CN102112640B - 电气/电子部件用铜合金材料的制造方法 - Google Patents

电气/电子部件用铜合金材料的制造方法 Download PDF

Info

Publication number
CN102112640B
CN102112640B CN2009801304529A CN200980130452A CN102112640B CN 102112640 B CN102112640 B CN 102112640B CN 2009801304529 A CN2009801304529 A CN 2009801304529A CN 200980130452 A CN200980130452 A CN 200980130452A CN 102112640 B CN102112640 B CN 102112640B
Authority
CN
China
Prior art keywords
compound
quality
copper alloy
thermal treatment
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801304529A
Other languages
English (en)
Other versions
CN102112640A (zh
Inventor
三原邦照
松尾亮佑
江口立彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of CN102112640A publication Critical patent/CN102112640A/zh
Application granted granted Critical
Publication of CN102112640B publication Critical patent/CN102112640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

一种电气电子部件用铜合金材料,其作为添加元素含有Co和Si,其中,分散有由Co和Si组成的平均粒子直径为5nm以上且不足50nm的化合物A,并且分散有选自由化合物B、化合物C、以及化合物D组成的组的至少一种化合物,所述化合物B为不含有Co和Si中的一个或者两者的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物C为含有Co、Si以及其它元素的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物D为由Co和Si组成的平均粒子直径为50nm以上且500nm以下的化合物,另外母材的铜合金的结晶粒径为3~35μm,并且导电率为50%IACS以上。

