JPWO2009093668A1 - 金属合金と被着材の接合体とその製造方法 - Google Patents

金属合金と被着材の接合体とその製造方法 Download PDF

Info

Publication number
JPWO2009093668A1
JPWO2009093668A1 JP2009550562A JP2009550562A JPWO2009093668A1 JP WO2009093668 A1 JPWO2009093668 A1 JP WO2009093668A1 JP 2009550562 A JP2009550562 A JP 2009550562A JP 2009550562 A JP2009550562 A JP 2009550562A JP WO2009093668 A1 JPWO2009093668 A1 JP WO2009093668A1
Authority
JP
Japan
Prior art keywords
metal alloy
alloy
adhesive
adherend
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009550562A
Other languages
English (en)
Other versions
JP4903881B2 (ja
Inventor
成富 正徳
正徳 成富
安藤 直樹
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2009550562A priority Critical patent/JP4903881B2/ja
Publication of JPWO2009093668A1 publication Critical patent/JPWO2009093668A1/ja
Application granted granted Critical
Publication of JP4903881B2 publication Critical patent/JP4903881B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

金属合金とGFRP等の被着材とを、不飽和ポリエステル樹脂を主成分とする接着剤により強固に接着接合する技術を提供する。金属合金表面に、(1)山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、(2)且つ、その粗度を有する面内に、5〜500nm周期の超微細凹凸を形成し、(3)且つ、表層を金属酸化物又は金属リン酸化物の薄層とするためのエッチングを行う。一方、無機充填材及び超微細無機充填材をサンドグラインドミルを用いて不飽和ポリエステル樹脂中に分散させ、その後に有機過酸化物を加えて不飽和ポリエステル系接着剤を完成させる。その不飽和ポリエステル系接着剤を、金属合金表面に塗布し、塗布した箇所に被着材を固定し、加熱することによって未硬化樹脂を硬化させて両者を一体化する。

