JPWO2009037759A1 - 冷凍空調装置 - Google Patents

冷凍空調装置 Download PDF

Info

Publication number
JPWO2009037759A1
JPWO2009037759A1 JP2009532992A JP2009532992A JPWO2009037759A1 JP WO2009037759 A1 JPWO2009037759 A1 JP WO2009037759A1 JP 2009532992 A JP2009532992 A JP 2009532992A JP 2009532992 A JP2009532992 A JP 2009532992A JP WO2009037759 A1 JPWO2009037759 A1 JP WO2009037759A1
Authority
JP
Japan
Prior art keywords
air
temperature
adsorbent
wind speed
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009532992A
Other languages
English (en)
Inventor
裕之 森本
裕之 森本
杉本 猛
猛 杉本
文雄 松岡
文雄 松岡
山下 浩司
浩司 山下
山下 哲也
哲也 山下
孝史 福井
孝史 福井
武之 前川
武之 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2009037759A1 publication Critical patent/JPWO2009037759A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

冷凍サイクルの風速範囲0.5〜3.5(m/s)において、風速依存性が小さい吸着剤を冷凍サイクルと組み合わせた場合、風速を変化させることによって、除湿能力を増減させることができず、実負荷とのマッチングが悪かった。冷媒が充填され、冷媒を圧縮する圧縮機20a、凝縮器20b、絞り弁20c及び蒸発器20dを備えた冷凍機20と、水分吸着手段であるデシカントロータ1を有する冷凍空調装置において、デシカントロータ1に風速が0.5〜3.5m/sの範囲において、水分吸着平衡の時定数が風速の増加とともに小さくなる吸着剤を担持させ、デシカントロータ1の風上に凝縮器20bを配置し、デシカントロータ1の風下に蒸発器20dを配置した。