Description

电气/电子部件用铜合金材料的制造方法
技术领域
本发明涉及电气/电子设备用连接器、端子材料等,尤其涉及适用于要求高导电性的高频继电器、开关或者用于汽车车载等的连接器、端子材料以及引线框等电气电子部件的铜合金材料。 
背景技术
迄今,在电气/电子设备用连接器、端子、继电器、开关等中一直使用了黄铜(C26000)、磷青铜(C51910、C52120、C52100)、铍青铜(C17200、C17530)以及钢镍硅系铜合金(以下,简称为钢镍硅铜。例如C70250)等。 
近年来,随着使用这些铜合金的电气/电子设备中使用的电流的频率变高,对于材料也要求高导电性。因此,原来黄铜和磷青铜的导电性低,作为连接器材料的钢镍硅铜显示出中度导电性 
Figure BDA0000046487250000011
但被要求具有更高的导电性。此外,铍青铜的价格昂贵也是众所周知的。另一方面,具有高导电性的纯铜(C11000)和锡铜(C14410)等具有强度低的缺点。因此,期望有一种比以往的钢镍硅铜更高的导电性并具有等同的抗拉强度、弯曲加工性的铜合金。 
其中,C×××××是指CDA(Copper DevelopmentAssociation,铜业发展协会)中规定的铜合金的种类。此外,%IACS是表示材料导电性的单位,(IACS)是“internationalannealed copper standard,国际退火铜标准”的缩写。 
特别是,在近几年的电子设备部件中,随着设备的小型化,出现了复杂且弯曲加工性严格的连接器和端子。这是因为:随着小型化,连接器的大小也趋于小型化,但为了确保接触可靠性,想将接触长度取得尽可能长。基于这种设计思想的连接器和端子常被称为波纹弯曲连接器或者端子。因此,在小部件中装配/设置复杂弯曲的端子和连接器的要求高。另一方面,随着小型化,所使用的连接器和端子的材料变得越来越薄。这从轻量化、节约资源的角度出发也在在不断变薄。薄的材料与厚的材料相比,为确保相同的接触压力,被要求高的强度。 
作为提高铜合金材料强度的方法,有固溶强化、加工强化、析出强化等各种方法,但导电性和强度通常具有相反特性。其中,已知析出强化作为在铜合金中不降低导电性的情况下提高其强度的方法而被期待。析出强化是以下方法:对添加有引起析出的元素的合金进行高温热处理,以使这些元素固溶到铜母相中,之后用比所述固溶时的温度低的温度进行热处理以使固溶元素析出。例如,铍铜、镍硅铜等采用了这种强化方法。 
但是,上述的弯曲加工性和强度具有相反的特性,通常高强度材料的弯曲加工性差,弯曲加工性良好的材料其强度反而低。虽然认为提高冷轧率是提高强度的有效做法,但若提高冷轧率则弯曲加工性具有显著劣化的倾向。迄今,一直认为作为析出型铜合金的铍铜、镍硅铜、钛铜等的弯曲加工性和强度平衡性良好。然而,作为铍铜的添加元素的铍为环境负荷物质,因此要求替代材料。另外,镍硅铜和钛铜通常不具有50%IACS以上的导电性。作为要求50%IACS以上的高导电性的用途,例如有施加高电流的电池端子和继电器接点等。另外,由于通常具有高导电率的材料其热传导性也优异,因此对于要求散热性的CPU(集成运算器件)的插座或散热片等的材料也要求高导电性。特别地,近年来混合动力汽车和进行高速处理的CPU要求具有高导电性和高强度的材料。 
由如上背景来看,考虑强度、弯曲加工性、导电性(热传导性),利用了由钴(Co)和硅(Si)合成的金属间化合物的铜合金越来越受瞩目。作为必须包含Co和Si的铜合金如下已被公知。 
首先,叙述必须包含Co和Si的铜合金的现有技术。 
在专利文献1中公开了一种合金,其除了Co和Si外,还必须包含Zn(锌)、Mg(镁)、S(硫磺)。专利文献1中的目的为改善热加工性能。 
在专利文献2中公开了一种合金,其除了Co和Si外,还包含Mg、Zn、Sn(锡)。另外,在专利文献3中公开了一种合金,其除了Co和Si外,还必须包含Sn、Zn。此外,在专利文献2和专利文献3中公开了一种作为Co和Si的析出物(化合物)的Co2Si化合物。 
在专利文献4中公开了一种Cu-Co-Si系合金。专利文献4的合金用于引线框架,合金种类为析出强化型合金。 
在专利文献5中公开了在Cu-Co-Si系合金中析出的夹杂物的大小为2μm以下 的技术。 
在专利文献6中公开了在Cu-Co-Si系合金中析出Co2Si化合物的技术。 
在专利文献1~6中公开的技术,均只说明了由Co和Si组成的金属间化合物的一种(或者一个大小)。但是,关于其它合金系、尤其是以Ni和Si为必须添加元素的所谓钢镍硅铜,发现将两种以上的金属间化合物分散在铜合金中时弯曲特性等得以改善。在专利文献7~11中公开了该技术。 
专利文献1:日本专利文献特开昭61-87838号公报 
专利文献2:日本专利文献特开昭63-307232号公报 
专利文献3:日本专利文献特开平02-129326号公报 
专利文献4:日本专利文献特开平02-277735号公报 
专利文献5:日本专利文献特开2008-88512号公报 
专利文献6:日本专利文献特开2008-56977号公报 
专利文献7:日本专利文献特开2006-161148号公报 
专利文献8:日本专利文献特开2006-265731号公报 
专利文献9:日本专利文献特开2007-314847号公报 
专利文献10:日本专利文献特开2008-75151号公报 
专利文献11:日本专利文献特开2008-75152号公报 
发明内容
发明要解决的问题 
但是,上述各专利文献公开的技术均没有高水平地满足强度、弯曲加工性、导电性(热传导性)的全部。 
专利文献1以改善热轧加工性能为目的,对Co和Si的析出物(化合物)没有任何记载,也没有关于强度和导电性的记载。 
专利文献2中没有记载再结晶处理,弯曲加工性可能会差。 
专利文献3中的实施例示出导电率在30%IACS以下,较低。 
专利文件4中虽记载了析出强化型合金,但没有记载具体的化合物及其大小。另外,没有记载再结晶处理,弯曲加工性可能会差。 
在专利文献5和专利文献6中记载了当将材料的内侧弯曲半径设为R、板厚设 为t时,以R/t=1的条件评价弯曲加工性的例子,但该程度的水平有时并非能够满足今后所要求的弯曲加工性。 
另外,专利文献7~11中公开的技术均是以Ni和Si为主元素的钢镍硅铜。钢镍硅铜和Cu-Co-Si系合金由于组分不同,因此具有例如进行固溶化处理的温度不同等不同点。例如已知,钢镍硅铜在Ni量为3质量%以上的情况下,需要900℃左右的固溶化处理温度,但Cu-Co-Si合金在900℃左右的固溶化温度下只有约1.0~1.2质量%的Co量被充分进行固溶化处理。另外,对于Ni量为3质量%以上的钢镍硅铜来说,如果想要提高强度和弯曲特性,则事实上难以使导电率为20%IACS以上,无法得到高导电率的铜合金。即在钢镍硅铜和Cu-Co-Si合金中,固溶化处理温度和合金特性具有大的不同点,从而需要不属于现有技术扩展的新技术。 