Description

本発明は、家電機器、一般機械、住宅設備、空調機器、その他の設備や機械の製造分野全般に関する。本発明は新たな基礎的部品の製造方法に関するものであり、金属合金同士、又は金属合金とガラス繊維強化プラスチック(以下、「GFRP(Glass-fiber reinforced plasticsの略)」という)を不飽和ポリエステル系接着剤にて強固に接着一体化した接合体とその製造技術に関する。
金属合金と樹脂を一体化する技術は、航空機、自動車、家庭電化製品、産業機器等、あらゆる部品部材製造業から求められており、このために多くの接着剤が開発されている。この中には非常に優れた接着剤がある。例えば常温、又は加熱により機能を発揮する接着剤は、金属合金と合成樹脂を一体化する接合に使用され、この方法は現在では一般的な接着技術である。
一方、接着剤を使用しない接合方法も研究されてきた。マグネシウム、アルミニウムやそれらの合金である軽金属類、またステンレスなどの鉄合金類に対し、接着剤の介在なしで高強度の熱可塑性のエンジニアリング樹脂を射出等によって一体化する方法がその例である。例えば、射出等の方法で樹脂成形と同時に接合を為す方法(以下、「射出接合」という)として、アルミニウム合金に対し熱可塑性樹脂であるポリブチレンテレフタレート樹脂(以下「PBT」という)又はポリフェニレンサルファイド樹脂(以下「PPS」という)を射出接合させる製造技術が開発されている(例えば特許文献1、2参照)。加えて、マグネシウム合金、銅合金、チタン合金、ステンレス鋼等も同系統の樹脂の使用で射出接合することが可能であることも実証されている(特許文献3、4、5、6参照)。
特許文献1及び2における射出接合の原理を以下に示す。アルミニウム合金を水溶性アミン系化合物の希薄水溶液に浸漬させ、アルミニウム合金を水溶液の弱い塩基性によって微細エッチングする。この浸漬処理では、アルミニウム合金表面に超微細凹凸が形成されると共に、アルミニウム合金表面へのアミン系化合物分子の吸着が同時に起こる。この表面処理がなされたアルミニウム合金を射出成形金型にインサートし、溶融した熱可塑性樹脂を高圧で射出させる。このとき、熱可塑性樹脂と、アルミニウム合金表面に吸着していたアミン系化合物分子が遭遇することで化学反応する。この化学反応は、この熱可塑性樹脂が低温の金型温度に保たれたアルミニウム合金に接して急冷されて結晶化し固化せんとする物理反応を抑制する。その結果、樹脂は、結晶化や固化が遅れ、その間にアルミニウム合金表面の超微細凹凸に浸入する。このことにより、熱可塑性樹脂は外力を受けてもアルミニウム合金表面から剥がれ難くなる。即ち、アルミニウム合金と形成された樹脂成形物は強固に接合する。別の言い方で、化学反応と物理反応が競争反応の関係になり、この場合は化学反応が優先されるため強固な射出接合が生じると言える。実際、アミン系化合物と化学反応できるPBTやPPSがこのアルミニウム合金と射出接合ができることを確認している。この射出接合のメカニズムを発明者らは「NMT(Nano molding technologyの略)」理論と称した。
また、本発明者らは、特許文献3、4、5、及び6に示すように、アミン系化合物の金属合金表面への化学吸着なしに、要するに特段の発熱反応や何らかの化学反応の助力を得ることなしに、射出接合が可能な条件を発見した。即ち、アルミニウム合金以外の金属合金についても、その金属合金と熱可塑性樹脂を射出接合によって強固に接合することができる条件を発見し、この条件に基づく射出接合のメカニズムを「新NMT(Nano molding technologyの略)」理論と称した。
これらの発明は全て本発明者らによるが、これらは比較的単純な接合理論によっている。本発明者らは、アルミニウム合金に関する接合理論を「NMT」(Nano molding technologyの略)理論と称し、金属合金全般の射出接合に関しては、「新NMT」理論と称している。より広く使用できる「新NMT」理論の仮説は以下の通りである。即ち、強烈な接合力ある射出接合を得るために、金属合金側と射出樹脂側の双方に各々条件があり、まず金属側については以下に示す3条件が必要である。
[新NMT理論での金属合金側の条件]
第1条件は、金属合金表面が、化学エッチング手法によって1〜10μm周期の凹凸で、その凹凸高低差がその周期の半分程度まで、即ち0.5〜5μmまでの粗い粗面になっていることである。ただし、実際には、前記粗面で正確に全表面を覆うことはバラツキがあり、一定しない化学反応では難しく、具体的には、粗度計で見た場合に0.2〜20μm範囲の不定期な周期の凹凸で、且つその最大高低差が0.2〜5μmの範囲である粗度曲線が描けること、又は、最新型のダイナミックモード型の走査型プローブ顕微鏡で走査して、JIS規格(JISB0601:2001)でいう平均周期、即ち山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmである粗度面であれば、前記で示した粗度条件を実質的に満たしたものと考えている。本発明者等は、理想とする粗面の凹凸周期が前記したように、ほぼ1〜10μmであるので、分かり易い言葉として「ミクロンオーダーの粗度を有する表面」と称した。
第2の条件は、上記ミクロンオーダーの粗度を有する金属合金表面に、さらに5nm以上の超微細凹凸が形成されていることである。言い換えると、ミクロの目で見てザラザラ面であることを要する。当該条件を具備するために、上記金属合金表面に、微細エッチングや酸化処理、化成処理等を行い、前述のミクロンオーダーの粗度をなす凹部内壁面に5〜500nm、好ましくは10〜300nm、より好ましくは30〜100nm周期の超微細凹凸を形成する。
この超微細凹凸について述べると、その凹凸周期が10nm以下の周期であると樹脂分の進入が明らかに難しくなる。また、この場合には通常、凹凸高低差も小さくなるので、樹脂側から見て円滑面に見える。その結果、スパイクの役目を為さなくなる。又、周期が300〜500nm程度又はこれよりよりも大きな周期なら(その場合、ミクロンオーダーの粗度をなす凹部の直径や周期は10μm近くになると推定される)、ミクロンオーダーの凹部内でのスパイクの数が激減するので効果が効き難くなる。よって、原則としては、超微細凹凸の周期が10〜300nmの範囲であることを要する。しかしながら、超微細凹凸の形状によっては、5nm〜10nm周期のものでも、樹脂がその間に侵入する場合がある。例えば、5〜10nm直径の棒状結晶が錯綜している場合等がこれに該当する。また、300nm〜500nm周期のものでも、超微細凹凸の形状がアンカー効果を生じやすい場合がある。例えば、高さ及び奥行きが数百〜500nmで、幅が数百〜数千nmの階段が無限に連続したパーライト構造のような形状がこれに該当する。このような場合も含め、要求される超微細凹凸の周期を5nm〜500nmと規定した。
ここで、従来は上記第1の条件に関して、Rsmの範囲を1〜10μm、Rzの範囲を0.5〜5μmと規定していたが、Rsmが0.8〜1μm、Rzが0.2〜0.5μmの範囲であっても、超微細凹凸の凹凸周期が、特に好ましい範囲(概ね30〜100nm)に有れば、接合力が高く維持できる。それ故に、Rsmの範囲を小さい方にやや広げることとした。即ち、Rsmが0.8〜10μm、Rzが0.2〜5μmの範囲とした。
さらに、第3の条件は、上記金属合金の表層がセラミック質であることである。具体的には、元来耐食性のある金属合金種に関しては、その表層が自然酸化層レベルかそれ以上の厚さの金属酸化物層であることを要し、耐食性が比較的低い金属合金種(例えばマグネシウム合金や一般鋼材等)では、その表層が化成処理等によって生成した金属酸化物又は金属リン酸化物の薄層であることが第3の条件となる。
これらを模式的に図にすると図4のようになる。金属合金相30の表面にはミクロンオーダーの粗度を成している凹部(C)が形成され、さらにその凹部内壁には超微細凹凸(A)が形成され、表層はセラミック質層31となっており、この超微細凹凸に接着剤硬化物相32の一部が浸入している。このようにした金属合金表面に液状の樹脂組成物が侵入し、侵入後に硬化すると、金属合金と硬化した樹脂組成物は非常に強固に接合するという簡潔な考え方である。
[新NMT理論での樹脂側の条件]
次に、樹脂側の条件を説明する。樹脂としては、硬質の高結晶性の熱可塑性樹脂であって、これに適切な別ポリマーをコンパウンドする等して、急冷時での結晶化速度を遅くした物が使用できる。実際には、結晶性の硬質樹脂であるPBTやPPSに適切な別ポリマー及びガラス繊維等をコンパウンドした樹脂組成物が使用できる。
[新NMT理論に基づく射出接合]
上記金属合金及び樹脂を使用して、一般の射出成形機、射出成形金型によって射出接合できるが、この過程を前述の「新NMT」理論仮説に従って説明する。射出した溶融樹脂は、融点よりも150℃程度温度が低い金型内に導かれるが、この流路で冷やされ、融点以下の温度になっているとみられる。即ち、溶融した結晶性樹脂が急冷された場合、融点以下になったとしてもゼロ時間で結晶が生じ固体に変化することはない。要するに、融点以下ながら溶融している状態、即ち過冷却状態がごく短時間存在する。前述したように、PBTやPPSに特殊なコンパウンドを行うことによって、この過冷却時間を少し長くすることが可能である。これを利用して大量の微結晶が生じることによる粘度の急上昇が起こる前に、ミクロンオーダーの粗度を有する金属表面の凹部にその微結晶が侵入できるようにした。侵入後も冷え続けるので、これに伴い微結晶の数が急激に増えて粘度は急上昇する。しかし、凹部の奥底まで樹脂が到達できるか否かは凹部の大きさや形状にも依存する。
本発明者等の実験結果では、金属種を選ばず、上記ミクロンオーダーの粗度に係る1〜10μm径の凹部であって、その深さが周期の半分程度までであれば、凹部の結構奥まで微結晶が侵入すると推測された。さらに、その凹部内壁面が、前述した第2条件のように、ミクロの目で見てザラザラ面であれば、超微細凹凸にも一部樹脂が侵入し、その結果、樹脂側に引き抜き力が付加されても引っかかって抜け難くなると推定される。そしてこのザラザラ面が、第3条件で示したように金属酸化物又は金属リン酸化物で覆われていれば、硬度が高く、樹脂と超微細凹凸に係る凹部との引っ掛かりが、スパイクの如く効果的になる。
具体例を示す。例えば、マグネシウム合金の場合、自然酸化層で覆われたままのマグネシウム合金では耐食性が低いので、これを化成処理して表層を金属酸化物、金属炭酸化物、または金属リン酸化物にすることで、硬度の高いセラミックス質で覆われた表面とすることができる。このように表面処理されたマグネシウム合金を射出成形金型にインサートした場合、金型及びインサートしたマグネシウム合金は射出する樹脂の融点より100℃以上低い温度に保たれているので、射出された樹脂は金型内の流路に入った途端に急冷され、マグネシウム合金に接近した時点で融点以下になっている可能性が高い。
マグネシウム合金表面の凹部の径が1〜10μm程度と比較的大きい場合、過冷却によって微結晶が生じる限られた時間内に樹脂は浸入し得る。また、生じた高分子微結晶群の数密度がまだ小さい場合も上記凹部なら樹脂は浸入し得る。それは微結晶、すなわち不規則に運動していた分子鎖から分子鎖に何らかの整列状態が生じたときの形を有する微結晶の大きさが、分子モデルから推定すると数nm〜10nmの大きさとみられるからである。それゆえ、微結晶は10nm径の超微細凹凸に対し簡単に侵入できるとは言い難いが、数十nm周期の超微細凹凸ならば、若干は樹脂流の先端が浸入する可能性がある。ただし、微結晶は同時発生的に無数に生じるので、射出樹脂の先端や金型金属面に接している箇所では樹脂流の粘度が急上昇する。化成処理をしたマグネシウム合金表面を電子顕微鏡で観察すると10〜50nm周期の超微細凹凸面が観察され、この程度の周期の超微細凹凸であれば、樹脂流の粘度が急上昇する前に頭を突っ込み得る。
また、銅合金、チタン合金や鋼材等の金属合金表面を酸化させ、又は化成処理を施して、その表層を金属酸化物等のセラミック質の微結晶群又はアモルファス層とした場合、PPS樹脂(急冷時のPPS分子結晶化速度を低下させ得たPPS樹脂コンパウンド)を射出接合すると、相当強い接合力が生じた。
ここで、接合自体は、樹脂成分と金属合金表面の問題であるが、樹脂組成物に強化繊維や無機フィラーが入っていると、樹脂全体の線膨張率を金属合金に近づけられるので接合後の接合力維持が容易になる。このような仮説に従って、例えばマグネシウム合金、銅合金、チタン合金、ステンレス鋼等に、PBTやPPS系樹脂を射出接合して得た複合体は、せん断破断力で20〜30MPa(約200〜300kgf/cm)以上、引っ張り破断力で30〜40MPa(約300〜400kgf/cm)以上となり、強固な複合体であることが確認されている。
[NAT理論(接着剤接合)]
本発明者らは、接着剤接合に関しても「新NMT」理論仮説が応用できると考え、類似理論による高強度の接着が可能であるかを確認した。そして、市販の汎用の1液性エポキシ系接着剤を使用し、金属合金の表面構造を工夫することで、より接着力の高い接合体を得ようと試みた。
接着剤接合の実験手法に関する手順を以下に示す。前記「新NMT」理論に基づき、射出接合実験で使用したものと同じ表面の金属合金(即ち上記3条件を満たす金属合金)を作成した。そして、液状の1液性エポキシ系接着剤をその金属合金の所定範囲に塗布し、デシケータに入れて一旦真空下に置き、その後常圧に戻すなどして金属合金表面の超微細凹凸に接着剤を侵入させる。その後、前記所定範囲に被着材を貼り合わせ、加熱して硬化させる方法である。
こうした場合、金属合金表面のミクロンオーダーの粗度に係る凹部(前記第1条件における凹凸の凹部)内に、多少の粘度あるエポキシ系接着剤も液体故に侵入可能である。そして侵入したエポキシ系接着剤は、その後の加熱でこの凹部内で硬化することになる。実際には、この凹部の内壁面には超微細凹凸がさらに形成されており(前記の第2条件)、且つこの超微細凹凸は、セラミック質の高硬度の薄膜(前記の第3条件)で覆われていることから、凹部内部に侵入して固化したエポキシ樹脂は、スパイクのような超微細凹凸に掴まって抜け難くなる。
本発明者らは、「新NMT」理論を応用して、1液性エポキシ接着剤によって、金属合金同士及び金属合金とCFRP(carbon fiber reinforced plasticsの略)との高強度の接着が可能であることを実証した。一例として、A7075アルミニウム合金同士を、市販の汎用エポキシ接着剤のみからなる接着剤で接合した結果、70MPaもの強烈なせん断破断力、引っ張り破断力を示す接合体を得ることができた。
実際、このような高強度の接着剤接合は、本発明者等によって、アルミニウム合金に次いで、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、一般鋼材、アルミ鍍金鋼板、及び亜鉛系鍍金鋼板に於いて実証された(特許文献7、8、9、10、11、12、13、及び14参照)。いずれも金属合金表面の状態を制御することによって、各種金属合金を過去に例のない強さで接着することができた。このような接着剤接合に関して「新NMT」理論を応用した前記技術を、本発明者らは「NAT(Nano adhesion technologyの略)」と称している。
WO 03/064150 A1(アルミニウム合金) WO 2004/041532 A1(アルミニウム合金) WO 2008/069252 A1(マグネシウム合金) WO 2008/047811 A1(銅合金) WO 2008/078714 A1(チタン合金) WO 2008/081933 A1(ステンレス鋼) WO 2008/114669 A1(アルミニウム合金) WO 2008/133096 A1(マグネシウム合金) WO 2008/126812 A1(銅合金) WO 2008/133030 A1(チタン合金) WO 2008/133296 A1(ステンレス鋼) WO 2008/146833 A1(一般鋼材) PCT/JP2008/073769(アルミ鍍金鋼板) 特願2008−67313号公報(亜鉛系鍍金鋼板) PCT/JP2008/072755(CNT)
当初、「NAT」理論は、1液性エポキシ系接着剤の使用を条件にしたものであった。それは、1液性エポキシ系接着剤が基本的に無溶剤型であり、且つ塗布時点にて接着有効成分がゲル化していないことを適正としたからである。また、液状接着剤であれば、その接着剤は1気圧程度の圧力でミクロンオーダーの粗度に係る凹部に侵入し、且つその凹部内壁面に形成された数十nmオーダーの超微細凹凸の凹部にも、ある程度の侵入があると推定したからである。実際、環境温度を調整して、接着剤粘度が十数Pa秒の液体とすることが可能であり、その温度条件でのゲル化速度が非常に小さければ、上記超微細凹凸への侵入によって安定して強い接着力を示すことが確認された。その意味で、2液性の接着剤や樹脂、例えば、2液性エポキシ接着剤や2液性の不飽和ポリエステル系硬化樹脂は、「NAT」の技術的特徴を十分に利用し切れないとして、使用すべき接着剤種に含めなかった。
ここで、上述したアルミニウム合金やチタン合金等とCFRPとを強固に接着剤で接合した複合体は、航空機や自動車等の移動機械の軽量化には有効であるが、非常に高価であるという問題がある。このような事情もあり、特に移動機械や素材等の分野においては、上述したアルミニウム合金やチタン合金等とCFRPとの強固な接着剤接合と同様に、一般鋼材又はステンレス鋼とガラス繊維強化プラスチック(以下、「GFRP(Glass-fiber reinforced plasticsの略)」という。)とを強固に接着剤接合する技術に対する要請が強い。これはGFRPが、高性能の複合材料又は先端複合材料として注目されているCFRPとは異なり、低価格で広範囲の業界に使用されているからである。それ故、GFRPと金属合金類、特に安価な一般鋼材と強く接着した物が容易に製造可能となれば、建材等、広い分野で使用可能になる。
しかしながら、GFRPは、CFRPと異なり、強化繊維に不飽和ポリエステル樹脂を含浸させている場合が多い。即ち、CFRPではマトリックスがエポキシ樹脂であるのに対し、GFRPのマトリックスは不飽和ポリエステル樹脂であり、当然これに適した接着剤は、不飽和ポリエステル系接着剤となる。ここで「不飽和ポリエステル系接着剤」という言葉を使用しているが、現実にはそのような接着剤は製造されていない。本発明者らが便宜上作った名称である。
「不飽和ポリエステル系接着剤」とは、勿論、不飽和ポリエステル樹脂に有機過酸化物を重合開始剤(GFRP業界では「硬化剤」と呼ばれる)として加え、その硬化で接着力を発揮する物のことである。この「不飽和ポリエステル系接着剤」には、ビニルエステル樹脂を主成分とするものも含まれる。即ち、「ビニルエステル樹脂」とはエポキシ樹脂末端等にアクリル酸エステルやメタクリル酸エステルを結合させて得た樹脂で「不飽和エポキシ樹脂」とも言われ、言わば骨格がエポキシで端部にエステル結合と不飽和結合部を数個含む化合物である。このビニルエステル樹脂は、不飽和ポリエステル樹脂と重合性が非常に似ていてGFRPの原料の一部に使われることもあり、FRP業者からは不飽和ポリエステルと同類の扱い方をされる化合物群である。それ故、実質的には不飽和ポリエステル樹脂と同類であり、接着剤名称につき同じ名称「不飽和ポリエステル系接着剤」を使用したものである。本発明者らがビニルエステル樹脂に有機化酸化物を硬化剤として加えて接着剤として使用した場合に、その性能が不飽和ポリエステル樹脂を使った物に劣ることがなかった。
不飽和ポリエステル系接着剤は、その硬化に有機過酸化物を重合開始剤(「硬化剤」)として添加することを要する2液性の熱硬化型樹脂組成物であるが、硬化剤である有機過酸化物は半減期がある自然分解性の物質である。有機化酸化物は、自然分解を抑える為に常時の冷蔵保管が必要であり、一部の物を除いて常温添加後のゲル化開始が直ぐ始まることから市販接着剤としての展開が難しい。また、接着力が強く扱いも便利なエポキシ系接着剤が市中に流通していることから敢えて不飽和ポリエステル系の接着剤を開発すべき理由がなかった事情も存在する。
一般に不飽和ポリエステル樹脂の固化物は、吸水性がエポキシ系樹脂の固化物より低く、屋外用途などでは耐久性が優れるという利点がある。しかし、その一方で、前述したように不飽和ポリエステル系接着剤は2液性熱硬化型接着剤である。故に、前述したNAT理論における3条件を具備するように表面処理を施した金属合金であっても、2液性熱硬化型接着剤の不飽和ポリエステル系接着剤を介してGFRPや金属合金等の被着材と強固に接着接合することは困難である。
本発明は、このような背景のもとになされたものであり、その目的は、金属合金と被着材が不飽和ポリエステル系接着剤を介して強固に接合された接合体とその製造方法を提供することにある。
まず、本発明者らは、酸無水物を硬化剤とする2液性エポキシ接着剤を使用して、「NAT」理論に基づいて金属合金と被着材を接着剤接合した場合であっても、優れた接着性能が得られることを確認した。酸無水物を硬化剤とするエポキシ樹脂は、硬化剤混合後も室温下ではゲル化が遅い。それ故、1液性と称してもよいのだが、常温でのゲル化速度がゼロではないので、やはり公的には2液性と称されるのである。即ち、硬化剤混合済みの物を市販した場合、数ヶ月放置されてから使用されるかもしれず、これでは性能が保障できない。それ故に2液性として販売されるのである。このことから、本発明者らは、不飽和ポリエステル系接着剤であっても、ゲル化速度の遅いものであれば、「NAT」理論に基づく接合に使用可能であると推定し、現状では一般的でない「不飽和ポリエステル系接着剤」を使用可能とすべく開発を行った。そして以下に示す手段によって上記目的を達成した。
金属合金の表面にエッチングを施すことにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、且つ、その粗度を有する面内には5〜500nm周期の超微細凹凸を形成し、且つ、表層を金属酸化物又は金属リン酸化物の薄層とする。その表面に、不飽和ポリエステル樹脂又はビニルエステル樹脂を主成分とする不飽和ポリエステル系接着剤を塗布し、塗布範囲に被着材を固定し、塗布した接着剤を超微細凹凸に侵入させた状態で硬化させる。
以下、本発明を構成する各要素について詳細に説明する。
[金属合金]
本発明でいう金属合金、即ち前述の「NAT」理論に基づく表面構造を具備する金属合金としては、理論上特にその種類に制限はない。全金属種としてもよいが、実際に意味を有しているのは硬質で実用的な金属種、合金種である。即ち、水銀は当然ながら液状だから本発明に関係しないが、鉛など軟質金属種も本発明者の考える金属種からは除外されている。当然であるが、化学的には存在するが大気中で活発に反応するアルカリ金属種、アルカリ土類金属種(マグネシウムを除いて)も基本的には除外の対象である。
本発明者等は、実質的に「NAT」理論を適用可能な金属合金種として、アルミニウム、マグネシウム、銅、チタン、及び鉄を主成分とする合金種と考えている。以下、これらについて説明する。しかし、あくまでも「NAT」理論は、金属種を限定していないし、更に言えば金属であること自体も限定していない。非金属を「NAT」で条件とするミクロンオーダーの粗度や超微細凹凸面、且つ、高硬度の表層とすることの3条件を同時に備えさせることは容易でない。要するに「NAT」は表面形状とその表面薄層硬度だけを規定してアンカー効果論で接着を論じているので、少なくとも下記した金属合金種に限定されるものではない。特許文献7にアルミニウム合金に関する記載をした。特許文献8にマグネシウム合金に関する記載をした。特許文献9に銅合金に関する記載をした。特許文献10にチタン合金に関する記載をした。特許文献11にステンレス鋼に関する記載をした。特許文献12に一般鋼材に関する記載をした。特許文献14に亜鉛系鍍金鋼板に関する記載をした。これら各種金属合金について詳細に説明する。
(アルミニウム合金)
本発明で使用可能なアルミニウム合金は、アルミニウム合金であれば種類を問わない。具体的には、日本工業規格(JIS)に規定されている展伸用アルミニウム合金のA1000番台〜7000番台(耐食アルミニウム合金、高力アルミニウム合金、耐熱アルミニウム合金等)等の全ての合金、及びADC1〜12種(ダイカスト用アルミニウム合金)等の鋳造用アルミニウム合金が使用できる。形状物としては、鋳造用合金等であれば、ダイキャスト法で形状化された部品、またそれを更に機械加工して形状を整えた部品が使用できる。又、展伸用合金では、中間材である板材その他、又それらを熱プレス加工などの機械加工を加えて形状化した部品も使用できる。
(マグネシウム合金)
本発明に使用するマグネシウム合金は、国際標準機構(ISO)、日本工業規格(JIS)、米国材料試験協会(ASTM)等に規定される展伸用アルミニウム合金のAZ31B合金等、及びAZ91D等の鋳物用マグネシウム合金が使用できる。鋳物用マグネシウム合金であれば、砂型、金型、ダイカストのいずれかの方法で形状化された部品、またそれを更に、切削、研削等の機械加工して形状を整えた部品、構造体が使用できる。又、展伸用マグネシウム合金では、中間材である板材その他、又それらを温間プレス加工等の塑性加工を加えて形状化した部品、構造体が使用できる。
(銅合金)
本発明に使用する銅合金とは、銅、黄銅、りん青銅、洋泊、アルミニウム青銅等を指す。日本工業規格(JIS H 3000系)に規定されるC1020、C1100等の純銅系合金、C2600系の黄銅合金、C5600系の銅白系合金、その他のコネクター用の鉄系含む各種用途に開発された銅合金等、全ての銅合金等が対象である。これらの中間材である板材、条、管、棒、線等の塑性加工製品を、切削加工、プレス加工等の機械加工を加えて形状化した部品、及び鍛造加工した部品等が対象である。
(チタン合金)
本発明に使用するチタン合金は、国際標準化機構(ISO)、日本工業規格(JIS)等で規定される純チタン系合金、α型チタン合金、β型チタン合金、α−β型チタン合金等、全てのチタン合金が対象である。このチタン合金の中間材である板材、棒材、管材等、又それらを切削・研削加工、プレス加工等の機械加工を加えて形状化したものが、各種機械、装置の部品、構造体に使用できる。
(ステンレス鋼)
本発明でいうステンレス鋼とは、鉄にクロム(Cr)を加えたCr系ステンレス鋼、又ニッケル(Ni)をクロム(Cr)と組合せて添加した鋼であるCr−Ni系ステンレス鋼、その他のステンレス鋼と呼称される公知の耐食性鉄合金が対象である。国際標準機構(ISO)、日本工業規格(JIS)、米国材料試験協会(ASTM)等で、規格化されているSUS405、SUS429、SUS403等のCr系ステンレス鋼、SUS301、SUS304、SUS305、SUS316等のCr−Ni系ステンレス鋼である。
(鉄鋼材)
本発明で用いる鉄鋼材は、一般構造用圧延鋼材等の炭素鋼(所謂一般鋼材)、高張力鋼(ハイテンション鋼)、低温用鋼、及び原子炉用鋼板等の鉄鋼材をいう。具体的には、冷間圧延鋼材(以下、「SPCC」という。)、熱間圧延鋼材(以下、「SPHC」という。)、自動車構造用熱間圧延鋼板材(以下、「SAPH」という。)、自動車加工用熱間圧延高張力鋼板材(以下、「SPFH」という。)、主に機械加工に使用される鋼材(以下「SS材」という。)等、各種機械の本体、部品等に使用されている構造用鉄鋼材が含まれる。これらの多くの鋼材は、プレス加工、切削加工が可能であるので、部品、本体として採用するとき、構造、形状も自由に選択できる。又、本発明でいう鉄鋼材は、上記鉄鋼材に限らず、日本工業規格(JIS)、国際標準化機構(ISO)等で、規格化されたあらゆる鉄鋼材料が含まれる。
(亜鉛系鍍金鋼板)
本発明の亜鉛系鍍金鋼板には、溶融亜鉛鍍金鋼板、合金化溶融亜鉛鍍金鋼板、電気亜鉛鍍金鋼板、電気亜鉛鍍金鋼材、溶融亜鉛アルミニウム合金鍍金鋼板(一例として溶融Zn−55%Al合金鍍金鋼板のガルバリウム鋼板、他に溶融Zn―11%Al―3%Mg合金鍍金鋼板などがある)が含まれる。実際に流通しているのは前記した亜鉛系鍍金鋼板に各種の化成処理や後処理をした物が大部分である。即ち、前記素材群は、主として表面亜鉛の酸化や炭酸化物皮膜による内部保護作用を有し、これが破られた場合も亜鉛自身の犠牲腐食作用があって芯部鋼材の腐食を遅らせることが出来る優れた耐食性鋼材である。しかし、これらがそのまま使用されることは少なく、多くはクロメート処理やノンクロメート処理等の化成処理か又はクロム系化合物を含んだ有機物塗膜が塗布されるなどされており、亜鉛鍍金層自体を保護している。そして化成処理された亜鉛系鍍金鋼板の多くは、油剤を塗布されてプレス加工時の潤滑性を確保した鋼材となっている。要するに、用途や二次加工ユーザーの要望によって種々の表面処理品が大手素材メーカーから供給されている。又、亜鉛系鍍金鋼板メーカー自身が塗装まで行ってカラー鋼板やカラートタンというプレコート鋼板まで製造し市販している物も多い。
本発明の対象はこれら全ての亜鉛系鍍金鋼板であるが、プレコート鋼板やクロム系化合物を含む塗料で塗装した亜鉛系鍍金鋼板を使用する場合は、何らかの方法で塗膜を剥がす工程が必要となり、剥がした後の材料が本発明での材料素材となる。逆に言えば、前記した基本材料の亜鉛系鍍金鋼板(化成処理前の亜鉛系鍍金鋼板)、化成処理済みの亜鉛系鍍金鋼板、及び、これらに油剤を塗布した亜鉛系鍍金鋼板の全てを本発明の対象とする。
後述する実施例では、プレコート鋼板を除く亜鉛系鍍金鋼板で最も多く使用されていると考えられる油材塗布付きのクロメート処理済み溶融亜鉛鍍金鋼板「Z18(日鐵住金建材株式会社(日本国東京都)製)」を使用した。なお「Z18」はJISで鍍金付着量が120g/m2を示し、市販品の大部分は「Z12」(鍍金付着量が90g/m2)から「Z27」(鍍金付着量が190g/m2)の範囲内の物である。「Z18」は平均的な鍍金量の物で流通量も多い。一般に油剤塗布のない鋼材はプレス成形しない用途や絞り度の低いプレス成形用途に使用され、油材を嫌うAV製品、複写機・プリンターなど電気製品向け等に用途がある。大多数の用途ではプレス時に潤滑性があって鍍金層の壊れることのない油材塗布品が使用される。亜鉛系鍍金層は金属としては比較的柔らかいので絞りに対して弱いというわけではない。それ故、油材塗布品であってもその油材塗布量はごく少なく、最終的な加工工程が種々の塗料による加飾工程であっても表面油材は塗料中の溶剤で溶かされるから塗装に対して悪影響は与えないとされている。要するに、本発明は油剤塗布があろうとなかろうと、又、その下に化成処理層があろうとなかろうと、全ての市販の亜鉛系鍍金鋼板に対し、化学的処理だけで「NAT」に適う表面処理ができたとしている。
[化学エッチング]
本発明における化学エッチングは、金属合金表面にミクロンオーダーの粗度を生じさせることを目的とする。腐食には全面腐食、孔食、疲労腐食など種類があるが、その金属合金に対して全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献記録(例えば「化学工学便覧(化学工学協会編集)」)によれば、アルミニウム合金は塩基性水溶液、マグネシウム合金は酸性水溶液、ステンレス鋼や一般鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記録がある。又、耐食性の強い銅合金は、強酸性とした過酸化水素などの酸化剤によって全面腐食させられるし、チタン合金は蓚酸や弗化水素酸系の特殊な酸で全面腐食させられることが専門書や特許文献から散見される。実際に市場で販売されている金属合金類は、純銅系銅合金や純チタン系チタン合金のように純度が99.9%以上で合金とは言い難い物もあるが、これらも本発明の金属合金に含まれる。実際に世間で使用されている物の大部分は特徴的な物性を求めて多種多用な他元素が混合されて純金属系の物は少なく、実質的にも合金である。
即ち、純金属から合金化した目的の金属の殆どが、元々の金属物性を低下させることなく耐食性を上げることにあった。それ故、合金では、前記したように文献から参照して適用した酸塩基類や特定の化学物質を使っても、目標とする化学エッチングが出来ない場合もよくある。要するに、前記した酸塩基類、特定化学薬品の使用は基本であって、実際には使用する酸塩基水溶液の濃度、液温度、浸漬時間、場合によっては添加物を工夫しつつ試行錯誤して適正な化学エッチングを行うことになる。化学エッチング法について言えば、特許文献7にアルミニウム合金に関する記載、特許文献8にマグネシウム合金に関する記載、特許文献9に銅合金に関する記載、特許文献10にチタン合金に関する記載、特許文献11にステンレス鋼に関する記載、特許文献12に一般鋼材に関する記載、及び、特許文献14に亜鉛系鍍金鋼板に関する記載をした。
実際に行う作業として全般的に共通する点を説明すると、金属合金形状物を得たら、まず各金属用の市販脱脂剤を溶かした水溶液に浸漬して脱脂し水洗する。この工程は、金属合金形状物を得る工程で付着した機械油や指脂の大部分を除けるので好ましく、常に行うべきである。次いで、薄く希釈した酸・塩基水溶液に浸漬して水洗するのが好ましい。これは本発明者等が予備酸洗浄や予備塩基洗浄と称している工程で、一般鋼材のように酸で腐食するような金属種では、塩基性水溶液に浸漬し水洗し、又、アルミニウム合金のように塩基性水溶液で特に腐食が早い金属種では、希薄酸水溶液に浸漬し水洗することである。これらは、化学エッチングに使用する水溶液と逆性のものを前もって金属合金に付着(吸着)させる工程であり、その後の化学エッチングが誘導期間なしに始まることになって処理の再現性が著しく向上する。それ故にこの予備酸洗浄、予備塩基洗浄工程は本質的なものではないが、実務上、採用することが好ましい。これらの工程の後に化学エッチング工程を入れる。
[微細エッチング・表面硬化処理]
本発明における微細エッチングは、金属合金表面に超微細凹凸を形成することを目的とする。また本発明における表面硬化処理は、金属合金の表層を金属酸化物又は金属リン酸化物の薄層とすることを目的とする。金属合金種によっては前記化学エッチングを行っただけで同時にナノオーダーの微細エッチングもなされ、超微細凹凸が形成される場合がある。さらに、金属合金種によっては表面の自然酸化層が元よりも厚くなって表面硬化処理も完了している場合もある。例えば、純チタン系のチタン合金は化学エッチングだけを行うことで、表面がミクロンオーダーの粗度を有し、且つ超微細凹凸も形成される。即ち、化学エッチングと併せて微細エッチングもなされる。しかし、多くは化学エッチングによりミクロンオーダーの大きな凹凸面を作った後で微細エッチングや表面硬化処理を行う必要がある。
この時でも予測できない化学現象に見舞われることが多い。即ち、表面硬化処理や表面安定化処理を目的に化学エッチング後の金属合金に酸化剤等を反応させたり化成処理をしたとき、得られる表面に偶然ながら超微細凹凸が形成される場合がある。マグネシウム合金を過マンガン酸カリ系水溶液で化成処理した場合に生じた酸化マンガンとみられる表面層は10万倍電子顕微鏡でようやく判別つく5〜10nm直径の棒状結晶が錯綜したものである。この試料をXRD(X線回折計)で分析したが、酸化マンガン類由来の回折線は検出できなかった。表面が酸化マンガンで覆われていることはXPS分析で明らかである。XRDで検出できなかった理由は結晶が検出限界を超えた薄い層であったからとみている。要するに、マグネシウム合金では表面硬化処理としての化成処理を施したことで、微細エッチングも併せて完了していたことになった。銅合金でも同様で、塩基性下の酸化で表面を酸化第2銅に変化させる表面硬化処置を行ったところ、純銅系銅合金では、その表面は円形や円が歪んだ形の穴開口部が一面に生じ特有の超微細凹凸面になる。純銅系でない銅合金では凹部型でなく10〜150nm径の粒径物や不定多角形状物が連なり、一部融け合って積み重なった形の超微細凹凸形状になったりする。この場合でも表面の殆どは酸化第2銅で覆われており、表面の硬化と超微細凹凸の形成が同時に起こる。
一般鋼材に関しては、更なる検証が必要ではあるものの、ミクロンオーダーの粗度を形成するための化学エッチングだけで超微細凹凸も併せて形成されていることが多く、元来表層(自然酸化層)が硬いこともあって、表面硬化処理や微細エッチング処理を改めて行わずとも、「NAT」理論を適用可能と考えられた。問題は自然酸化層の耐食性が十分でないために、接着工程までに腐食が始まってしまったり、接着後の環境如何では短時間で接着力が低下することであった。
これらは化成処理によって防ぐことができるが、実際には接着物を温度衝撃試験にかける試験、一般環境下に放置する試験、塗装した物を塩水噴霧装置にかける試験等を行って、接着の耐久性を調べる必要がある。例を挙げると、化成処理をしていない鋼材(実際にはSPCC:冷間圧延鋼材)同士をフェノール樹脂系接着剤で接着した接合体に関しては、4週間という短期間で接着力が急減した。一方、化成処理をした一般鋼材(SPCC)同士をフェノール樹脂系接着剤で接着した接合体に関しては、同じ期間では当初の接着力から低下しなかった。
また、本発明者らは、一般に、化成処理によって金属合金表面に形成された被膜(化成被膜)の膜厚が厚いと、接着力が低下することが多いことを確認している。前記のマグネシウム合金に付着した酸化マンガン薄層のように、XRDで回折線が検出されないような薄層である方が、強い接着力が得られる。化成被膜が厚い金属合金同士をエポキシ系接着剤で接着し、破壊試験した場合、破壊面は殆どが金属相と化成皮膜の間となる。本発明者らが行った実験では、厚い化成皮膜とエポキシ系接着剤硬化物との接合力は、その化成皮膜と内部金属合金相との接合力より常に強かった。即ち、一般鋼材でも、化成処理時間を更に長くして化成処理層を厚くすれば、接着物の永続性(即ち接着力の維持性)は向上するはずである。しかしながら化成皮膜を厚くすれば、接着力自体が低下する。従って、どの程度でバランスを取るかは、使用目的、用途等にもよる。以下各種金属合金部品の表面処理方法について詳述する。
[表面処理の具体例]
(アルミニウム合金の表面処理)
アルミニウム合金部品は、まず脱脂槽に浸漬して機械加工等で付着した油剤や油脂を除去するのが好ましい。具体的には、本発明に特有な脱脂処理は必要ではなく、市販のアルミニウム合金用脱脂材を、その薬剤メーカーの指定通りの濃度で湯に投入した温水溶液を用意し、これに浸漬し水洗するのが好ましい。要するに、アルミニウム合金で行われている常法の脱脂処理で良い。脱脂材の製品によって異なるが、一般的な市販品では、濃度5〜10%として液温を50〜80℃とし5〜10分間浸漬する。
これ以降の前処理工程は、アルミニウム合金に珪素が比較的多く含まれる合金と、これらの成分が少ない合金とでは処理方法が異なる。珪素分が少ない合金、即ち、A1050、A1100、A2014、A2024、A3003、A5052、A7075等の展伸用アルミニウム合金では、以下のような処理方法が好ましい。即ち、アルミニウム合金を、酸性水溶液に短時間浸漬して水洗し、アルミニウム合金の表層に酸成分を吸着させるのが、次のアルカリエッチングを再現性良く進める上で好ましい。この処理は、予備酸洗工程といってよいが、使用液は、硝酸、塩酸、硫酸等、安価な鉱酸の1%〜数%濃度の希薄水溶液が使用できる。次いで、強塩基性水溶液に浸漬して水洗し、エッチングを行う。
このエッチングにより、アルミニウム合金表面に残っていた油脂や汚れがアルミニウム合金表層と共に剥がされる。この剥がれと同時に、この表面にはミクロンレベルの粗度を有するようになる。即ち、JIS規格(JIS B 0601:'01,ISO 4287:'97/ISO 1302:'02)で言えば、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5.0μmの凹凸面となる。これらの数値は、昨今の走査型プローブ顕微鏡にかければ自動的に計算をして出力されるようになっている。ただし、細かい凹凸を自動出力で表記した場合の数値は、算出RSm値が実情を表さない場合もある。より正確な数値を得るには、この凹凸に関して走査型プローブ顕微鏡が出力する粗度曲線グラフを目視検査することにより、RSm値を再確認する必要がある。