Description

この発明は、デシカントと蒸気圧縮式冷凍サイクルを組み合わせた冷凍空調装置に関するものであり、特に冷凍サイクルとのマッチングが良い吸着剤と組み合わせることによって、負荷への追従性の向上に関する。
従来の除湿機能を有する冷凍空調装置は、圧縮機と、凝縮器と、膨張弁と、蒸発器と、デフロストヒータとで構成されている。冷凍空調装置の冷凍サイクル内には冷媒が充填されている。圧縮機で圧縮された冷媒は高温高圧のガス冷媒となり、凝縮器に送り込まれる。凝縮器に流れ込んだ冷媒は、空気に熱を放出することにより液化する。液化した冷媒は膨張弁で減圧されて気液二相流状態となり、蒸発器にて周囲空気から熱を吸収することでガス化し、圧縮機へと流れる。蒸発温度(蒸発器吸込み温度)を露点温度以下にすることによって、水分を除去する方式が一般的である。
圧縮機の回転数が制御できる冷凍空調装置(ルームエアコン等)の場合、冷房の中間期(梅雨、秋等)において、冷房負荷が小さくなるため、圧縮機の回転数を低下させることにより、負荷に追従していた。その結果、蒸発温度が上昇し、部屋の顕熱は除去できるが、潜熱は除去できない状態に陥り、部屋の相対湿度が上昇し、不快感が増大していた。
そこで、冷凍機と水分吸着手段を組合せ、蒸発器(吸熱器)に流れ込む空気の水分を水分吸着手段によりあらかじめ除去(潜熱除去)する方式が開示されている。すなわち、水分吸着手段であるデシカントロータで減湿した空気を蒸発器(吸熱器)へ供給する。一方、吸湿したデシカントロータの水分を脱着して再生するために、凝縮器(放熱器)で加熱された高温の空気をデシカントロータへ供給している(例えば、特許文献1参照)。
また、冷凍機と水分吸着手段を組み合わせた方式においても、冷凍・冷蔵倉庫、部屋の負荷状況によっては、冷凍空調装置の能力を制御する必要があり、風量によって能力を制御する方法が開示されている(例えば、特許文献2参照)。
特開2001−241693号公報(段落0071〜0079、図2) 特開2006−308236号公報(段落0020、図2)
特許文献1のように、デシカントを有する空気調和機では、デシカントロータの表面に設けられる固体吸着剤にゼオライトやシリカゲルが用いられる。固体吸着剤にゼオライトを用いる場合について、図13にゼオライトの水分平衡吸着特性を示す。図13より、ゼオライトに吸着した水分を効率よく脱着して再生するには、相対湿度が数パーセント以下の空気を供給する必要があることがわかる。空気の相対湿度を減少させるためには空気を高温に加熱する必要があり、例えば、HFC(ハイドロフルオロカーボン)のような臨界温度以下で動作する冷媒を用いた冷凍サイクルの凝縮器から発生する排熱で、ゼオライトやシリカゲルを再生することはできなかった。
また、図14は、従来の水分吸着手段に用いられる吸着剤であるゼオライトの除湿能力と風速との関係を示すグラフである。
図14に示すように、吸着剤として広く用いられているゼオライトは風速が約1[m/s]あたりで、除湿能力(吸着能力)がサチュレートしてしまうことが我々の研究で、分かっている。一方、冷凍サイクルの熱交換器においては、風速が4[m/s]付近までは、リニアに熱交換能力(蒸発能力、凝縮能力)が増加するので、吸着剤の能力(除湿能力)が適正(約0.5〜1.5[m/s]になる風速と熱交換器の能力が適正(0.5〜3.5[m/s])になる風速とが一致していなかった。例えば、冷凍サイクルの平均的な風速2m/sに合わせた場合、風速に見合っただけの除湿能力が吸着剤で得られず、その結果、熱交換器では十分な顕熱能力は得られるが、吸着剤での潜熱能力は不十分なものとなり、SHF(=顕熱能力/[顕熱能力+潜熱能力])が大きくなるという問題が発生していた。このような状態では、送風機の入力分が除湿能力(潜熱能力)に寄与しないため、
COP(=[顕熱能力+潜熱能力]/[圧縮機入力+送風機入力])が悪化していた。
逆に吸着剤の適正風速(約0.5〜1.5[m/s])に合わせた場合、除湿能力は十分得られても、熱交換器での風量(風速)が小さいため、顕熱能力が小さくなり、SHFが小さくなるという問題があった。また、熱交換器での風量(風速)が小さいため、蒸発器の蒸発温度が低下し、その結果、圧縮機の入力が大きくなり、COPが悪化していた。
また、吸着剤の除湿能力が風速の増加とともにリニアに変化しないので、風速で除湿能力(潜熱能力)を制御することができず、その結果、SHF(顕熱能力/[潜熱能力+顕熱能力])が大きくなり、負荷にマッチングしていないという現象が発生していた。
また、吸着剤での潜熱除去が不十分になり、吸着剤の下流に設置している蒸発器において、着霜が発生し、冷凍空調装置の信頼性を低下させていた。
本発明は、このような問題を解決するために為されたものであり、冷凍サイクルにおいて、冷凍サイクルと相性の良い吸着剤とを組み合わせることによって、負荷への追従性を向上させ、信頼性の高い冷凍空調装置を得ることを目的としている。
本発明に係わる冷凍空調装置は、冷媒が充填され、冷媒を圧縮する圧縮機、凝縮器、絞り装置及び蒸発器を備えた冷媒回路と、空調空間の水分を吸着して外気へ排出する水分吸着手段と、を有する冷凍空調装置において、水分吸着手段に水分吸着平衡の時定数が風速の増加とともに小さくなる吸着剤を用いたものである。別の言い方をすれば、風速の増加とともに、除湿能力が大きくなる吸着剤を用いたものである。
この発明に係る冷凍空調装置によれば、冷媒が充填され、冷媒を圧縮する圧縮機、凝縮器、絞り装置及び蒸発器を備えた冷媒回路と、空調空間の水分を吸着して外気へ排出する水分吸着手段とを有する冷凍空調装置において、水分吸着平衡の時定数が風速の増加とともに小さくなる吸着剤を用いたので、風速を変化することによって、除湿能力と潜熱能力を変化させることが可能となり、負荷への追従性が向上し、冷凍空調装置の信頼性が向上する。
この発明の実施の形態における冷凍空調装置の構成を説明する概略図である。 この発明の実施の形態における冷凍空調装置の要部構成である水分吸着手段の駆動状態を説明する概略図である。 この発明の実施の形態における冷凍空調装置の動作を説明する空気線図である。 この発明の実施の形態における冷凍空調装置の要部構成である水分吸着手段に設けられる吸着剤の吸着特性を説明する特性図である。 空調装置の機種と風速との関係を示すグラフである。 吸着剤の重量変化と時間との関係を示すグラフである。 時定数と風速との関係を示すグラフである。 除湿ロータの円筒内部の構造を示す図である。 吸脱着時間と吸脱着量との関係を表す図である。 風速と吸着剤の時定数との関係を示すグラフである。 冷凍能力と風速との関係を示すグラフである。 本実施の形態で用いられている吸着剤の除湿能力と風速との関係を示すグラフである。 従来の水分吸着手段に用いられる吸着剤であるゼオライトの吸着特性を説明する特性図である。 従来の水分吸着手段に用いられる吸着剤であるゼオライトの除湿能力と風速との関係を示すグラフである。
符号の説明
