷却速度が50℃/秒程度の急速冷却であることが好ましい。この急速冷却を行なわなければ前記の高温で溶体化された元素が析出を起こすことがある。この冷却中に析出を起こした粒子(化合物)は強度に寄与しない非整合析出物であり、また、次の(又は次の冷間圧延の次の)時効熱処理工程で整合析出物が形成される時に核生成サイトとして寄与し、その部分の析出を促進させて、特性に悪影響を与える。なお、この冷却速度は高温での溶体化熱処理温度から300℃までの平均速度を意味する。300℃以下の温度では大きな組織変化は起きないため、この温度までの冷却速度を所定の冷却速度とすればよい。
本発明では、上記の溶体化熱処理(この熱処理によって溶体化と併せて再結晶も行なう)後に、CoとSiの化合物を銅合金中に形成させるため、時効熱処理を実施する。この熱処理は溶体化熱処理後でも、その後に所定の冷間圧延を行った後に行ってもよい。この時効熱処理の条件は、溶体化熱処理後に最終の冷間圧延前に行う場合には、500〜600℃の温度で1〜4時間が好ましく、一方、溶体化熱処理後に最終の冷間圧延後に行う場合には、450〜550℃の温度で1〜4時間が好ましい。また、この時効熱処理後の冷却速度には好ましい範囲がある。冷却速度が20〜100℃/時間の範囲では、導電率の上昇が十分となる。なお、100℃/時間よりも冷却速度が速いと導電率の上昇が十分ではなく、また、20℃/時間よりも冷却速度が遅くても、目的とする特性変化は起きず熱処理時間の長時間化のみが起きて経済的でもない。一方、上記冷却速度とする温度の範囲は、各熱処理温度から300℃までの冷却範囲とする。温度範囲の下限が300℃より高いと、所望の高導電性を得ることができず、温度範囲の下限を300℃よりいくら低くしても得られる導電率は変わらない。
前記時効熱処理後の冷却速度は、熱処理炉で温度管理することで調整できる。なお、急速に冷却したい場合は、熱処理炉の加熱帯から試料を取りだし、強制空冷や水焼入で対応することができる。
次に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。
(実施例1)
表1、表2に示した成分を含有し、残部がCuと不可避不純物から成る合金(本発明例No.1〜35、比較例No.101〜128)を高周波溶解炉により溶解し、これを5〜100℃/秒の冷却速度で鋳造して厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。このとき、鋳型の鋳壁近傍に熱電対をセットし、随時、測定しながら鋳造、溶製を行い鋳塊を作成した。
得られた鋳塊を930〜1050℃の温度で0.5〜1.0時間の保持後、熱間圧延を行い板厚t=12mmの熱延板を作製し、その両面を各1mm面削して板厚t=10mmとし、次いで冷間圧延により板厚t=0.3mmに仕上げ、700〜950℃の温度で溶体化熱処理を行った。この準備した材料を次の2工程のいずれかの処理を施して最終製品の供試材を作成した。
工程A:(前記溶体化熱処理)−時効熱処理(500〜600℃の温度で2〜4時間)−冷間加工(加工率5〜25%)
※この後、必要に応じて、300〜400℃の温度で1〜2時間のひずみ取り焼鈍を実施した。
工程B:(前記溶体化熱処理)−冷間圧延(加工率5〜25%)−時効熱処理(450〜550℃の温度で2〜4時間)
この供試材について下記の特性調査を行った。本発明例の結果を表1に、比較例の結果を表2に示す。なお、表1および表2において、化合物密度の項目における「E+08」などは、10の累乗(「E+08」の場合は「×10」)を表す。
a.引張強度:
供試材(試験片)の圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。
b.導電率測定:
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本について導電率を測定し、その平均値(%IACS)を表1〜2に示した。このとき端子間距離は100mmとした。