前記粗度曲線グラフを目視検査して、0.2〜20μm範囲の不定期な周期で高低差が0.2〜5μm範囲の粗さ状況にあれば、実際は前記山谷平均間隔(RSm:0.8〜10μm)及び最大高さ粗さ(Rz:0.2〜5.0μm)とほぼ同じである。この目視検査法は、自動計算が信頼できないと判断した場合に、目視検査で判断が簡単にできるので好ましい。要するに、本発明で定義した技術用語で言えば、「ミクロンオーダーの粗度ある表面」にする。使用液は、1%〜数%濃度の苛性ソーダ水溶液を、30〜40℃にして数分浸漬するのが好ましい。次に、再度酸性水溶液に浸漬し、水洗することでナトリウムイオンを除き前処理を終えるのが好ましい。本発明者等はこれを中和工程と呼んでいる。この酸性水溶液として数%濃度の硝酸水溶液が特に好ましい。
一方、ADC10、ADC12等の鋳造用アルミニウム合金では、以下の工程を経るのが好ましい。即ち、アルミニウム合金の表面から油脂類を除去する脱脂工程の後、前述した工程と同様に予備酸洗し、エッチングするのが好ましい。このエッチングにより、強塩基性下で溶解しない銅分や珪素分が微粒子の黒色スマット(以下、この汚れ状物を鍍金業界では「スマット」と呼ぶので、この表現に倣う。)となる。よって、このスマットを溶かし剥がすべく、次いで数%濃度の硝酸水溶液に浸漬するのが好ましい。硝酸水溶液への浸漬で、銅スマットは溶解され、且つ珪素スマットはアルミニウム合金表面から浮く。
特に、使用した合金がADC12のように珪素分が多量に含まれた合金であると、硝酸水溶液に浸漬しただけでは、珪素スマットがアルミニウム合金基材の表面に付着し続け、これは剥がし切れない。それ故、次いで超音波をかけた水槽内に浸漬して、超音波洗浄し、珪素スマットを物理的に引き剥がすのが好ましい。これで全てのスマットが剥がれ落ちるわけではないが、実用上は十分である。これで前処理を終えても良いが、再度、希薄硝酸水溶液に短時間浸漬し水洗するのが好ましい。これで前処理を終えるが、前処理は酸性水溶液浸漬と水洗で終わっているのでナトリウムイオンが残ることはない。以下、ナトリウムイオンについて述べる。
実験結果から言えば、エポキシ系接着剤を使用して、2片のアルミニウム合金同士を接着したときの接合強度は、ミクロンオーダーの粗度とその面のナノオーダーの超微細凹凸の形状特性によって殆ど決定される。従って、苛性ソーダ水溶液によるエッチングにおいて、適当な浸漬条件等を探し出し、前述した「NAT」理論の条件を形状的に満すことができれば、強い接着力が得られる。しかしながら、苛性ソーダによるエッチングのみの処理で、表面処理を終了させれば、その後に水洗を十々分に行ってもアルミニウム合金表層にナトリウムイオンが残存する。ナトリウムイオンは小粒径が故に移動し易く、塗装や接着が為された後であっても全体が濡れた状態になると、樹脂層を浸透する水分子に伴われて残存していたナトリウムイオンが、何故か金属/樹脂の境界面に集まって来て、アルミニウム表面の酸化を進める。
即ち、アルミニウム合金表面の腐食が生じ、その結果、基材と塗膜や接着剤間の剥離を促進する。この様な事情から、未だに接着前に行うアルミニウム合金前処理として、苛性ソーダ水溶液でのエッチングを行う理由はない。それ故、現在でも、重クロム酸カリ、無水クロム酸の6価クロム化合物の水溶液に、アルミニウム合金を浸漬してクロメート処理するか、又は陽極酸化して未封孔のまま使用するのが強い接着剤接合の標準的前処理法とされている。要するにエッチングによる接着力向上に注目する以前に、アルミニウム合金表面の腐食や変質を防止することに主眼があった。
しかしながら、アルミニウム合金を苛性ソーダ水溶液でエッチングする方法が全く使用されていないわけではなく、塗装の為の前処理でよく使用されている。通常、塗装では極限的な接着力が求められるわけでもなく、風雨が当たる屋外使用用途でなければ水に浸ることもないとの判断による。加えて塗膜保証を10年とする等というような製品でなければ、この塗装前処理法も不合理ではない。本発明はこのような安易な考え方を前提とせず、長期的な接合安定性を重要課題とした。それ故、ナトリウムイオンの排除は最重要事項なのである。
アルミニウム合金に含有するナトリウム(Na)についても述べておく。アルミニウム金属の製法は、ボーキサイトを苛性ソーダ水溶液で溶解することで高純度のアルミニウム化合物を得、その電解還元によってアルミニウム地金を製造している。この製法上、アルミニウム地金にナトリウムが不純物として含まれることは避けられない。しかし現行の冶金技術は、アルミニウム合金中のナトリウム含量を極限まで抑えることが出来ている。それ故、酸塩基のミストがない通常環境において、昨今の市販アルミニウム合金では、直接的な濡れ(液体の水)が共存しないと腐食が進むことはない。実際、腐食が高速で進行するのは、濡れと潮風からの塩分(塩化ナトリウム)、及び陽光による加熱があるときである。即ち、市販のアルミニウム合金を、悪環境地域、例えば海岸近くに所在する都市で、潮風強く、かつ気温も高い地域の屋外で使用したとき、その腐食速度は速い。
この腐食対策は、一般にはその全表面を塗料、接着剤等で被覆する。そのとき、その塗膜や接着層に割れヒビ等が生じないことで必要であり、この割れヒビ等から、塩分を含む水が、アルミニウム合金の表面に侵入しないようにすることが重要である。そのような対策が為された場合、必ずしもアルミニウム合金の表面処理としては一般的なクロメート処理による必要はなく、塗膜耐候性が良くて塗膜/基材間の接着が良好であれば、塗装のみでも悪環境下にても十分に長持ちする。特に、昨今は6価クロムの使用が世界中で拒絶されつつあり、クロメート処理は既に好ましいアルミニウム合金表面処理法と言えない。その一方、現在では、耐候性に優れた塗料、耐湿性や耐熱性に優れた接着剤が多く市販されている。このような中、本発明者等は、塗料や接着剤とアルミニウム合金基材間の強い接合が、長期に維持されるためにアルミニウム合金側に求められる条件の最適化とその理論化を図ろうとした。
アルミニウム合金表面の好ましい粗度は、具体的には基本的に苛性ソーダ等の強塩基性水溶液によって得て、その後に酸性水溶液への浸漬と十分な水洗でナトリウムイオンを取り除く。ところが、電子顕微鏡で観察すると、苛性ソーダ水溶液でのエッチングで得られたアルミニウム合金表面の微細構造は、数十nm周期の超微細凹凸があり、硬化した接着剤が基材凹部から抜け難いとみられる面、即ち「NAT」仮説で求める好ましい超微細凹凸面であるに対し、そのアルミニウム合金を硝酸水溶液に浸漬水洗した後の表面は、超微細凹凸の品質レベル(凹凸の高低差)が低下していた。要するに、ナトリウムイオンを取り除く為の酸性水溶液へ浸漬操作が、一種の化学研磨になる。苛性ソーダ水溶液でのエッチング後のアルミニウム合金表面の電子顕微鏡写真を見た場合、感覚的な表現でいうと、ミクロの目で見た場合のザラザラ面となっており、このザラザラ面は酸性水溶液に浸漬した場合、化学研磨によりザラザラ度を低下せしめ、接着剤接合には逆効果になった。
そこでこのザラザラ度を、以下に述べる微細エッチングで取り戻すようにしたものである。要するに、本発明者等が本発明をするに至った経緯、思考、理論は、数nmの高解像度が得られる高性能電子顕微鏡が容易に使用できるようになったことにもよっている。又、本発明において、アルミニウム合金の耐候性耐食性の獲得は、得られた最終的なアルミニウム合金表面を酸化アルミニウム表層とし、且つ、合金基材への接着剤の接合力を極限に高めることで達成しようという考え方である。
前処理を終えたアルミニウム合金部品は、最終処理である以下のような表面処理、即ち微細エッチングを行う。前処理を終えたアルミニウム合金部品を、水和ヒドラジン、アンモニア、及び水溶性アミン化合物のいずれか1つ以上を含む水溶液に浸漬し、その後水洗し、70℃以下で乾燥するのが好ましい。これは、前処理の最終処理で行う脱ナトリウムイオン処理によって表面がやや変化し、粗度は保たれるがその表面がやや円滑になったことに対する粗面の復活策でもある。水和ヒドラジン水溶液等の弱塩基性水溶液に、短時間浸漬して微細エッチングし、表面に10〜100nm径で同等高さ、又は深さの凹部若しくは突起のある超微細凹凸面で覆うようにするものであり、細かく言えば、ミクロンオーダーの凹凸の凹部内壁面に、40〜50nm周期の超微細凹凸が多数を占めるように形成し、電子顕微鏡写真で見た感覚を視覚的に言えばザラザラ度の高い面に仕上げるのが好ましい。
又、水洗後の乾燥温度を例えば100℃以上の高温にすると、仮に乾燥機内が密閉的であると、沸騰水とアルミニウム間で水酸化反応が生じ、表面が変化してベーマイト層が形成される。これは丈夫な表層と言えず好ましくない。乾燥機内の湿度状況は乾燥機の大きさや換気の様子だけでなく、投入するアルミニウム合金の量にも関係する。その意味で表面のベーマイト化を防ぐにはどの様な投入条件であれ、90℃以下、好ましくは70℃以下で温風乾燥するのが良好な結果を再現性良く得る上で好ましい。70℃以下で乾燥した場合、XPSによる表面元素分析でアルミニウムのピークからアルミニウム(3価)しか検出できず、市販のA5052、A7075アルミニウム合金板材等のXPS分析では検出できるアルミニウム(0価)は消える。
XPS分析は、金属表面から1〜2nm深さまでに存在する元素が検出できるので、この結果から、水和ヒドラジンやアミン系化合物の水溶液に浸漬し、その後水洗して温風乾燥することで、アルミニウム合金が持っていた本来の自然酸化層(1nm厚さ程度の酸化アルミニウム薄層)が微細エッチングでより厚くなったことが分かった。少なくとも自然酸化層と異なって、2nm以上の厚さのあることが分かったので、それ以上解明しなかった。即ち、アルゴンイオンビーム等でエッチングしてからXPS分析をすれば、10〜100nm程度のより深い位置での分析が可能であるが、ビーム自体の影響で深層のアルミニウム原子の価数が変化する可能性もあるとのことで、現時点でこの解析が困難と考えて本発明者等はこの考察を止めた。
他の表面処理方法によるアルミニウム合金表面の酸化アルミニウム層の形成について述べる。アルミニウム合金の耐候性向上のために行う表面処理法の一つに陽極酸化法がある。アルミニウム合金に陽極酸化を為した場合、数μm〜十数μm厚の酸化アルミニウム層が形成でき、耐候性は大きく向上する。陽極酸化処理直後の酸化アルミニウム層には、無数の20〜40nm径程度の穴の開口部が残されている。この状態、即ち未封孔アルマイト状態で接着剤の接合、又は塗料の塗布を行うと、接着剤、又は塗料が開口部から穴に若干入り込んで固化し、強いアンカー効果を発揮し、接着剤による接合では強い接合力を生むとされている。実際、航空機の組み立てでは、陽極酸化アルミニウム合金として、これに接着剤を塗布して異材質材等を接合することが知られている。
しかしながら、本発明者等はこの説に疑問を持った。即ち、陽極酸化アルミニウム合金同士をエポキシ系接着剤で強固に接合した一体化物のせん断破断試験を行った場合、本発明者等の破断試験によると、40MPa(40N/mm)以上の強い力で破断したサンプルはなく、且つ破断面を見ると、接着剤が破断するのではなく、陽極酸化層(酸化アルミニウム層)がアルミニウム合金基材から剥がれているものが殆どであった。ここで本発明者等の考察を言えば、「強い接合に必要な金属側の表面は、金属酸化物等セラミック質の高硬度の層でなければならないがその厚さは厚すぎてはならない。」というものである。陽極酸化物の表層は酸化アルミニウムであって、基材アルミニウム自身の酸化物ではあるが、表層はセラミック質で基材は金属だから互いに異物同士である。
セラミック質が厚ければ、必ず極限状態では物性の差異が現れて破断するはずである。それ故、金属酸化物層は薄い方が好ましく、且つ常識から、その金属酸化物はアモルファスか微結晶状態のセラミック質であると基材との接合が万全で好ましいはずと考えた。即ち、接着物のせん断破断力を強烈なものにするには、むやみに酸化金属層を厚くすべきでなく、陽極酸化を為した未封孔アルマイトの使用は好ましくないという結論である。
以下、本発明でいう微細エッチングについて更に詳細に述べる。水和ヒドラジン、アンモニア、又は水溶性アミン等の水溶液で、PH9〜10の弱塩基性水溶液に適当な温度、適当な時間だけ浸漬すると、その表面は直径10〜100nmの超微細凹凸形状で全面が覆われたものとなる。数平均の直径で言えば50nm程度である。又、逆の言い方をすれば、表面に直径10〜100nmの超微細凹凸形状を得るためには、最適なPH、温度、時間を選択すると良いということである。本発明者等が予想している最も好ましい超微細凹凸の周期、又は超微細凹凸部の直径は、50〜100nm、特に50〜70nm程度であろうと経験的に考えている。その理由は、10nm周期の凹凸なら、ザラザラ面というよりも凹凸具合が微細に過ぎて粘性ある接着剤にとっては円滑面であり、又、100nm以上であれば、ザラザラ面というには大まか過ぎて引っかかるという表現が適切ではなく、凹凸の数自体が少ないからである。なお、本発明でいう「数平均」とは、統計的に検証出来る程度の総和平均ではなく、20個以内のサンプルを抽出した程度の平均値をいう。
上述した50〜70nmという範囲は、試行錯誤を行い、多数の実験結果から推定した数値である。しかし、単に50〜70nmの周期を目指すとしても、化学反応でそのような規律正しいものが出来るはずがなく、バラついたものになる。電子顕微鏡で撮影した写真を見て数値化するしかなく、その結果から言えば、直径10〜100nmで同等の深さの凹部、又は直径10〜100nmで同等の高さの凸部でほぼ全面が覆われた超微細凹凸形状であれば良い。実験結果では、直径10〜20nmの凹凸が表面の大部分を占める場合、又、逆に直径100nm以上の凹凸が多きを占めるような場合には接合力は劣ったものとなった。後述する例では、A7075材やA5052材を水和ヒドラジンの水溶液でエッチングした例を記す。
即ち、このような大きさの凹部や凸部でアルミニウム合金を覆うようにするには、試行錯誤した実験による浸漬条件を探索する必要がある。一水和ヒドラジンの3.5%濃度の60℃の水溶液で言うと、A5052、A7075材の浸漬では浸漬時間を2分間程度とするのが最適であり、この浸漬時間による表面は10〜100nm直径、数平均では直径40〜50nmの凹部で全面が覆われる。しかしながら、4分間浸漬した場合、凹部の直径が拡大して80〜200nmのものとなり、これらの凹部の直径の数平均値では100nm径を超えるように急拡大し、凹部の底部にも更に凹部が発生してその構造が複雑化する。更に、8分間浸漬すると、横穴状の侵食も進んでややスポンジ状になり、更に深い凹部が繋がって谷や峡谷状に変化する。16分浸漬すると、目視でもアルミニウム合金が元の金属色からやや褐色かかって可視光線の吸収具合が変化し始めたことが分かる。
ちなみに前述した条件で浸漬時間が1分間のときは、電子顕微鏡写真で10〜40nm径の凹部が観察され、これらの数平均直径は25〜30nmの凹部であった。更に、0.5分間の浸漬であると、表面を覆う凹部の直径は10〜30nmであり、これらの数平均直径で言えば25nm程度で、浸漬時間1分の場合と大差がない。そして浸漬時間0.5分の物と、浸漬時間1分の物の電子顕微鏡写真をよく見比べてみると、凹部の深さは0.5分間浸漬したものが1分間浸漬したものより明らかに浅い様子であった。要するに、弱塩基性水溶液中のA5052、A7075では、何故か20〜25nm周期で侵食が始まり、まずこれが直径20nm程度の凹部を作り、この凹部の深さが直径と同レベルまで深くなったら、その後は凹部の縁が侵食されて凹部直径の拡大となり、凹部の内部の不定方向への侵食が始まることが分かった。そのように侵食された場合、最も接着剤接合に適した単純で且つ丈夫な侵食具合は、A7075、A5052を3〜5%一水和ヒドラジン水溶液(60℃)に浸漬した場合で、ほぼ2分間であった。
例えば、温度23℃で粘度40Pa・秒の1液性高温硬化型エポキシ系接着剤「EP106(セメダイン株式会社(日本国東京都)製)」を使用した場合について説明する。実施例で示す接着実験の結果から言えば、前記条件で水和ヒドラジン水溶液に1分浸漬したA7075等のアルミニウム合金材の場合では、数平均で超微細凹部の直径が25nm程度と小さ過ぎてエポキシ樹脂がこの超微細凹部に侵入し難いようであり、浸漬時間を2分にした場合の接着力が最大になるようであった。前記条件でA7075等を2分間浸漬した場合、超微細凹部の直径は数平均の直径で40nm程度になったので、このエポキシ樹脂はこの程度以上の超微細凹部であれば、この超微細凹部内に頭を突っ込み得るのだろうと推定された。
要するに、ミクロンオーダーの凹部の内面が数十nm周期の凹凸あるザラザラ面であると、接合力が高くなるのである。又、前述した浸漬時間が2分間以上、例えば4分間、8分間と長くなると凹部径が大きくなるだけでなく、凹部の中にまた凹部が出来、簡単に言えばスポンジ状になってきて、アルミニウム合金表面層自体の強度が弱くなるだけでなく、深く複雑な穴の奥まで接着剤が侵入できないのである。この結果、接合物の接合境界部に空隙部が増え、結果として接合力が最大値より低下する。要するに、前記のエポキシ系接着剤をA7075等のアルミニウム合金に使用する場合、その接合力を最高にするには、ミクロンオーダーの適当な粗度とするに加え、その表面を数平均値で40〜50nm直径の超微細凹部で覆うことが好ましく、この超微細凹部を作るための最適な浸漬時間の範囲は非常に狭いことが理解できる。前述した2分間前後(概ね1.5分〜3分)の浸漬時間の場合に、最善の接合結果が得られたからである。
A5052のアルミニウム合金に対して同じエポキシ系接着剤を使用した場合、苛性ソーダ水溶液によるエッチング時の浸漬条件はA7075に対する場合と若干異なる。これは侵食具合や、その侵食された表面の物性が当然だが異なるからと考えられる。
アンモニア水はヒドラジン水溶液よりもPHが低いし、水溶液を常温より高温にするとアンモニアの揮発が激しくなる。それ故に高濃度、低温での浸漬処理となり、25%濃度程度の最も濃いアンモニア水を常温で使用する場合も15〜20分の浸漬時間が必要となる。逆に水溶性アミン類の多くは、ヒドラジン水溶液よりも強い塩基性水溶液となるのでより短時間での処理となる。量産処理では浸漬時間が長過ぎても短きに過ぎても作業の安定性が失われる。その意味で最適浸漬時間を数分にできる水和ヒドラジンが実際の使用には適しているように思われる。
何れの場合も、水和ヒドラジン、アンモニア、又は水溶性アミンの水溶液への浸漬の後で、数%濃度の過酸化水素水溶液に浸漬した場合に接合力が向上する合金種があった。表面の酸化金属層の厚さが厚くなっているのかもしれないが、厚さ2nm以上について分析が難しく理論的には解明出来なかった。
(マグネシウム合金の表面処理)
マグネシウム合金は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂を除くのが好ましい。具体的には、市販のマグネシウム合金用脱脂材を、薬剤メーカーの指定通りの濃度で湯に投入して水溶液を用意し、これに浸漬した後、これを水洗するのが好ましい。通常の市販品では、一般的には濃度5〜10%、液温を50〜80℃とし、これに5〜10分浸漬する。次に、マグネシウム合金を酸性水溶液に短時間浸漬する化学エッチングを行い、水洗する。脱脂工程で除き切れなかった汚れを含めマグネシウム合金表層が剥がされ、同時にミクロンオーダーの粗度、即ち、走査型プローブ顕微鏡観察測定によるJIS規格(JISB0601:2001(ISO 4287))で言えば、粗さ曲線の平均長さ(RSm)が0.8〜10μm、粗さ曲線の最大高さ粗さ(Rz)が0.2〜5μmの凹凸がある面にする。
上記で行う化学エッチング用の使用液としては、1%〜数%濃度のカルボン酸や鉱酸の水溶液、特にクエン酸、マロン酸、酢酸、硝酸等の水溶液が好ましい。化学エッチングでは、通常マグネシウム合金に含まれるアルミニウムや亜鉛は、溶解せず黒色のスマットとしてマグネシウム合金表面に付着残存するから、次に弱塩基性水溶液に浸漬してアルミニウムスマットを溶解して除き、次に強塩基水溶液に浸漬して亜鉛スマットを溶解して除くのが好ましい。
このようにしてスマットを溶解排除したマグネシウム合金を、所謂、化成処理する。即ち、マグネシウムは、イオン化傾向の非常に高い金属であるから空気中の湿気と酸素による酸化速度が他の金属に比べて速い。マグネシウム合金には、自然酸化膜があるが耐食性の点から見て十分強いものではなく、通常の環境下でも自然酸化膜を拡散した水分子や酸素で酸化腐食が進行する。それ故、通常のマグネシウム合金は、クロム酸や重クロム酸カリ等の水溶液に浸漬して酸化クロムの薄層で全面を覆う(クロメート処理と呼ばれる)か、又はリン酸を含むマンガン塩の水溶液に浸漬して、リン酸マンガン系化合物で全面を覆う処理を行って、腐食防止処置を行う。これらの処置をマグネシウム業界では化成処理と呼んでいる。
要するに、マグネシウム合金に行う化成処理とは、金属塩を含む水溶液にマグネシウム合金を浸漬して、その表面を金属酸化物及び/又は金属リン酸化物の薄層で覆う処置を言う。現在では、6価のクロム化合物を使用するクロメート型の化成処理は環境汚染の観点から忌避されており、ノンクロメート処理と言われるクロム以外の金属塩を使用した化成処理、実際には、前記したリン酸マンガン系化成処理、又は珪素系化成処理が行われる。本発明ではこれらの方法と相違して、弱酸性とした過マンガン酸カリの水溶液を、化成処理用水溶液として使用するのが特に好ましい。この場合、表面を覆う皮膜(化成皮膜という)は、二酸化マンガンとなる。
具体的な処理法としては、上述したようにスマットを溶融したマグネシウム合金を非常に希薄な酸性水溶液に短時間浸漬した後、これを水洗し、表層の塩基性成分を除く。その後に化成処理用水溶液に浸漬して水洗し、乾燥する方法が好ましい。前記の希薄な酸性水溶液として、クエン酸やマロン酸の0.1〜0.3%の水溶液を使用するのが好ましく、常温付近で1分程度浸漬するのが好ましい。化成処理用水溶液としては、過マンガン酸カリを1.5〜3%、酢酸を1%前後、及び酢酸ナトリウムを0.5%前後含む水溶液を、温度40〜50℃で使用するのが好ましく、この水溶液では浸漬時間は1分程度が好ましい。これらの操作により、マグネシウム合金はニ酸化マンガンの化成皮膜で覆われたものとなり、その表面形状は、ミクロンオーダーの大きな粗度(粗さ面)を有し、且つ電子顕微鏡で観察するとナノオーダーの超微細凹凸あるものとなる。
図7及び図8は、それぞれ10万倍の超微細凹凸形状の電子顕微鏡写真である。これらの超微細凹凸形状を、文章表現で表現するのは困難であるが、敢えて言えば、図7の電子顕微鏡写真からは、5〜20nm径で20〜200nm長さの棒状、又は球状物のような無数に錯綜した凹凸で表面が覆われている超微細凹凸形状と言える。図8の電子顕微鏡写真からは、この超微細凹凸形状は、5〜20nm径で10〜30nm長さの棒状、又は球状のような突起が無数に生えた直径80〜120nmの球状物が、不規則に積み重なったような形状の表面を呈している。約10nm径の棒状(針状)物質は、電子顕微鏡観察から言えば完全に結晶であると言うべきだが、X線回折装置(XRD)からはマンガン酸化物で見られる回折線は認められなかった。
X線回折装置(XRD)は、結晶の量が少ないと検出できないので、今のところこれらが結晶であるか否かの判断はできない。少なくとも、これらがアモルファス(非結晶)というには形が整い過ぎており、これがアモルファスとは言えない。なお、XPS分析からは、マンガン(イオンであり0価のマンガンではない)と酸素の大きなピークが認められ、表層はマンガン酸化物であることは間違いない。この表面は、色調が暗色であり、二酸化マンガンが少なくとも主体のマンガン酸化物である。
又、前記と全く異なる超微細凹凸形状として、直径20〜40nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地の斜面にあるようなデコボコ形状の地面のような超微細凹凸形状で、ほぼ全面が覆われている場合もある。要するに、5〜20nm直径の棒状物が認められない場合には、このような溶岩台地の表面のような形状になることが多く、組成的にはアルミニウム含量の多い場合である。この表面の一例の写真を図9に示したが、これは鋳造用マグネシウム合金であるAZ91Dの処理例である。
(銅合金の表面処理)
銅合金は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂をその表面から除去するのが好ましい。具体的には、市販の銅合金用脱脂材を薬剤メーカーの指定通りの濃度で水に投入して水溶液を用意し、これに浸漬し水洗するのが好ましい。また、市販の鉄用、ステンレス用、アルミ用等の脱脂剤、更には工業用、一般家庭用の中性洗剤を溶解した水溶液も使用できる。具体的には、市販脱脂剤や中性洗剤を数%〜5%濃度で水に溶解し、50〜70℃とし5〜10分浸漬し水洗するのが好ましい。
次に、銅合金を40℃前後に保った数%濃度の苛性ソーダ水溶液に浸漬した後に水洗する予備塩基洗浄をするのが好ましい。更に、銅合金を過酸化水素と硫酸を含む水溶液に浸漬する化学エッチングを行い、水洗する。この化学エッチングは、20℃〜常温付近の、硫酸、過酸化水素の両方を共に数%含む水溶液が好ましい。このときの浸漬時間は、合金種によって異なるが、数分〜20分である。この化学エッチング工程で、殆どの銅合金でミクロンオーダーの好ましい粗度、即ち走査型プローブ顕微鏡で解析してJIS規格(JIS B 0601:2001(ISO 4287))でいう粗さ曲線の平均長さ(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜10μmである、粗さ面を有する銅合金となる。好ましくは、最大高さ粗さ(Rz)が0.2〜5μmであると良い。
しかしながら、特に純銅系の銅合金で言えることだが、前述した化学エッチングの結果で得られる粗面は、凹凸周期が10μm以上になることも多く、その平均値、RSmは純銅系以外の銅合金に比較して大きい。一方、そのRSmの大きい割りには凹凸高低差が小さい。特に、銅分が高純度であるC1020(無酸素銅)等、金属結晶粒径の大きいことが明らかなもので、前述したような周期の大きな粗さ曲線を与えることが明らかに多く、凹凸周期と金属結晶粒径の大きさに直接的な相関関係があると推定された。純銅系合金だけでなく、各種合金で行う化学エッチングでも、その多くは結晶粒界から侵食が始まることに起因するからであろうと推定される。何れにせよ、ミクロンオーダー周期の凹凸があっても、その周期の割に凹凸の高低差が小さいと、本発明の効果が発揮され難い。それ故、大きな凹凸の荒さがが不足していると感じたものについては、後記するがそれなりの処理法を実施するのが好ましい。
上記化学エッチング工程を経た銅合金を酸化する。電子部品業界では黒化処理と呼ばれている方法が知られているが、本発明で実施する酸化は、その目的と酸化程度が異なるものの工程そのものは同じである。化学的に言えば、銅合金の表面層を強塩基性下で酸化剤によって酸化する。銅原子を酸化剤でイオン化した場合に、周りが強塩基性であると水溶液に溶解せず黒色の酸化第2銅になる。銅合金製部品をヒートシンクや発熱材部品として使用する場合、表面を黒色化して輻射熱の放熱や吸熱での効率を上げるために為されているが、この処理を、銅を使用する電子部品業界では黒化処理と呼んでいる。本発明の表面処理にもこの黒化処理法が利用できる。但し、この黒化処理の目的は、一定の粗さを有する銅合金の表面にナノオーダーの超微細凹凸を形成し 且つ表層を硬質とすることにある(即ち微細エッチング及び表面硬化処理を行うこと)であるから、文字通り黒色化することではない。
市販の黒化剤を、市販メーカーの指示する濃度、温度で使用できるが、その場合の浸漬時間は所謂黒化時よりずっと短時間である。実際には得られた合金を、電子顕微鏡観察して浸漬時間を調整することになる。具体例としては、亜塩素酸ナトリウムを5%前後、苛性ソーダを5〜10%含む水溶液を、60〜70℃として使用するのが好ましく、その場合の浸漬時間は0.5〜1.0分程度が好ましい。これらの操作により、銅合金は酸化第2銅の薄層で覆われたものとなり、その表面は、ミクロンオーダーの粗度を有し、且つ電子顕微鏡で観察すると、その粗面には直径が10〜150nmの円穴、又は長径ないし短径が10〜150nmの楕円状の穴が形成される。
そして、この円形状の穴、又は楕円状の穴である孔開口部が、30〜300nm周期で全表面に存在する超微細凹凸形状となる(この例を図10の写真で示した。)。要するに、この表面硬化処理を行うと、超微細凹凸形成と表面硬化層の双方が同時に得られることになる。又、前記の処理液への浸漬時間を2〜3分にするなど長くし、表面硬化処理をし過ぎることは結果的に分かったことであるが、返って接合力を弱くし、好ましくない。
前述した純銅系銅合金のエッチングでは、観察結果から金属結晶粒界から銅の侵食が起こるのが確実な模様であり、前述したように結晶粒径の特に大きいもの、即ち、無酸素銅(C1020)では、前述した化学エッチングと表面硬化処理をしただけでは強い接合力を発揮できなかった。要するに、最も重要なサイズの凹部が予期したように出来上がっていないのである。
本発明者等は、このような場合の処置法を発見した。結果は非常に単純な方法であるが、一旦表面硬化処理(黒化)を終えた後のものを、再度エッチング液に短時間浸漬して再エッチングし、その後に再度の黒化をする方法である。結果的に、ミクロンオーダーの粗さの周期は、10μm程度か、それ以下に近づけられて予期したようなものとなり、且つ、超微細凹凸の様子は電子顕微鏡観察によると繰り返し処理をしない場合と変わらない。
(チタン合金の表面処理)
チタン合金部品は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂を取り除くのが好ましい。特殊なものは必要でなく、具体的には、市販の鉄用脱脂剤、ステンレス用脱脂剤、アルミニウム合金用脱脂材、マグネシウム合金用脱脂剤等の一般的な脱脂剤を、その薬剤メーカーの指定通りの濃度で湯に投入して水溶液を用意し、これに浸漬し水洗するのが好ましい。更には、市販されている工業用中性洗剤で、数%濃度の水溶液を作成し、この温度を60℃前後にして浸漬した後、これを水洗するのも好ましい。次に、塩基性水溶液に浸漬して水洗し、予備塩基洗浄することが好ましい。
次に、還元性の酸の水溶液に浸漬して化学エッチングするのが好ましい。具体的には、蓚酸、硫酸、弗化水素酸等が、チタン合金を全面腐食させ得る還元性酸と言え、これらを使用できる。効率から言えば、このうちエッチング速度が速いのは弗化水素酸である。ただし弗化水素酸は、万が一にも人間の肌に触れると侵入して骨に至り、奥深い痛みが数日続くことがある。要するに塩酸等と異なる問題があり、労働環境面からこの酸は使用を避けるほうが好ましい。
好ましいのは、弗化水素酸より遥かに安全な扱いができる弗化水素酸の半中和物の1水素2弗化アンモニウムである。1水素2弗化アンモニウムの1%前後の水溶液を、温度50〜60℃として、これに数分浸漬した後、水洗する処理方法が好ましい。1水素2弗化アンモニウム水溶液による化学エッチングは、ミクロンオーダーの粗度(粗さ面)を得るために行ったが、電子顕微鏡観察や最新分析機器による観察では、化学エッチング後の水洗と乾燥によりチタン合金表面は、不思議な形状の超微細凹凸形状となり、且つ、表面は酸化チタン薄層で覆われたものとなることが分かった。要するに、特段の微細エッチング工程、表面酸化工程等の表面処理は、不要であり、行わなくても良いようであった。
1水素2弗化アンモニウム水溶液でエッチングし、水洗し、更にこれを乾燥したチタン合金の分析例を示す。まず走査型プローブ顕微鏡による走査解析結果を得た。ここでは20μm角の正方形面積内を走査して、粗さ曲線の平均長さ(輪郭曲線要素の平均長さ)RSmが、1.8μm、最大高さ粗さ(輪郭曲線の最大高さ)Rzは、0.9μが得られた。又、同じ処理をした物の1万倍、10万倍電子顕微鏡写真の例を図14(上:1万倍、下:10万倍)に示した。ここでは、高さ及び幅が10〜300nm、長さが10nm以上の山状又は連山(山脈)状凸部が10〜350nm周期で、全表面に存在する非常にユニークで不思議な超微細凹凸形状が示された。
又、XPS分析によると、大きな酸素、チタンのピークが得られ表面の化合物は明らかに酸化チタンであることが分かった。ただ表面色調は暗褐色であり、チタン(3価)酸化物か、又はチタン(3価)とチタン(4価)の混合酸化物の薄膜とみられた。即ち、エッチング前は金属色であり、この表面はチタンの自然酸化層であるが、1水素2弗化アンモニウム水溶液でエッチングした後は、自然酸化層でない暗色の酸化チタン層に変化した。この酸化チタン層をアルゴンイオンビームで十〜数十nmエッチングし、エッチング後の面をXPS分析した。このXPS分析で、チタン酸化物層の厚さが判明したが、この厚さは明らかに自然酸化層の厚さより厚く、1水素2弗化アンモニウム水溶液による純チタン系のチタン合金エッチング品では50nm以上とみられた。
しかも表面から内部に向かってチタンイオンの価数が減少しており、表面の4価又は3価と4価の混合状態から内部に向かって2価が増え、更に2価が減って0価の金属に至ることが分かった。要するに、チタン酸化物である酸化膜は単純なチタン酸化物層でなく、チタン価数が表面から連続的に減ってゼロ価に達したような連続変化層であり、別の表現では、まるで酸素が表面から染み込んだように、表面は濃く内部に向かって薄くなる興味ある連続変化層であることが分かる。このような金属酸化膜では金属相との間にはっきりした境がないため、酸化膜層と金属基材間の接合力は非常に強力で、その耐引き剥がし破壊(応力)力に関しては何ら心配することのないことが予期できる。
純チタン系合金以外のチタン合金の具体的な処理法は、前述した処理法と同様であるが、還元性の強酸水溶液によるエッチング時に生じる発生期の水素ガスによって、少量添加物として含まれている他金属が還元されて不溶物、いわゆるスマットを生じることがある。スマットの多くは、その後に数%濃度の硝酸水溶液に浸漬することで溶解除去することができる。但し、合金によっては硝酸水溶液に溶解せぬスマットも生じ、その様な場合はその水洗時に超音波をかけて洗浄するのが好ましい。
純チタン系チタン合金以外の合金を、一水素二弗化アンモニウムでエッチングし、スマット除去したものの表面形状は、前述した図14の写真に比較し、その表面形状を言語表現することが難しい表面形状になる。アルミニウムを含有するα−β型チタン合金の例を、図15の写真に示す。ここにはチタン合金らしい(図14に似た)超微細凹凸がない綺麗な山か丘の斜面状部分も観察されるが、植物の枯葉のような形状の不思議な形状が観察された。この表面全体は、前述した第2の条件として好ましい10〜300nm周期の超微細凹凸で覆われているというものではなく、より周期の大きいもの(「微細凹凸」と呼ぶ)が観察され、この微細凹凸自体が滑らかであった。
しかしながら、この表面中の、円滑なドーム状部分は別として、枯葉形状部は薄くて湾曲しており、これに硬度があれば強力なスパイク形状となる。α−β型チタン合金表面は、前述したNAT理論における第2の条件(5nm〜500nm周期の超微細凹凸)に合致しない部分が殆どだが、このスパイク形状によって第2の条件で求めている超微細凹凸の役割を果たしうると考えられる。この表面のスパイク形状は大きいため、むしろNATで求めている第1の条件で要求するミクロンオーダーの粗度(表面粗さ)にも関係してくる。このスパイク形状によって、走査型プローブ顕微鏡で見て、第1の条件(山谷平均間隔(RSm):0.8〜10μm,最大高さ粗さ(Rz):0.2〜5μm)を満たす粗度面が形成されている。なお、第2の条件からやや外れて凹凸周期が大きいので、10万倍の電子顕微鏡写真では表面の全体像を掴むことができない。表面観察は、1万倍以下の倍率写真を撮って観察した。即ち、図15のように1万倍の電子顕微鏡で見て、少なくとも10μm角以上の面積を見ることである。そうすれば、円滑なドーム形状と湾曲した枯葉形状の双方が存在する微細凹凸形状が観察される。
(ステンレス鋼の表面処理)
各種ステンレス鋼は、耐食性を向上すべく開発されたものであるから耐薬品性は明確に記録されている。腐食には全面腐食、孔食、疲労腐食等の種類があるが全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献の記録(例えば「化学工学便覧」、第6版、化学工学会編、丸善 (1999))によれば、ステンレス鋼全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、ハロゲン化金属塩等の水溶液で、全面腐食するとの記録がある。多くの薬剤に耐食性があるステンレス鋼の残された弱点は、ハロゲン化物に腐食されることであるが、炭素含有量を減らしたステンレス鋼、モリブデンを添加したステンレス鋼等ではその弱点が小さくなっている。
しかし、基本的には前述した水溶液で全面腐食を起こすので、ステンレス鋼の種類によって、その浸漬条件を変化させればよい。更には、焼き鈍し等で硬度を下げ、構造的に言えば金属結晶粒径を大きくした物は結晶粒界が少なくなっており、全面腐食させてミクロンオーダーの凹凸を得るのが困難である。このような場合、浸漬条件を変えて腐食が進行するような条件にするだけでは、エッチングが意図したレベルまで中々進まず、何らかの添加剤を加えるなどの工夫が必要である。何れにせよ、ミクロンオーダーの粗度面が大部分を占めるようにすることを目的として化学エッチングする。
具体的に言えば、特殊な脱脂剤は必要ではなく、市販されている一般的なステンレス鋼用の脱脂剤、鉄用の脱脂剤、アルミニウム合金用脱脂剤、又は市販の一般向け中性洗剤を入手し、これらの脱脂剤メーカーの説明書に記載された指示通りの水溶液の濃度、又は数%濃度で、温度40〜70℃の水溶液にして、処理したいステンレス鋼を5〜10分浸漬し水洗する。これは言わば脱脂工程である。次に、このステンレス鋼を数%濃度の苛性ソーダ水溶液に短時間浸漬した後に、これを水洗して、この表面に塩基性イオンを吸着させるのが好ましい。この操作で、次の化学エッチングが再現性よく進むからである。これは言わば予備塩基洗浄工程である。次にエッチング工程に入る。
SUS304であれば、10%濃度程度の硫酸水溶液を温度60〜70℃として、これに数分間浸漬する方法が好ましく、この処理方法により、本発明で要求するミクロンオーダーの粗度が得られる。又、SUS316では、10%濃度程度の硫酸水溶液を温度60〜70℃として5〜10分間浸漬するのが好ましい。ハロゲン化水素酸、例えば塩酸水溶液もエッチングに適しているが、この水溶液を高温化すると酸の一部が揮発し、周囲の鉄製構造物を腐食する恐れがあるほか、局所排気しても排気ガスに何らかの処理が必要になる。その意味で硫酸水溶液の使用がコスト面で好ましい。ただし、鋼材によっては、硫酸単独の水溶液では全面腐食の進行が遅すぎる場合がある。このような場合、硫酸水溶液にハロゲン化水素酸を添加してエッチングすることは効果的である。
前記の化学エッチングの後に、十分水洗することでステンレス鋼の表面は自然酸化し、腐食に耐える表層に再度戻るため、特に硬化処理は行う必要がない。しかし、ステンレス鋼表面の金属酸化物層を厚く、強固なものにするべく、酸化性の酸、例えば硝酸等の酸化剤、即ち、硝酸、過酸化水素、過マンガン酸カリ、塩素酸ナトリウム等、の水溶液に浸漬した後、これを水洗するのが好ましい。
エポキシ系接着剤接合試験を行って接合力の高い物を選び、これを電子顕微鏡観察し、超微細凹凸形状が存在すること、及びその形状を確認するのが好ましい。勿論、先に電子顕微鏡観察をしてから接合試験を行っても良い。何れにせよ、数十nm〜百nm周期の超微細凹凸、好ましくは、50nm程度の周期の超微細凹凸形状が、確実に存在する微細構造表面を有するステンレス鋼では、高い接合力を有するはずである。