解决问题的手段 
因此,本申请发明人为了同时满足铜合金材料中的高导电性、高强度、良好的弯曲加工性,在Cu-Co-Si系铜合金中分散两种以上的析出物(化合物)并通过控制这些析出物的大小(根据需要还控制其密度)来发现了与结晶粒径的特定的最佳关系,并且经反复研究最终完成了本发明。 
根据本发明,可提供以下手段: 
(1)一种电气电子部件用铜合金材料,其作为添加元素含有Co和Si,所述铜合金材料的特征在于:
分散有由Co和Si组成的平均粒子直径为5nm以上且不足50nm的化合物A, 
而且,分散有选自由化合物B、化合物C、以及化合物D组成的组的至少一种化合物,所述化合物B为不含有Co和Si中的一个或者两者的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物C为含有Co、Si以及其它元素的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物D为由Co和Si组成的平均粒子直径为50nm以上且500nm以下的化合物, 
母材的铜合金的结晶粒径为3~35μm,并且导电率为50%IACS以上。 
(2)一种电气电子部件用铜合金材料,其作为添加元素含有Co和Si,所述铜合金材料的特征在于:
分散有由Co和Si组成的平均粒子直径为5nm以上且不足50nm的化合物A、不含有Co和Si中的一个或者两者的平均粒子直径为50nm以上且500nm以下的化合 物B、含有Co、Si以及其它元素的平均粒子直径为50nm以上且500nm以下的化合物C、以及由Co和Si组成的平均粒子直径为50nm以上且500nm以下的化合物D, 
所述化合物A~D的分散密度比为0.0001≤{(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}≤0.1, 
母材的铜合金的结晶粒径为3~35μm,并且导电率为50%IACS以上。 
(3)如(1)或(2)所述的电气电子部件用铜合金材料,其中,还含有选自Al、Ag、Sn、Zn、Mg、Mn、In的至少一种,且总含量为0.05~1.0质量%,剩余部分由Cu和不可避免的杂质组成。 
(4)如(1)~(3)中任一项所述的电气电子部件用铜合金材料,其中,还含有选自Fe、Cr、Ni、Zr、Ti的至少一种,且总含量为0.05~1.0质量%,剩余部分由Cu和不可避免的杂质组成。 
(5)如(1)或(2)所述的电气电子部件用铜合金材料,其中,作为添加元素含有Co和Si,剩余部分由Cu和不可避免的杂质组成。 
(6)如(1)~(3)中任一项所述的电气电子部件用铜合金材料,其中,Co的含量为0.4~2.0质量%,Si的含量为0.1~0.5质量%。 
(7)如(1)~(6)中任一项所述的电气电子部件用铜合金材料,其特征在于:从制造铸块时的固相温度冷却到500℃的平均冷却速度为5~100℃/秒。 
其中,“析出物(化合物)的平均粒子直径(大小)”是指通过后面所述的方法而求出的析出物的平均粒子直径。另外,“结晶粒径”是指基于后面所述的JIS-H0501(切断法)来测定的值。 
发明效果 
本发明能够提供导电率高、强度高、弯曲加工性优异的适于电气电子部件用途的铜合金材料,其通过控制显示高导电性的Cu-Co-Si合金中的两种以上的析出物(化合物)使结晶粒径最佳化。 
本发明的上述以及其他的特征以及优点通过适当参考后附的附图阅读下述记载的内容将会更加清楚。 
具体实施方式
对本发明的铜合金材料的优选实施方式进行详细说明。这里,“铜合金材料”是 指铜合金原材料(指没有形状概念的铜合金的各组分元素的混合物),被加工成预定形状(例如,板、条、箔、棒、线等)之后的材料。另外,“母材的铜合金”是指不包含形状概念的铜合金。 
另外,作为铜合金材料的具体例,对板材、条材进行说明,但铜合金材料的形状不限于板材和条材。 
首先,叙述本发明的技术思想。根据本发明人的研究可知:为了得到强度高、具有高导电性、弯曲加工性良好的铜合金材料,在Cu-Co-Si系合金中需要存在两种以上的大小不同的析出物(化合物),且重要的是使母材的铜合金的结晶粒径为3~35μm。并且,为了使母材的铜合金的结晶粒径为3~35μm,优选对析出物(化合物)的密度进行控制。另外,优选通过适当设定制造铸块时的冷却速度来得到大小不同的两种析出物中的平均粒子直径为50nm以上且500nm以下的粗大化合物。 
另外,作为适于电气电子部件用途的铜合金材料,其导电性为50%IACS以上,并且抗拉强度和弯曲加工性的关系,优选为:在抗拉强度为550MPa以上且不足650MPa的情况下,作为弯曲加工性指标R/t≤0.5;在抗拉强度为650Mpa以上且不足700MPa的情况下,R/t≤1;在抗拉强度为700MPa以上且不足750Mpa的情况下,R/t≤2;在抗拉强度为750MPa以上且不足800MPa的情况下,R/t≤3。 
这里,R/t是指基于日本展铜协会技术标准“铜以及铜合金薄板条的弯曲加工性评价方法(JBMA T307)”进行弯曲角度90°的W弯曲试验而得到的结果,该值是通过将在轧制垂直方向上切出的板材在预定弯曲半径(R)的条件下进行弯曲试验、求出其顶点不发生裂纹的界限R并将其用此时的板厚(t)归一化而得的值。通常认为R/t越小,弯曲加工性就越好。 
在本发明的电气电子部件用铜合金材料中,导电率为50%IACS以上。导电率更优选为55%IACS以上,进一步优选为60%IACS以上,导电率越高越好,但其上限通常为75%IACS左右。另外,在本发明的电气电子部件用铜合金材料中,抗拉强度和弯曲加工性(R/t)优选具有上述的关系。此外,弯曲加工性(R/t)的下限为0。 
为了得到导电率高、强度高、弯曲加工性优异的适于电气电子部件用途的铜合金材料,使用将两种以上的大小不同的金属间化合物分散在Cu-Co-Si系合金中的技术。 
首先,叙述该技术的背景,这里叙述的铜合金是金属间化合物为包含Co和Si 的一种化合物时的例子。当向铜添加Co和Si并施以适当的热处理时,析出由Co和Si组成的金属间化合物来形成所谓的析出型铜合金。 
作为发挥析出型铜合金的功能的热处理方法,通常必须进行下面的两次热处理。第一次的热处理称为固溶化(或者再结晶)处理或者均质化处理,以较高温度进行短时间的热处理。第二次的热处理称为时效热处理或者析出处理,以比所述的固溶化处理温度低的温度进行长时间的热处理。 
首先,使用在热处理炉中使轧制铜合金薄板通板的连续退火炉来进行第一次的热处理。这是因为:在将薄板卷为线圈状的状态下以高温进行热处理时产生密接,之后的冷却速度慢时固溶的元素不受控制地引起析出,而这种析出对改善强度没有贡献。另外,由于在高温炉中通板,还担心断板,因此进行短时间的热处理。 
另一方面,第二次的热处理是想将对强度有贡献的析出物(化合物)均匀且微细地分散在铜合金中,因此在将铜合金的薄板卷为线圈状的状态下在控制温度的热处理炉中进行较长时间(具体地为数分钟~数十小时)的热处理,通过固相扩散处理充分地分散最佳的析出物(化合物)。 