1 デシカントロータ、2 駆動手段、3a ファン、3b ファン、4a 第1の空気、4b 第2の空気、5 デシカントロータの回転方向、6 デシカントロータ、7 駆動手段、20 冷凍機、20a 圧縮機、20b 凝縮器、20c 絞り装置、20d 蒸発器、20e 温度検知手段、20f 温湿度検知手段、20g 温湿度検知手段、20h 温湿度検知手段、20i 制御・演算手段、30 円筒内部、31 バルク空気層、32 境界層、33 吸着剤層、34 吸着剤細孔、35 バルク空気層−境界層間、36 境界層−吸着剤細孔間、37 吸着剤層厚さ、100a 外気側、100b 冷蔵室(空調空間)。
本実施の形態における冷凍空調装置の構成を説明する。図1において、冷凍空調装置は、水分吸着手段と冷凍機20を備えている。水分吸着手段であるデシカントロータ1、デシカントロータ1を駆動可動させるための駆動手段2であるモータ、外気側100aの空気である第1の空気4aをデシカントロータ1へ供給するためのファン3a、冷蔵室100bの空気である第2の空気4bをデシカントロータ1へ供給するためのファン3bに加え、HFC系の冷媒であるR404Aが封入され、圧縮機20a、凝縮器20b、絞り装置である膨張弁20c、蒸発器20dからなる冷凍機20により構成される。冷媒はR134a、R407C、R410A、アンモニア、HCなどでもよい。CO2は、臨界点以上で動作する冷媒であるため、凝縮時に高温の空気温度が得られやすいという特徴がある。その結果、吸着剤の再生温度を高くすることができるので、デシカントロータ1を小さくすることができる。ファン3aが回転することにより、第1の空気4aが凝縮器20bと熱交換するとともにデシカントロータ1を通過するように気流を形成する。また、ファン3bが回転することにより、第2の空気4bがデシカントロータ1を通過し、さらに蒸発器20dに供給されてこの蒸発器20dと熱交換するように気流を形成する。また、凝縮器20bは、水分吸着手段であるデシカントロータ1に対し第1の空気4aの風上側に配置される。さらに、蒸発器20dは、水分吸着手段であるデシカントロータ1に対し第2の空気4bの風下側に配置される。図2に示すように、デシカントロータ1は円柱形をしており、モータ2により矢印5の方向に回転し、外気側100aと冷蔵室100bのスペースにあって、時間とともに回転移動する。
冷凍機20の動作について説明する。圧縮機20aで圧縮された冷媒は、高温・高圧の冷媒となって凝縮器20bに流れ込む。凝縮器20bに流れ込んだ冷媒は、周囲の空気に熱を捨て、液冷媒になる。この周囲の空気に捨てた熱(凝縮排熱)を、水分吸着手段の再生に利用する。液状態となった冷媒は、膨張弁20cにて減圧されて、低圧の気液二相冷媒になり、蒸発器20dに送り込まれる。
蒸発器20dに送り込まれた気液二相冷媒は、周囲の空気から熱を吸収することで、ガス状態になり、圧縮機20aに吸引される。蒸発器20dに流れ込む空気は、あらかじめデシカントロータ1によって水分を除去された空気から吸熱されたものであるため、蒸発器20dの表面(フィン、伝熱管)に霜が着かないのが特徴である。
次に、空気線図上での動作について説明する。図3はこの発明の本実施の形態における冷凍空調装置の動作を説明する空気線図である。図1及び図2において、冷蔵室100b側のデシカントロータ1を通過する第2の空気4bに対し、デシカントロータ1の通過前空気の状態を(1)、デシカントロータ1を通過した直後の空気の状態を(2)、蒸発器20dと熱交換した直後の空気の状態を(3)とする。また、外気側100aのデシカントロータ1を通過する第1の空気4aに対し、凝縮器20bの風上側空気の状態を(4)、凝縮器20bと熱交換した直後の空気の状態を(5)、デシカントロータ1の通過直後の空気状態を(6)とする。
まず、デシカントロータ1が冷蔵室100b内の水分を吸着する動作を説明する。状態(1)の空気は、乾球温度が−10[℃]、相対湿度が60%、絶対湿度が0.96[g/kg]である。デシカントロータ1に供給された状態(1)の空気は、等エンタルピ線に沿って、相対湿度が60%から例えば20%まで減湿され、絶対湿度は0.96[g/kg]から0.36[g/kg]まで減湿され、乾球温度は−10[℃]から−8.5[℃]まで上昇した状態(2)の空気となって蒸発器20dへ向かう。図4に示すように、デシカントロータ1に設けられる吸着剤は、相対湿度30%以上の領域では吸着できる水分量が大きいので、状態(1)の空気を減湿できる。状態(2)の空気は蒸発器20dで熱交換され、絶対湿度が一定の状態で顕熱のみが除去されて冷却され、相対湿度が100%未満、乾球温度が−20[℃]である状態(3)の空気となる。蒸発器20dに着霜して冷凍機20が除霜運転をしないようにするために、蒸発器20dの蒸発温度が状態(2)の空気における露点温度(本実施の形態では−25.7[℃])よりも高くなるように、膨張弁20cの開度、圧縮機20aの回転数、ファン3bの回転数等を調節している。状態(3)の空気は冷蔵室100b内へ拡散され、冷蔵室100bの乾球温度を−10[℃]に保つ。また、モータ2によりデシカントロータ1の水分を吸着した領域が外気側100aに移動され、デシカントロータ1に吸着した水分は後述するように外気側100aで脱着される。
次に、デシカントロータ1に吸着された水分が外気側100aで脱着される動作を説明する。状態(4)の空気は、外気温である乾球温度が32[℃]、相対湿度が60%、絶対湿度が18.04[g/kg]である。凝縮器20bに供給された状態(4)の空気は、凝縮器20bで熱交換されて加熱され、絶対湿度が一定の状態で顕熱のみが加わり、乾球温度が53[℃]まで上昇し、相対湿度が20%まで減湿された状態(5)の空気となってデシカントロータ1へ供給される。凝縮器20bの凝縮温度が55[℃]になるように、膨張弁20cの開度、圧縮機20aの回転数、ファン4aの回転数等を調節する。デシカントロータ1へ供給された状態(5)の空気は、等エンタルピ線に沿って、相対湿度が20%から60%まで増湿され、絶対湿度が18.04[g/kg]から24.38[g/kg]まで増湿され、乾球温度が53[℃]から37.3[℃]まで低下した状態(6)の空気となり、外気側100aへ放出される。相対湿度が20%である状態(5)の空気がデシカントロータ1に供給されれば、図4に示すようにデシカントロータ1に設けられる吸着剤で保持できる水分量が相対湿度30%以上の領域における水分量よりも極端に小さくなるため、外気側100aの空気に水分を放出することができる。水分が脱着されたデシカントロータ1の領域は、モータ2の駆動力によって再び冷蔵室100b内へ移動する。この動作を繰り返すことにより、冷蔵室100b内を減湿する。
図5に冷凍サイクル(冷凍空調装置)における用途毎の適正な風速範囲を示す。図5より冷凍サイクルの風速範囲としては、0.5〜3.5[m/s]であることが分かる。風速を大きくしすぎると、熱交換器の風路圧損は大きくなる。その結果、ファンモータが非常に大きくなって、コストが高くなるため、風速の上限は3.5[m/s]程度となっている。即ち、風速が約3.5[m/s]以上においては、風速によって伝熱性能を上げるより熱交換器の伝熱面積の増大によって伝熱性能を上げる方がコスト的に有利であることを意味する。
(1)室内機は、人が居る空間を冷房又は暖房するため、風が強い(風速が大きい)と、利用者に不快感を与えたり、騒音が大きくなったりするため、比較的小さい風速0.5〜2[m/s](低ノッチを含む)に設定されている。また、室内で用いるため、できるだけコンパクトにする必要があり、また着霜することはないので、フィンピッチを小さくしている(1〜2mm程度)。