実際に、ステンレス鋼を硫酸水溶液で化学エッチングした例を示す。適切なエッチングにより前記したような粗度面(表面粗さ面)が得られ、この粗度面は粗度計(表面粗さ計)、走査型プローブ顕微鏡等を用いた観察で確認できるが、更に表面を電子顕微鏡観察すると非常に興味ある超微細凹凸形状を有した面で覆われていることが分かる。要するに、ステンレス鋼では、上記のような化学エッチングだけで微細エッチングも同時に達成される。この表面を電子顕微鏡写真で説明する。図16では、直径20〜70nmの粒径物、不定多角形状物等が積み重なった形状が認められ、この1万倍写真(図16上段)、及び10万倍写真(図16下段)の観察写真も、まるで火山周辺で溶岩が流れて形成される溶岩台地の斜面のガラ場に酷似していた。
又、エッチング面である超微細凹凸形状で覆われたステンレス鋼をXPS分析すると、酸素、鉄の大きなピークと、ニッケル、クロム、炭素、モリブデンの小さなピークが認められた。要するに、表面は通常のステンレス鋼と全く同じ組成の金属の酸化物であり、同様の耐食面で覆われているとみられた。なお、ここで化学エッチング手法を取ることの重要性について述べておく。どのような手法であっても、前述した表面形状になればよいのであるが、何故化学エッチングかということである。昨今の、光化学レジストを塗布し可視光線、紫外線等を使って行うような高度の超微細加工法を使用すれば、設計した超微細凹凸形状面が実現可能になると考えられる。
しかし化学エッチングは、操作が簡単であるという以外に、射出接合及び接着剤接合に特に好ましい理由がある。即ち、化学エッチングを適切な条件で行うと、適当な凹凸周期、適当な凹部の深さが得られるだけでなく、得られる凹部の微細形状は単純形状とはならず、凹部の多くはアンダー構造になるからである。本発明でいうこのアンダー構造とは、凹部をその垂直面上から見た場合に見えない面があることであり、凹部の底からミクロの目で見たと仮定した場合に、オーバーハング箇所が見えるということである。アンダー構造が射出接合及び接着剤接合に必要なことは容易に理解できよう。
又、前記還元性酸水溶液によるエッチングの後、硝酸水溶液、過酸化水素水溶液等に浸漬して、金属酸化物層をしっかり作るべく追加処理も行ったが、電子顕微鏡写真で見た形状も接着剤により接合したときの接合力も、この追加処理の付加によって明確な差異はなかった。長期の耐候性試験をすれば、接合力に差が出てくるかもしれない。
(鉄鋼材の表面処理)
鉄鋼材の腐食には、全面腐食、孔食、疲労腐食等の種類が知られているが、全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。各種文献の記録(例えば、「化学工学便覧(化学工学協会編集)」)によれば、鉄鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記載がある。炭素、クロム、バナジウム、モリブデン、その他の少量添加物の添加量次第で、その腐食速度や腐食形態は変化するが、基本的には前述した水溶液で全面腐食を起こす。従って、基本的には鉄鋼材料の種類によって、その浸漬条件を変化させればよい。
具体的に言えば、まずSPCC、SPHC、SAPH、SPFH、SS材等のように市販され、かつよく使用される鉄鋼材では、この鉄鋼材用として市販されている脱脂剤、ステンレス鋼用の脱脂剤、アルミニウム合金用脱脂剤、更には、市販の一般向け中性洗剤を入手し、これらの脱脂剤メーカーの説明書に記載された指示通りの水溶液の濃度、又は数%濃度の水溶液にして、この温度を40〜70℃として5〜10分浸漬した後、これを水洗する(脱脂工程)。次に、エッチングを再現性よくするために希薄な苛性ソーダ水溶液に短時間浸漬した後、これを水洗するのが好ましい。この処理工程は、言わば予備塩基洗浄工程である。
次に、SPCCであれば、10%濃度程度の硫酸水溶液を50℃として、これに数分間浸漬してエッチングするのが好ましい。これは、ミクロンオーダーの粗度を得るためのエッチング工程である。SPHC、SAPH、SPFH、SS材では、前者より硫酸水溶液の温度を10〜20℃上げて実施するのが好ましい。ハロゲン化水素酸、例えば塩酸水溶液もエッチングに適しているが、この水溶液を使用すると、酸の一部が揮発し周囲の鉄製構造物を腐食する恐れがあるほか、局所排気しても排気ガスに何らかの処理が必要になる。その意味で硫酸水溶液の使用がコスト面で好ましい。
[表面処理方法I:水洗して強制乾燥する方法]
前述した化学エッチングの後に水洗して乾燥し、電子顕微鏡写真で観察すると、高さ及び奥行きが50〜500nmで、幅が数百〜数千nmの階段が無限段に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが多い。これは鋼材が一般に有するパーライト構造が露出したものとみられる。具体的には、前記の化学エッチング工程で硫酸水溶液を適当な条件で使用したとき、大きなうねりに相当する凹凸面が得られると同時に、微細で不思議な階段状の超微細凹凸形状を有する表面も同時に形成されることが多い。このようにミクロンオーダーの粗度と、超微細凹凸形状の作成が一挙に為される場合、前記エッチング後の水洗は特に十分行ってから水を切り、温度90〜100℃以上の高温で急速乾燥させたものは、そのまま使用できる。表面に変色した錆は出ず、綺麗な自然酸化層となる。
但し、自然酸化層のみでは一般環境下、特に日本国内のように高湿度、温暖環境下では、耐食性は不十分と思われる。おそらく、乾燥下に保管して接着工程にかけることが必要である上に、接着された複合体も経時的に十分な時間、接合力(接着力)を維持できるか疑問である。実際、屋根付きだが実質的に屋外に近い箇所に1ヶ月放置した後(日本国群馬県太田市末広町、2006年12月〜2007年1月)、破断試験をしたところ、やや接合力が低下していた。やはり実用的には、明確な表面安定化処理が必要のようである。
[表面処理方法II:アミン系分子の吸着を利用する方法]
前述の化学エッチングの後で水洗し、引き続いてアンモニア、ヒドラジン、又は水溶性アミン系化合物の水溶液に浸漬し、水洗し、乾燥する。アンモニア等の広義のアミン系物質は、前記エッチング工程後の鋼材に残存することが分かっている。正確に言えば、乾燥後の鋼材をXPSで分析すると窒素原子が確認される。それ故に、アンモニアやヒドラジンを含む広義のアミン類が、鋼材表面に化学吸着しているものだと理解したが、10万倍電子顕微鏡観察の結果で言えば、表面に薄い膜状の異物質が付着しているように見えるので、鉄のアミン系錯体が生じているのかもしれない。
更に具体的に言えば、アンモニア水に浸漬して得た鋼材と、ヒドラジン水溶液に浸漬して得た鋼材の10万倍の電子顕微鏡写真は、階段上に付着した薄皮状物質の形が異なるように見える。何れにせよ、これらアミン類の吸着又は反応は、水分子の吸着や鉄の水酸化物生成反応より優先しているようである。その意味で、少なくともエポキシ系接着剤との接合操作を行うまでの数日〜数週間は、水分の吸着とその反応による錆の発生を抑えられる。加えて、接着後の接着力の維持も前述した「表面処理方法I」より優れているものと予想している。少なくとも接合物を4週間放置したものでは接合力の低下はなかった。
使用するアンモニア水、ヒドラジン水溶液、又は水溶性アミンの水溶液の濃度や温度は、厳密な条件設定が殆ど必要ない。具体的には、0.5〜数%濃度の水溶液を常温下で用い、0.5〜数分浸漬し、水洗し、乾燥することで効果が得られる。工業的には、若干臭気があるが安価な1%程度濃度のアンモニア水か、臭気が小さく効果が安定的な水和ヒドラジンの1%〜数%の水溶液が好ましい。
[表面処理方法III:化成処理による方法]
前述した化学エッチングの後で水洗し、引き続いて6価クロム化合物、過マンガン酸塩、又はリン酸亜鉛系化合物等を含む酸や塩の水溶液に浸漬して水洗することで、鋼材表面がクロム酸化物、マンガン酸化物、亜鉛リン酸化物等の金属酸化物や金属リン酸化物で覆われて耐食性が向上することが知られている。これは、鉄合金、鋼材の耐食性向上の方法としてよく知られている方法であり、この方法も利用できる。ただ、真の目的は、実用上で完全と言えるような耐食性の確保ではなく、接着工程までに少なくとも支障を生じることがなく、接着後も一体化物に対してそれなりの耐食処理、例えば塗装等をしておけば、接着部分に経時的な支障を生じ難いレベルにすることである。要するに、化成皮膜を厚くした場合には、耐食性の観点からは好ましいだろうが、接合力で言えば好ましくないのである。化成皮膜は必要であるが、厚過ぎると接合力は逆に弱くなる、というのが本発明者等の見解である。
具体的な耐食の実施方法について延べる。化成処理液に三酸化クロムの希薄水溶液に浸漬して水洗、乾燥した場合、表面は酸化クロム(III)で覆われるとみられる。その表面は均一な膜状物で覆われるのではなく、10〜30nm径で同等高さの突起状物もほぼ100nm程度の距離を置いて生じていた。又、弱酸性に調整した数%濃度の過マンガン酸カリの水溶液も好ましく使用できた。
又、SPCCを、リン酸亜鉛系の水溶液に浸漬する化成処理をした表面を電子顕微鏡観察した。階段状の角部付近に主に異物が付着したような形状であり、且つ階段の平らな部分にも密度は低いが10〜30nm径の小さな突起が点在した形であった。いずれも水溶液を温度45〜60℃にして、前記SPCCを0.5〜数分浸漬し、水洗し、乾燥するのが高い接合力を得るには好ましく、それ故に化成皮膜は薄い。前記した化成処理剤による変化も、倍率の低い1万倍電子顕微鏡写真では確認出来るようなものではなかった。
[表面処理方法IV:シランカップリング剤]
耐食性、耐候性を鋼材に与えるために為す処理法として、多数の発明がなされ提案されており、その中にシランカップリング剤を吸着させる方法が知られている。シランカップリング剤は、親水性基と撥水性基を分子内に持たせた化合物であり、その希薄な水溶液に鋼材を浸漬し、水洗して乾燥させると、親水性のある鋼材表面にシランカップリング剤の親水性基側が吸着し、その結果として鋼材全体をシランカップリング剤の撥水基側が覆う形となる。シランカップリング剤が吸着したままエポキシ系接着剤を作用させた場合、硬化した接着剤と鋼材表面が作る数十nmレベルのごく薄い間隙内に、水分子が浸入して来た場合でも、鋼材を覆うシランカップリング剤の撥水基群により、水分子が鋼材に近づくことが抑制される可能性がある。
これらについては、前述した表面処理方法II、及び表面処理方法IIIと同様に、表面処理方法Iより耐食性に優れていると予期できるが、そのことを実証するには長期試験が必要である。本発明者等は、前述した表面処理方法I、表面処理方法II、表面処理方法III、及び表面処理方法IVの各方法を使用した各々の鋼材について、接着剤によって同種鋼材と接合した後、約1週間(平成2007年1月:日本国群馬県太田市の屋根付き建屋内)を経過した時のせん断破断力を計測した。その結果、いずれも初期とほぼ同等の強度だった。しかし、接合後、約4週間を経過したときのせん断破断力は、前記表面処理方法Iを使用したものは悪化した。より長期間の放置試験を行えば、どの方法が最も実用的なのか判明すると考えられる。ただし、実用面からいえば、鋼材は塗装して使用されるのが一般的であるから、非塗装物試験によって候補を選び、更にこれらの候補を塗装して長期環境試験を行う必要がある。
(亜鉛鍍金鋼板の表面処理)
亜鉛系鍍金鋼板の国内市販品は事実上4種類で、溶融亜鉛鍍金鋼板、電気亜鉛鍍金鋼板、亜鉛−55%アルミニウム合金鍍金鋼板(ガルバリウム鋼板)、亜鉛―11%アルミニウム−3%マグネシウム合金鍍金鋼板である。これらのうち、先ずは最も二次加工業者の扱うことが多い油材塗布クロメート処理付き溶融亜鉛鍍金鋼板の表面処理法について述べる。
この鋼板では、特に高温とした脱脂剤水溶液にやや長く浸漬し、その後に水洗し乾燥することで、元々あった油層かグリース層と思しき表層が消失し、新たな超微細凹凸面で構成される表層が出現した(電子顕微鏡による観察)。この新たな表層のXPS分析ではクロムが観察され、この表層がクロメート処理による層であることが分かった。即ち、表面は硬質相の薄層で覆われている状態にある。もし油層を除いたこの状態で、表面粗度がRSmで0.8〜10μm、Rzが0.2〜5.0μmの範囲であれば、そのまま射出接合や接着剤接合しても良い成績が得られるはずである。その場合、本発明者らが為す処理としては今までで最短となり、脱脂処理が、化学エッチング、微細エッチング、及び表面硬化処理の全てを兼ねたことになる。
勿論これは素材メーカーが溶融亜鉛鍍金鋼板に為した化成処理(ここではクロメート処理)が本発明にとって適当なレベルであり、元々の溶融亜鉛鍍金層の有した粗度レベルも偶然に本発明の要求する範囲に入っていたからである。更には、本発明者らが脱脂処理で使用した脱脂剤が、油剤のみを溶かし出しクロメート層に悪影響を与えない物であったことも効いている。この様な脱脂工程は、脱脂剤として鋼材、アルミ材用の市販の工業用脱脂剤が使用できるが、特にアルミ材用の脱脂剤が好ましく、且つ使用法として強く付着しているグリース状油剤や潤滑用特殊有機高分子材を脱離させる目的から、脱脂剤水溶液の液温を高温、例えば70℃以上にすることが望ましい。浸漬時間も5分以上が好ましいが、これは使用鋼板の脱脂後の状況を見て決めるべきである。脱脂槽に超音波発振端を付け、超音波を付加しつつ脱脂することで浸漬時間を短縮できる。
鋼板メーカーの化成処理法に捉われずに行うのも特に困難ではない。脱脂後に薄い硫酸水溶液等の酸性水溶液に浸漬することで化成処理層は剥がれ、亜鉛鍍金層の化学エッチングに進むから、そのエッチングレベルを調整してミクロンオーダーの粗度を獲得し、次いでクロメート処理、リン酸亜鉛型化成処理、又はリン酸亜鉛カルシウム型化成処理を薄く加えて超微細凹凸面を形成することが出来る。即ち、脱脂処理に続き化学エッチング、及び表面硬化処理を行う。この場合の表面硬化処理とは化成処理そのものであるが、微細エッチングを兼ねる。
実は、このような考えで実際に実験を重ねてみると更に省略ができ、表面硬化処理である化成処理が化学エッチングも兼ねられることが分かった。即ち、化成処理であるクロメート処理、リン酸亜鉛型化成処理、リン酸亜鉛カルシウム型化成処理の全ての処理液はPH1〜3の酸性水溶液であり、この中に脱脂工程後のクロメート処理付き亜鉛鍍金鋼板を浸漬したところ水素を発して全面腐食する様子が見てとれたのである。それ故、浸漬条件等を調節すればこの工程が化学エッチングを兼ねることもできると判断した。要するに、条件を選べば脱脂、表面硬化処理だけで全工程を終えることが出来る。
ただし、亜鉛アルミニウム合金鍍金鋼板の類では、上記の省略型処理で「NAT」理論で要求する表面にならぬ場合が多い。これらでは、化学エッチングとして、PH1〜3の酸性水溶液、具体的には硫酸、塩酸、等の安価で廃棄処理のし易い酸の希釈水溶液に浸漬して亜鉛アルミニウム合金相のエッチングを行う工程を加えるのが好ましい。即ち、ガルバリウム鋼板では、脱脂、化学エッチング、及び表面硬化処理の工程が必要となる。この鋼板でも表面硬化処理は所謂化成処理であり、その化成処理が超微細凹凸表面も作るので微細エッチングは省略できる。
表面硬化処理としての化成処理法について具体的に述べる。クロメート処理、リン酸亜鉛型処理、又はリン酸亜鉛カルシウム型処理が使用できると記したが、結果的に亜鉛相をセラミック質の薄膜で覆いつつ且つ超微細凹凸面となし、更に付け加えれば薄膜層と亜鉛相の間の接合力が十分に強いことを要するのである。そのような化成処理法として本発明者らは少なくともクロメート処理、リン酸亜鉛型処理、リン酸亜鉛カルシウム型処理が使用できることを示したものであり、上記要件を満たせば、その他の化成処理方法も使用可能である。
各化成処理について更に詳細に述べる。クロメート処理液として多くの方法が知られるが、特に3価クロムと6価クロムを含むリン酸酸性の水溶液が好ましい。また、クロメート層の生成に触媒的に効くのかは不明だが、若干量のニッケルイオンが共存している場合に低温での浸漬で好ましい表面となった。更に具体的に述べれば、硝酸クロムを1〜1.5%、無水クロム酸を0.3%前後、リン酸を1.5〜2%、塩基性炭酸ニッケルを0.01〜0.05%程度含む水溶液を40℃前後で使用するのが好ましい。
又、リン酸亜鉛型化成処理液としては、リン酸と2価の亜鉛に加えて若干量のニッケルイオンの共存が好ましく、更には珪弗化イオンの共存もよい性能を発揮するのに有効で好ましい。更に具体的に述べれば、リン酸を1〜1.5%、亜鉛華、塩基性炭酸ニッケル、及び珪弗化ナトリウムを各々0.2%前後含む水溶液を50〜60℃で使用するのが好ましい。
又、リン酸亜鉛カルシウム型化成処理液としては、リン酸と2価の亜鉛とカルシウムに加えて若干量のニッケルイオンの共存が好ましい。更に言えば、鋼材への化成処理液として優れているリン酸亜鉛カルシウム化成処理液は、通常80℃以上の高温でないと効果が出難いとされているが、本発明に使用する場合は60〜65℃で十分優れた結果が出た。電子顕微鏡観察で得た写真例は後述する実施例で示した。具体的に液組成について言えば、リン酸を1〜1.5%、亜鉛華、塩基性炭酸ニッケル、及び硝酸カルシウムを各々0.2%前後含む水溶液を使用するのが好ましい。
最終的に、走査型プローブ顕微鏡を使用した粗面の走査結果で、RSmが0.8〜10μm、Rzが0.2〜5μmの範囲に入り、且つ、5〜500nm周期の超微細凹凸面、より好ましくは30〜100nm周期の超微細凹凸面で表面が覆われていることを「NAT」理論において必要としている。もしRsmが0.8μm程度より小さいとき、凹凸周期が小さきに過ぎて射出接合であれ接着剤接合であれ樹脂分のしっかりとした進入がやや難しくなる。逆に、RSmが10μm以上であっても接合力が大きく落ちる。この場合は、凹部周期や穴径が大き過ぎて凹部の絶対数が減るのでアンカー効果が急減して接合力が低下する。
なお、射出接合においてRzの数値をRsmの約半分としているのは、凹凸周期の半分程度までの深さの凹部であれば、射出接合に本発明者らが使用している樹脂、即ち、改良されたPBT系樹脂組成物、PPS系樹脂組成物、芳香族ポリアミド系樹脂組成物であれば凹部の底まで侵入可能とみているからである。これは1気圧程度までの圧力差で侵入できる液状の1液性接着剤についても言えることである。Rzがもっと大きく、言わば凹凸の底が深い場合、前記した樹脂が奥まで入りきれずミクロンオーダー凹部の底部は空隙となって接合工程終了後も残存し、破壊に対して最も弱い相となる。要するに高い接合力が得られない。又、Rzが小さ過ぎると接合力を維持する役目の大部分を超微細凹凸が負うことになり、結局は接合力を落とすことになる。
前述した油材処理とクロメート処理付きの溶融亜鉛鍍金鋼板「Z18」を高温脱脂工程にかけて得た表面の観察結果では、走査型プローブ顕微鏡による10回の粗度測定でRsmが0.8〜3μm、Rz=0.3〜1μmに入り、前記「NAT」の一般論で述べている粗面から言えば、Rsm、Rzとも下限に近かった。一方、電子顕微鏡観察による超微細凹凸の凹凸周期は80〜150nmであり、好ましい超微細凹凸周期であった。また、超微細凹凸の形状自体がアンカー効果を生じ易い形状であり、ミクロンオーダーの凹凸周期は「NAT」理論に規定する範囲の下限付近であっても、十分高い接合力が得られる。
[不飽和ポリエステル系接着剤]
アルミニウム合金、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、一般鋼材、アルミ鍍金鋼板、及び亜鉛鍍金鋼板等の金属合金に対して、1液性エポキシ系接着剤を使用して被着材との接合体を得た場合には、非常に高い接着力を示す(特許文献7〜14)。本発明はこのような高い接着力を得られるのがエポキシ系接着剤だけに限らないことを示すものである。具体的には、常温下でのゲル化速度がゼロか又はごく小さくなるよう調整した不飽和ポリエステル系組成物を用い、更に現存の破壊理論を「NAT」に応用して充填材を工夫した。以下にその詳細を説明する。
熱硬化型不飽和ポリエステル系組成物の組成は、通常、(1)不飽和ポリエステル樹脂及び/又はビニルエステル樹脂、(2)液状ビニルモノマー、(3)硬化剤の有機過酸化物、及び(4)コバルト化合物等の硬化促進剤が含まれる。実際には2液性として使用し、主液には(1)及び(2)が混合されていて、これに(3)硬化剤を加え、混合使用するのが普通である。通常のGFRP製造時には硬化促進剤(4)も使用することが多い。
GFRP用の不飽和ポリエステル樹脂組成物に関しては、多数の解説書が出版されているのでここではその要点だけを示す。(1)の不飽和ポリエステル樹脂とは、無水マレイン酸、フマル酸等の不飽和二塩基酸、無水フタル酸、イソフタル酸、アジピン酸、エンド酸等の飽和二塩基酸と各種グリコールを混合脱水重合して得たアルキッド樹脂と称される一群である。又、ビニルエステル樹脂とは、エポキシ樹脂やフェノール樹脂の末端や中間部にメタクリル酸等を反応させてエステルとし一体化した物の一群である。
アルキッド樹脂もビニルエステル樹脂も分子量数千程度の固体又は高粘度液体であり、これを(2)液状ビニルモノマー(実際には多くでスチレンやα−メチルスチレンが使われる)に溶かすことで(1)(2)からなる所謂「不飽和ポリエステル主液」はやや粘性ある液体となる。
本来、硬化物とするための基本成分は、主液としての(1)及び(2)混合物と、硬化剤(高分子化学から言えば「重合開始剤」である)としての(3)有機過酸化物である。使用される有機過酸化物は、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイドを初め多種あり、昇温や(4)硬化促進剤の添加でこれらを分解してラジカルを生成し重合を開始する。重合が開始されると重合熱が発生し、これが更に有機過酸化物の分解や重合反応自体を加速する。FRP船の製作のように常温下でガラスマットやガラス布を巻き込みながら重合させて現場施工する場合には、数時間で固化するような高速反応が求められ、この場合には分解温度の比較的低い有機過酸化物と硬化促進剤の組み合わせが使用される。
本発明では基本的に重合が非常に低速であり、その結果、金属合金への塗布工程内にて接着剤組成物中にゲル(巨大分子)が少ない状態とし、接着剤組成物を、ミクロンオーダーの粗度に係る凹部壁面に形成された超微細凹凸にも1気圧程度の圧力で侵入可となることを求める。要するに「新NMT」「NAT」の基本的な考えは、液状樹脂が前記のような超微細凹凸に侵入した後で高硬度固化することが強力な接着接合を生むというものであるから、接着剤成分の早期のゲル化は接着力をそぐ。
それ故、不飽和ポリエステル樹脂及びビニルエステル樹脂が常温付近においては重合反応を実質的に開始しない硬化剤系を用いることが好ましく、具体的には(3)有機過酸化物としてキックオフ温度(熱分解開始温度)の高い物、例えば、ビス(1−ヒドロキシシクロヘキシル)パーオキサイド、ヒドロヘキシヘプチルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーベンゾエート、t−ブチルパーアセナート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、t−ブチルパーオキシベンゾエート、等が硬化剤の候補である。
これらの中でも特に好ましい有機過酸化物を選ぶに際し、参考になるデータを以下に示す。即ち、GFRPには後述するSMC、BMCを経由する成形法があり、これらは通常、(1)(2)の主液成分、(3)の硬化剤、更に(5)強化繊維(SMC、BMCではガラス短繊維であることが多い)、(6)その他充填材、を含んだコンパウンドをシート化する。
SMC、BMCではコンパウンドしてシート化してから直ぐに成形しない場合も多いので、短期間の室温下保管ではゲル化が僅かしか進行しないよう仕組まれている。このSMC、BMC用に使用される有機化酸化物は上記の内のt−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、t−ブチルパーオキシベンゾエートが通常使われる。よって、これらの使用は本発明に於いて特に好ましい。これら以外でも良いが、換言すると、主液に硬化剤を混ぜた後の、少なくとも常温下で1時間、好ましくは3時間ゲル化が始まらず、混合液に温度計を差していて全く液温の上がらないものが適している。当然だが、混合物を50〜80℃に昇温するとゲル化を始めるため、1液性エポキシ系接着剤やフェノール樹脂系接着剤と比較して温度管理は厳しく行う必要がある。
纏めとして、不飽和ポリエステル系接着剤としては、前記の(1)(2)(3)の混合物を必要とする。(4)の硬化促進剤は必ずしも必要でない。(5)の強化繊維も必ずしも必要でない。又、BMCで言う(6)の「その他充填材」とは、(1)(2)よりなる主液の粘度を上げてガラス繊維との分離が起こり難くする為の物で、カルシウムやマグネシウムの酸化物・水酸化物の粉末の使用を指すが、これらも必ずしも必要でない。前記(1)(2)よりなる不飽和ポリエステルとビニル系モノマーの混合物はGFRP用不飽和ポリエステル液として多種市販されており何れも使用できる。(3)の硬化剤も前述した物から選び、(1)(2)主液100部に対し、(3)有機過酸化物を0.5〜2部を常温で混合して使用する。
[充填材]
前記組成は接着剤に必須な熱硬化性樹脂としてのものに過ぎず、高い接着力を得る上で必要な成分は粉末充填材である。即ち、不飽和ポリエステル系接着剤は市販されていないがエポキシ系接着剤は多種が市販されており、これらには必ず無機充填材が含まれていて重要な役目を果たす。現在の破壊理論に従えば、物体が破壊される前段には応力集中箇所の何処かの微少な部分で局所破壊が先ず生じ、これがすぐ隣での応力集中を高めて局所破壊の連鎖を生じる。するとその周辺での応力集中度が更に高まりそこからやや離れた微小部分での破壊が生じたり、元々の破壊箇所の連鎖が継続したりして次々に破壊面積が広がり遂には明確な破壊に至るという考え方である。この理論に従えば、最初の微小部分の局所破壊を連鎖させず一旦停止させるのに壊れることにない塊の存在、即ち充填材の存在、が効くとの考え方になる。現に市販されているエポキシ接着剤には数μm〜数十μm径の無機充填材が含まれるが、これらは多くの試行錯誤が為された結果選ばれた物である。同じ考えを不飽和ポリエステル系接着剤に取り入れることは有効なはずである。
これに加え、本発明は「NAT」用の接着剤である。過去の接着剤から学んだ部分に加えて「NAT」での金属表面状況を想定し、接着剤用充填材に求められる条件を考察した。即ち、「NAT」による接合物が破壊されるときに最初に変異が生じる箇所を2箇所推定し仮説として置いた。一つは「NAT」理論で既に言っているミクロンオーダーの凹部の入口付近である。ここで壊れるのであれば本発明者らがエポキシ系接着剤による実験結果で既に証明したようにカーボンナノチューブ(以下「CNT(Carbon nano-tubeの略)」を添加することで強化できる(特許文献15)。CNT添加量はこの時の実験値からみて0.2質量%以下が好ましく、特に0.06〜0.1質量%が好ましい。ただし、CNTは非常に高価であることからGFRPと亜鉛鍍金鋼板の接着を検討するような低コストで汎用的な接着には必須の充填材にすべきではない。それ故、CNTなしで何処まで接着力が向上するかも重要であった。
もう一つは、ミクロンオーダーの凹部内にあるスパイク(数十〜数百nm周期の超微細凹凸)近辺の接着剤硬化物が何らかの理由でグリップ出来ず抜けかけること、即ち、スパイクに接する部分のどこかで形が崩れて微少破壊や滑りが起こることを推定した。この微小界面での破壊や剥離が界面に沿って連鎖的に進めばスパイク効果が全くなくなりミクロンオーダー凹部が有したアンカー効果はゼロになる。そうなるとその凹部の周辺にある凹部群への応力集中度が高まり、次はそれらの凹部で同じことが生じる。このようにスパイクが押さえる樹脂部が緩むと接着力の低下を促すのである。スパイクが接する接着剤硬化物部分を壊れ難くする方法として充填材を使用することが考えられる。しかしスパイク部の凹凸周期は数十nmレベルなので、これに充分侵入させるには数nmレベルの超微細な充填材が必要になり、しかも非常に高いレベルの均一分散が求められる。残念ながらそのような高度分散が出来る数nm径の超微細粉末は世の中に見当たらない。
そこでスパイク周辺で微細破壊や滑りが連鎖して進み、スパイクの効きがなくなってミクロンオーダー凹部の中の接着剤硬化物が、その凹部内面から数十nm程度浮いた状態になった場合を仮定する。
この場合、その周囲のミクロンオーダー凹凸部にその連鎖が伝わらないようにするには、浮いた距離が数十nmレベル以上にならずにそこまでの緩みで止まることである。止まる条件としては、(I)その凹部形状がアンダー形状であって内部径よりも開口部が狭まっているか又は凹部の開口部の向いている方向が力のかかる方向から数十度以上傾いていること、及び、(II)凹部に収まっている接着剤硬化物(凸部)の中心部が崩れず壊れないこと、の双方が条件になる。本発明者らは、これを踏まえて以下の破壊メカニズムの仮説を提案した。
即ち、金属合金表面の凹部は化学エッチング手法で得られているので、単純な半球形状でないもの、即ち内部より開口部が狭い蛸壺状の凹部や、凹部開口方向が垂直方向ではなく斜め方向となったような、所謂アンダー形状の凹部が高い確率で存在する。そのようなアンダー形状の凹部内に粒径数十〜数百nmの充填材が分散している接着剤が侵入し固化した場合、これら凹部の中に存在する接着剤硬化物は簡単には粉々に破壊しないと考えられる。例えば強烈な矢印方向の剥がし力がかかった場合に、仮にスパイクの効き目が落ちていた凹部があるとし、そのスパイクの効き目が落ちていた凹部が上記した様なアンダー形状の凹部であるとする。
この凹部内の接着剤硬化物は固定が外れアンカーの役目が果せなくなるが、完全には抜けず凹部の口で引っかかって数十nmだけ浮いて止まる。即ち、凹部がアンダー構造をしている場合、凹部内の接着剤硬化物の中心部が大きく破壊されることがなければ抜けずに止まる。例えば、特定のミクロンオーダー凹部内の超微細凹部がアンカーの効かない状況となり数十nm浮いた形となっていても、接着剤硬化物全体にも多少の弾性があるから、その周辺のミクロンオーダー凹部は、特定のミクロンオーダー凹部内の破壊に引きずられて浮き上がることはない。即ち、スパイクの効き目がなくなって破壊現象が生じても、このレベルの破壊で一旦止ってくれれば連鎖破壊へは進み難いと考える仮説である。別の言い方をすれば、無数あるミクロンオーダーの凹部内の一部で数十nm程度の浮き(ガタ)が生じることで、瞬間の強い力を吸収できるという考え方でもある。この仮説に従って追加すべき充填材を選び、実証試験を行った。
金属合金表面の構造上、1μm〜数μm径の無機充填材と100nm径以下の超微細無機充填材の併用が好ましい。即ち、前者はミクロンオーダーの粗度を形成する凹凸に浸入し、後者は超微細凹凸に浸入することで接着剤硬化物の破壊を防ぐ。
ここで、100nm以下の粒径を有する超微細無機充填材として市中から容易に入手できるのはヒュームドシリカである。ヒュームドシリカには2種あり、一つはシリカ(酸化珪素)から金属珪素を得る還元工程の排気ガスから回収された超微細な溶融シリカであって欧州企業が供給しており、もう一つは、四塩化珪素を気化させた上で燃焼させて超微細溶融シリカとした物でありアエロジルと通常称すものである。後者の方が純度が高く且つ製品も安定しており、通常、15〜25nm径の球状物が得られる。この径のアエロジルであれば、前述したように数十nm周期の超微細凹凸には充分な侵入が困難であるものの、その一部は侵入し得るし、これより周期が大きければ(概ね50nm以上)充分な侵入も期待できる。また、仮に侵入が不十分であっても、1μm〜数μm径の無機充填材と共に接着剤硬化物(凸部)の中心部維持に役立つ。
ミクロンオーダーより小さい微粉末は凝集しているのが普通で、超微粉であるアエロジル等も実態は凝集品である。それ故、接着剤に配合し、自動乳鉢で混合混練したくらいでは予期する分散状態にはならない。混合後に本格的な分散用機械にかける必要がある。これについては後述する。又、超微細無機充填材の充填率(組成比)は0.1質量%以上で添加効果が明確となった。一方、超微細無機充填材の添加率が1質量%以上である場合、理由は分からないが接着力は飽和し反って低下することもあった。
一方、1μm以上の径の無機充填材としては、タルク、炭酸カルシウム、クレー、ガラスフレーク、ガラスバルーン、炭酸マグネシウム、シリカ等が挙げられる。この無機充填材は、1.0質量%以上添加することで添加効果が明確となった。その他にエラストマー成分を添加するのも好ましい。エラストマー成分は、温度衝撃や機械的衝撃が加わったときの緩和剤となり得るからである。エラストマー成分としては、粉末ゴムなど熱硬化型樹脂の硬化物の粉末の他に、未加硫ゴム、ポリオレフィン系樹脂、ポリアミド樹脂、その他の熱可塑性樹脂の粉末等が使用できる。エラストマー成分の添加により接着力を低下させないため、添加量は10質量%以下とすることが好ましい。特に、熱可塑性樹脂を5質量%以下添加することが、少なくとも接着力を維持するという観点からは好ましい。
なお、以下の観点からも充填剤の添加が好ましい。固化後の接着剤層の厚さがごく薄い場合、即ち、金属合金板同士の接着、金属合金板と未硬化のFRPとの接着の場合等では、接着剤層の線膨張率は最終品の耐久性にあまり影響を与えない。しかし、硬化後の接着剤層の厚さが厚い場合、例えば、金属合金同士の接着だがその金属合金間に隙間がある場合や金属合金と既に硬化済みのFRPやその他の硬い被着物との接着を行う場合では、接着剤層の線膨張率が周辺と余りに異なると接着後の経時耐久性が悪化し易い。そのような場合に使用する接着剤には充填材を加えて線膨張率を低化させるのが好ましい。
以上から、接着剤組成に付いて纏める。即ち、本発明にて使用する不飽和ポリエステル系接着剤は、(1)不飽和ポリエステル樹脂及び/又はビニルエステル樹脂、(2)ビニル系モノマー、及び(3)有機過酸化物が必要である。さらに接着力の向上を図る場合には(6)充填材を添加することが好ましい。充填材としての必須成分は、1μm以上の径の無機充填材を1質量%以上と100nm以下の径の超微細無機充填材を0.1〜1.0質量%含むことである。更には、(6)充填材として上記したようにCNTを0.2質量%以下、特に0.06〜0.1質量%含むことは好ましく、他にエラストマー成分を10質量%以下、好ましくは熱可塑性樹脂を5質量%以下添加するようにしても良い。
[充填材の分散方法]
不飽和ポリエステル系接着剤の組成を、(1)不飽和ポリエステル樹脂及び/又はビニルエステル樹脂、(2)ビニル系モノマー、(3)有機過酸化物、及び(6)充填材とした場合には、(6)充填材の分散が必要となる。
本発明らは、既に、通常使用される無機充填材の添加、分散をエポキシ系接着剤で実践している。しかしながら、無機充填材の添加、分散を不飽和ポリエステル系樹脂で実践しようとすると実際には容易でない。何故なら、不飽和ポリエステル系接着剤の主液である不飽和ポリエステル樹脂とモノマーとの混合液、又はビニルエステル樹脂とモノマーとの混合液はエポキシ樹脂と比較して粘度が低いからである。主液に無機充填材を配合し根気よく混練しても、数日放置すると無機充填材は沈降した。
低粘度モノマーを基本的に含まないエポキシ樹脂では無機充填材の配合とその分散は比較的容易であり、具体的には自動乳鉢が使われるが、不飽和ポリエステル用主液では自動乳鉢手法は通用しなかった。それ故、常識的な無機充填材の配合からして困難が感じられた。これは最新の高速分散機、即ち最新型の湿式粉砕機であるサンドグラインドミルを使用して克服することが出来た。実際、この湿式粉砕機を使用して粒径中心が10μm程度の微粉タルクを分散させた不飽和ポリエステル主液は常温下1ヶ月放置しても全く沈降物を生じず濁りない透明物であった。このサンドグラインドミルによって無機充填材を配合した不飽和ポリエステル主液を使用して接着力の向上を確認できた。
また、前述したように10〜100nm径の超微細無機充填材も併用しているので、これの分散が問題となる。超微細無機充填材とはヒュームドシリカ等だが、これらは通常凝集して数μm径の粒子となっており、こちらは間違いなく最新型湿式粉砕機を使用しての分散が必要となる。不飽和ポリエステル系接着剤自体が一般的ではないので、これら超微細粉体を不飽和ポリエステル系接着剤に分散させ、その効果を見るのは新たな試みであるといえる。結果から言えば、粒径1μm以上の無機充填材の添加も、新たに行った粒径100nm以下の超微粒子の添加のいずれも接着力を向上する効果があった。
充填材の分散方法について以下、詳細に説明する。最新のメディアミル、例えば粒径0.5mm以下のジルコニアビーズを使用し、ケースにもジルコニアを使用したサンドグラインドミルを用意し、このミルの液出口はパイプから解放容器に注ぐ形とし、この開放容器の底部からの導管は小容量ポンプを介してミルの入口に繋がるようにして循環ラインを組む。開放容器容量はミル容量と同程度か大きめとして内部に撹拌羽根を沈めて低速撹拌できるようにする。その上で、ミル内を液で満杯とし、更に開放容器内に液が撹拌羽根で十分撹拌出来るよう液を満たす。その後、小容量ポンプを駆動して液が循環ラインを満たしたらミルと撹拌機を駆動する。ミル出口液が白濁消えて透明液になればミル内の空気が抜けた証拠であるから、次いで開放容器に粉体を注ぎ込み湿式粉砕と循環を続ける。ミルは発熱するので温度を監視しつつ必要に応じてミル外套部を水冷する。
本発明では、前記の(1)不飽和ポリエステル樹脂及び/又はビニルエステル樹脂と(2)ビニル系モノマーの混合物である主液(これらは市販品が多数ある)を液として当初に充填し、(6)充填材を開放容器に注ぎ込む要領となる。充填材に無機粉体を使用した場合、循環粉砕を数十分進めるうちに開放容器内の液は透明化し分散が進んでいることが目視できる。
分散がどの程度進んでいるかは動的光拡散やレーザー光の光拡散の理論から測定する方法があり各種分析機が市販されている。上手く分散状態が分かれば液中の粉体が凝集から解き放たれたかその途中なのかが分かる。これら分析機を本発明者らも使用したが、液中濃度が0.5%以下などの薄い分散液では、チタンホワイト(通常品は粒径20〜40μmの酸化チタンの粉体)分散液はそれなりの粒径分布が検出されたが、アエロジルでは全く微粒子存在を検出しないなど測定の一般性に問題のあることを知った。一方、液中濃度が数%あり、且つ、平均粒径が十数μmの微粉タルクや微粉クレーの分散状態は前記の分析機で検出できた。結局、本発明者らは分散度測定装置に頼ることを止めた。サンドグラインドミルの運転諸条件(使用ビーズ径、ビーズ投入量、回転子外周速、液温度、循環用小容量ポンプの流量)を一定にして無機充填材と超微細無機充填材の双方を投入して湿式粉砕を一定時間だけ続け、得た試料に一定量の決まった硬化剤を加えて接着剤を作成し、決まったサンプル(NAT処理したA7075小片とした)を接合し、それを破断してその破断力を比較検討し効果を見ることにした。要するに、処理条件を決めた上での結果論で効果の有無を見ようとした。
何れにせよ、平均粒径が10〜20μmの微粉タルクや微粉クレーと不飽和ポリエステル樹脂主液とをサンドグラインドミルの平均的な運転で30分処理すると透明液にすることができ、1ヶ月放置しても沈降物は認められなかった。同じ条件でアエロジルはその凝集が解けたか否かは分からないが、本発明者らは前記と同じ運転条件を30分延長して60分として出来るだけの分散を行ったものとした。エラストマー充填材も使用するとき、本発明者らは、超微細無機充填材(アエロジル)、無機充填材、エラストマー充填材の前充填材をサンドグラインドミルに投入して約1時間粉砕室を駆動し混合分散させた。湿式粉砕機等を使用し、沈降物の生じる恐れのない液状物を一旦得て容器に保管する。これが出来ることにより、必要時に、保管容器から液を取り出し、有機過酸化物である硬化剤をこれに加えて混合することで接着剤を得るのである。この硬化剤の添加混合は液粘度が低いのでニーダー等を使用する必要はない。ガラス棒で数十秒混ぜれば使用できる。