由此,在析出型铜合金中,尽可能提高固溶化处理(第一次的热处理)时的温度,增加固溶在铜母相上的溶质元素,并通过利用与之后的时效热处理(第二次的热处理)的温度差来使析出物(化合物)析出,从而强化铜合金。该固溶化处理(第一次的热处理)的温度越高,溶质元素的固溶量也越多(由此,之后的第二次的热处理时析出的析出量增加),因此在第一次的热处理中进行高温热处理是有利的,但反而同时引起的再结晶组织的粗大化对弯曲加工性带来坏影响。如果强度高的铜合金中结晶粒径为粗大,则当进行弯曲加工时在其弯曲的部分中或产生裂纹、或折痕的凹凸变大而无法实现必要的接压,接点部变得不稳定从而无法制造适于连接器/端子等用途的铜合金材料。另外,越是高温,再结晶时的粒径越粗大,如果像上述那样为了增加溶质元素而在第一次的热处理中进行高温热处理,则反而导致弯曲加工性劣化。由此,在金属间化合物为包含Co和Si的一种化合物的铜合金材料中,满足高导电率、高强度、良好的弯曲加工性的全部是极为困难的。 
因此,在本发明中开发了在Cu-Co-Si系合金中分散了大小不同的两种以上金属间化合物以使满足高导电率、高强度、良好的弯曲加工性的全部的技术。由Co和Si组成的5nm以上且不足50nm的微细化合物为对析出强化有贡献的化合物。另一方面, 50nm以上且500nm以下的粗大化合物为对析出强化没有贡献且进行上述高温固溶化处理时发挥其效果的化合物。该粗大的化合物在高温固溶化处理时也无法固溶在铜母相上,而存在于铜母相内。由此,即使引起晶粒生长,其粗大的化合物也成为障碍,引起难以进行晶界移动的状态,作为结果限制了结晶粒径的粗大化。 
在为铜合金的情况下,以溶解(溶制)原料后进行凝固的铸块为原始材料,进行热轧、冷轧、以及各种热处理来获得显示出期望的特性的铜合金材料。在该铸块凝固时和热轧过程中及其冷却过程中、各种热处理及其冷却过程中形成各种大小的金属间化合物,而将其再固溶在铜母相上的处理为固溶化处理。该固溶化处理为在时效热处理之前进行的处理,在该固溶化处理时只残留粗大的化合物,除此之外都固溶在铜母相上。即固溶化处理后只有粗大的化合物残留在铜母相中。 
虽然在下个工序的时效热处理中析出微细的析出物(化合物),但在该温度下,通过前热处理进行高温处理的粗大化合物的大小和密度不会变化。此外,有时连续进行固溶化热处理和时效热处理,有时在它们之间夹有冷轧工序,但在任意情况下的这些热处理工序中,粗大化合物的大小和密度都不会变化。 
平均粒子直径为5nm以上且不足50nm的化合物A为对析出强化有贡献的化合物,其在时效热处理中析出,是用于提高强度的化合物。化合物A优选为Co2Si,但也可以含有不是Co2Si组成比的化合物(例如CoSi、CoSi2等)。如果化合物A的平均粒子直径为5nm以上,则析出固化量充分,如果平均粒子直径不足50nm,则整合变形不会消失,强度变得充分。因此,化合物A的大小规定为5nm以上且不足50nm,期望大小为10nm以上且30nm以下。然而,由于该化合物A根据检查方法而变化,因此后述的“实施例”中表示其详细情况。 
接着,化合物B为不含有Co和Si的一个或者两者的化合物,它对强度的贡献小。作为化合物B的组成,例如可举出Co-x、Si-x、或者x-y等。这里,x和y为Co和Si以外的元素。如果该化合物B在固溶化处理温度下固溶在铜母相上而消失,则无法灵活应用于母材的铜合金的结晶粒径的控制。由此,该化合物B具有比作为化合物A主要组分的Co2Si的固溶温度(即熔点)高的熔点。 
在化合物B的平均粒子直径为50nm以上且500nm以下时,发挥限制高温下的晶界移动的效果。化合物B具有50nm以上的平均粒子直径,因此它是非整合的化合物,化合物B的平均粒子直径优选为50nm以上且500nm以下,使得能够限制母材 的铜合金的晶界移动。此外,化合物B的平均粒子直径更优选为100nm以上且300nm以下。通过固溶化处理后的组织观察确认到分散了化合物B时最能限制晶粒生长。 
接着,化合物C为含有Co和Si两者以及其它元素的化合物,它对强度的贡献也小。与上述化合物B的不同在于,化合物C的组成例如为Co-Si-x、或者Co-Si-x-y等。这里,x和y为除Co和Si以外的元素。化合物C也与化合物B相同地,不希望在高温固溶化处理时固溶在铜母相上而消失,因此化合物C为具有比Co2Si的固溶温度(即熔点)高的熔点的化合物。由于化合物C也希望获得与化合物B相同的效果,因此其平均粒子直径优选为50nm以上且500nm以下。此外,化合物C的平均粒子直径更优选为100nm以上且300nm以下。 
这里,有时化合物B或者化合物C以与化合物A相同的平均粒子直径即5nm以上且不足50nm的大小存在。组成与平均粒子直径为5nm以上且不足50nm的化合物B和化合物C相同的化合物,当在固溶化处理中已经固溶的元素引起析出时,取代主元素Co来与Si形成化合物,这种化合物对提高强度有贡献。例如,添加元素中Fe、Ni、Cr,具有取代主析出相的Co的一部分而形成(Co、x)2Si化合物(x=Fe、Ni、Cr)来提高强度的作用。 
最后,化合物D为只由Co和Si组成的化合物,其与化合物A的含有组分相同。然而,大小不同并且还存在不是Co2Si组成比的化合物(例如CoSi、CoSi2)。化合物D与化合物A的不同在于,由于其大小粗大,在高温短时的固溶化处理中向母相固溶的时间不足,作为结果残留在铜母相上,从而发挥限制晶粒生长的功能。此外,该化合物D大多具有带棱角的形状,但其粒子直径定义为平均粒子直径。 
由此,由于化合物D也希望获得与化合物B和化合物C相同的效果,因此化合物D的平均粒子直径也优选为50nm以上且500nm以下。此外,化合物D的平均粒子直径更优选为100nm以上且300nm以下。 
通过由附属于透射电子显微镜的EDS(能量分散型检测器)对前述化合物B、化合物C、化合物D进行组分分析,判别其为哪种化合物(析出物),从而能够分别测量其大小。 
另外,本发明中母材的铜合金的结晶粒径设为3~35μm,其理由在于:如果结晶粒径为3μm以上,则再结晶充分,就不存在造成包含具有再结晶不充分的部分的未再结晶的混粒的危险,并可提高弯曲加工性。此外,如果结晶粒径为35μm以下, 晶界密度就会变高,能够充分吸收弯曲应力(负载造成的变形),加工性能变高。此外,铜合金的结晶粒径优选为10nm以上且30μm以下。 
而且,在本发明中将材料的导电率设为50%IACS以上。该特性优选为例如可通过将Co的含量设为0.4~2.0质量%、Si的含量设为0.1~0.5质量%并使Co2Si的金属间化合物析出来获得。 
这里,叙述各化合物的分散密度比优选为0.0001≤{(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}≤0.1的理由。首先,限制母材的铜合金的晶界移动的粗大化合物B、化合物C、化合物D可以与化合物A一起存在两种以上,但其分散密度比优选为0.0001≤{(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}≤0.1。如果在该范围内,晶界移动的限制效果大、且对限制移动的强度没有贡献的粗大析出物(化合物)的比率变少,因此能够充分实现高强度的目的。各化合物的分散密度比优选为0.0001≤{(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}≤0.01,更优选为0.0001≤{(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}≤0.001。 
当化合物B、化合物C以及化合物D的数(尤其是它们的总数)过少时,有时引起因结晶粒粗大化等而得到的铜合金材料的弯曲性的劣化等。 
在本发明的铜合金材料中,化合物A的析出数越多即铜合金材料中化合物A的分散密度越高,越改善强度。另外,化合物B、化合物C以及化合物D的析出数(尤其是它们的总数)越多即铜合金材料中(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)越高,铜合金材料越具有优异的弯曲性(相对于改善强度)。对于这些化合物数(其分散密度)来说,通常认为若适当调节固溶化处理、时效处理中的条件,则添加合金元素组分越多,获得的化合物也越增加。 
关于本发明的铜合金材料中的Co和Si的添加量,将Co设为0.4~2.0质量%的理由在于,如果Co量为0.4质量%以上则能够得到要求的强度,在2.0质量%以下时固溶化温度落入适当的范围内,不需要难度极高的制造技术。另一方面,设Si添加范围以使该Cu-Co-Si合金的析出强化相即Co2Si的化学计量比为 
Figure BDA0000046487250000101
如果Co/Si的值为3.5以上且4.8以下,则没有实用上的问题。在Fe、Ni、Cr的各元素取代主析出相的一部分Co来形成(Co、x)2Si化合物(x=Fe、Ni、Cr)时,其比例计 算是 
Figure BDA0000046487250000111
的计算。在这种情况下,如果 
Figure BDA0000046487250000113
则没有实用上的问题。 
本发明的铜合金材料也可以包含Co、Si以外的其它元素。 
Al、Ag、Sn、Zn、Mg、Mn、In具有固溶在铜母相中而进行强化的特征。如果其添加总量为0.05质量%以上就发挥效果,并如果为1.0质量%以下则还不会损害导电性。优选的添加量为这些元素中的至少一种的总和为0.2~0.4质量%。 
此外,Zn还具有提高焊料附着性的效果,Mn还具有改善热加工性能的效果。另外,Sn、Mg的添加具有改善抗应力松弛特性的效果。即使单独添加Sn、Mg,也可见其效果,但通过同时添加可产生相辅相成的效果。如果其添加量的总和为0.1质量%以上,就会发挥效果,如果为1.0质量%以下,则还不会损害导电性,可确保50%IACS以上的导电性。另一方面,对Sn和Mg的添加比也有发现。在Sn/Mg≥1的情况下,抗应力松弛特性优异的结果多。另外,Zn、Mn、Sn、Mg的各元素还兼备成为化合物B、化合物C的x、y的作用,因此发挥出作为化合物B、化合物C的晶界移动限制效果。 
Fe、Cr、Ni、Zr、Ti是通过取代Co而与Si形成化合物从而有助于提高强度的元素。即Fe、Ni、Cr、Zr、Ti的各元素取代主析出相的Co的一部分形成(Co、z) 2Si化合物(z=Fe、Ni、Cr、Zr、Ti),起到提高强度的作用。如果这些元素的至少一种的总和设为0.05质量%以上,则添加元素发挥其效果,如果总和为1.0质量%以下,则不会在铸造时引起晶体析出或形成对强度无贡献的金属间化合物。此外,Fe、Cr、Ni、Zr、Ti的各元素还兼备成为化合物B、化合物C的x、y的作用,因此发挥出作为化合物B、化合物C的晶界移动限制效果。此外,这些元素不管复合添加还是单独添加都显示出几乎相同的效果。优选的添加量如下:这些元素中的至少一种的总和为0.5~0.8质量%。 
此外,即使分别复合添加由Al、Ag、Sn、Zn、Mg、Mn、In组成的组的各元素和由Fe、Cr、Ni、Zr、Ti组成的组的各元素,如果落入上述范围内,则不会损害各自的特性。 
作为本发明的电气电子部件用铜合金材料中的不可避免的杂质,可举出H、C、O、S等。 
接着,从制造方法的观点出发说明本发明的铜合金材料。 
本发明的铜合金材料例如通过下面的工序来制造。本发明的铜合金材料的主要制造工序的概要为溶解→铸造→均质化处理→热轧→端铣→冷轧→固溶化热处理→时效热处理→最后冷轧→低温退火。时效热处理和最后冷轧也可以是相反的顺序。另外,也可以省略最后的低温退火(去应力退火)。作为各工序的条件,除了这里特别叙述的工序以外能够通过常规方法来进行。 
在本发明中,制造铜合金铸块时从固相温度冷却到500℃的平均冷却速度为5~100℃/秒有助于化合物B、化合物C、化合物D以适当的大小、量析出。如果该平均冷却速度为5℃/秒以上且100℃/秒以下,就会适当地形成化合物B、化合物C、化合物D,作为结果能够使母材的铜合金的结晶粒径落入适当的范围内。这里,固相温度是指开始凝固的温度,低于500℃的温度为析出化合物A的温度带,因此温度范围的下限设为500℃。 
此外,当上述铸造后的冷却速度过慢时,有时由于粗大析出物的增加而导致强度降低。 
通过如下地优选固溶化热处理温度能够分别充分地进行固溶化和再结晶处理,即如果Co量为0.4~1.2质量%,则固溶化热处理温度为800~950℃,如果Co量为1.0~1.5质量%,则固溶化热处理温度为900~950℃,如果Co量为1.3~2.0质量%,则固溶化热处理温度为900~1000℃。通过进行该温度下的热处理来确定母材的铜合金的结晶粒径。另外,优选为从该温度冷却的速度为50℃/秒左右的急速冷却。如果不进行该急速冷却,有时引起以上述高温固溶化的元素析出。在该冷却过程中引起析出的粒子(化合物)是对强度没有贡献的非整合析出物,另外在后续(或者后续冷轧的下一工序)的时效热处理工序中形成整合析出物时作为核生成位点作出贡献,导致促进该部分的析出,对特性带来坏影响。此外,该冷却速度是指从高温下的固溶化热处理温度冷却到300℃的平均速度。在300℃以下的温度下不会引起大的组织变化,因此只要将冷却到该温度的冷却速度设为预定的冷却速度即可。 
在本发明中,进行上述的固溶化热处理(通过该热处理,与固溶化同时还进行再结晶)之后,为了在铜合金中形成Co和Si的化合物而实施时效热处理。该热处理既可以在固溶化热处理之后进行,也可以在其后进行预定的冷轧后再进行。在固溶化热处理后且在最后的冷轧前进行该时效热处理时,其条件优选为在500~600℃的温度下进行1~4小时,另一方面在固溶化热处理后且最后的冷轧后进行该时效热处理 时,其条件优选为在450~550℃的温度下进行1~4小时。另外,对于该时效热处理后的冷却速度具有优选范围。在冷却速度为20~100℃/小时的范围内,导电率的上升充分。此外,当冷却速度比100℃/小时快时,导电率的上升不充分,另外冷却速度比20℃/小时还慢时也不会引起要求的特性变化而只会导致热处理时间变长,因此不够经济。另一方面,上述冷却速度所适用的温度范围设为从各热处理温度冷却到300℃的冷却范围。当温度范围的下限高于300℃时,无法得到要求的高导电性,当温度范围的下限比300℃低一些时,所得到的导电率也不会改变。 