(2)設備用空調機は、工場のような大空間を冷却するために、到達距離を稼ぐ必要があり、大風量が要求される。このような制約から設備用空調機の風速は1〜3.5[m/s]程度に設定されている。
(3)冷凍機(熱源側、室外機)や空調機の室外機は、屋外に設置される。熱交換器に埃などが付着し、経年劣化が激しいため、風速によって伝熱性能を上げるのではなく、伝熱面積を大きくすることによって経年劣化に対応している。このような制約から冷凍機や空調機の室外機の風速は1.5〜2[m/s]程度に設定されている。
(4)ユニットクーラ(冷凍機の室内機側)は冷凍倉庫や冷蔵倉庫に設置され、着霜が発生しやすいため、フィンピッチが広く(4〜10mm)、しかも騒音に対して寛容であるため、比較的大きい風速1.5〜3[m/s]で使用されている。
次に、冷凍サイクルとのマッチングが良い吸着剤の選定方法を説明する。デシカントロータ1を回転させ、風速をパラメータに除湿能力を測定する方法が考えられるが、「最適な回転数」や「吸着と脱着の最適な分割比」が存在するため、測定には多大な時間を要する。そこで、デシカントロータ1を停止させた状態で、デシカントロータ1の重量の時間変化を測定する。その一例を図6に示す。図6はある風速条件下における水分吸着量(吸着剤重さ)と時間との関係を示したものである。吸着剤の静的な特性は図6に示されるような一次遅れ系である。図6から時定数(平衡吸着量の0.63倍まで要する時間)を求める。
次に、冷凍サイクルの風速範囲(0.5〜3.5[m/s])で風速を変化させて、時定数を測定する。風速を変化させて測定した時定数を図7に示す。図7中の材料Aは冷凍サイクルとの組合せに適さない吸着剤であり、材料Bは冷凍サイクルとの組合せに適している吸着剤である。材料Aは冷凍サイクルでの風速域(0.5〜3.5[m/s])において、時定数が風速1.5[m/s]以上では変化しない。時定数は吸着速度を表しており、時定数が小さいほど吸着速度が大きい。すなわち、材料Aは風速が0.5〜3.5[m/s]の範囲において、時定数がほとんど変化していないため、除湿能力が変化しないことを意味している。一方、材料Bは風速が0.5〜3.5[m/s]において、風速が増加するとともに、時定数が小さくなって行く。すなわち、冷凍サイクルでの風速範囲において、風速を増加させることによって、除湿能力を増減させることが可能であることを意味している。
図7に示す材料Bは、0.5〜3.5[m/s]において、式(1)で表される関係を満たしている。
T=√Ta/(C1×Xa×v)・・・・・・・・・・・・(1)
ここで、T:時定数[s]、Ta:空気温度[K]、C1:定数(実験より求める)、Xa:絶対湿度[kgH2O/kgair]、v:風速である。
これより、材料Bの時定数は、風速に反比例することが分かる。即ち、風速が大きいほど材料Bの時定数は小さくなり、風速が小さいほど吸着剤の時定数は大きくなる。
次に、上記の式(1)の導出方法について以下に説明する。
図8は除湿ロータ11における吸脱着を行う部分の構造とその平板モデルを表す図である。デシカントロータ1の円筒内部は図8(a)のようなハニカム構造をしており、簡易的な平板モデルに置き換えると、図8(b)のように表すことができる。平板モデルにおいて、円筒内部30の構造はバルク空気層31、境界層32および吸着剤層33で表され、さらに吸着剤層33には吸着剤細孔34による凹凸が形成されている。また、バルク空気層31と境界層32との間をバルク空気層−境界層間35とし、境界層32と吸着剤細孔34との間を境界層−吸着剤細孔間36とする。そして、吸着剤層33の厚さを吸着剤層厚さ37で表す。
吸着速度、脱着速度は、バルク空気層−境界層間35と境界層−吸着剤細孔間36とにおける二段階のH2O分子の流れを経由して決定される。ここで、統合物質伝達移動係数ktを用いて吸着速度、脱着速度を表すと、1次のLangmuir型吸着脱着式に基づいて式(2)のようになる。そして、この(2)式の解析解として、一次遅れ系の応答となる(3)式が得られる。時定数Tは、除湿ロータ11が空気中の水分を吸脱着したときの量が、吸着剤1kgに対する平衡吸着水分量q* の1−e-1倍(約63.2%)に達するまでの時間を表すこととなる。
ここで、
q:任意時刻における水分吸脱量(kgH2O/kgads
t:任意時刻(s)
q* :吸着剤1kgに対する平衡吸着水分量(kgH2O/kgads
kt:統合物質伝達移動係数(1/s)
T:時定数(s)(Tad:吸着時定数(s)またはTde:脱着時定数(s))
である。
Figure 2009037759
吸着速度、脱着速度を決定する要因である統合物質伝達係数ktは、図8に示すように、バルク空気層−境界層間35における物質移動抵抗と、吸着剤層内の表面張力による境界層−吸着剤細孔間36における物質移動抵抗の2段階メカニズムに起因し、次式(4)で表される。
ここで、
kt:統合物質伝達移動係数(1/s)
ka:バルク空気層−境界層間35の物質伝達移動係数(1/s)
kb1:境界層−吸着剤細孔間36の物質伝達移動係数(1/s)
である。
1/kt=1/ka+1/kb1 …(4)
また、バルク空気層−境界層間35の吸着時の単位時間かつ単位面積当たりの水分移動量Mad、脱着時の水分移動量Mdeは次式(5)で表される。バルク空気層−境界層間35の物質伝達移動係数kaはバルク空気層−境界層間35のH2O 分子の物質伝達係数αmに比例する。
ここで、
Mad:吸着時の水分移動量(kgH2O/(m2・s))
Mde:脱着時の水分移動量(kgH2O/(m2・s))
xa:バルク空気層絶対湿度(kgH2O/kgair
xc:境界層絶対湿度(kgH2O/kgair
ρa:バルク空気層空気密度(kgair/m3
ρc:境界層空気密度(kgair/m3
αm:バルク空気層と境界層間のH2O分子の物質伝達係数(m/s)
である。
吸着時:Mad=αm×(xa−xc)×ρa (xa>xc)
脱着時:Mde=αm×(xc−xa)×ρc (xc>xa) …(5)
さらに、バルク空気層−境界層間35のH2O分子の物質伝達係数αmは、単位時間かつ単位面積あたりに飛び込んでくる分子数で表される凝縮頻度Jinと風速vの積に比例する。凝縮頻度Jinは次式(6)より算出される。また、(6)式に基づいて(7)式も得られる。
ここで、
αm:バルク空気層と境界層間のH2O分子の物質伝達係数(m/s)
Jin:凝縮頻度(個/(m2・s))
v:風速(m/s)
m:水分子の質量(kg/個)=3×10-26
k:ボルツマン定数(J/K)=1.38×10-23
T:絶対温度(K)
p:水蒸気分圧(N/m2
c1:係数(静特性実験等に基づいて得られる)
Ta:空気層絶対温度(K)
である。
Figure 2009037759
一方、吸着剤細孔34内の表面張力による境界層−吸着剤細孔間36の吸着速度、脱着速度は次式(8)により算出される。
ここで、
q:任意時刻における吸着水分量(kgH2O/kgads
t:任意時刻(s)
dp:吸着剤平均粒子径(m)
Ds:吸着剤細孔34内の表面拡散係数(m2/s)
q* :吸着剤1kgに対する平衡吸着水分量(kgH2O/kgads