[接着剤塗布及び前処理]
上述の方法で得た不飽和ポリエステル系接着剤組成物を、金属合金片の必要箇所に塗布する。筆塗りでもヘラ塗りでもよい。塗布した金属合金片を減圧容器又は圧力容器に入れ、50mmHg程度まで減圧して数秒置く。その後、空気を入れて常圧に戻すか又は数気圧や数十気圧の圧力下にするのが好ましい。更に、減圧と昇圧のサイクルを繰り返すのが好ましい。減圧下で接着剤と金属合金間の空気が抜け、常圧戻しで接着剤が金属合金表面の超微細凹凸に侵入し易くなる。実際の量産に当たっては、圧力容器を使用して高圧空気を使用するのは設備上も経費上もコストアップに繋がるので、それよりは気密性のある袋や減圧容器を使用して減圧/常圧戻しを数回行うのが経済的である。その後、袋や容器から金属合金を取り出し、常温以下の温度とした保管場所に置き、短時間内に次工程に入るのが好ましい。
[被着材]
被着材としても金属合金を用い、金属合金同士を接着することも可能であるし、被着材として、不飽和ポリエステル樹脂又はビニルエステル樹脂をマトリックスとするFRPプリプレグ等も使用できる。以下の例では不飽和ポリエステル樹脂をマトリックスとする場合の例について説明するが、当然にビニルエステル樹脂も使用可能である。FRPの成形法には、ハンドレイアップ法、吹き付け法、減圧バッグ法、加圧バッグ法、コールドプレス法、レジンインジェクション法、マッチドダイ成形法、SMC成形法、BMC成形法、プリプレグ成形法、フィラメントワインディング法、その他と多種多彩にある。ハンドレイアップ法や吹き付け法、又はフェラメントワインディング法のような金型を使用しない成形法であれば、FRP組成物(即ち不飽和ポリエステル樹脂)を強化繊維に塗布する前に、上記接着剤塗布済みの金属合金片と、この強化繊維とを予め固定しておくことで、FRP組成物塗布後に容易に両者を接合できる。
ハンドレイアップ法など高速硬化型の常温硬化型成形法の場合、FRPが硬化しても金属合金片上の不飽和ポリエステル分(接着剤層)は未だ硬化が十分は進んでいない。それ故、接着力も弱いので、内型から剥がれぬように上手く離型した後で、少なくとも部分的に加熱するなどして接着部を後硬化させることが好ましい。その他の成形法は、金型や気密シートを併用する方法であり加熱硬化法でもあるので、前もって金型内に接着剤塗布済みの金属合金片をインサートしておくことで、当該接着剤とFRPを共に硬化させることが出来る。ただし、接着剤組成物と被着材であるFRPの不飽和ポリエステル樹脂組成物を比較すると、後者の方が硬化し易い。FRP側が十分硬化した条件下でも接着剤組成物の方の硬化度は不十分なことが多い。それ故、得た金属合金とFRPの一体化物は、熱風乾燥機に入れて100℃程度で24時間加熱するなど後硬化処理することが望まれる。
SMC成型法及びプリプレグ成型法は、未硬化状態又は僅かに硬化した状態のFRPとして、SMCやプリプレグを作成する方法である。SMCやプリプレグは中間製品であって、冷蔵庫等で保管できるものである。即ち、未硬化状態又は僅かに硬化した状態の中間製品が、安定した状態で得られる必要がある。SMCやプリプレグ用の組成物組成には、前項で述べた(1)〜(6)のうち、(1)不飽和ポリエステル樹脂、(2)ビニルモノマー、(3)硬化剤、(5)ガラス繊維等の強化繊維が少なくとも含まれている。
SMCは、(5)強化繊維として通常はガラス短繊維が使われ、これら(1)〜(5)が混ぜられた成分が上下のポリオレフィンフィルム間に挟まれシート状物となった物である。必要成分はフィルムで封じ込められており、ベタつく触感やスチレンの臭気を封じられるので、SMCは輸送や保管が容易である。一方、プリプレグは(5)強化繊維としてガラス繊維製の不織布や織布が通常使われる。ポリエチレンフィルムでカバーされて輸送や保管が為されることが多いが、ベタつき自体は元々少なく組成されている。
即ち、SMCもプリプレグも、(1)不飽和ポリエステルには高融点の物を使い、(2)ビニルモノマーとして、プリプレグの場合にはスチレンを減らしてジアリルフタレート等の高沸点モノマーを多く使用し、更に(6)充填材としてマグネシウムやカルシウムの2価金属の酸化物や水酸化物を使って不飽和ポリエステル分子端部カルボン酸同士を塩にして繋ぎとめベタツキを減らす方法が多用されている。SMCやプリプレグはシート状であるため、目的とする寸法、構造の被着材を得るために、まず適当な形状にカットしてカバーフィルムを剥ぎ、中身を積み重ねて厚さ調整し、金型を閉めて加熱硬化する。
各成形法に合わせてレシピー調整されたFRP組成物セットが多社から市販されているので、これらを使用するのが好ましいが、本発明に関して特に留意すべきは、市販FRP組成物に既に混ぜられている内部離型剤である。FRPの量産成形では常に金型との離型をどう円滑にするかに関心があり、離型剤は重要な成形上の要素であるので、これに関し以下を述べておく。即ち、離型剤には成形前に金型成形面に塗布する外部離型剤と組成物自体に前もって添加しておく内部離型剤がある。
金型内に金属合金片をインサートするFRP成形接合法をとる場合、当然だが、金型内に離型剤をスプレーした後で金属合金片をインサートするのが適切である。又、内部離型剤が予め含まれている市販FRP組成物セットを使用する場合には、内部離型剤を含まないFRP組成物セットも作成し、これとの比較試験をした方がよい。本発明者らは、内部離型剤については、可能な限り少ない使用量にすべきと考えている。
以上詳記したように、本発明は、同種金属合金同士や異種金属合金同士、又は、金属合金材とGFRPとを不飽和ポリエステル系接着剤を介して接着接合することができ、強固に一体化した接合体の提供が可能となる。また、金属合金とGFRPとを強固に接着剤接合することが可能なため、部品全体としての強度や物性に関して、金属合金とGFRPの優れた特徴を両立させることが可能となる。例えば、部品中のGFRPの体積比率を高くすることで、部品全体としては軽量化することが可能であり、部品の端部や結合部を金属合金とすることで他の部品とのボルト止めや溶接が可能となり、組立容易にすることが可能である。設計を工夫すれば大量生産が可能な共通部品化への道も開かれる。
言い換えると、金属合金表面を精密に設計制御することと、不飽和ポリエステル系の熱硬化型樹脂組成物の組成内容を工夫して1液性熱硬化型接着剤に似た反応物性を持たせたことで、金属合金とGFRPとの接着強度を飛躍的に高めることが出来たものである。同様な金属合金と樹脂の接合体の製造法に関し、本発明者らは既に金属合金とCFRP、即ちエポキシ樹脂をマトリックスとするFRPとの新接着技術を開示している。本発明は、その技術を更に不飽和ポリエステル樹脂をマトリックスとするFRPとの接着に展開したものである。
樹脂種をエポキシ系から不飽和ポリエステル系に代えたことによって、CFRPに比較し安価なGFRPを被着材として使用できるようになった。GFRPはCFRPよりも強度が弱く、比重が大きいため高性能素材ではないが、CFRPより遥かに広い範囲で使用されており、安価である。即ち、一般鋼材とGFRP、ステンレス鋼とGFRPというように、比較的安価な金属合金と安価なGFRPとの接着剤接合が可能になる。前述したように、不飽和ポリエステル樹脂の固化物は耐久性に優れるという利点を有しているため、これにより得られた接合体は安価であると共に、屋外施設、屋外建築物、又は災害時の臨時構造物等の部品として非常に有用なものとなる。具体例として、天蓋、屋外柵、屋外ベンチ、エクステリア製品の製造に役立つとみられる。また、チタン合金、ステンレス鋼、又はアルミニウム合金とGFRPとの接合体は、全金属製部品より軽量であり、電車、船舶、自転車、その他の移動機械の構造用部品としても有用である。このように、本発明は構造部品製造の分野において、汎用性及び経済性の向上に大きく寄与する基礎技術であり、多種多様な用途への適用が期待できる。
図1は、金属片とFRP未硬化品を不飽和ポリエステル系接着剤で貼り合せ、熱風乾燥機内で硬化させる為の焼成治具を模式的に示す断面図である。 図2は、金属片とGFRPを不飽和ポリエステル系接着剤で接合した接着複合体を示す外観図である。 図3は、金属片同士を不飽和ポリエステル系接着剤で接着した接着複合体を示す外観図である。 図4は、熱硬化型接着剤の使用で接着させる理論構成(NAT理論)を示す模式的部分断面図である。 図5は、苛性ソーダ水溶液でエッチングし、水和ヒドラジン水溶液で微細エッチング処理したA7075アルミニウム合金片の1万倍、10万倍電子顕微鏡写真である。 図6は、苛性ソーダ水溶液でエッチングし、水和ヒドラジン水溶液で微細エッチング処理したA5052アルミニウム合金片の1万倍、10万倍電子顕微鏡写真である。 図7は、有機カルボン酸水溶液でエッチングし、過マンガン酸カリ水溶液で化成処理したAZ31Bマグネシウム合金片の10万倍電子顕微鏡写真である。 図8は、有機カルボン酸水溶液でエッチングし、過マンガン酸カリ水溶液で化成処理したAZ31Bマグネシウム合金片の10万倍電子顕微鏡写真である。 図9は、有機カルボン酸水溶液でエッチングし、過マンガン酸カリ水溶液で化成処理したAZ91Dマグネシウム合金片の1万倍、10万倍電子顕微鏡写真である。 図10は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で酸化処理したC1100タフピッチ銅片の1万倍、10万倍電子顕微鏡写真である。 図11は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で酸化処理したC5191リン青銅片の1万倍、10万倍電子顕微鏡写真である。 図12は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で酸化処理したKFC銅合金片の1万倍、10万倍電子顕微鏡写真である。 図13は、硫酸・過酸化水素水溶液でエッチングし、亜塩素酸ソーダ水溶液で酸化処理したKLF5銅合金片の1万倍、10万倍電子顕微鏡写真である。 図14は、1水素2弗化アンモニウム水溶液でエッチングしたKS−40チタン合金片の1万倍、10万倍電子顕微鏡写真である。 図15は、1水素2弗化アンモニウム水溶液でエッチングしたKSTi−9チタン合金片の1万倍、10万倍電子顕微鏡写真である。 図16は、硫酸水溶液でエッチングしたSUS304ステンレス鋼片の1万倍、10万倍電子顕微鏡写真である。 図17は、硫酸水溶液でエッチングし、過マンガン酸カリ系水溶液で化成処理したSPCC冷間圧延鋼材片の1万倍、10万倍電子顕微鏡写真である。 図18は、硫酸水溶液でエッチングし、リン酸亜鉛系水溶液で化成処理したZ18亜鉛鍍金鋼板片の1万倍電子顕微鏡写真である。 図19は、硫酸水溶液でエッチングし、リン酸亜鉛系水溶液で化成処理したZ18亜鉛鍍金鋼板片の10万倍電子顕微鏡写真である。 図20は、硫酸水溶液でエッチングし、リン酸亜鉛カルシウム系水溶液で化成処理したZ18亜鉛鍍金鋼板片の1万倍電子顕微鏡写真である。 図21は、硫酸水溶液でエッチングし、リン酸亜鉛カルシウム系水溶液で化成処理したZ18亜鉛鍍金鋼板片の10万倍電子顕微鏡写真である。 図22は、硫酸水溶液でエッチングし、クロメート化成処理したZ18亜鉛鍍金鋼板片の1万倍電子顕微鏡写真である。 図23は、硫酸水溶液でエッチングし、クロメート化成処理したZ18亜鉛鍍金鋼板片の10万倍電子顕微鏡写真である。
以下、本発明の実施の形態を実施例によって説明する。図1は、金属合金片とFRPの接着のための焼成治具1を示す断面図である。図2は、この焼成治具1で金属合金片11とGFRP板材12を焼成して作成した金属合金・樹脂複合体10を示す外観図である。また、図2は、両端部を引っ張り試験機にかけてせん断破断強度を測定するための試験片の構造例を示した図でもある。
図1に示す焼成治具1は、金属合金片11とGFRP板材12とを焼成するときの固定治具である。金型本体2は、上面が開放されており長方体状に金型凹部3が形成されている。この底部には金型貫通孔4が形成されている。
金型貫通孔4には、金型底板5の底板突起部6が挿入されている。底板突起部6は、金型本体2の金型底面7から突出するように突き出ている。金型本体2の底面は、金型台座8上に搭載されている。金型底板5を金型本体2の金型凹部3に挿入して載置した状態で、図2に示すような金属合金片11とGFRP板材12を接合した金属合金・樹脂複合体10を焼成して製造する。この金属合金・樹脂複合体10を製造するには、概略すると次のような手順で行う。まず、金型底板5の全上面に離型用フィルム17を敷く。離型用フィルム17の上に金属合金片11と板状のスペーサ16を載せる。このスペーサ16の上と、金属合金片11の端部の上に所要のGFRP板材12を積層する。GFRP板材12は、前述したプリプレグを所定の形状になるよう切断し、積層したものである。
このGFRP板材12の積層の後に、離型用フィルム13を、金属合金片11及びGFRP板材12の上に更に積層する。この上にウェイトとしてPTFE(ポリテトラフルオロエチレン樹脂)のPTFEブロック14,15を載せる。更に、必要に応じて、この上に数百gの錘(図示せず)を載せる。この状態で焼成炉に投入し、GFRPを硬化させて放冷した後、錘、及び台座8等を外して、底板突起部6の下端を床面に押し付けると、底板突起部6が床面に押圧されて金型本体のみ下がり、離型用フィルム13、17と共に金属合金片とGFRPを接合した金属合金・樹脂複合体10(図2参照)が取り出せる。スペーサ16、離型用フィルム13、17は、接着性のない素材であるからGFRPから容易に剥がすことができる。
本例では、0.05mmポリエチフィルムを短冊状に切って、前述した離型用フィルム13、17とした。また、押さえとして、PTFEブロック14,15を載せ、更に鉄の錘を載せた後、金型全体を熱風乾燥機に入れて通電し、90℃まで昇温した。90℃で1時間加熱し、更に5分かけて150℃に昇温し、150℃で30分保持してから金型全体を熱風乾燥機から出して放冷した。翌日に金型から成形物を離型し離型用フィルム13、17を剥ぎ取って図2に示す金属合金・樹脂複合体10を得た。この複合体を再度熱風乾燥機に入れて100℃で24時間置いて硬化させた。
図3は金属合金片21、22を不飽和ポリエステル系接着剤で接合部23を接合して得た接着力測定用の試験片である接着複合体20の構造例を示す図である。
図4はNATに於ける金属合金表面と接着剤硬化物の断面図を模式的に示したもので、30は金属合金相であり、31はその表面であってセラミック質の金属酸化物、金属リン酸化物を主とする硬化された表面薄膜層である。そして32は接着剤の硬化物相であり本発明では不飽和ポリエステル系組成物の硬化物である。
次に、金属合金と被着物との接着に関する実験例を説明する。使用した装置を以下に示す。
[X線表面観察(XPS観察)]
数μm径の表面を深さ1〜2nmまでの範囲で構成元素を観察する形式のESCA「AXIS−Nova(クレイトス(米国)/株式会社 島津製作所(日本国京都府)製)」を使用した。
[電子線表面観察(EPMA観察)]
数μm径の表面を深さ数μmまでの範囲で構成元素を観察する形式の電子線マイクロアナライザー「EPMA1600(株式会社 島津製作所製)」を使用した。
[電子顕微鏡観察]
SEM型の電子顕微鏡「JSM−6700F(日本電子株式会社(日本国東京都)製)」を使用し1〜2KVにて観察した。
[走査型プローブ顕微鏡観察]
「SPM−9600(株式会社 島津製作所製)」を使用した。ダイナミックフォースモード型の走査型プローブ顕微鏡である。
[複合体の接合強度の測定]
引っ張り試験機「MODEL−1323(アイコーエンジニアリング株式会社(日本国大阪府)製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
[充填材の分散(湿式粉砕機の使用)]
直径0.1〜0.5mmのジルコニアビーズをサンドとするサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社(日本国東京都)製)」を使用した。
[液中での無機粉体分散状態の測定]
複数のレーザーを使用したレーザー回折・散乱法(マイクロトラック法)によって粒度分布を測定する形式の「マイクロトラック粒度分布測定装置MT330II(日機装株式会社(日本国東京都)製)」を使用した。
次に各実験例について各金属片の種類毎に説明する。
[実験例1](A7075アルミニウム合金片の表面処理)
市販の3mm厚A7075板材を入手し、切断して45mm×18mmの長方形のA7075片を多数作成した。槽に水を用意し、市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社(日本国東京都)製)」を投入して60℃、濃度7.5%の水溶液とした。これに前記A7075片を7分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記A7075片を1分浸漬してよく水洗した。
次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、先ほどのA7075片を4分浸漬してよく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記A7075片を1分浸漬し水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記A7075片を2分浸漬し、水洗した。さらに、5%濃度の過酸化水素水溶液を40℃とし、これに前記A7075片を5分浸漬し水洗した。
次いで、先ほどのA7075片を、67℃にした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記A7075片をまとめて包み、更に、これをポリ袋に入れて封じ、保管した。保管していた1個を電子顕微鏡観察したところ、40〜100nm径の凹部で覆われていることが分かった。電子顕微鏡写真を図5に示した(上:1万倍,下:10万倍)。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによると山谷平均間隔(RSm)は3〜4μm、最大高さ粗さ(Rz)は1〜2μmであった。
[実験例2](A5052アルミニウム合金片の表面処理)
市販の1.6mm厚A5052板材を入手し、切断して45mm×18mmの長方形のA5052片を多数を作成した。槽に水を用意し、市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を投入して60℃、濃度7.5%の水溶液とした。これに前記A5052片を7分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記A5052片を1分浸漬してよく水洗した。
次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、先ほどのA5052片を2分浸漬してよく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記A5052片を1分浸漬し水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記A5052片を2分浸漬し、水洗した。
次いで、先ほどのA5052片を、67℃にした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記A5052片をまとめて包み、更に、これをポリ袋に入れて封じ、保管した。保管していた1個を電子顕微鏡観察したところ、表面が30〜100nm径の凹部で覆われていることが分かった。電子顕微鏡写真を図6に示した(上:1万倍,下:10万倍)。。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによると山谷平均間隔(RSm)は1〜2μm、最大高さ粗さ(Rz)は0.3〜0.5μmであった。
[実験例3](AZ31Bマグネシウム合金片の表面処理)
市販の1mm厚AZ31B板材を入手し、切断して45mm×18mmの長方形のAZ31B片を多数作成した。槽に水を用意し、市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス株式会社製)」を投入して65℃、濃度7.5%の水溶液とした。これに前記AZ31B片を5分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度の水和クエン酸水溶液を用意し、これに前記AZ31B片を6分浸漬してよく水洗した。
次いで別の槽に65℃とした1%濃度の炭酸ナトリウムと1%濃度の炭酸水素ナトリウムを含む水溶液を用意し、これに先ほどのAZ31B片を5分浸漬してよく水洗した。続いて別の槽に65℃とした15%濃度の苛性ソーダ水溶液を用意し、これに前記AZ31B片を5分浸漬し水洗した。次いで別の槽に40℃とした0.25%濃度の水和クエン酸水溶液を用意し、これに前記AZ31B片を1分浸漬して水洗した。次いで45℃とした過マンガン酸カリを2%、酢酸を1%、水和酢酸ナトリウムを0.5%含む水溶液を用意し、これに前記AZ31B片を1分浸漬し、15秒水洗した。
次いで、先ほどのAZ31B片を、90℃にした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記AZ31B片をまとめて包み、更に、これをポリ袋に入れて封じ、保管した。保管していた1個を電子顕微鏡観察したところ、5〜10nm径の棒状結晶が複雑に絡み合っている箇所や、それらの塊が100nm径程度の集まりとなり、その集まりが面を作っている超微細な凹凸形状で覆われている箇所があった。電子顕微鏡写真(10万倍)を図7、8に示した。また、走査型プローブ顕微鏡で走査して粗度観測を行ったところ、JISで言う山谷平均間隔、即ち凹凸周期の平均値(RSm)が2〜3μm、最大高さ粗さ(Rz)が1〜1.5μmであった。
[実験例4](AZ91Dマグネシウム合金片の表面処理)
鋳造用マグネシウム合金AZ91Dのダイカスト品から、1mm×45mm×18mmの長方形のAZ91D片を機械加工で削り出し、このAZ91D片を多数作成した。槽に水を用意し、市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス株式会社製)」を投入して65℃、濃度7.5%の水溶液とした。これに前記AZ91D片を5分浸漬し、よく水洗した。続いて別の槽に40℃とした1%濃度のマロン酸水溶液を用意し、これに前記AZ91D片を2.25分浸漬してよく水洗した。
次いで別の槽に65℃とした1%濃度の炭酸ナトリウムと1%濃度の炭酸水素ナトリウムを含む水溶液を用意し、これに先ほどのAZ91D片を5分浸漬して、よく水洗した。続いて別の槽に65℃とした15%濃度の苛性ソーダ水溶液を用意し、これに前記AZ91D片を5分浸漬し、水洗した。次いで別の槽に40℃とした0.25%濃度の水和クエン酸水溶液を用意し、これに前記AZ91D片を1分浸漬して水洗した。次いで45℃とした過マンガン酸カリを2%、酢酸を1%、水和酢酸ナトリウムを0.5%含む水溶液を用意し、これに前記AZ91D片を1分浸漬し、15秒水洗した。
次いで、先ほどのAZ91D片を、90℃にした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記AZ91D片をまとめて包み、更に、これをポリ袋に入れて封じ、保管した。保管していた1個を電子顕微鏡観察したところ、10万倍観察にて20〜40nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地斜面デコボコ地面状の超微細凹凸面で覆われた形状であることが分かった。写真を図9(上:1万倍,下:10万倍)に示した。又、走査型プローブ顕微鏡で走査して粗度観測を行ったところ、JISで言う山谷平均間隔、即ち凹凸周期の平均値(RSm)が3〜5μm、最大高さ粗さ(Rz)が1.5〜2.5μmであった。
[実験例5](C1100銅合金片の表面処理)
市販の1mm厚の純銅系銅合金であるタフピッチ銅(C1100)板材を入手し、切断して45mm×18mmの長方形のC1100片を多数作成した。槽に水を用意し、市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を投入して60℃、濃度7.5%の水溶液とした。これに前記C1100片を5分浸漬し、水洗した。次いで40℃とした1.5%濃度の苛性ソーダ水溶液に前記C1100片を1分浸漬して水洗することで予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB−5002(メック株式会社(日本国兵庫県)製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記C1100片を10分浸漬し、水洗した。
次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、先ほどのC1100片を1分浸漬して、よく水洗した。次いで先ほどのエッチング用槽に1分浸漬して水洗し、そして先ほどの酸化処理用の槽に1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記C1100片をまとめて包み、更にこれをポリ袋に入れて封じ、保管した。
保管していた1個を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は3〜7μm、最大高さ粗さ(Rz)は3〜5μmであった。又、10万倍で電子顕微鏡観察したところ、直径又は長径短径の平均が10〜150nmの孔開口部又は凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われていた。その電子顕微鏡写真を図10(上:1万倍,下:10万倍)に示した。
[実験例6](C5191銅合金片の表面処理)
市販の0.8mm厚のリン青銅(C5191)板材を購入し、切断して45mm×18mmの長方形のC5191片を多数作成した。槽に水を用意し、市販のアルミ合金用脱脂剤「NE−6(メルテックス株式会社製)」を投入して60℃、濃度7.5%の脱脂用水溶液とした。これに前記C5191片を5分浸漬して脱脂し、よく水洗した。続いて別の槽に25℃とした銅合金用エッチング材「CB−5002(メック株式会社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記C5191片を15分浸漬し、水洗した。
次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、65℃としてから前記C5191片を1分浸漬して、よく水洗した。次いで再び先ほどのエッチング液に1分浸漬し、水洗した。次いで酸化用の水溶液に1分再度浸漬し、水洗した。次いで前記C5191片を、90℃にした温風乾燥機に15分入れて乾燥した。さらに乾燥後、そのC5191片をアルミニウム箔に包んで保管した。
保管していた1個を電子顕微鏡で観察した写真を図11に示した(上:1万倍,下:10万倍)。10万倍での観察で、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状であり、純銅系であるタフピッチ銅の微細構造とは全く異なった形状であった。又、走査型プローブ顕微鏡にかけたところ、JISで言う山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.3〜0.4μmであった。
[実験例7](KFC銅合金片の表面処理)
市販の0.7mm厚の鉄含有銅合金「KFC(株式会社 神戸製鋼所(日本国)製)」板材を入手し、切断して45mm×18mmの長方形のKFC片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液を用意し、これを60℃とした。これに前記KFC片を5分浸漬して水洗した。次いで40℃とした1.5%濃度の苛性ソーダ水溶液に前記KFC片を1分浸漬して水洗することで予備塩基洗浄した。
次いで25℃とした銅合金用エッチング材「CB5002(メック株式会社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記KFC片を8分浸漬し、水洗した。次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、これに前記KFC片を1分浸漬して、よく水洗した。次いで先ほどのエッチング用槽に前記KFC片を1分浸漬して水洗し、そして先ほどの酸化処理用の槽にそのKFC片を1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に前記KFC片を15分入れて乾燥した。乾燥後、アルミ箔で前記KFC片をまとめて包み、更にこれをポリ袋に入れて封じ、保管した。
保管していた1個を走査型プローブ顕微鏡にかけた結果では、JISで言う山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.3〜0.5μmであった。又、10万倍で電子顕微鏡観察したところ、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状で全面が覆われていた。電子顕微鏡写真を図12に示した(上:1万倍,下:10万倍)。
[実験例8](KLF5銅合金片の表面処理)
市販の0.7mm厚の特殊銅合金「KLF5(株式会社 神戸製鋼所製)」板材を入手し、切断して45mm×18mmの長方形のKLF5片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液を用意し、これを60℃とした。これに前記KLF5片を5分浸漬して水洗した。次いで40℃とした1.5%濃度の苛性ソーダ水溶液に前記KLF5片を1分浸漬して水洗することで予備塩基洗浄した。
次いで25℃とした銅合金用エッチング材「CB5002(メック株式会社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記KLF5片を8分浸漬し、水洗した。次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、これに前記KLF5片を1分浸漬してよく水洗した。次いで先ほどのエッチング用槽に前記KLF5片を1分浸漬して水洗し、そして先ほどの酸化処理用の槽にそのKLF5片を1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に前記KLF5片を15分入れて乾燥した。乾燥後、アルミ箔で前記KLF5片をまとめて包み、更にこれをポリ袋に入れて封じ、保管した。
保管していた1個を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.3〜0.5μmであった。又、10万倍で電子顕微鏡観察したところ、直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混ざり合って積み重なった形状、言わば溶岩台地斜面ガラ場状の超微細凹凸形状でほぼ全面が覆われていた。電子顕微鏡写真を図13に示す(上:1万倍,下:10万倍)。
[実験例9](KS40チタン合金片の表面処理)
市販の純チタン型チタン合金JIS1種「KS40(株式会社 神戸製鋼所製)」1mm厚板材を入手し、切断して45mm×18mmの長方形のKS40片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液を用意し、これを60℃として脱脂用水溶液とした。この脱脂用水溶液に前記KS40片を5分浸漬して脱脂し、よく水洗した。
続いて別の槽に、60℃とした1水素2弗化アンモニウムを40%含む万能エッチング材「KA−3(株式会社 金属化工技術研究所(日本国東京都)製)」を2%含む水溶液を用意し、これに前記KS40片を3分浸漬し、イオン交換水でよく水洗した。次いで3%濃度の硝酸水溶液に前記KS40片を1分浸漬し水洗した。次いで90℃とした温風乾燥機に前記KS40片を15分入れて乾燥した。乾燥後、アルミ箔で前記KS40片をまとめて包み、更にこれをポリ袋に入れて封じ、保管した。
保管していた1個を、電子顕微鏡、及び走査型プローブ顕微鏡で観察した。電子顕微鏡での観察から、幅と高さが10〜数百nmで長さが数百〜数μmの湾曲した連山状突起が、間隔周期10〜数百nmで面上に林立している形状の超微細凹凸面を有していることが分かった。この電子顕微鏡写真を図14に示した(上:1万倍,下:10万倍)。又、走査型プローブ顕微鏡の観察で、山谷平均間隔(RSm)は1〜3μm、最大高さ粗さ(Rz)は0.8〜1.5μmであった。又、XPSによる分析から表面には酸素とチタンが大量に観察され、少量の炭素が観察された。これらから表層は酸化チタンが主成分であることが分かり、しかも暗色であることから3価のチタンの酸化物と推定された。
[実験例10](KSTi−9チタン合金片の表面処理)
市販のα−β型チタン合金「KSTi−9(株式会社 神戸製鋼所製)」の1mm厚板材を切断して、45mm×18mmの長方形のKSTi−9片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液を用意し、これを60℃として脱脂用水溶液とした。この脱脂用水溶液に前記KSTi−9片を5分浸漬して脱脂し、よく水洗した。
次いで別の槽に、40℃とした苛性ソーダ1.5%濃度の水溶液を用意し、これに前記KSTi−9片を1分浸漬して水洗した。次いで別の槽に、市販汎用エッチング試薬「KA−3(株式会社 金属化工技術研究所製)」を2重量%溶解した水溶液を60℃にして用意し、これに前記KSTi−9片を3分浸漬し、イオン交換水でよく水洗した。水洗後のKSTi−9片に黒色のスマットが付着していたので、40℃とした3%濃度の硝酸水溶液に3分浸漬し、次いで超音波を効かしたイオン交換水に5分浸漬してスマットを落とし、再び3%硝酸水溶液に0.5分浸漬し水洗した。次いで90℃とした温風乾燥機に前記KSTi−9片を15分入れて乾燥した。乾燥後のKSTi−9片に金属光沢はなく、暗褐色であった。乾燥後、アルミ箔で前記KSTi−9片をまとめて包み、更にこれをポリ袋に入れて封じ、保管した。
保管していた1個を、電子顕微鏡及び走査型プローブ顕微鏡で観察した。電子顕微鏡で観察した結果を図15に示す(上:1万倍,下:10万倍)。その様子は実験例9の電顕観察写真図14に酷似した部分に加え、複雑な枯葉状の部分が多く見られた。又、走査型プローブ顕微鏡による走査解析によると、山谷平均間隔RSmは4〜6μm、最大高さ粗さRzは1〜2μmであった。
[実験例11](SUS304ステンレス鋼片の表面処理)
市販のステンレス鋼SUS304の1mm厚板材を入手し、切断して45mm×18mmの長方形のSUS304片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液を用意し、これを60℃として脱脂用水溶液とした。この脱脂用水溶液に前記SUS304片を5分浸漬して脱脂し、よく水洗した。
続いて別の槽に、60℃とした98%硫酸を10%含む水溶液を用意し、これに前記SUS304片を5分浸漬し、イオン交換水でよく水洗した。次いで40℃とした5%濃度の過酸化水素水溶液に、前記SUS304片を5分浸漬して水洗した。その後、90℃とした温風乾燥機に前記SUS304片を15分入れて乾燥した。乾燥後、アルミ箔で前記SUS304片をまとめて包み、更にこれをポリ袋に入れて封じ、保管した。
保管していた1個を、電子顕微鏡、及び走査型プローブ顕微鏡で観察した。電子顕微鏡観察から、直径20〜70nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地斜面ガラ場状のような超微細凹凸形状で覆われており、且つその被覆率は約90%であった。電子顕微鏡写真を図16に示した(上:1万倍,下:10万倍)。
同時に走査型プローブ顕微鏡の走査解析で、山谷平均間隔(RSm)は1〜2μmであり、その最大高さ粗さ(Rz)は0.3〜0.4μmであった。更に別の1個をXPS分析にかけた。XPSでは表面の約1nm深さより浅い部分の元素情報が得られる。このXPS分析から表面には酸素と鉄が大量に、又、少量のニッケル、クロム、炭素、ごく少量のモリブデン、珪素が観察された。これらから、表層は金属酸化物が主成分であることが分かった。この分析パターンはエッチング前のSUS304と殆ど同じであった。
[実験例12](SPCC冷間圧延鋼材片の表面処理)
市販の厚さ1.6mmの冷間圧延鋼材「SPCC」板材を購入し、切断して45mm×18mmの長方形のSPCC片を多数作成した。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液を用意し、これを60℃とした。これに、SPCC片を5分浸漬して水道水(群馬県太田市)で水洗した。
次いで別の槽に、40℃とした1.5%苛性ソーダ水溶液を用意し、これに前記SPCC片を1分浸漬し、水洗した。次いで別の槽に50℃とした98%硫酸を10%含む水溶液を用意し、これに前記SPCC片を6分浸漬し、イオン交換水で十分に水洗した。次いで25℃とした1%濃度のアンモニア水に前記SPCC片を1分浸漬して水洗し、次いで45℃とした2%濃度の過マンガン酸カリ、1%濃度の酢酸、0.5%濃度の水和酢酸ナトリウムを含む水溶液に1分浸漬して十分に水洗した。その後、90℃とした温風乾燥機内に前記SPCC片を15分入れて乾燥した。
そのSPCC片の10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜200nmで、幅が数百〜数千nmの階段が無数に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが分かる。パーライト構造が剥き出しになった様子であり化成処理層はごく薄いことが分かる。電子顕微鏡写真を図17に示した(上:1万倍,下:10万倍)。一方、走査型プローブ顕微鏡による走査解析では、山谷平均間隔RSmが1〜3μm、最大高さ粗さRzが0.3〜1.0μmの粗度が観察された。
[実験例13](SPHC熱間圧延鋼材片の表面処理)
市販の厚さ1.6mmの熱間圧延鋼材「SPHC」板材を購入し、切断して45mm×18mmの長方形のSPHC片を多数作成した。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を7.5%含む水溶液を用意し、これを60℃とした。これに、SPHC片を5分浸漬して水道水(群馬県太田市)で水洗した。
次いで別の槽に、40℃とした1.5%苛性ソーダ水溶液を用意し、これに前記SPHC片を1分浸漬し、水洗した。次いで別の槽に65℃とした98%硫酸を10%と1水素2弗化アンモニウム1%を含む水溶液を用意し、これに前記SPHC片を2分浸漬し、イオン交換水で十分に水洗した。次いで25℃とした1%濃度のアンモニア水に前記SPHC片を1分浸漬して水洗し、次いで55℃とした80%正リン酸を1.5%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、塩基性炭酸ニッケルを0.23%含む水溶液に1分浸漬して十分に水洗した。その後、90℃とした温風乾燥機内に前記SPHC片を15分入れて乾燥した。
そのSPHC片の10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜500nmで、幅が数百〜数万nmの階段が無数に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが分かり、これもやはりパーライト構造であった。一方、走査型プローブ顕微鏡による走査解析では、山谷平均間隔RSmが1〜3μm、最大高さ粗さRzが0.3〜1.0μmの粗度が観察された。