c.曲げ加工性:
供試材から圧延方向に垂直に幅10mm、長さ35mmに試験片を切出し、これに曲げの軸が圧延方向に平行に曲げ半径R=0〜0.5(mm)の間で0.1mm刻みの6水準で90°のW曲げ(Bad−way曲げ)し、曲げ部における割れの有無を観察し割れの有無を調査した。曲げ部における割れの有無の観察は、50倍の光学顕微鏡での目視観察と、走査型電子顕微鏡(SEM)での曲げ加工部位の観察により行った。表1中のR/tのRは曲げ半径でtは板厚を示し、この値が小さいほど良好な曲げ加工性を示す。
d.結晶粒径:
供試材(試験片)の圧延方向に垂直な断面を湿式研磨、バフ研磨により鏡面に仕上げた後、クロム酸:水=1:1の液で数秒研磨面を腐食した後、光学顕微鏡で200〜400倍の倍率か、走査型電子顕微鏡(SEM)の二次電子像を用いて500〜2000倍の倍率で写真をとり、前記断面の結晶粒径をJIS H0501の切断法に準じて測定した。なお、写真の倍率については、観測される結晶粒の大きさにより変化させた。なお、表中の「混粒」とは、再結晶領域と未再結晶領域(圧延加工組織が残留した状態)の両方が混在した組織で、混粒の場合には粒径は測定しなかった。未再結晶が存在すると曲げ加工性が劣化すると言われている。そのため、混粒は望ましくない組織である。
e.時効熱処理後の冷却速度
冷却速度は熱処理を行う材料の重さを変えることで調整したか、または、用いた熱処理炉で温度管理することで調整した。例えば、同じ熱処理炉(バッチ式)を用いたことで、より早い冷却速度を得るためには、同時に熱処理を行う量を少なくし、一方、より遅い冷却速度を得るためには、ダミーとする試験片を入れて同時に熱処理を行う量を多くして、それぞれ熱処理した。なお、急速に冷却したい場合は、熱処理炉の加熱帯から試料を取りだし、強制空冷や水焼入で対応した。なお、冷却速度の調整は、熱処理炉で温度管理をすることによっても行なった。サンプルの数量が特に少ない場合や冷却速度が非常に遅い場合などは熱処理炉で温度管理することで冷却速度を調整した。
f.化合物のサイズ、数と分散密度
析出物(化合物)のサイズ(平均粒子径)は透過電子顕微鏡を用いて測定した。最終製品では加工歪みの影響を受けて観察しにくくなるため時効熱処理後の材料の組織観察を実施した。熱処理材の任意の場所からTEM用試験片を切り出し、硝酸(20%)のメタノール溶液で、温度−20〜−25℃で電解研磨(ツインジェット式電解研磨装置による)を行って観察用の試験片を完成させた。
その後、加速電圧:300kVで観察を行って、電子線の入射方位を(001)近傍に合わせて、倍率100000倍の写真を任意に3枚撮影した。その写真を用いて化合物A(約100個)の規定のサイズにあたる個数を求めた。
また、化合物B、化合物C、化合物Dは透過電子顕微鏡付属のEDS(エネルギー分散型検出器)にてその成分分析を行った後、1000〜5000倍の倍率で任意に3枚の写真を撮影して、その写真を用いて所望の規定のサイズにあたる個数を求めた。なお、その個数は10〜100個である。
これらの値から、各化合物A、B、C及びDの分散密度(個/mm)を求めた。以下の表中では、分散密度を単に密度と略記する。また、「化合物B、C、D密度(個/mm)」とは、各化合物、B、C及びDの分散密度(個/mm)の合計を示すが、もしある化合物が存在しなければ、残りの化合物単独の分散密度又は残り2種の化合物の分散密度の合計であることは言うまでもない。さらにまた、「(B+C+D)/A」とは、「{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}」を略記したものである。
Figure 2010016429
Figure 2010016429