kb:境界層−吸着剤層細孔内のH2O分子の物質伝達移動係数(m/s)
ab:吸着剤層厚さ(m)
である。
Figure 2009037759
また、(8)式における吸着剤細孔34内の表面拡散係数Dsはアレニウスの式と呼ばれる次式(9)により算出される。ただし、吸着剤層絶対温度Tbは短時間で空気層絶対温度Taとなるため、Tb≒Taとする。
ここで、
Ds:吸着剤細孔内の表面拡散係数(m2/s)
Ds0 :2.54×10−4(m2/s)
Ea:活性化エネルギー(J/mol)=4.2×104
R0:気体常数(J/(mol・K))
Tb:吸着剤層絶対温度(K)
である。
Figure 2009037759
吸着剤細孔34内の表面張力による境界層−吸着剤細孔間36の物質移動係数kb1 は吸着剤細孔34内の表面拡散係数Dsに比例する。よって次式(10)が得られる。
ここで、
kb1:境界層−吸着剤細孔内の物質伝達移動係数(1/s)
kb:境界層−吸着剤層細孔内のH2O分子の物質伝達移動係数(m/s)
ab:吸着剤層厚さ(m)
c2:係数(静特性実験等に基づいて得られる)
Ds:吸着剤細孔34内の表面拡散係数(m2/s)
である。
kb1 =kb/ab ∝c2×Ds …(10)
(3)式、(7)式および(10)式より、時定数Tは次式(11)により表される。また吸着時定数Tadおよび脱着時定数Tdeは(11)式に基づいて決定する。
ここで、
T:時定数(s)(Tad:吸着時定数(s)またはTde:脱着時定数(s))
ka:バルク空気層−境界層16間の物質伝達移動係数(1/s)
kb1:境界層−吸着剤細孔内の物質伝達移動係数(1/s)
Ta:空気層絶対温度(K)
c1:係数(静特性実験等に基づいて得られる)
xa:バルク層絶対湿度(kgH2O/kgair
v:風速(m/s)
c2:係数(静特性実験等に基づいて得られる)
Ds:吸着剤細孔34内の表面拡散係数(m2/s)
である。
Figure 2009037759
図9は吸脱着時間と吸脱着量との関係を表す図である。実際に空気調和装置に適用する場合には、例えば除湿ロータ11を用いた静特性実験を行い、上述した式に基づいて、吸着時定数Tadおよび脱着時定数Tdeの値等を決定する。
ここで、式(11)について考察する。
細孔内径(以下、dとする)がnmのオーダーになると、細孔内径dが小さくなるにつれて細孔内に収容される水(H2O)分子と細孔壁を構成する分子との間の結合力(保存力)が強くなっていくので、水分子は細孔からの分離・拡散がしにくくなる。すなわち、式(9)における活性化エネルギーEaは細孔内径dに依存する。ゼオライトの場合、細孔径は0.5nm程度であり、ゼオライトの活性化エネルギーは相対的に大きくなる。活性化エネルギーが大きくなると、式(9)より、表面拡散係数Dsは相対的に小さくなる。これは、ゼオライトでは細孔内の水分が動きにくくなることを示している。表面拡散係数Dsが相対的に小さくなると、境界層と吸着剤層細孔間の物質伝達移動抵抗 1/kb1 が相対的に大きくなる。これより、統合物質伝達移動抵抗 1/kt は、式(11)により、細孔内側の抵抗により律速されて一定値以下にはならなくなる。
従って、式(11)で表される時定数Tは、風速vを大きくすると、式(11)の右辺第1項は小さくなるが、右辺第2項が大きいため、右辺第2項によって律速されて一定値以下にはならなくなる。
これに対して、細孔内径 d>1nmの場合、活性化エネルギーEaはゼオライトよりも小さい。従って、式(11)の右辺第2項の影響が小さくなり、時定数Tは式(11)の右辺第1項に強く依存することになる。その結果、式(1)が導出されることになり、風速の増大とともに時定数は小さくなっていく。
以上より、風速と吸着剤の時定数との関係を、グラフで表すと、図10のようになる。また、上記検討から、細孔径、時定数、風速には依存性があることを理論的に裏付けることができた。実験からも(図7、図12)、この理論が妥当であることを裏付けるデータが得られた。冷凍サイクルとマッチングの良い吸着剤の細孔径は1nm以上であることが分かった。具体的には、1nm以上の細孔を有し、なおかつ細孔分布が小さい(均一)メソポーラスシリカが冷凍サイクルとの相性が良い代表的な材料であることが分かった。
本発明のように、風速が0.5〜3.5[m/s]の範囲においても、時定数が風速の増加とともに小さくなって行く吸着剤を冷凍サイクルに適用することによって、送風機の動力を有効に利用することができる。
図11に風速と熱交換器の能力との関係の一例を示す。図12に風速と除湿能力(吸着能力)との関係の一例を示す。
図11から分かるように風速(熱交換器を通過する空気の風速)を増加させると、熱交換器におけるフィンから空気への熱伝達率が大きくなるため、熱交換器の能力が増す。この特性を利用して、後述の制御・演算手段は冷凍サイクルの負荷変動に対して風速を増減させることで、冷凍(凝縮)能力の調整を行っている。具体的には、冷凍(凝縮)能力を増大させるときは、制御・演算手段は送風機の回転速度をアップさせ、風速を大きくしている。冷凍(凝縮)能力を小さくするときは、制御・演算手段は送風機の回転速度を落とし、風速を小さくしている。風速(風量)制御は冷凍サイクルの能力制御の有効な手段である。
また、図12から分かるように風速を増加させると、デシカントロータ1に担持される吸着剤に接触する空気の単位時間当たりの通過量が増大するため、吸着剤の除湿能力が増大する。
一般的な環境においては、外気侵入による負荷が大半を占めるため、顕熱負荷と潜熱負荷(除湿負荷)が同時に増大したり、減少したりする。すなわち、大きな潜熱能力(除湿能力)を必要とするときは、同時に大きな顕熱能力も必要とする。本発明のように、冷凍サイクルが必要とする風速域(0.5〜3.5[m/s])において、風速の増加と共に除湿能力が増大する吸着剤を冷凍サイクルに適用することで、除湿能力と顕熱能力を風速(送風機の回転速度制御)によって、調節することができる。その結果、システムの運転範囲が広がるとともに、負荷変動への追従性が向上する。また、潜熱除去がきちんと行われるので、デシカントの下流に設置されている蒸発器への着霜を安定して防止することができ、システムの信頼性を向上させることができる。
次に、本発明の制御方法の一例を説明する。図1に示すように本システムには、蒸発温度を検知する手段20e、蒸発器吸い込み空気温度と相対湿度を検知する手段20f、デシカント(吸着側)の入口に空気温度と相対湿度を検知する手段20g、凝縮器吹き出し空気温度と相対湿度を検知する手段20hを備えている。20eは温度センサ、20f、20g、20hは温湿度センサである。20iは制御・演算手段である。
温湿度センサ20gによって、庫内の温度(T0)と相対湿度(RH0)を検知する。計測されたT0とRH0は制御・演算手段20iによって、空気のエンタルピHに換算される。予め表1に示すような空気エンタルピと風速との対応表を試験などで決めておき、この対応表を制御演算手段20i内の記憶手段(図示せず)に記憶させておき、必要時に、記憶手段の対応表に基づいて、送風機モータの電圧を制御することによって、風量を制御する。基本的には、空気エンタルピHが大きいときは(負荷大)、風量を大きくし、空気エンタルピHが小さいときは(負荷小)、風量を小さくする。