[実験例14](Z18亜鉛鍍金鋼板片(1)の表面処理)
0.4mm厚の油剤塗布型のクロメート処理付き溶融亜鉛鍍金鋼板「Z18(日鐵住金建材株式会社製)」を入手し、これを45mm×18mmの長方形片に切断し、多数のZ18片(1)を作成した。槽にアルミ用脱脂剤「NE−6(メルテックス株式会社製)」7.5%を含む水溶液を用意して液温75℃とし、この水溶液を脱脂用水溶液とした。また別の槽に、55℃とした正リン酸を1.2%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、及び塩基性炭酸ニッケルを0.23%含むリン酸亜鉛系化成処理液を用意した。Z18片(1)を先ず脱脂槽で5分浸漬し、水洗した。次いで化成処理槽に1分浸漬した。ここで微細な水素の泡の発泡がみられリン酸酸性で亜鉛相が溶解イオン化していることが分かった。従って、この化成処理が「化学エッチング」と化成処理による「表面硬化処理」の2者を兼ねていることが分かった。90℃で15分かけて乾燥した。
そのZ18片(1)に対して、電子顕微鏡と走査型プローブ顕微鏡による観察を行った。1万倍、10万の倍電子顕微鏡での観察結果を図18、図19に示す。図19より、表面は20〜150nm径の不定多角形状物の凸部が重なりつつ全面を覆った超微細凹凸形状であることが分かった。又、走査型プローブ顕微鏡による20μmの長さを10回走査した測定結果は、山谷平均間隔RSmは1.5〜2.3μm、最大高さ粗さRzは0.5〜1.5μmであった。このように、電子顕微鏡観察の結果も「NAT」で要求している超微細凹凸が達成されたことを示しており、実際には、「化学エッチング」と「微細エッチング」と「表面硬化処理」の3役を一挙にこなしたことが分かった。即ち、第1の条件〜第3の条件を満たすため、別途、化学エッチング、微細エッチングを行う必要は無く、当該表面処理方法は、工程短縮、低コスト化に寄与するものである。
[実験例15](Z18亜鉛鍍金鋼板片(2)の表面処理)
0.4mm厚の油剤塗布型のクロメート処理付き溶融亜鉛鍍金鋼板「Z18(日鐵住金建材株式会社製)」を入手し、これを45mm×18mmの長方形片に切断し、多数のZ18片(2)を作成した。槽にアルミ用脱脂剤「NE−6(メルテックス株式会社製)」7.5%を含む水溶液を用意して液温75℃とし、この水溶液を脱脂用水溶液とした。また別の槽に、市販のリン酸亜鉛カルシウム系化成処理液「パルボンド880(日本パーカライジング株式会社(日本国東京都)製)」を使用した。「パルボンド880」の通常の使用条件(鋼材の化成処理時での使用条件)は液温80〜90℃として鋼材を2分程度浸漬するものだが、本発明ではこれより遥かに温和な条件で使用した。具体的には、液温65℃で浸漬時間1分とした。即ち、上記鋼片(2)を脱脂槽に5分浸漬して水道水でよく水洗し、次いで上記のように化成処理槽に浸漬し次いでイオン交換水でよく水洗した。
そのZ18片(2)に対して、電子顕微鏡と走査型プローブ顕微鏡による観察を行った。1万倍、10万倍電子顕微鏡での観察結果を図20、図21に示す。長径短径80〜200nmの平板状の不定多角形状物が重なりつつ全面を覆った超微細凹凸形状であることが分かる。又、走査型プローブ顕微鏡による測定では、表面は粗面であり平均凹凸周期RSmは2.8〜3.6μm、最大高さ粗さRzは0.4〜1.3μmであった。
[実験例16](Z18亜鉛鍍金鋼板片(3)の表面処理)
実験例15と同様の実験を行った。但し、異なるのは化成処理であって、実験例15で使用したリン酸亜鉛系化成処理液に代え、1.2%水和硝酸クロムを1.2%、三酸化クロムを0.3%、正リン酸を1.5%、塩基性炭酸ニッケルを0.033%含むクロメート処理型の水溶液を40℃として使用した。但し、この系統の処理液は一般鋼材用(鉄合金用)に比較的最近に開発された物であって、特徴は3価と6価のクロムを含むことであり、鋼材に対するクロメート処理用の化成処理液としては優れている物の一つとされている。実験例14、15と同じく、Z18片(3)を脱脂して水洗し、即、化成処理をした。化成処理後、イオン交換水でよく水洗してから90℃で15分乾燥した。
そのZ18片(3)を電子顕微鏡、及び走査型プローブ顕微鏡により観察した。1万倍、10万倍電子顕微鏡での観察結果を図22、図23に示す。10〜200nmの非定期的な周期の超微細凹凸で全面が覆われた形状であることが分かる。又、走査型プローブ顕微鏡による測定では、表面は粗面であり山谷平均間隔RSmは1.3〜2.5μm、最大高さ粗さRzは0.3〜1.5μmであった。
[実験例17](接着剤(1)の作成)
市販のスチレン希釈型のFRP用不飽和ポリエステル樹脂「リゴラック258BQT(昭和高分子株式会社(日本国東京都)製)」、市販のt−ブチルパーオキシベンゾエート「パーブチルZ(日油株式会社(日本国東京都)製)」を入手した。容器に「リゴラック258BQT」を100部、「パーブチルZ」を0.5部取り、よく混合し、これを接着剤(1)とした。
[実験例18](接着剤(2)の作成)
「リゴラック258BQT」を100部、「パーブチルZ」を1部取り、よく混合し、これを接着剤(2)とした。
[実験例19](接着剤(3)の作成)
「リゴラック258BQT」を100部、「パーブチルZ」を2部取り、よく混合し、これを接着剤(3)とした。
接着剤(1)(2)(3)何れについても、混合して1時間以内に以下の各実験の塗布作業に供したが、使い残した混合物は混合した3時間後も粘度の上がった様子はなく、液温も上昇していなかった。なお「リゴラック」はアルキッド樹脂系の不飽和ポリエステルとスチレンのコンパウンドである。
[実験例20](接着剤(4)の作成)
市販のスチレン希釈型のFRP用不飽和ポリエステル樹脂「リポキシR802(昭和高分子株式会社製)」、市販のt−ブチルパーオキシベンゾエート「パーブチルZ」を入手した。容器に「リポキシR802」を100部、「パーブチルZ」を1部取り、よく混合し、これを接着剤(4)とした。混合して1時間以内に以下の各実験の塗布作業に供したが、使い残した混合物は混合した3時間後も粘度の上がった様子はなく、液温も上昇していなかった。なお「リポキシ」はビニルエステル樹脂とスチレン系モノマーのコンパウンドである。
[実験例21](接着剤(5)の作成)
市販のFRP用主液「リポキシR802」、市販のt−ブチルパーオキシベンゾエート「パーブチルZ」、微粉タルク「ハイミクロンHE5(竹原化学工業株式会社(日本国兵庫県)製)」を入手した。なお、前記「ハイミクロンHE5」は、平均粒径十数μmの機械粉砕で得たタルク粉の分級物である。容器に「リポキシR802」100部と「ハイミクロンHE5」2部を取りよく練って混合した。容器をラップ材でカバーし、更にアルミ箔でカバーして放置した。1週間後にカバーを外して見たところ底部に白濁物が沈殿しており分散度不十分であることが明らかであったので再度よく練って混合した。その後、t−ブチルパーオキシベンゾエート「パーブチルZ」1部を加え15秒ほど練って混合した。これを接着剤(5)とする。なお、接着剤(5)及び以下に示す接着剤(6)〜(12)は、いずれも混合して1時間以内に以下の各実験の塗布作業に供したが、使い残しの前記混合物は混合3時間後も粘度の上がった様子はなかった。
[実験例22](接着剤(6)の作成)
実験例21と同じ原料を用意した。そして、0.3mm径ジルコニアビーズを80容積%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」と付随する開放容器に不飽和ポリエステル樹脂「リポキシR802」400gを充填し、循環用小容量ポンプをフルレンジで駆動して空気を抜いた。回転子を駆動して周速11〜13m/秒とし、開放容器に微粉タルク「ハイミクロンHE5」8gを投入し開放容器内の撹拌も開始した。粉砕室外套部を水道水の通水で冷やし粉砕室温度を45℃以下に保った。この湿式粉砕を30分続け、粉砕室の出口から流出する液をポリエチレン瓶に回収した。薄く着色した透明液であり接着剤(5)の製作時と全く異なっていた。前記のポリエチレン瓶を1ヶ月放置した後に内部を観察したが当初と全く変わらず沈殿物は確認されなかった。内容液を10g取り、t−ブチルパーオキシベンゾエート「パーブチルZ」0.1gを加えよく練って混合した。これを接着剤(6)とした。
[実験例23](接着剤(7)の作成)
無機充填材として「ハイミクロンHE5」に代えて焼成クレー「サテントン5(竹原化学工業株式会社製)」を使用した。これはカオリン純度の高い米ジョージア州産ハードクレーを焼成した物で平均粒径は10μm程度であった。即ち、0.3mm径ジルコニアビーズを80容積%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」と付随する開放容器に不飽和ポリエステル樹脂「リポキシR802」400gを充填し、循環用小容量ポンプをフルレンジで駆動して空気を抜いた。回転子を駆動して周速11〜13m/秒とし、開放容器にクレー「サテントン5」8gを投入し開放容器内の撹拌も開始した。粉砕室外套部を水道水の通水で冷やし粉砕室温度を45℃以下に保った。この湿式粉砕を30分続け、粉砕室の出口から流出する液をポリエチレン瓶に回収した。薄く着色した透明液であり接着剤(6)と同じであった。前記のポリエチレン瓶を1ヶ月放置した後に内部を観察したが当初と全く変わらず沈殿物は確認されなかった。内容液を10g取り、t−ブチルパーオキシベンゾエート「パーブチルZ」0.1gを加えよく練って混合した。これを接着剤(7)とした。
[実験例24](接着剤(8)の作成)
実験例22、23に変えて、所謂無機充填材は使用せず、超微細無機充填材であるヒュームドシリカ「アエロジルR805」(日本アエロジル株式会社(日本国東京都)製)」を使用した。即ち、0.3mm径ジルコニアビーズを80容積%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」と付随する開放容器に不飽和ポリエステル樹脂「リポキシR802」400gを充填し、循環用小容量ポンプをフル駆動して空気を抜いた。回転子を駆動し周速11〜13m/秒とし、開放容器にヒューズドシリカ「アエロジルR805」を0.8g投入し開放容器内の撹拌も開始した。粉砕室外套部を水道水の通水で冷やし粉砕室温度を45℃以下に保った。この湿式粉砕を30分続け、粉砕室の出口から流出する液をポリエチレン瓶に回収した。薄く着色した透明液であり接着剤(6)(7)と見た目は同じであった。前記のポリエチレン瓶を1ヶ月放置した後に内部を観察したが当初と全く変わらず沈殿物は確認されなかった。内容液を10g取り、t−ブチルパーオキシベンゾエート「パーブチルZ」0.1gを加えよく練って混合した。これを接着剤(8)とした。
[実験例25](接着剤(9)の作成)
「リポキシR805」と「ハイミクロンHE5」と「アエロジルR805」を用意した。そして、0.3mm径ジルコニアビーズを80容積%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」と付随する開放容器に不飽和ポリエステル樹脂「リポキシR802」400gを充填し、循環用小容量ポンプをフル駆動して空気を抜いた。回転子を駆動し周速11〜13m/秒とし、開放容器に微粉タルク「ハイミクロンHE5」8gとヒューズドシリカ「アエロジルR805」0.8g投入し開放容器内の撹拌も開始した。粉砕室外套部を水道水の通水で冷やし粉砕室温度を45℃以下に保った。この湿式粉砕を30分続け、粉砕室の出口から流出する液をポリエチレン瓶に回収した。薄く着色した透明液であり接着剤(6)(7)(8)と見た目は同じであった。前記のポリエチレン瓶を1ヶ月放置した後に内部を観察したが当初と全く変わらず沈殿物は確認されなかった。内容液を10g取り、t−ブチルパーオキシベンゾエート「パーブチルZ」0.1gを加えよく練って混合した。これを接着剤(9)とした。
[実験例26](接着剤(10)の作成)
実験例25で用意した物に加え、多層型CNT「MCNT(ナノカーボンテクノロジーズ株式会社(日本国東京都)製)」を入手した。このCNTを3万倍電子顕微鏡で観察したところ平均直径は50nm程度であった。実験例25と全く同様にしてサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」を使用し、不飽和ポリエステル樹脂「リポキシR802」100部に対し微粉タルク「ハイミクロンHE5」2部、ヒューズドシリカ「アエロジルR805」0.2部、CNT「MCNT」0.06部を配合分散させた黒色液を得てポリエチレン瓶に回収した。前記のポリエチレン瓶を1ヶ月放置した後に内容液を10g取り、t−ブチルパーオキシベンゾエート「パーブチルZ」0.1gを加えよく練って混合した。これを接着剤(10)とした。
[実験例27](接着剤(11)の作成)
実験例25で用意した物に加え、熱可塑性樹脂であるポリエーテルスルホン樹脂(以下「PES」と呼ぶ)微粉砕物「PES4100MP(住友化学株式会社(日本国)製)」を入手した。この「PES4100MP」はメーカーの分析で平均粒径は10μm付近であった。実験例22と全く同様にしてサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」を使用し、不飽和ポリエステル樹脂「リポキシR802」100部に対し微粉タルク「ハイミクロンHE5」2部、ヒューズドシリカ「アエロジルR805」0.2部、PES「PES4100MP」3部を配合分散させた液を得てポリエチレン瓶に回収した。前記のポリエチレン瓶を1ヶ月放置した後に内容液を10g取り、t−ブチルパーオキシベンゾエート「パーブチルZ」0.1gを加えよく練って混合した。これを接着剤(11)とした。
[実験例28](接着剤(12)の作成)
不飽和ポリエステル樹脂とスチレンの混合物である市販のFRP用主液「リゴラック258BQTM」と「ハイミクロンHE5」と「アエロジルR805」を用意した。そして、0.3mm径ジルコニアビーズを80容積%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」と付随する開放容器に不飽和ポリエステル樹脂「リゴラック258BQTM」400gを充填し、循環用小容量ポンプをフル駆動して空気を抜いた。回転子を駆動し周速11〜13m/秒とし、開放容器に微粉タルク「ハイミクロンHE5」8gとヒューズドシリカ「アエロジルR805」0.8g投入し開放容器内の撹拌も開始した。粉砕室外套部を水道水の通水で冷やし粉砕室温度を45℃以下に保った。この湿式粉砕を30分続け、粉砕室の出口から流出する液をポリエチレン瓶に回収した。薄く着色した透明液であり接着剤(9)と見た目は同じであった。前記のポリエチレン瓶を1ヶ月放置した後に内部を観察したが当初と全く変わらず沈殿物は確認されなかった。内容液を10g取り、t−ブチルパーオキシベンゾエート「パーブチルZ」0.1gを加えよく練って混合した。これを接着剤(12)とした。
次に接着実験について説明する。以下、実験例29〜66は、接着剤(1)〜(4)のいずれかを使用した接着実験である。即ち、充填材を使用しない場合の接着実験である。
[実験例29](A5052片同士の接着)
実験例2で作成したA5052片18個のうち、6個の各端部に実験例17で作成した接着剤(1)を筆で塗った。同様に、別の6個に接着剤(2)を、さらに残りの6個には接着剤(3)を筆で塗った。これら接着剤を塗布したA5052片を、大型デシケータに入れて真空ポンプで減圧し、50mmHgに達したら10秒置いて常圧に戻した。常圧に戻し0.5分間放置し、再び減圧して同じ常圧に戻し放置するサイクルを3回繰り返した。
次いでA5052片をデシケータから取り出し、接着剤を塗布した面同士を接触させた対をクリップで挟んで図1の様に設置して、接着の準備をした。双方のA5052片の接着面積は0.5〜0.7cmになるようにした。これにより、接着剤3種(接着剤(1)(2)(3))の各々に関して、A5052片の対を3組得た。2個の小型クリップで挟んだ合計3種9対のA5052片を、90℃にセットした熱風乾燥機内に置いて1時間放置し、更に120℃に上げて120℃で1時間放置して硬化させた。
その後、乾燥機から出して1週間後に引っ張り試験機にかけて、9対それぞれを破断し、せん断破断力を測定した。そして、3種の接着剤それぞれに関して、3対の平均値を計算した。その結果、接着剤(1)では25MPa(252Kgf/cm)、接着剤(2)では25MPa(255Kgf/cm)、接着剤(3)では22MPa(226Kgf/cm)であった。結論として、上記の硬化条件では「リゴラック258BQT」100部に対してt−ブチルパーオキシベンゾエート「パーブチルZ」を1部程度使ったものが最も強い接合力を得られた。
[実験例30](A5052片同士の接着:比較例)
市販の1.6mm厚A5052板材を入手し、切断して45mm×18mmの長方形のA5052片を多数作成した。槽に水を用意し、市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を投入して60℃、濃度7.5%の水溶液とした。これに前記A5052片を7分浸漬しよく水洗した。ここまでは前述の実験例2と同様であるが、その後の化学エッチングは行わず、上記脱脂工程のみを行ったA5052片を6個用意した。この6個から、上記と同様に実験例18で作成した接着剤(2)でA5052片同士を接着して3対を得た。更に前記と同様に引っ張り試験機で破断し、せん断破断力を測定した。3対の平均で7MPa(75Kgf/cm)であった。これは実験例29より大幅に低かった。
[実験例31〜41](各種金属合金片同士の接着)
実験例1、3、4、5、6、7、8、9、10、11、及び12で作成したA7075片、AZ31B片、AZ91D片、C1100片、C5191片、KFC片、KLF5片、KS40片、KSTi−9片、SUS304片、及びSPCC片を各々6個(即ち各種3対分)用意し、各端部に実験例18で作成した接着剤(2)を筆で塗った。その後、実験例29と同様に、2枚の同種金属合金片同士を接着硬化させ、結果として11種合計33対の同種金属合金片同士の接合体を得た。この33対を1週間後に引っ張り試験機にかけて破断し、11種それぞれに関して、3対のせん断破断力を測定した。各金属合金種のせん断破断力平均値を表1に示す。
[実験例42、45〜51](各種金属合金片同士の接着:比較例)
実験例1、3、4、5、6、7、8、9、10、11、及び12で作成したA7075片、AZ31B片、AZ91D片、C1100片、C5191片、KFC片、KLF5片、KS40片、KSTi−9片、SUS304片、及びSPCC片を各々6個(即ち各種3対分)用意した。このうち、AZ31B片、AZ91D片のマグネシウム合金片、SPCC鋼材片を除いては脱脂工程のみを行った。具体的には各脱脂材水溶液に7分浸漬し、水洗して乾燥した物を用意した。そして、実験例31〜41と同様に、実験例18で作成した接着剤(2)で2枚の同種金属合金片同士を接着硬化させ、結果として8種合計24対の同種金属合金片同士の接合体を得た。更に実験例31〜41と同様に引っ張り試験機で破断し、せん断破断力を測定した。その結果を表1に示す。
[実験例43、44](各種金属合金片同士の接着:比較例)
一方、マグネシウム合金片であるAZ31B片、AZ91D片については、脱脂工程のみならず、通常化成処理も行った。具体的には、AZ31B片に関しては、以下の処理をした。即ち、槽に用意した水に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス社製)」を投入して65℃、濃度7.5%の水溶液とした。これに前記AZ31B片を5分浸漬し、よく水洗した。続いて別の槽に40℃とした市販のマグネシウム合金エッチング材「マグトリートE5109(メルテックス社製)」の10倍希釈液を用意し、これに前記AZ31B片を6分浸漬して、よく水洗した。
次いで別の槽に65℃とした市販の第1スマット処理剤「NE−6(メルテックス社製)」の7.5%濃度の水溶液を用意し、これに先ほどのAZ31B片を5分浸漬してよく水洗した。続いて別の槽に65℃とした15%濃度の苛性ソーダ水溶液を用意し、これに前記AZ31B片を5分浸漬し、水洗した。次いで別の槽に45℃とした市販のリン酸マンガン系化成処理剤「マグトリートMG5565(メルテックス社製)」の10倍希釈水溶液を用意し、これに前記AZ31B片を2分浸漬し、15秒水洗した。その後、90℃にした温風乾燥機に前記AZ31B片を15分入れて乾燥した。
上述した化成処理法全体は、処理剤メーカー(メルテックス社)の標準処方であり、それに従った。乾燥後、アルミ箔で前記AZ31B片をまとめて包み、更にこれをポリ袋に入れて封じ保管した。ここでは、AZ31B片の処理について説明したが、AZ91D片に関しても同様の処理を行うものとする。以上の処理を施したAZ31B片、AZ91D片を使用し、実験例32、33と同様にして、実験例18で作成した接着剤(2)で2枚のAZ31B片同士、2枚のAZ91D片同士を接着硬化させ、結果として2種合計6対の同種金属合金片同士の接合体を得た。この6対を引っ張り試験機で破断し、せん断破断力を測定した(実験例43、44)。その結果を表1に示す。
[実験例52](各種金属合金同士の接着:比較例)
また、SPCC片についても、脱脂工程のみならず、通常化成処理も行った。市販の厚さ1.6mmの冷間圧延鋼材「SPCCブライト」板材を購入し、切断して大きさ18mm×45mmの長方形のSPCC片を多数作成した。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%を含む水溶液を用意し、これを60℃とした。この水溶液にSPCC片を5分浸漬して水道水(群馬県太田市)で水洗した。
次いで別の槽に55℃とした正リン酸1.2%、酸化亜鉛0.21%、塩基性炭酸ニッケル0.23%、珪弗化ナトリウム0.16%を溶解した水溶液を用意し、これに前記SPCC片を2分間浸漬し、水洗した。これは鋼材の錆び止めに使用するリン酸亜鉛系処理の標準的な方法である。このSPCC片を使用し、実施例41と全く同様にして実験例18で生成した接着剤(2)で2枚のSPCC片同士を接着硬化させ、結果として3対のSPCC片同士の接合体を得た。この3対を引っ張り試験機で破断し、せん断破断力を測定した(実験例52)。結果を表1に示す。
本発明を適用した結果、表1から明らかなように、何れも従来の接着前標準処理に比較して高い接着力を示した。せん断破断力は、SPCC片で35MPaと高く、その他の大部分の金属合金片で概ね20〜25MPa程度、AZ31B片、C5191片、及びKS40片では10数MPaと低かった。その理由としては、AZ31B片の場合は、表面写真(図7、8)から見て超微細凹凸が細かきに過ぎ、一方、KS40片の場合は、表面写真(図14)から見て超微細凹凸が粗すぎるためと推定される。
表1より、本発明を適用して得られる接合物は、全体的に接合力がせん断破断力で20〜30MPaレベルであり、エポキシ系接着剤の場合での50〜70MPaと大きな差異がある。樹脂硬化物自体の強度が、エポキシ樹脂では70MPa近くあるのに対してアルキッド樹脂系の不飽和ポリエステル硬化物は30〜40MPaであるとの文献記述も散見され、これは接着剤自体の強度に平行な結果であるとみられた。この中で、SPCC等の一般鋼材系で数値が高いが、このような現象はフェノール樹脂接着剤でも同様にあった。図17にあるように、パーライト構造の無数の階段がスパイク形状として適しているとも考えられる。一方、SPCCに比較すれば、A7075やSUS304の表面は、スパイク形状として適しているとはいえない可能性もある。
ただし、NAT理論では、必要条件を満たす表面形状ならば接合力も同レベルになると考えるので、その理論上では、予期している破壊が生じたのは鋼材だけという見方もできる。即ち、接合力が20〜30MPaとなった接合体では、樹脂のかなりの部分がスパイク近傍で微細に壊れ、ミクロンオーダー凹部から樹脂がそっくりと抜けた部分が多く存在すると推定される。特に20MPa以下のマグネシウム合金やリン青銅では、スパイクの大きさや形状が効果的なものではなく、凹部からそっくりと抜けた樹脂はさらに多いものと思われる。破断後の樹脂部の観察を丁寧に電子顕微鏡で行うことができれば、上記のことが確認できると考えられる。何れにせよ、不飽和ポリエステル樹脂の硬化物は硬いが、一方で脆く、靭性がより高いエポキシ樹脂との比較では接着力で劣る。逆に言えば、何らかの組成改良で固化物の靭性を改良できれば結果は向上できるとみられるし、接合力の向上は金属側ではなく接着剤側の改良にあると考えられる。
[実験例53〜63](各種金属合金同士の接着)
実験例2、1、3、5、7、8、9、10、11、12、及び13で作成したA5052片、A7075片、AZ31B片、C1100片、KFC片、KLF5片、KS40片、KSTi−9片、SUS304片、SPCC片、及びSPHC片を各種6個ずつ、即ち11種分の66個用意した。各種金属合金片6個(3対分)の各端部に実験例20で作成した接着剤(4)を筆で塗った。その後は実験例29と全く同様にして接着硬化させ、結果として11種合計33対の同種金属合金片同士の接合体を得た。
得られた接合体を1週間後に引っ張り試験機にかけて、せん断破断力を測定した(実験例53、54、55、56、57、58、59、60、61、62、及び63)。各金属種について、3対のせん断破断力平均値を表2に示す。表2と表1を比較すると、明らかに表2の結果が全般に接合力が優れているといえる。即ち、ビニルエステル樹脂を主成分にした方が強い接合力を示すことが分かった。同時に、表2の結果が優れていることは、破壊箇所が主として硬化した接着剤の内部にて生じていることを示すものであり、接着力を更に向上させる手段として、ビニルエステル樹脂を原料に使用した接着剤での試行錯誤が望ましいことを示している。
[実験例64](GFRPの作成準備)
市販のガラス繊維織布「GF平織り(日東加工株式会社(日本国福島県)製)」、市販のFRP用不飽和ポリエステル樹脂「リゴラック258BQT(昭和高分子株式会社製)」、市販のt−ブチルパーオキシベンゾエート「パーブチルZ(日油株式会社製)」を用意した。「リゴラック258BQT」100部に「パーブチルZ」1部、水酸化マグネシウム粉末(昭和化学工業株式会社(日本国東京都)製)1部を加えてよく混合し、これをFRPのマトリックス樹脂とした。一方、「GF平織」を金切り鋏で45mm×15mmにカットしたものを多数準備した。
[実験例65](A7075/GFRP複合体)
実験例2と同じ方法で得たA7075片を使用した。A7075片を取り出して、実験例20で作成した接着剤(4)を塗り、デシケータに入れ、真空ポンプで50mmHg以下に減圧し15秒ほど置いてから空気を入れて常圧に戻した。常圧に戻したら30秒置きそれから減圧にする操作を3回繰り返し、常圧に戻してデシケータから取り出した。
一方、図1に示したものと同様の金型、治具を用意した。シールテープの切断物を離型用フィルム17として金型キャビティー内に敷き、金属合金片11として、上記デシケータから取り出したA7075片を接着剤塗布面が上向きになるようにして置いた。その横にスペーサ16としてブロックから削りだした厚さ3mmの板材を並べた。スペーサ16の上に実験例64で作成した「GF平織」のカット品を敷き、同じく実験例64で作成したマトリックス樹脂を塗り付けた。更に「GF平織」カット品を置き、実験例64で作成したマトリックス樹脂を塗り付け、同じことを繰り返してガラス繊維織布を4枚重ねた。マトリックス樹脂は1.5cc使用した。これにより形状化されたGFRP、即ち金属合金の被着物としてのGFRP板材12が完成したことになる(図1の12に相当)。
金属合金片11及びGFRP板材12の上にシールテープの切断物を離型フィルム13として置き、PTFEブロック14、15を載せた。この形で熱風乾燥機内に入れた。さらに、錘としてPTFEブロック15の上に0.1Kgのアルミ塊を載せて乾燥機に通電し、90℃まで昇温した。90℃で3時間保持し、更に120℃に上げて1時間加熱し、乾燥機から出して放冷した。翌日に金型から成形物を離型し離型フィルム13、17を剥ぎ取って図2に示す形状物を得た。得た形状物は、更に100℃で24時間加熱して硬化した。
同じ操作を繰り返し、3組のA7075/GFRP複合体を得た。1週間以上経過後に、これらを引っ張り試験機にかけて破断し、各々のせん断破断力を測定した。せん断破断力の平均は30MPa(305Kgf/cm)であり、非常に強かった。
[実験例66](SPCC/GFRP複合体)
実験例12と同じ方法で得たSPCC片を使用した。SPCC片を取り出して、実験例20で作成した接着剤(4)を塗り、実験例65と全く同様にして、3個のSPCC/GFRP接合体を得た。1週間後に、これらを引っ張り試験機にかけて破断し、各々のせん断破断力を測定した。せん断破断力の平均は35MPa(355Kgf/cm)であり、非常に強かった。
以下、実験例67以降は、接着剤(4)〜(12)のいずれかを使用した接着実験である。即ち、接着剤(4)を使用する場合を除き、充填材を使用する場合の接着実験である。
[実験例67](A7075アルミニウム合金片同士の接着)
実験例1で作成したA7075アルミニウム合金片の各端部に実験例20〜27で作成した接着剤(4)〜(11)をヘラで塗った。試験数は接着剤1種類当たり6個とし、総数は48個である。接着剤を塗ったアルミニウム合金片を大型デシケータに入れて真空ポンプで減圧し、50mmHgに達したら10秒置いて常圧に戻した。常圧に戻し0.5分間放置し、再び減圧して同じ常圧に戻し放置するサイクルを3回繰り返した。
次いでアルミニウム合金片をデシケータから取り出し90℃にした熱風乾燥機に10分入れてから取り出し、接着剤を塗布した面同士を接触させた対をクリップで挟んで図1の様に設置した。この時、双方のアルミニウム合金片の接着面積は0.6〜0.7cmになるようにした。これによりアルミニウム合金片の対は各接着剤種毎3対とした。2個の小型クリップで挟んだ対のアルミニウム合金片24対を、90℃にセットした熱風乾燥機内に置いて30分間放置し、更に110℃に上げて30分置き、更に135℃に上げて30分置き、電源を切って放冷した。翌日、乾燥機から出し1週間後に引っ張り試験機にかけて破断してせん断破断力を測定した。
その結果を表3に示す。無機充填材を強制分散されて得た接着剤(接着剤(6)(7)(9)(10)(11))の使用物では20MPa近い大幅な接着力の向上があった。又、超微細無機充填材の配合でも無機充填材を含まない単独配合の場合(接着剤(8))では効果が明確でなかった。そして無機充填材と超微細無機充填材の双方が共存している場合(接着剤(9)(10)(11))は、無機充填材のみを含む場合よりも高い接着力を与えた。
接着剤(4)を使用したときのせん断破断力が33.8MPaであり、無機充填材のみを充填した接着剤(5)のせん断破断力が39.2MPaであるから、無機充填材のみを添加した場合にも接着力の向上を図ることができるといえる。そして、その無機充填材をサンドグラインドミルで分散した場合(接着剤(6))、せん断破断力が52.9MPaとなり、その効果が格段に向上する。さらに、無機充填材と超微細無機充填材を併用し、サンドグラインドミルで分散することで(接着剤(9)(10)(11))、無機充填材のみをサンドグラインドミルで分散した場合(接着剤(6))と比較して、概ね10MPa程度、せん断破断力が向上した。いずれも60MPaを超えるせん断破断力を示したことから、エポキシ系接着剤を使用した場合に近いせん断破断力を得ることができたといえる。他に着目すべき点としては、無機充填材と超微細無機充填材に加え、CNTを添加した場合に(接着剤(10))、2MPa程度はせん断破断力が向上しているものの、格段の効果は得られていないことである。これは、高価なCNTを用いずとも無機充填材と超微細無機充填材で充分な接着力をの向上を図ることができることを意味するものである。
[実験例68〜82](各種金属合金片同士の接着:接着剤(4),(9))
実験例2〜16で作成したA5052アルミニウム合金片、AZ31Bマグネシウム合金片、AZ91Dマグネシウム合金片、C1100銅合金片、C5191リン青銅片、KFC銅合金片、KLF5銅合金片、チタン合金片、α−β型チタン合金片、SUS304ステンレス鋼片、SPCC鋼材片、SPHC鋼材片、Z18片(1)、(2)、(3)の金属合金片を各々多数用意した。実験例20で作成した接着剤(4)を、前記の各種金属合金片の表面にヘラで塗布した。また、実験例25で作成した接着剤(9)を、前記の各種金属合金片(接着剤(4)を塗布したものと異なる)の表面にヘラで塗布した。その後は実験例67と全く同様にして2枚の同種金属合金片同士を接着硬化させた。結果として、接着剤2種、金属合金種16種の合計32種のサンプルを用意し、各サンプルにつき3対の接合体を用意したので合計96対の接合体を得た。この96対を1週間後に引っ張り試験機にかけて破断して常温でのせん断破断力を測定した。
この結果を表4に示した。全ての金属合金種のサンプルについて無機充填剤及び超微細無機充填材の充填効果が認められた。しかし、接着剤(4)と接着剤(9)の間で大きな差異のある、即ち充填効果が大きい金属合金種と、相対的に充填効果が小さい金属合金種が存在した。相対的に充填効果が大きかったのはアルミニウム合金(A7075、A5052)、一部の銅合金(C5191、KLF5)、及びチタン合金(KS40、KSTI−9)であり、せん断破断力で50%以上の向上が認められた。一方、相対的に充填効果が小さかったのは、マグネシウム合金(AZ31B、AZ91D)、一部の銅合金(C1100)、及び鋼材(SPCC、SPHC)であり、せん断破断力の向上は30%以下であった。
[実験例83](各種金属合金片同士の接着:接着剤(12))
実験例1で作成したA7075アルミニウム合金片の各端部に実験例28で作成した接着剤(12)をヘラで塗った。接着剤を塗ったA7075片を大型デシケータに入れて真空ポンプで減圧し、50mmHgに達したら10秒置いて常圧に戻した。常圧に戻し0.5分間放置し、再び減圧して同じ常圧に戻し放置するサイクルを3回繰り返した。次いでA7075片をデシケータから取り出し90℃にした熱風乾燥機に10分入れてから取り出し、接着剤を塗布した面同士を接触させた対をクリップで挟んで図1の様に設置した。この時、双方のA7075片の接着面積は0.6〜0.7cmになるようにした。2個の小型クリップで挟んだ対のA7075片3対を、90℃にセットした熱風乾燥機内に置いて30分間放置し、更に110℃に上げて30分置き、更に135℃に上げて30分置き、電源を切って放冷した。翌日、乾燥機から出し1週間後に引っ張り試験機にかけて破断した。得た平均のせん断破断力は52MPaであり、ビニルエステル樹脂から得た接着剤(9)の結果よりやや低かったが十分に高い接着力であった。
[実験例84](GFRPの作成準備)
市販のガラス繊維織布「GF平織り(日東加工株式会社製)」、市販のFRP用不飽和ポリエステル樹脂「リゴラック258BQT(昭和高分子株式会社製)」、市販のt−ブチルパーオキシベンゾエート「パーブチルZ(日油株式会社製)」、シランカップリング剤「KBM−603(信越化学工業株式会社(日本国東京都)製)」を用意した。「GF平織」布を「KBM−603」1%濃度の水溶液に15分浸漬し、風乾し、80℃にした熱風乾燥機に30分入れて乾燥した。これを鋏で45mm×15mmにカットし、これを多数作成した。一方、「リゴラック258BQT」100部に水酸化マグネシウム粉末(昭和化学工業株式会社(日本国東京都)製)5部を加えてよく混練しポリ瓶に保管した。後述する接着の実験開始前にポリ瓶中の前記の液をガラス棒で再度よく混ぜ、ビーカーに取り出して、液100部当たり「パーブチルZ」1部を加えてよく混練し、これをFRPのマトリックス樹脂とした。
[実験例85](A7075/GFRP複合体(接着剤(9)))
実験例1と同じ方法で得たA7075アルミニウム合金片を使用した。保管していたA7075アルミニウム合金片を取り出して、実験例25で作成した接着剤(9)を塗り、デシケータに入れ、真空ポンプで50mmHg以下に減圧し15秒ほど置いてから空気を入れて常圧に戻した。常圧に戻したら30秒置きそれから減圧にする操作を3回繰り返し、常圧に戻してデシケータから取り出した。
一方、図1に示したものと同様の金型、治具を用意した。シールテープの切断物を離型用フィルム17として金型キャビティー内に敷き、金属合金片11として、上記デシケータから取り出したA7075アルミニウム合金片を接着剤塗布面が上向きになるようにして置いた。その横にスペーサ16としてブロックから削りだした厚さ3mmの板材を並べた。スペーサ16の上に実験例84で作成した「GF平織」のカット品を敷き、同じく実験例84で作成したマトリックス樹脂を塗り付けた。更に「GF平織」カット品を置き、実験例84で作成したマトリックス樹脂を塗り付け、同じことを繰り返してガラス繊維織布を6枚重ねた。マトリックス樹脂は約1.5cc使用した。これにより形状化されたGFRP、即ち金属合金の被着物としてのGFRP板材12が完成したことになる(図1の12に相当)。
金属合金片11及びGFRP板材12の上にシールテープの切断物を離型フィルム13として置き、PTFEブロック14、15を載せた。この形で熱風乾燥機内に入れた。さらに、錘としてPTFEブロック15の上に1kgの鋼塊を載せて乾燥機に通電し、90℃まで昇温した。90℃で3時間保持し、更に130℃に上げて1時間加熱し、乾燥機の電源を切って放置した。翌日に乾燥機から出し、金型から成形物を離型し、離型フィルム13、17を剥ぎ取って図2に示す形状物を得た。得た形状物は、更に100℃で24時間加熱して後硬化した。
同じ操作を繰り返し、3組のA7075アルミニウム合金/GFRPの接合体を得た。1週間経過後に、これらを引っ張り試験機にかけて破断し、各々のせん断破断力を測定した。せん断破断力の平均は40.1MPaであり、非常に強かった。これはGFRPのマトリックス樹脂が不飽和ポリエステル樹脂であり、接着剤の主要成分と共通するからである。また、実験例65と比較してせん断破断力が10MPa程度向上しており、無機充填材及び超微細無機充填剤を添加した効果が明確であった。
[実験例86](A7075/GFRP複合体(接着剤(11)))
実験例85と全く同様にしてA7075アルミニウム合金とGFRPの接着一体化物を得たが、使用した接着剤は、接着剤(9)ではなく実験例27による接着剤(11)を使用した。3組のA7075/GFRPの接合体を得て1週間経過後に、これらを引っ張り試験機にかけて破断し、各々のせん断破断力を測定した。せん断破断力の平均は40.5MPaであり非常に強かった。実験例85と86の比較は、使用した接着剤に熱可塑性樹脂であるPESが入っていないのと入っているのとの違いだが、その差異は明確でなかった。PESの添加によって接着力が少なくとも悪化しないことを確認した。
[実験例87](Z18亜鉛鍍金鋼板/GFRP複合体(接着剤(11)))
実験例16と同じ方法で得た亜鉛鍍金鋼板片(即ちZ18片(3))を使用した。この鋼板片を使用した以外は実験例85と全く同様にして接着剤(9)を使い、これと実験例84のマトリックス樹脂を使ったGFRPプリプレグとを共硬化し接着した。このようにして3組のZ18亜鉛鍍金鋼板/GFRPの接合体を得た。1週間経過後に、これらを引っ張り試験機にかけて破断し、各々のせん断破断力を測定した。せん断破断力の平均は30.3MPaであり非常に強かった。
本発明は、金属合金同士又は金属合金とGFRPを強固に接着する技術である。金属合金と安価なGFRPとの接着剤接合が可能になり、屋外施設、屋外建築物、又は災害時の臨時構造物等の部品製造に有用である。また、チタン合金、ステンレス鋼、又はアルミニウム合金とGFRPとの接合体は軽量であり、電車、船舶、自転車、その他の移動機械の構造用部品としても有用である。