所述时效热处理后的冷却速度可以通过在热处理炉中管理温度来进行调节。此外,当想要急速冷却时,可以从热处理炉的加热区取出试料,通过强制空冷或淬火进行冷却。 
实施例 
接着,基于实施例更详细地说明本发明。本发明并不被限定于以下实施例。 
(实施例1) 
将含有表1、表2所示的组分、剩余部分由Cu和不可避免的杂质组成的合金(本发明例No.1~35、比较例No.101~128)通过高频熔融炉熔融,将其以5~100℃/秒的冷却速度铸造,得到了厚度为30mm、宽度为100mm、长度为150mm的铸块。此时,在铸模的铸壁附近设置热电偶来随时测量的情况下进行铸造、溶制,由此制得铸块。 
在将得到的铸块在930~1050℃温度下保持0.5~1.0个小时之后,进行热轧制来制得板厚t=12mm的热轧板,将其两面端各铣掉1mm,使得板厚t=10mm,接着通过冷轧制来精加工至板厚t=0.3mm,并在700~950℃的温度下进行固溶化热处理。通过对所述准备好的材料实施下述两个工序中的任意处理,制得最终产品的试验用材料。 
工序A:(所述固溶化热处理)-时效热处理(在500~600℃温度下进行2~4小时)-冷加工(加工率5~25%)。 
※之后,根据需要,在300~400℃温度下进行1~2小时的去应力退火。 
工序B:(所述固溶化热处理)-冷轧制(加工率5~25%)-时效热处理(在450~550℃温度下进行2~4小时)。 
对于该试验用材料调查了下述特性。本发明例的结果表示在表1中,比较例的 结果表示在表2中。此外,在表1和表2中,化合物密度项中的“E+08”等表示10的幂次方(“E+08”时为“×108”)。 
a.抗拉强度 
依据JIS Z2241对三个从试验用材料(试验片)的轧制平行方向裁切出的JISZ2201-13B号的试验片进行了测定,并求出了其平均值。 
b.导电率测定 
在控制为20℃(±1℃)的恒温槽中,通过四端子法测定了各试验片中的两片,将其平均值(%IACS)表示在表1~表2中。此时端子间距离为100mm。 
c.弯曲加工性 
从试验用材料中与轧制方向垂直地切出宽度10mm、长度35mm的试验片,将弯曲的轴与轧制方向平行地并以弯曲半径R=0~0.5(mm)的间隔0.1mm刻度的6个水平对该试验片实施90°W弯曲(Bad-way弯曲),检查了弯曲部分上有无裂纹,调查了有无裂纹。利用50倍光学显微镜通过目测或者用扫描电子显微镜(SEM)检查弯曲部分有无裂纹。表1中的R/t的R表示弯曲半径,t表示板厚度。R/t的值越小,表示弯曲加工性越优异。 
d.结晶粒径 
在通过湿式研磨、抛光将试验用材料(试验片)的垂直于轧制方向的截面加工成镜面之后,以铬酸∶水=1∶1的溶液将研磨面腐蚀数秒,然后再以光学显微镜的200~400倍的倍率、或者利用扫描电子显微镜(SEM)的二次电子图像以500~2000倍的倍率进行拍照,之后基于JIS H0501的切断法测定了该截面的结晶粒径。并且根据要观测的结晶粒的大小来改变了拍照时的倍率。此外,表中的“混粒”是指再结晶和未再结晶(轧制加工组织残留的状态)的部分共存的组织,在“混粒”的情况下没有测定粒径。若存在未再结晶的,弯曲加工性将劣化。因此,混粒是不期望的组织。 
e.时效热处理后的冷却速度 
冷却速度通过改变进行热处理的材料重量来进行调节或者在使用的热处理炉中管理温度来进行了调节。例如减少同时进行热处理的量以使通过使用相同的热处理炉(分批方式)得到更快的冷却速度,另一方面放入空(dummy)的试验片来增加同时进行热处理的量,然后分别进行热处理。此外,当想要急速冷却时,从热处理炉的加热区取出试料,通过强制空冷或淬火进行了冷却。此外,冷却速度的调节还通过在热 处理中管理温度来进行。样品数量特别少时和冷却速度非常慢时等,通过在热处理炉中管理温度来调节冷却速度。 
f.析出物的大小、数量和分散密度 
析出物(化合物)的大小(平均粒子直径)用透射电子显微镜进行了测定。由于最终产品受加工变形的影响很难进行观察,因此对时效热处理之后的材料的组织进行了观察。从热处理材料的任意一处切出TEM用试验片,再利用硝酸(20%)的甲醇溶液在-20~-25℃的温度范围下对试验片进行电解研磨(双喷嘴电解研磨装置),制得了用于观察的试验片。 
之后,用加速电压300kV进行观察,将电子射线的入射方向对准到(001)附近,用100000倍的倍率任意拍摄了三张照片。并利用该照片求出了化合物A(约100个)中符合规定大小的个数。 
另外,通过附属于透射电子显微镜的EDS(能量分散型检测器)对化合物B、化合物C、化合物D进行其组分分析之后,用1000~5000倍的倍率任意拍摄了三张照片,并利用该照片求出了大小符合规定要求的个数。此外,其个数为10~100个。 
从这些值中求出了各化合物A、B、C以及D的分散密度(个/mm2)。在以下表中,分散密度简称为密度。另外,“化合物B、C、D密度(个/mm2)”是指各化合物B、C以及D的分散密度(个/mm2)的总和,但若不存在某个化合物,则当然是指剩余的单个化合物的分散密度或者剩余两种化合物的分散密度的总和。并且,“(B+C+D)/A”“是(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}”的简称。 
[表1] 
Figure BDA0000046487250000161
[表2] 
如表1所示,实施例(本发明例)高水平地均衡满足强度、导电性、弯曲加工 性等全部。具体地,导电率(EC)为50%IACS以上,并且关于抗拉强度(TS)和弯曲加工性(R/t)的关系也都如下地高水平地实现良好的均衡:在TS为550MPa以上且不足650MPa时R/t≤0.5,在TS为650MPa以上且不足700MPa时R/t≤1,在TS为700MPa以上且不足800Mpa时R/t≤2。相对于此,在表2所示的比较例的强度、导电性、弯曲加工性中至少一个特性不具备实用性。其中,比较例的试料No.101、107~112、125~126的抗拉强度不足500MPa,没有达到实用水平。 
本发明虽基于其实施方式进行了说明,但我们认为除非特别指定,否则意图不在于在说明的任何细节上限定本发明,本发明应当在不脱离本申请权利要求书所示的发明精神和范围内被广泛解释。 
本申请要求基于2008年8月5日在日本国提出的发明专利申请的特愿2008-202467的优先权,它们的全部内容通过引用而作为本说明书的一部分记载内容合并于此。 

Claims (7)

1.一种电气电子部件用铜合金材料的制造方法,该电气电子部件用铜合金材料具有如下组成:含有0.4质量%~2.0质量%的Co和0.1质量%~0.5质量%的Si,剩余部分由Cu和不可避免的杂质构成,
该电气电子部件用铜合金材料中分散有由Co和Si组成的平均粒子直径为5nm以上且不足50nm的化合物A,
而且,分散有选自由化合物B、化合物C、以及化合物D组成的组的至少一种化合物,所述化合物B为不含有Co和Si中的一者或者两者的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物C为含有Co、Si以及其它元素的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物D为由Co和Si组成的平均粒子直径为50nm以上且500nm以下的化合物,
所述化合物A~D的分散密度比为0.0001≤{(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}≤0.1,
母材的铜合金的结晶粒径为3~35μm,并且导电率为50%IACS以上,
该制造方法的特征在于,
所述制造方法由溶解、铸造、均质化处理、热轧、端铣、冷轧、固溶化热处理、时效热处理、最后冷轧构成,在此各工序以叙述顺序进行;
所述铸造从具有上述组成的铜合金材料的铸块制造时的固相温度冷却到500℃的平均冷却速度为5~100℃/秒,
所述固溶化热处理如下进行:如果Co量为0.4质量%~1.2质量%,则固溶化热处理温度为800~950℃,如果Co量为1.0质量%~1.5质量%,则固溶化热处理温度为900~950℃,如果Co量为1.3质量%~2.0质量%,则固溶化热处理温度为900~1000℃,
所述时效热处理在500~600℃的温度下进行1~4小时,
所述时效热处理后冷却到300℃的冷却速度为20~100℃/小时。
2.一种电气电子部件用铜合金材料的制造方法,该电气电子部件用铜合金材料具有如下组成:含有0.4质量%~2.0质量%的Co和0.1质量%~0.5质量%的Si,剩余部分由Cu和不可避免的杂质构成,
该电气电子部件用铜合金材料中分散有由Co和Si组成的平均粒子直径为5nm以上且不足50nm的化合物A,
而且,分散有选自由化合物B、化合物C、以及化合物D组成的组的至少一种化合物,所述化合物B为不含有Co和Si中的一者或者两者的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物C为含有Co、Si以及其它元素的平均粒子直径为50nm以上且500nm以下的化合物,所述化合物D为由Co和Si组成的平均粒子直径为50nm以上且500nm以下的化合物,
所述化合物A~D的分散密度比为0.0001≤{(化合物B的分散密度+化合物C的分散密度+化合物D的分散密度)/化合物A的分散密度}≤0.1,
母材的铜合金的结晶粒径为3~35μm,并且导电率为50%IACS以上,
该制造方法的特征在于,
所述制造方法由溶解、铸造、均质化处理、热轧、端铣、冷轧、固溶化热处理、最后冷轧、时效热处理构成,在此各工序以叙述顺序进行,
所述铸造从具有上述组成的铜合金材料的铸块制造时的固相温度冷却到500℃的平均冷却速度为5~100℃/秒,
所述固溶化热处理如下进行:如果Co量为0.4质量%~1.2质量%,则固溶化热处理温度为800~950℃,如果Co量为1.0质量%~1.5质量%,则固溶化热处理温度为900~950℃,如果Co量为1.3质量%~2.0质量%,则固溶化热处理温度为900~1000℃,
所述时效热处理在450~550℃的温度下进行1~4小时,
所述时效热处理后冷却到300℃的冷却速度为20~100℃/小时。
3.如权利要求1所述的电气电子部件用铜合金材料的制造方法,其中,
所述制造方法的最后工序之后,在300℃~400℃的温度下进行1~2小时的低温退火。
4.如权利要求2所述的电气电子部件用铜合金材料的制造方法,其中,
所述制造方法的最后工序之后,在300℃~400℃的温度下进行1~2小时的低温退火。
5.如权利要求1~4任一项所述的电气电子部件用铜合金材料的制造方法,其中,所述电气电子部件用铜合金材料还含有选自Al、Ag、Sn、Zn、Mg、Mn、In中的至少一种,且总含量为0.05质量%~1.0质量%。
6.如权利要求1~4任一项所述的电气电子部件用铜合金材料的制造方法,其中,所述电气电子部件用铜合金材料还含有选自Fe、Cr、Ni、Zr、Ti中的至少一种,且总含量为0.05质量%~1.0质量%。
7.如权利要求1~4任一项所述的电气电子部件用铜合金材料的制造方法,其中,
所述电气电子部件用铜合金材料还含有选自Al、Ag、Sn、Zn、Mg、Mn、In中的至少一种,且总含量为0.05质量%~1.0质量%,此外还含有选自Fe、Cr、Ni、Zr、Ti中的至少一种,且总含量为0.05质量%~1.0质量%。
CN2009801304529A 2008-08-05 2009-07-30 电气/电子部件用铜合金材料的制造方法 Expired - Fee Related CN102112640B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008202467 2008-08-05
JP2008-202467 2008-08-05
PCT/JP2009/063615 WO2010016429A1 (ja) 2008-08-05 2009-07-30 電気・電子部品用銅合金材料

Publications (2)

Publication Number Publication Date
CN102112640A CN102112640A (zh) 2011-06-29
CN102112640B true CN102112640B (zh) 2013-03-27

Family

ID=41663649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801304529A Expired - Fee Related CN102112640B (zh) 2008-08-05 2009-07-30 电气/电子部件用铜合金材料的制造方法

Country Status (6)

Country Link
US (1) US20110200479A1 (zh)
EP (1) EP2333128A4 (zh)
JP (1) JP4913902B2 (zh)
KR (1) KR101570556B1 (zh)
CN (1) CN102112640B (zh)
WO (1) WO2010016429A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE414182T1 (de) 2003-03-03 2008-11-15 Mitsubishi Shindo Kk Hitzebeständige kupferlegierungswerkstoffe
KR101138569B1 (ko) 2007-12-21 2012-05-10 미쓰비시 신도 가부시키가이샤 고강도?고열전도 동합금관 및 그 제조방법
PT2246448T (pt) 2008-02-26 2016-11-17 Mitsubishi Materials Corp Fio laminado de cobre de alta resistência e alta condutividade
EP2258882B1 (en) 2008-03-28 2016-05-25 Mitsubishi Shindoh Co., Ltd. High-strength and high-electroconductivity copper alloy pipe, bar, and wire rod
US9455058B2 (en) * 2009-01-09 2016-09-27 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same
EP2386666B1 (en) 2009-01-09 2015-06-10 Mitsubishi Shindoh Co., Ltd. High-strength high-conductivity copper alloy rolled sheet and method for producing same
JP4620173B1 (ja) * 2010-03-30 2011-01-26 Jx日鉱日石金属株式会社 Cu−Co−Si合金材
JP4672804B1 (ja) * 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP4601085B1 (ja) * 2010-06-03 2010-12-22 Jx日鉱日石金属株式会社 Cu−Co−Si系銅合金圧延板及びそれを用いた電気部品
JP4834781B1 (ja) * 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系合金
JP5718021B2 (ja) * 2010-10-29 2015-05-13 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP2012144789A (ja) * 2011-01-13 2012-08-02 Jx Nippon Mining & Metals Corp Cu−Co−Si−Zr合金材
JP5544316B2 (ja) * 2011-02-14 2014-07-09 Jx日鉱日石金属株式会社 Cu−Co−Si系合金、伸銅品、電子部品、及びコネクタ
JP5628712B2 (ja) * 2011-03-08 2014-11-19 Jx日鉱日石金属株式会社 電子部品用チタン銅
JP5514762B2 (ja) * 2011-03-29 2014-06-04 Jx日鉱日石金属株式会社 曲げ加工性に優れたCu−Co−Si系合金
JP6205105B2 (ja) * 2011-04-18 2017-09-27 Jx金属株式会社 電子材料用Cu−Ni−Si系合金、Cu−Co−Si系合金及びその製造方法
JP6621650B2 (ja) * 2015-11-17 2019-12-18 株式会社フジコー 熱延プロセス用ロールおよびその製造方法
JP6461249B2 (ja) * 2017-07-06 2019-01-30 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
CN108414559B (zh) * 2018-04-16 2020-12-29 中国航发北京航空材料研究院 一种测试多元合金中不同相组成微区成分的定量分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678765A (zh) * 2002-09-04 2005-10-05 Dept株式会社 电子部件用金属材料、电子部件、电子设备、金属材料的加工方法、电子部件的制造方法以及电子光学部件
CN1925065A (zh) * 2005-09-02 2007-03-07 日立电线株式会社 电气元件用铜合金材料及其制造方法
CN101146920A (zh) * 2005-03-24 2008-03-19 日矿金属株式会社 电子材料用铜合金
CN101151385A (zh) * 2005-03-31 2008-03-26 日矿金属株式会社 电子材料用Cu-Ni-Si-Co-Cr系铜合金及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187838A (ja) 1984-10-03 1986-05-06 Kobe Steel Ltd 熱間加工性の優れた銅合金
JPS63307232A (ja) 1987-06-04 1988-12-14 Sumitomo Metal Mining Co Ltd 銅合金
JPH02129326A (ja) 1988-11-08 1990-05-17 Sumitomo Metal Mining Co Ltd 高力銅合金
JPH02277735A (ja) 1989-04-20 1990-11-14 Sumitomo Metal Mining Co Ltd リードフレーム用銅合金
JP3408021B2 (ja) * 1995-06-30 2003-05-19 古河電気工業株式会社 電子電気部品用銅合金およびその製造方法
JP3977376B2 (ja) 2004-02-27 2007-09-19 古河電気工業株式会社 銅合金
JP2006265731A (ja) 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The 銅合金
JP5202812B2 (ja) * 2005-03-02 2013-06-05 古河電気工業株式会社 銅合金とその製造方法
JP4006460B1 (ja) 2006-05-26 2007-11-14 株式会社神戸製鋼所 高強度、高導電率および曲げ加工性に優れた銅合金およびその製造方法
JP4006468B1 (ja) 2006-09-22 2007-11-14 株式会社神戸製鋼所 高強度、高導電率および曲げ加工性に優れた銅合金
JP4006467B1 (ja) 2006-09-22 2007-11-14 株式会社神戸製鋼所 高強度、高導電率および曲げ加工性に優れた銅合金
JP4943095B2 (ja) * 2006-08-30 2012-05-30 三菱電機株式会社 銅合金及びその製造方法
JP5085908B2 (ja) * 2006-10-03 2012-11-28 Jx日鉱日石金属株式会社 電子材料用銅合金及びその製造方法
JP4876959B2 (ja) 2007-02-19 2012-02-15 株式会社Ihi 過給機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678765A (zh) * 2002-09-04 2005-10-05 Dept株式会社 电子部件用金属材料、电子部件、电子设备、金属材料的加工方法、电子部件的制造方法以及电子光学部件
CN101146920A (zh) * 2005-03-24 2008-03-19 日矿金属株式会社 电子材料用铜合金
CN101151385A (zh) * 2005-03-31 2008-03-26 日矿金属株式会社 电子材料用Cu-Ni-Si-Co-Cr系铜合金及其制造方法
CN1925065A (zh) * 2005-09-02 2007-03-07 日立电线株式会社 电气元件用铜合金材料及其制造方法

Also Published As

Publication number Publication date
JPWO2010016429A1 (ja) 2012-01-19
WO2010016429A1 (ja) 2010-02-11
CN102112640A (zh) 2011-06-29
EP2333128A1 (en) 2011-06-15
US20110200479A1 (en) 2011-08-18
JP4913902B2 (ja) 2012-04-11
KR20110039371A (ko) 2011-04-15
EP2333128A4 (en) 2012-07-04
KR101570556B1 (ko) 2015-11-19

Similar Documents

Publication Publication Date Title
CN102112640B (zh) 电气/电子部件用铜合金材料的制造方法
CN101952465B (zh) 电气电子零件用铜合金材料及其制造方法
JP4006460B1 (ja) 高強度、高導電率および曲げ加工性に優れた銅合金およびその製造方法
CN102985572B (zh) 深冲压加工性优异的Cu-Ni-Si系铜合金板及其制造方法
EP2426225B1 (en) Copper alloy with high strength, high electrical conductivity, and excellent bendability
JP4809935B2 (ja) 低ヤング率を有する銅合金板材およびその製造法
CN102112639A (zh) 用于电气电子部件的铜合金材料及其制造方法
US10294554B2 (en) Copper alloy sheet material, connector, and method of producing a copper alloy sheet material
CN103534370A (zh) 铜合金材料及其制造方法
CN102105610A (zh) 铜合金板材及其制造方法
US20120031533A1 (en) Cu-Co-Si SYSTEM ALLOY FOR ELECTRONIC MATERIALS AND METHOD FOR MANUFACTURING SAME
CN106661673A (zh) 铜合金板材、连接器以及铜合金板材的制造方法
US20130180630A1 (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL AND METHOD OF MANUFACTURING THE SAME
US10294555B2 (en) Copper alloy sheet material, connector, and method of producing a copper alloy sheet material
JP4834781B1 (ja) 電子材料用Cu−Co−Si系合金
CN104718302B (zh) 导电性和应力缓和特性优异的铜合金板
US20110038753A1 (en) Copper alloy sheet material
JP4006467B1 (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
JP4006468B1 (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
JP2000256814A (ja) 端子用銅基合金条の製造方法
JP2013104068A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP7145847B2 (ja) 銅合金板材およびその製造方法
TWI842346B (zh) 電子材料用銅合金以及電子部件
JP6310131B1 (ja) 電子部品用チタン銅
JP2004091895A (ja) 耐熱性に優れた銅合金およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130327

Termination date: 20180730