表1 空気エンタルピHと送風機モータの電圧(風速)との対応表

空気エンタルピ H<H1 H1≦H<H2 H2≦H<H3 H3≦H

送風機モータの電圧 V0 V1 V2 V3

温湿度センサ20fによって、蒸発器20dの吸い込み温度(T1)と相対湿度(RH1)を検知する。計測されたT1とRH1は、制御・演算手段20iによって、露点(Td)に換算される。蒸発温度(Te)を露点以上に制御すれば、蒸発器に霜が付かず、デフロスト運転(除霜運転)が不要となり、大幅に効率を改善できる。本実施の形態では、この「露点Td(℃)」を目標の蒸発温度Temとする。制御・演算手段20iは、蒸発温度がTem以上になるように、圧縮機20aの周波数、膨張弁の開度20cを調節する。例えば、Te>Temの場合には、制御・演算手段20iは、周波数をアップさせたり、膨張弁20cの開度を小さくさせたりする。逆にTe<Temの場合、制御・演算手段20iは周波数をダウンしたり、膨張弁20cの開度を大きくしたりする。
次に、凝縮器側の制御を説明する。温湿度センサ20hによって、凝縮器20dの吹き出し温度(T2)と相対湿度(RH2)を検知する。制御・演算手段20iは、凝縮器側の相対湿度が目標の相対湿度(RHm、本実施の形態では20%)になるように、圧縮機20aの周波数、膨張弁20cの開度を調節する。RH2>RHmの場合は、制御・演算手段20iは、周波数をアップさせたり、膨張弁20cの開度を小さくさせたりする。逆にRH2<RHmの場合、制御・演算手段20iは、周波数をダウンしたり、膨張弁20cの開度を大きくしたりする。
なお、除湿性能を確保するには、吸着剤を十分に再生しておく必要があるため、凝縮器側の相対湿度を目標相対湿度RHm以下にすることが、運転範囲の大部分において、制御の優先項目となる。
図4は、この発明の本実施の形態における冷凍空調装置の要部構成図であり、同時に水分吸着手段であるデシカントロータ1に設けられる吸着剤の水分吸着特性を示している。吸着剤は多孔質ケイ素材料であり、2nm(ナノメートル)程度の細孔が多数設けられたものであり、毛管凝縮現象によって水分を吸着する。図4において、横軸は空調空間の相対湿度、縦軸は水分の平衡吸着量である。図4から分かるように、本実施の形態で用いる吸着剤は、相対湿度が20%から30%の範囲における相対湿度に対する水分の平衡吸着量の変化率である傾斜が、20%未満または30%を超える範囲における相対湿度に対する水分の平衡吸着量の変化率である傾斜よりも大きいことが特徴である。我々の研究によると、1〜10nmの均一な細孔を有するメソポーラスシリカは冷凍サイクルの風速範囲において、風速依存性が強く、冷凍サイクルとの相性が特に良い吸着剤である。

Claims (7)

  1. 冷媒が充填され、冷媒を圧縮する圧縮機、凝縮器、絞り装置及び蒸発器を備えた冷媒回路と、空調空間の水分を吸着して外気へ排出する水分吸着手段と、を有する冷凍空調装置において、
    前記水分吸着手段に水分吸着平衡の時定数が風速の増加とともに小さくなる吸着剤を用いたことを特徴とする冷凍空調装置。
  2. 前記吸着剤は、1〜10nmの均一な細孔径を有するメソポーラスシリカであり、前記水分吸着手段、前記蒸発器、前記凝縮器の通過風速を0.5〜3.5m/sに設定したことを特徴とする請求項1に記載の冷凍空調装置。
  3. 前記吸着剤は、
    時定数をT[s]、
    空気温度をTa[K]、
    定数をC1、
    絶対温度をXa[kgH2O/kgair]、
    風速をvとすると、
    T=√Ta/(C1×Xa×v)
    の関係式を満たすことを特徴とする請求項1または請求項2に記載の冷凍空調装置。
  4. 前記水分吸着手段は、前記吸着剤を担持させたロータ型の水分吸着手段であり、前記凝縮器の風下に配置されるとともに前記蒸発器の風上に配置されることを特徴とする請求項1〜3のいずれかに記載の冷凍空調装置。
  5. 前記空調空間内に設けられ、前記水分吸着手段に前記空調空間内の空気を通風させる前記蒸発器用の送風機と、
    空気のエンタルピと、前記蒸発器用の送風機を駆動する駆動手段の制御電圧とを対応させたテーブルを記憶する記憶手段と、
    前記水分吸着手段を通過する前の前記空調空間内空気の温度と相対湿度を検知する温湿度検知手段と、
    前記温湿度検知手段の検知結果をエンタルピに換算し、前記記憶手段に記憶されたテーブルを参照して、前記エンタルピに対応する制御電圧を取得し、この制御電圧に基いて前記駆動手段を制御する制御演算手段と、を備えたことを特徴とする請求項1〜4のいずれかに記載の冷凍空調装置。
  6. 前記空調空間内に設けられ、前記水分吸着手段に前記空調空間内の空気を通風させる前記蒸発器用の送風機と、
    この送風機の力により前記水分吸着手段を通過した後かつ前記蒸発器を通過する前の前記空調空間内空気の温度と相対湿度を検知する温湿度検知手段と、
    前記温湿度検知手段の検知結果に基いて前記蒸発器の露点温度を換算し、前記蒸発器の蒸発温度が前記露点温度以上になるように前記圧縮機の周波数、前記膨張装置の開度を制御する制御演算手段と、を備えたことを特徴とする請求項1〜4のいずれかに記載の冷凍空調装置。
  7. 前記空調空間の外に設けられ、前記水分吸着手段に前記凝縮器を通過した空気を通風させる送風機と、
    この送風機の力により前記凝縮器を通過した後かつ前記水分吸着手段を通過する前の前記空調空間の外の空気の温度と相対湿度を検知する温湿度検知手段と、
    前記温湿度検知手段の検知結果に基いて相対湿度が所定値になるように前記圧縮機の周波数、前記膨張装置の開度を制御する制御演算手段と、を備えたことを特徴とする請求項1〜4のいずれかに記載の冷凍空調装置。
JP2009532992A 2007-09-20 2007-09-20 冷凍空調装置 Pending JPWO2009037759A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/068229 WO2009037759A1 (ja) 2007-09-20 2007-09-20 冷凍空調装置

Publications (1)

Publication Number Publication Date
JPWO2009037759A1 true JPWO2009037759A1 (ja) 2011-01-06

Family

ID=40467590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009532992A Pending JPWO2009037759A1 (ja) 2007-09-20 2007-09-20 冷凍空調装置

Country Status (3)

Country Link
US (1) US20100170273A1 (ja)
JP (1) JPWO2009037759A1 (ja)
WO (1) WO2009037759A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657207B2 (en) * 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
EP2400234B1 (en) * 2009-02-20 2018-05-02 Mitsubishi Electric Corporation Use-side unit and air conditioner
JP5068293B2 (ja) * 2009-09-17 2012-11-07 三菱電機株式会社 空気調和装置
JP5454423B2 (ja) * 2010-03-29 2014-03-26 株式会社豊田自動織機 電動圧縮機
JP5494811B2 (ja) * 2010-09-07 2014-05-21 富士通株式会社 空調システム
JP4870843B1 (ja) * 2011-02-10 2012-02-08 株式会社前川製作所 デシカントロータを用いた空調方法及び空調装置
JP5700069B2 (ja) * 2013-05-31 2015-04-15 ダイキン工業株式会社 調湿装置
JP6372518B2 (ja) * 2016-05-12 2018-08-15 ダイキン工業株式会社 調湿装置
US10705579B2 (en) * 2016-07-11 2020-07-07 Dell Products, L.P. Information handling system having regional cooling
FR3058904B1 (fr) * 2016-11-18 2021-10-08 Air Liquide Dispositif de deshumidification par filtration d'un brouillard
ES2692207B1 (es) * 2017-03-29 2019-09-16 Chillida Vicente Avila Procedimiento de regulación de compresores inverter en instalaciones de refrigeracion
CN111183327B (zh) * 2017-10-10 2021-09-03 三菱电机株式会社 制冷循环装置
US10655877B2 (en) * 2018-01-22 2020-05-19 Lennox Industries Inc. Evaporator coil protection for HVAC systems
JP2020012602A (ja) * 2018-07-19 2020-01-23 株式会社西部技研 外気調和機
JP6890875B2 (ja) * 2019-02-22 2021-06-18 日立ジョンソンコントロールズ空調株式会社 空調制御システム、空調制御方法及びプログラム
CN111351183B (zh) * 2020-03-12 2021-05-18 普沃思环保科技无锡有限公司 一种除湿转轮选型计算方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162128A (ja) * 1999-12-06 2001-06-19 Sharp Corp 調湿機
JP2002001106A (ja) * 2000-06-20 2002-01-08 Ebara Corp 除湿又は熱交換用機能素子とその製造方法
JP2002035531A (ja) * 2000-07-26 2002-02-05 Sharp Corp 除湿機の制御装置
JP2002235933A (ja) * 2001-02-09 2002-08-23 Mitsubishi Electric Corp 空気調和機
JP2002361025A (ja) * 2001-06-05 2002-12-17 Cataler Corp ガス交換装置
JP2003148792A (ja) * 2001-11-09 2003-05-21 Matsushita Electric Ind Co Ltd 空調装置
JP2003200016A (ja) * 2001-11-01 2003-07-15 Daikin Ind Ltd 除加湿用エレメントおよびそれを用いた調湿装置
JP2004324964A (ja) * 2003-04-23 2004-11-18 Aisin Seiki Co Ltd 空調装置及びエンジン駆動式空調装置
JP2006046776A (ja) * 2004-08-04 2006-02-16 Mitsubishi Electric Corp 空気調和装置
JP2006308236A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和装置
JP2006308229A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和装置
JP2006308246A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214683A (ja) * 2002-01-22 2003-07-30 Tiger Vacuum Bottle Co Ltd 除湿機と除湿方法
JP2005265258A (ja) * 2004-03-17 2005-09-29 Tiger Vacuum Bottle Co Ltd 可搬型除湿機

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162128A (ja) * 1999-12-06 2001-06-19 Sharp Corp 調湿機
JP2002001106A (ja) * 2000-06-20 2002-01-08 Ebara Corp 除湿又は熱交換用機能素子とその製造方法
JP2002035531A (ja) * 2000-07-26 2002-02-05 Sharp Corp 除湿機の制御装置
JP2002235933A (ja) * 2001-02-09 2002-08-23 Mitsubishi Electric Corp 空気調和機
JP2002361025A (ja) * 2001-06-05 2002-12-17 Cataler Corp ガス交換装置
JP2003200016A (ja) * 2001-11-01 2003-07-15 Daikin Ind Ltd 除加湿用エレメントおよびそれを用いた調湿装置
JP2003148792A (ja) * 2001-11-09 2003-05-21 Matsushita Electric Ind Co Ltd 空調装置
JP2004324964A (ja) * 2003-04-23 2004-11-18 Aisin Seiki Co Ltd 空調装置及びエンジン駆動式空調装置
JP2006046776A (ja) * 2004-08-04 2006-02-16 Mitsubishi Electric Corp 空気調和装置
JP2006308236A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和装置
JP2006308229A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和装置
JP2006308246A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和機

Also Published As

Publication number Publication date
WO2009037759A1 (ja) 2009-03-26
US20100170273A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JPWO2009037759A1 (ja) 冷凍空調装置
US8701425B2 (en) Refrigeration air conditioning system
JP4767047B2 (ja) 空気調和装置
JP5854917B2 (ja) 空気調和装置
WO2014118871A1 (ja) 除湿装置
JP2006308229A (ja) 空気調和装置
JP4541965B2 (ja) 空気調和装置
JP6138336B2 (ja) 空気調和装置、及び、空気調和装置の制御方法
JP2019199998A (ja) 空気調和装置
JP5854916B2 (ja) 空気調和装置
JP6108928B2 (ja) 空気調和装置
JP6138335B2 (ja) 空気調和装置
JP4999518B2 (ja) 除加湿装置および冷凍サイクル装置
JP4581546B2 (ja) 空気調和装置
JP2013130389A (ja) 空気熱源ヒートポンプ装置
JP6037926B2 (ja) 空気調和装置
JP6611826B2 (ja) 除湿装置
JP5245074B2 (ja) 温度調整機能付きの除湿装置
JP2006046776A5 (ja)
JP6141508B2 (ja) 空気調和装置、及び、空気調和装置の制御方法
JP2014210223A (ja) 空気調和装置
JP4659775B2 (ja) 空気調和装置および空気調和装置の制御方法
JP5014385B2 (ja) 空気調和装置
JP2011218285A (ja) 除湿装置
JP2007024375A (ja) 空気調和装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807