Claims (40)

  1. 金属合金と被着材が接着剤を介して接合された接合体であって、
    前記金属合金の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、その粗度を有する面内には5〜500nm周期の超微細凹凸が形成され、且つ、表層が金属酸化物又は金属リン酸化物の薄層であり、
    前記接着剤は、不飽和ポリエステル樹脂又はビニルエステル樹脂を主成分とし、
    その接着剤が前記超微細凹凸に浸入していることにより前記金属合金と前記被着材が強固に接合されていることを特徴とする金属合金と被着材の接合体。
  2. 請求項1に記載した金属合金と被着材の接合体であって、
    前記金属合金はアルミニウム合金、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、鉄鋼材、及び亜鉛鍍金鋼板から選択されるいずれか1種であることを特徴とする金属合金と被着材の接合体。
  3. 金属合金と被着材が接着剤を介して接合された接合体であって、
    前記金属合金はα−β型チタン合金であって、
    前記α−β型チタン合金の表面は、エッチングが施されることにより、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を有し、且つ、10μm角の面積内に円滑なドーム形状と湾曲した枯葉形状の双方が存在することによる微細凹凸が形成され、且つ、表層が、主としてチタンとアルミニウムを含む金属酸化物の薄層であり、
    前記接着剤は、不飽和ポリエステル樹脂又はビニルエステル樹脂を主成分とし、
    その接着剤が前記微細凹凸に浸入していることにより前記金属合金と前記被着材が強固に接合されていることを特徴とする金属合金と被着材の接合体。
  4. 請求項1ないし3から選択される1項に記載した金属合金と被着材の接合体であって、
    前記接着剤に使用されている硬化剤は有機過酸化物であり、前記接着剤の主成分となる不飽和ポリエステル樹脂又はビニルエステル樹脂の常温付近における重合反応を低速とするものであることを特徴とする金属合金と被着材の接合体。
  5. 請求項4に記載した金属合金と被着材の接合体であって、
    前記有機過酸化物は、t−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、及びt−ブチルパーオキシベンゾエートから選択される1種以上であることを特徴とする金属合金と被着材の接合体。
  6. 請求項1ないし5から選択される1項に記載した金属合金と被着材の接合体であって、
    前記接着剤は、1μm径以上の無機充填材を1質量%以上含むことを特徴とする金属合金と被着材の接合体。
  7. 請求項6に記載した金属合金と被着材の接合体であって、
    前記接着剤は、100nm径以下の超微細無機充填材を0.1質量%以上さらに含むことを特徴とする金属合金と被着材の接合体。
  8. 請求項7に記載した金属合金と被着材の接合体であって、
    前記接着剤は、前記超微細無機充填材を0.1〜1.0質量%含むことを特徴とする金属合金と被着材の接合体。
  9. 請求項7又は8に記載した金属合金と被着材の接合体であって、
    前記超微細無機充填材がヒュームドシリカであることを特徴とする金属合金と被着材の接合体。
  10. 請求項1ないし9から選択される1項に記載した金属合金と被着材の接合体であって、
    前記接着剤は、熱可塑性樹脂を5質量%以下さらに含むことを特徴とする金属合金と被着材の接合体。
  11. 請求項1ないし10から選択される1項に記載した金属合金と被着材の接合体であって、
    前記被着材は、前記金属部品と同性質の金属合金であることを特徴とする金属合金と被着材の接合体。
  12. 請求項1ないし11から選択される1項に記載した金属合金と被着材の接合体であって、
    前記被着材は、不飽和ポリエステル樹脂又はビニルエステル樹脂をマトリックス樹脂とする繊維強化プラスチックであることを特徴とする金属合金と被着材の接合体。
  13. 金属合金の表面に、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、且つ、その粗度を有する面内に、5〜500nm周期の超微細凹凸を形成し、且つ、表層を金属酸化物又は金属リン酸化物の薄層とするためのエッチングを行う表面処理工程と、
    不飽和ポリエステル樹脂又はビニルエステル樹脂を主成分とする接着剤を作成する接着剤作成工程と、
    前記接着剤作成工程で得た接着剤を、前記表面処理工程を経た金属合金表面の所定範囲に塗布する塗布工程と、
    前記塗布工程を経た金属合金表面の前記所定範囲に被着材を固定し、加熱することによって未硬化樹脂を硬化させて両者を一体化させる一体化工程と、
    を含むことを特徴とする金属合金と被着材の接合体の製造方法。
  14. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金はアルミニウム合金であり、
    前記表面処理工程は、前記アルミニウム合金を強塩基性水溶液に浸漬する化学エッチング工程と、その化学エッチング工程後に、前記アルミニウム合金を酸性水溶液に浸漬する中和工程と、その中和工程後に、前記アルミニウム合金を水和ヒドラジン、アンモニア、及び水溶性アミン化合物から選択される1種以上を含む水溶液に浸漬する微細エッチング工程と、を含むことを特徴とする前記製造方法。
  15. 請求項14に記載した金属合金と被着材の接合体の製造方法であって、
    前記表面処理工程は、前記微細エッチング工程後に、前記アルミニウム合金を過酸化水素水溶液に浸漬する酸化工程をさらに含むことを特徴とする前記製造方法。
  16. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金はマグネシウム合金であり、
    前記表面処理工程は、前記マグネシウム合金を酸性水溶液に浸漬する化学エッチング工程と、その化学エッチング工程後に、前記マグネシウム合金を過マンガン酸塩水溶液に浸漬する化成処理工程と、を含むことを特徴とする前記製造方法。
  17. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金は銅合金であり、
    前記表面処理工程は、前記銅合金を酸化剤を含む酸性水溶液に浸漬する化学エッチング工程と、その化学エッチング工程後に、前記銅合金を酸化剤を含む強塩基性水溶液に浸漬する表面硬化工程と、を含むことを特徴とする前記製造方法。
  18. 請求項17に記載した金属合金と被着材の接合体の製造方法であって、
    前記銅合金は純銅系の銅合金であり、
    前記表面処理工程において、前記化学エッチング工程及び前記表面硬化工程を経た銅合金に対して、再度、前記化学エッチング工程及び前記表面硬化工程を行うことを特徴とする前記製造方法。
  19. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金は純チタン系のチタン合金であり、
    前記表面処理工程は、前記チタン合金を、1水素2弗化アンモニウムを含む水溶液に浸漬する化学エッチング工程を含むことを特徴とする前記製造方法。
  20. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金はステンレス鋼であり、
    前記表面処理工程は、前記ステンレス鋼を硫酸水溶液に浸漬する化学エッチング工程を含むことを特徴とする前記製造方法。
  21. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金は鉄鋼材であり、
    前記表面処理工程は、前記鉄鋼材を硫酸水溶液に浸漬する化学エッチング工程を含むことを特徴とする前記製造方法。
  22. 請求項21に記載した金属合金と被着材の接合体の製造方法であって、
    前記表面処理工程は、前記化学エッチング工程を経た前記鉄鋼材を、アンモニア、ヒドラジン、及び水溶性アミン系化合物から選択される1種を含む水溶液に浸漬する工程をさらに含むことを特徴とする前記製造方法。
  23. 請求項21に記載した金属合金と被着材の接合体の製造方法であって、
    前記表面処理工程は、前記化学エッチング工程を経た前記鉄鋼材を、6価クロム化合物、過マンガン酸塩、及びリン酸亜鉛系化合物から選択される1種を含む水溶液に浸漬する工程をさらに含むことを特徴とする前記製造方法。
  24. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金は亜鉛系鍍金鋼板であり、
    前記表面処理工程は、前記亜鉛系鍍金鋼板を3価クロム、6価クロム、リン酸、及びニッケルを含む水溶液に浸漬する化成処理を含むことを特徴とする前記製造方法。
  25. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金は亜鉛系鍍金鋼板であり、
    前記表面処理工程は、前記亜鉛系鍍金鋼板をリン酸、2価亜鉛、ニッケル、及び珪弗化物を含む水溶液に浸漬する化成処理を含むことを特徴とする前記製造方法。
  26. 請求項13に記載した金属合金と被着材の接合体の製造方法であって、
    前記金属合金は亜鉛系鍍金鋼板であり、
    前記表面処理工程は、前記亜鉛系鍍金鋼板をリン酸、2価亜鉛、カルシウム、及びニッケルを含む水溶液に浸漬する化成処理を含むことを特徴とする前記製造方法。
  27. 請求項24ないし26から選択される1項に記載した金属合金と被着材の接合体の製造方法であって、
    前記亜鉛系鍍金鋼板は亜鉛アルミニウム合金鍍金鋼板であり、
    前記表面処理工程は、前記化成処理前に、前記亜鉛アルミニウム合金鍍金鋼板を非酸化性の酸性水溶液に浸漬する化学エッチング工程をさらに含むことを特徴とする前記製造方法。
  28. α−β型チタン合金の表面に、山谷平均間隔(RSm)が0.8〜10μm、最大高さ粗さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、且つ、10μm角の面積内に円滑なドーム形状と湾曲した枯葉形状の双方が存在することによる微細凹凸を形成し、且つ、表層を、主としてチタンとアルミニウムを含む金属酸化物の薄層とするためのエッチングを行う表面処理工程と、
    不飽和ポリエステル樹脂又はビニルエステル樹脂を主成分とする接着剤を作成する接着剤作成工程と、
    前記接着剤作成工程で得た接着剤を、前記表面処理工程を経たα−β型チタン合金表面の所定範囲に塗布する塗布工程と、
    前記塗布工程を経たα−β型チタン合金表面の前記所定範囲に被着材を固定し、加熱することによって未硬化樹脂を硬化させて両者を一体化させる一体化工程と、
    を含むことを特徴とする金属合金と被着材の接合体の製造方法。
  29. 請求項13ないし28から選択される1項に記載した金属合金と被着材の接合体の製造方法であって、
    前記接着剤作成工程において、硬化剤として、前記接着剤の主成分となる不飽和ポリエステル樹脂又はビニルエステル樹脂の常温付近における重合反応を低速とする有機過酸化物を使用することを特徴とする前記製造方法。
  30. 請求項29に記載した金属合金と被着材の接合体の製造方法であって、
    前記有機過酸化物は、t−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、及びt−ブチルパーオキシベンゾエートから選択される1種以上であることを特徴とする前記製造方法。
  31. 請求項29又は30に記載した金属合金と被着材の接合体の製造方法であって、
    前記接着剤作成工程において、前記接着剤に1μm径以上の無機充填材を1質量%以上充填した後、前記有機過酸化物を加えることを特徴とする前記製造方法。
  32. 請求項31に記載した金属合金と被着材の接合体の製造方法であって、
    前記接着剤作成工程において、前記無機充填材を、湿式粉砕機又は湿式分散機を用いて樹脂中に分散させた後に前記有機過酸化物を加えることを特徴とする前記製造方法。
  33. 請求項31又は32に記載した金属合金と被着材の接合体の製造方法であって、
    前記接着剤作成工程において、前記有機過酸化物を加える前に、前記接着剤に100nm径以下の超微細無機充填材を0.1〜1.0質量%さらに充填することを特徴とする前記製造方法。
  34. 請求項33に記載した金属合金と被着材の接合体の製造方法であって、
    前記超微細無機充填材がヒュームドシリカであることを特徴とする前記製造方法。
  35. 請求項33又は34に記載した金属合金と被着材の接合体の製造方法であって、
    前記接着剤作成工程において、前記無機充填材及び前記超微細無機充填材を、湿式粉砕機又は湿式分散機を用いて樹脂中に分散させた後に前記有機過酸化物を加えることを特徴とする前記製造方法。
  36. 請求項32又は35に記載した金属合金と被着材の接合体の製造方法であって、
    前記湿式粉砕機又は前記湿式分散機はサンドグラインドミルであることを特徴とする前記製造方法。
  37. 請求項13ないし36から選択される1項に記載した金属合金と被着材の接合体の製造方法であって、
    前記接着剤作成工程において、熱可塑性樹脂を5質量%以下さらに充填することを特徴とする前記製造方法。
  38. 請求項13ないし37から選択される1項に記載した金属合金と被着材の接合体の製造方法であって、
    前記塗布工程後、前記一体化工程前に、前記金属合金を密閉容器に収納し、その密閉容器内を減圧し、その後に加圧する操作を繰り返し行うことにより、前記金属合金表面に前記接着剤を染み込ませる工程を含むことを特徴とする前記製造方法。
  39. 請求項13ないし38から選択される1項に記載した金属合金と被着材の接合体の製造方法であって、
    前記被着材は、前記金属部品と同性質の金属合金であることを特徴とする前記製造方法。
  40. 請求項13ないし39から選択される1項に記載した金属合金と被着材の接合体の製造方法であって、
    前記被着材は、不飽和ポリエステル樹脂又はビニルエステル樹脂をマトリックス樹脂とする繊維強化プラスチックであることを特徴とする前記製造方法。
JP2009550562A 2008-01-22 2009-01-22 金属合金と被着材の接合体とその製造方法 Expired - Fee Related JP4903881B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550562A JP4903881B2 (ja) 2008-01-22 2009-01-22 金属合金と被着材の接合体とその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008011551 2008-01-22
JP2008011551 2008-01-22
JP2008259041 2008-10-03
JP2008259041 2008-10-03
PCT/JP2009/051007 WO2009093668A1 (ja) 2008-01-22 2009-01-22 金属合金と被着材の接合体とその製造方法
JP2009550562A JP4903881B2 (ja) 2008-01-22 2009-01-22 金属合金と被着材の接合体とその製造方法