表1に示されるとおり、実施例(本発明例)は、強度、導電性、曲げ加工性のすべてを高いレベルでバランス良く満足している。具体的には、導電性(EC)が50%IACS以上であって、さらに引張強度(TS)と曲げ加工性(R/t)との関係については、TSが550MPa以上650MPa未満の場合はR/t≦0.5、TSが650MPa以上700MPa未満の場合はR/t≦1、TSが700MPa以上800MPa未満の場合はR/t≦2といずれも高いレベルで良好なバランスを達成している。これに対し、表2に示される比較例では、強度、導電性、曲げ加工性の少なくともいずれかの特性が実用的でないものとなった。この内、比較例の試料No.101、107〜112、125〜126は、引張強度が500MPa未満で実用レベルに満たないものであった。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2008年8月5日に日本国で特許出願された特願2008-202467に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
本発明は電気・電子機器用のコネクタ、端子材等、特に、高導電性が所望される高周波リレーやスイッチ、あるいは、自動車車載用などのコネクタや端子材およびリードフレームなどの電気電子部品に適用される銅合金材料の製造方法に関する。
そこで、本発明者らは、銅合金材料における高導電性、高強度、良好な曲げ加工性を同時に満足させるため、Cu−Co−Si系銅合金中に2種類以上の析出物(化合物)を分散させ、それらの析出物のサイズを(必要によりその密度も)制御することで結晶粒径との特定の好適な関係を見出し、さらに検討を重ね本発明を完成させるに至った。
本発明によれば、以下の手段が提供される:
(1)Coを0.4〜2.0mass%、Siを0.1〜0.5mass%含有し、残部がCuと不可避不純物からなり
CoとSiからなる平均粒子径が5nm以上50nm未満の化合物Aが分散し、
さらに、CoとSiの一方もしくは両方を含有しない平均粒子径が50nm以上500nm以下の化合物Bと、CoとSiの両方およびさらに他の元素を含有する平均粒子径が50nm以上500nm以下の化合物Cと、CoとSiからなる平均粒子径が50nm以上500nm以下の化合物Dとからなる群から選ばれる少なくとも1種の化合物が分散し、
母材の銅合金の結晶粒径が3〜35μmであり、かつ導電率が50%IACS以上である電気電子部品用銅合金材料の製造方法であって、
前記のCoを0.4〜2.0mass%、Siを0.1〜0.5mass%含有し、残部がCuと不可避不純物からなる組成の銅合金組成物を溶体化熱処理後に時効熱処理を行い、該時効熱処理後300℃までの冷却速度を20〜100℃/時間とすることを特徴とする電気電子部品用銅合金材料の製造方法
)鋳塊製造時における固相温度から500℃までの平均冷却速度が5〜100℃/秒であることを特徴とする()に記載の電気電子部品用銅合金材料の製造方法
)前記化合物A〜Dの分散密度の比が0.0001≦{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}≦0.1であり、
母材の銅合金の結晶粒径が3〜35μmであり、かつ導電率が50%IACS以上であることを特徴とする電気電子部品用銅合金材料の製造方法
(4)前記残部にかえて、Al、Ag、Sn、Zn、Mg、Mn、Inから選ばれた少なくとも1種を合計で0.05〜1.0mass%含有し、残部がCuと不可避不純物からなる、(1)〜(3)のいずれか1項に記載の電気電子部品用銅合金材料の製造方法
(5)前記残部にかえて、Fe、Cr、Ni、Zr、Tiから選ばれた少なくとも1種を合計で0.05〜1.0mass%含有し、残部がCuと不可避不純物からなる、(1)〜(3)のいずれか1項に記載の電気電子部品用銅合金材料の製造方法
ここで、「析出物(化合物)の平均粒子径(サイズ)」とは、後述する方法で求めた析出物の平均粒子径である。また、「結晶粒径」とは、後述するJIS−H0501(切断法)に基づいて測定した値である。
本発明の製造方法による銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材(ここでは形状の概念がない銅合金の各成分元素の混合物を意味する)が、所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。また、「母材の銅合金」とは形状の概念を含まない銅合金を意味する。
なお、銅合金材料の好ましい具体例として板材、条材について説明するが、銅合金材料の形状は板材や条材に限られるものではない。
本発明に係る銅合金材料におけるCoおよびSiの添加量について、Coを0.4〜2.0mass%とした理由は、0.4mass%以上であれば所望の強度を得ることができ、2.0mass%以下では溶体化温度が適切な範囲となり、極端に難度の高い製造技術を要しないためである。一方、SiはこのCu−Co−Si合金の析出強化相であるCoSiの化学量論比がCo/Si≒4.2であり、これに準じたSi添加範囲とした。Co/Siの値は、3.5以上4.8以下であれば実用上問題はない。Fe、Ni、Crの各元素は、主析出相のCoの一部と置換して、(Co、x)Si化合物 (x=Fe、Ni、Cr)を形成した場合、その比の計算は、(Co+x)/Si≒4.2 (x=Fe、Ni、Cr)の計算となる。その場合でも、(Co+x)/Si≒3.5〜4.8であれば実用上問題はない。
本発明に係る銅合金材料は、Co、Si以外の元素を含んでいてもよい。
Al、Ag、Sn、Zn、Mg、Mn、Inは銅母相に固溶して強化する特徴がある。その添加量が合計で0.05mass%以上であれば効果を奏し、1.0mass%以下であれば導電性を阻害することもない。好ましい添加量はこれらの元素の少なくとも1種を合計で0.2〜0.4mass%である。
発明の銅合金材料の製造方法、例えば次の工程を経ることができる。本発明の銅合金材料の製造方法の概略は、溶解→鋳造→均質化処理→熱間圧延→面削→冷間圧延→溶体化熱処理→時効熱処理→最終冷間圧延→低温焼鈍である。時効熱処理と最終冷間圧延は逆の順序でも良い。また、最終の低温焼鈍(歪取り焼鈍)は省略してもよい。各工程の条件としては、ここで特に述べた工程以外については常法により行うことができる。
本発明において、銅合金鋳塊の製造時における、固相温度から500℃までの平均冷却速度が5〜100℃/秒であることも、化合物B、化合物C、化合物Dの適正なサイズ、量の析出に寄与する。この平均冷却速度が5℃/秒以上100℃/秒以下であれば化合物B、化合物C、化合物Dが適切に形成され、結果として母材の銅合金の結晶粒径を適切な範囲とすることができる。ここで固相温度とは凝固が開始される温度であり、500℃より低温では化合物Aが析出する温度帯となるため、温度範囲の下限を500℃とした。
なお、前記鋳造後の冷却速度が遅すぎると、粗大析出物の増加により強度が低下する場合がある。
本発明では、上記の溶体化熱処理(この熱処理によって溶体化と併せて再結晶も行なう)後に、CoとSiの化合物を銅合金中に形成させるため、時効熱処理を実施する。この熱処理は溶体化熱処理後でも、その後に所定の冷間圧延を行った後に行ってもよい。この時効熱処理の条件は、溶体化熱処理後に最終の冷間圧延前に行う場合には、500〜600℃の温度で1〜4時間が好ましく、一方、溶体化熱処理後に最終の冷間圧延後に行う場合には、450〜550℃の温度で1〜4時間が好ましい。また、この時効熱処理後の冷却速度20〜100℃/時間とする。この範囲では、導電率の上昇が十分となる。なお、100℃/時間よりも冷却速度が速いと導電率の上昇が十分ではなく、また、20℃/時間よりも冷却速度が遅くても、目的とする特性変化は起きず熱処理時間の長時間化のみが起きて経済的でもない。一方、上記冷却速度とする温度の範囲は、各熱処理温度から300℃までの冷却範囲とする。温度範囲の下限が300℃より高いと、所望の高導電性を得ることができず、温度範囲の下限を300℃よりいくら低くしても得られる導電率は変わらない。
前記時効熱処理後の冷却速度は、熱処理炉で温度管理することで調整できる。なお、急速に冷却したい場合は、熱処理炉の加熱帯から試料を取りだし、強制空冷や水焼入で対応することができる。

Claims (7)

  1. 添加元素としてCoおよびSiを含有する電気電子部品用銅合金材料であって、
    CoとSiからなる平均粒子径が5nm以上50nm未満の化合物Aが分散し、
    さらに、CoとSiの一方もしくは両方を含有しない平均粒子径が50nm以上500nm以下の化合物Bと、CoとSiの両方およびさらに他の元素を含有する平均粒子径が50nm以上500nm以下の化合物Cと、CoとSiからなる平均粒子径が50nm以上500nm以下の化合物Dとからなる群から選ばれる少なくとも1種の化合物が分散し、
    母材の銅合金の結晶粒径が3〜35μmであり、かつ導電率が50%IACS以上であることを特徴とする電気電子部品用銅合金材料。
  2. 添加元素としてCoおよびSiを含有する電気電子部品用銅合金材料であって、
    CoとSiからなる平均粒子径が5nm以上50nm未満の化合物Aと、CoとSiの一方もしくは両方を含有しない平均粒子径が50nm以上500nm以下の化合物Bと、CoとSiの両方およびさらに他の元素を含有する平均粒子径が50nm以上500nm以下の化合物Cと、CoとSiからなる平均粒子径が50nm以上500nm以下の化合物Dが分散し、
    前記化合物A〜Dの分散密度の比が0.0001≦{(化合物Bの分散密度+化合物Cの分散密度+化合物Dの分散密度)/化合物Aの分散密度}≦0.1であり、
    母材の銅合金の結晶粒径が3〜35μmであり、かつ導電率が50%IACS以上であることを特徴とする電気電子部品用銅合金材料。
  3. さらに、Al、Ag、Sn、Zn、Mg、Mn、Inから選ばれた少なくとも1種を合計で0.05〜1.0mass%含有し、残部がCuと不可避不純物からなる、請求項1または請求項2に記載の電気電子部品用銅合金材料。
  4. さらに、Fe、Cr、Ni、Zr、Tiから選ばれた少なくとも1種を合計で0.05〜1.0mass%含有し、残部がCuと不可避不純物からなる、請求項1〜請求項3のいずれか1項に記載の電気電子部品用銅合金材料。
  5. 添加元素としてCoおよびSiを含有し、残部がCuと不可避不純物からなる、請求項1または請求項2に記載の電気電子部品用銅合金材料。
  6. Coの含有量が0.4〜2.0mass%、Siの含有量が0.1〜0.5mass%である、請求項1〜請求項5のいずれか1項に記載の電気電子部品用銅合金材料。
  7. 鋳塊製造時における固相温度から500℃までの平均冷却速度が5〜100℃/秒であることを特徴とする請求項1〜請求項6のいずれか1項に記載の電気電子部品用銅合金材料。
JP2010507744A 2008-08-05 2009-07-30 電気・電子部品用銅合金材料の製造方法 Active JP4913902B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507744A JP4913902B2 (ja) 2008-08-05 2009-07-30 電気・電子部品用銅合金材料の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008202467 2008-08-05
JP2008202467 2008-08-05
JP2010507744A JP4913902B2 (ja) 2008-08-05 2009-07-30 電気・電子部品用銅合金材料の製造方法
PCT/JP2009/063615 WO2010016429A1 (ja) 2008-08-05 2009-07-30 電気・電子部品用銅合金材料

Publications (2)

Publication Number Publication Date
JPWO2010016429A1 true JPWO2010016429A1 (ja) 2012-01-19
JP4913902B2 JP4913902B2 (ja) 2012-04-11

Family

ID=41663649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010507744A Active JP4913902B2 (ja) 2008-08-05 2009-07-30 電気・電子部品用銅合金材料の製造方法

Country Status (6)

Country Link
US (1) US20110200479A1 (ja)
EP (1) EP2333128A4 (ja)
JP (1) JP4913902B2 (ja)
KR (1) KR101570556B1 (ja)
CN (1) CN102112640B (ja)
WO (1) WO2010016429A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630240B1 (en) 2003-03-03 2008-11-12 Mitsubishi Shindoh Co., Ltd. Heat-resisting copper alloy materials
WO2009081664A1 (ja) 2007-12-21 2009-07-02 Mitsubishi Shindoh Co., Ltd. 高強度・高熱伝導銅合金管及びその製造方法
WO2009107586A1 (ja) 2008-02-26 2009-09-03 三菱伸銅株式会社 高強度高導電銅棒線材
BRPI0905381A2 (pt) 2008-03-28 2016-07-05 Mitsubishi Shindo Kk fio, haste ou tubo de liga de cobre de alta resistência e alta condutividade
KR101291012B1 (ko) * 2009-01-09 2013-07-30 미쓰비시 신도 가부시키가이샤 고강도 고도전 동합금 압연판 및 그 제조 방법
US10311991B2 (en) 2009-01-09 2019-06-04 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same
JP4620173B1 (ja) * 2010-03-30 2011-01-26 Jx日鉱日石金属株式会社 Cu−Co−Si合金材
JP4672804B1 (ja) * 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP4601085B1 (ja) * 2010-06-03 2010-12-22 Jx日鉱日石金属株式会社 Cu−Co−Si系銅合金圧延板及びそれを用いた電気部品
JP4834781B1 (ja) 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系合金
JP5718021B2 (ja) * 2010-10-29 2015-05-13 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP2012144789A (ja) 2011-01-13 2012-08-02 Jx Nippon Mining & Metals Corp Cu−Co−Si−Zr合金材
JP5544316B2 (ja) * 2011-02-14 2014-07-09 Jx日鉱日石金属株式会社 Cu−Co−Si系合金、伸銅品、電子部品、及びコネクタ
JP5628712B2 (ja) * 2011-03-08 2014-11-19 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP5514762B2 (ja) * 2011-03-29 2014-06-04 Jx日鉱日石金属株式会社 曲げ加工性に優れたCu−Co−Si系合金
JP6205105B2 (ja) * 2011-04-18 2017-09-27 Jx金属株式会社 電子材料用Cu−Ni−Si系合金、Cu−Co−Si系合金及びその製造方法
JP6621650B2 (ja) * 2015-11-17 2019-12-18 株式会社フジコー 熱延プロセス用ロールおよびその製造方法
JP6461249B2 (ja) * 2017-07-06 2019-01-30 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
CN108414559B (zh) * 2018-04-16 2020-12-29 中国航发北京航空材料研究院 一种测试多元合金中不同相组成微区成分的定量分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056977A (ja) * 2006-08-30 2008-03-13 Mitsubishi Electric Corp 銅合金及びその製造方法
JP2008088512A (ja) * 2006-10-03 2008-04-17 Nikko Kinzoku Kk 電子材料用銅合金の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187838A (ja) 1984-10-03 1986-05-06 Kobe Steel Ltd 熱間加工性の優れた銅合金
JPS63307232A (ja) 1987-06-04 1988-12-14 Sumitomo Metal Mining Co Ltd 銅合金
JPH02129326A (ja) 1988-11-08 1990-05-17 Sumitomo Metal Mining Co Ltd 高力銅合金
JPH02277735A (ja) 1989-04-20 1990-11-14 Sumitomo Metal Mining Co Ltd リードフレーム用銅合金
JP3408021B2 (ja) * 1995-06-30 2003-05-19 古河電気工業株式会社 電子電気部品用銅合金およびその製造方法
JP3754011B2 (ja) * 2002-09-04 2006-03-08 デプト株式会社 電子部品用金属材料、電子部品、電子機器、金属材料の加工方法、電子部品の製造方法及び電子光学部品
JP3977376B2 (ja) 2004-02-27 2007-09-19 古河電気工業株式会社 銅合金
JP2006265731A (ja) 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The 銅合金
JP5202812B2 (ja) * 2005-03-02 2013-06-05 古河電気工業株式会社 銅合金とその製造方法
WO2006101172A1 (ja) * 2005-03-24 2006-09-28 Nippon Mining & Metals Co., Ltd. 電子材料用銅合金
JP4068626B2 (ja) * 2005-03-31 2008-03-26 日鉱金属株式会社 電子材料用Cu−Ni−Si−Co−Cr系銅合金及びその製造方法
JP4655834B2 (ja) * 2005-09-02 2011-03-23 日立電線株式会社 電気部品用銅合金材とその製造方法
JP4006467B1 (ja) 2006-09-22 2007-11-14 株式会社神戸製鋼所 高強度、高導電率および曲げ加工性に優れた銅合金
JP4006468B1 (ja) 2006-09-22 2007-11-14 株式会社神戸製鋼所 高強度、高導電率および曲げ加工性に優れた銅合金
JP4006460B1 (ja) 2006-05-26 2007-11-14 株式会社神戸製鋼所 高強度、高導電率および曲げ加工性に優れた銅合金およびその製造方法
JP4876959B2 (ja) 2007-02-19 2012-02-15 株式会社Ihi 過給機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056977A (ja) * 2006-08-30 2008-03-13 Mitsubishi Electric Corp 銅合金及びその製造方法
JP2008088512A (ja) * 2006-10-03 2008-04-17 Nikko Kinzoku Kk 電子材料用銅合金の製造方法

Also Published As

Publication number Publication date
US20110200479A1 (en) 2011-08-18
CN102112640A (zh) 2011-06-29
CN102112640B (zh) 2013-03-27
EP2333128A4 (en) 2012-07-04
EP2333128A1 (en) 2011-06-15
KR101570556B1 (ko) 2015-11-19
JP4913902B2 (ja) 2012-04-11
WO2010016429A1 (ja) 2010-02-11
KR20110039371A (ko) 2011-04-15

Similar Documents

Publication Publication Date Title
JP4913902B2 (ja) 電気・電子部品用銅合金材料の製造方法
JP5224415B2 (ja) 電気電子部品用銅合金材料とその製造方法
JP4615616B2 (ja) 電気電子部品用銅合金材およびその製造方法
KR101159404B1 (ko) 강도와 성형성이 우수한 전기전자 부품용 구리 합금판
JP4596493B2 (ja) 導電性ばね材に用いられるCu−Ni−Si系合金
TWI381398B (zh) Cu-Ni-Si alloy for electronic materials
WO2009148101A1 (ja) 銅合金板材およびその製造方法
JP5619389B2 (ja) 銅合金材料
JP2009242814A (ja) 銅合金材およびその製造方法
JP4653240B2 (ja) 電気電子機器用銅合金材料および電気電子部品
JP2008081762A (ja) 電子材料用Cu−Cr系銅合金
JP2013204083A (ja) 曲げ加工性及び耐応力緩和特性に優れる電気電子部品用銅合金板
WO2010016428A1 (ja) 電気・電子部品用銅合金材
WO2015182777A1 (ja) 銅合金板材及びその製造方法、前記銅合金板材からなる電気電子部品
JP5468798B2 (ja) 銅合金板材
WO2009116649A1 (ja) 電気電子部品用銅合金材
JP6222885B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP6799933B2 (ja) 銅合金板材およびコネクタならびに銅合金板材の製造方法
JP2012229467A (ja) 電子材料用Cu−Ni−Si系銅合金
TW201714185A (zh) 電子零件用Cu-Co-Ni-Si合金
JP4653239B2 (ja) 電気電子機器用銅合金材料および電気電子部品
JP2016183418A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
WO2020152967A1 (ja) 銅合金板材およびその製造方法
JP2012012630A (ja) 電子材料用銅合金の製造方法
JP2004353069A (ja) 電子材料用銅合金

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R151 Written notification of patent or utility model registration

Ref document number: 4913902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350