Publications (2)

Publication Number Publication Date
JPWO2009093668A1 true JPWO2009093668A1 (ja) 2011-05-26
JP4903881B2 JP4903881B2 (ja) 2012-03-28

Family

ID=40901173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009550562A Expired - Fee Related JP4903881B2 (ja) 2008-01-22 2009-01-22 金属合金と被着材の接合体とその製造方法

Country Status (2)

Country Link
JP (1) JP4903881B2 (ja)
WO (1) WO2009093668A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005722A1 (en) * 2010-07-06 2012-01-12 Zettacore, Inc. Methods of treating metal surfaces and devices formed thereby
WO2011105181A1 (ja) * 2010-02-26 2011-09-01 住友電気工業株式会社 マグネシウム合金板の表面加工方法およびマグネシウム合金板
KR101336224B1 (ko) * 2012-11-13 2013-12-05 주식회사 엑시아머티리얼스 다층 구조물의 접합 방법
CN103471897B (zh) * 2013-09-09 2015-06-17 河北科技大学 一种铝合金彩色金相着色方法
KR101564660B1 (ko) * 2013-12-26 2015-10-30 윈엔윈(주) 탄소나노튜브를 이용한 자전거 프레임의 제조방법
EP2962846B1 (de) * 2014-07-02 2019-08-28 Schmitz Cargobull AG Verfahren zum aktivieren einer oberfläche, verfahren zum herstellen einer klebverbindung und bauteilverbund
CN108262914A (zh) * 2016-12-30 2018-07-10 广州光宝移动电子部件有限公司 具有含钛材料与塑料材料的复合结构及其制造方法
EP3748037A4 (en) 2018-02-01 2021-03-10 Mitsubishi Gas Chemical Company, Inc. Aqueous SURFACE TREATMENT SOLUTION, METHOD FOR MANUFACTURING SURFACE-TREATED ALLOY AND COMPOSITE MATERIAL, AND MANUFACTURING METHOD FOR THEREFORE
JP7282531B2 (ja) * 2019-01-23 2023-05-29 ポリプラスチックス株式会社 金属板、金属板の製造方法、金属樹脂複合成形品およびその製造方法
JP7272706B1 (ja) * 2021-12-28 2023-05-12 ドングァン ディーエスピー テクノロジー カンパニー リミテッド ポリマーとステンレス鋼の接合体のためのステンレス鋼の表面処理方法
CN115261864B (zh) * 2022-08-04 2023-08-15 四川工程职业技术学院 一种在铝合金表面构建超疏水改性层的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236955A (ja) * 1990-02-14 1991-10-22 Shin Kobe Electric Mach Co Ltd サーマルヘッド用金属箔張り積層板ならびにサーマルヘッド
JPH0529740A (ja) * 1991-07-18 1993-02-05 Furukawa Saakitsuto Foil Kk プリント配線板用電解銅箔
JPH05264045A (ja) * 1992-03-16 1993-10-12 Toyo Polymer Kk ガスレンジなどの鋼板製あるいはステンレス製厨房機器の 表面処理方法
JP2003008199A (ja) * 2001-06-13 2003-01-10 Internatl Business Mach Corp <Ibm> プリント配線基板の銅表面粗化方法ならびにプリント配線基板およびその製造方法
JP2004277876A (ja) * 2003-01-21 2004-10-07 Jfe Steel Kk 表面処理亜鉛系めっき鋼板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236955A (ja) * 1990-02-14 1991-10-22 Shin Kobe Electric Mach Co Ltd サーマルヘッド用金属箔張り積層板ならびにサーマルヘッド
JPH0529740A (ja) * 1991-07-18 1993-02-05 Furukawa Saakitsuto Foil Kk プリント配線板用電解銅箔
JPH05264045A (ja) * 1992-03-16 1993-10-12 Toyo Polymer Kk ガスレンジなどの鋼板製あるいはステンレス製厨房機器の 表面処理方法
JP2003008199A (ja) * 2001-06-13 2003-01-10 Internatl Business Mach Corp <Ibm> プリント配線基板の銅表面粗化方法ならびにプリント配線基板およびその製造方法
JP2004277876A (ja) * 2003-01-21 2004-10-07 Jfe Steel Kk 表面処理亜鉛系めっき鋼板

Also Published As

Publication number Publication date
JP4903881B2 (ja) 2012-03-28
WO2009093668A1 (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4903881B2 (ja) 金属合金と被着材の接合体とその製造方法
JP5295741B2 (ja) 金属合金と繊維強化プラスチックの複合体及びその製造方法
JP5372469B2 (ja) 金属合金積層材
JP4965347B2 (ja) 管状複合体とその製造方法
JP5108891B2 (ja) 金属樹脂複合体の製造方法
JP5426932B2 (ja) 金属合金と熱硬化性樹脂の複合体及びその製造方法
JP4965649B2 (ja) 銅合金複合体とその製造方法
JP5139426B2 (ja) 鋼材複合体及びその製造方法
US8932719B2 (en) Aluminum alloy composite and method for joining thereof
JP5129903B2 (ja) マグネシウム合金複合体とその製造方法
JP4903897B2 (ja) 亜鉛系鍍金鋼板と被着材の接合体及びその製造方法
JP5094849B2 (ja) ステンレス鋼複合体
JP5108904B2 (ja) 金属とポリアミド樹脂組成物の複合体及びその製造方法
JP5008040B2 (ja) チタン合金複合体とその接合方法
WO2011086984A1 (ja) アルミニウム合金部材と樹脂部材とのレーザー接合方法
EP2103406A1 (en) Process for production of highly corrosion-resistant composite
JP2009298144A (ja) 複数金属形状物の接合複合体とその製造方法
JP2012066383A (ja) 金属合金を含む接着複合体とその製造方法
JP4906004B2 (ja) 金属合金と繊維強化プラスチックの複合体の製造方法
JP2012157991A (ja) 金属樹脂複合体及びその製造方法
JP5302315B2 (ja) 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP2009241569A (ja) 管状接合複合体
JP2011073191A (ja) Cfrpと被着材の接合体及びその製造方法
JP2010269534A (ja) 金属を含む接着複合体とその製造方法
JP2010131789A (ja) 金属合金を含む接着複合体とその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees