JP4999518B2 - 除加湿装置および冷凍サイクル装置 - Google Patents

除加湿装置および冷凍サイクル装置 Download PDF

Info

Publication number
JP4999518B2
JP4999518B2 JP2007089777A JP2007089777A JP4999518B2 JP 4999518 B2 JP4999518 B2 JP 4999518B2 JP 2007089777 A JP2007089777 A JP 2007089777A JP 2007089777 A JP2007089777 A JP 2007089777A JP 4999518 B2 JP4999518 B2 JP 4999518B2
Authority
JP
Japan
Prior art keywords
desorption
air
adsorption
time constant
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007089777A
Other languages
English (en)
Other versions
JP2008246354A (ja
Inventor
壮介 村瀬
文雄 松岡
猛 杉本
裕之 森本
浩司 山下
孝史 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007089777A priority Critical patent/JP4999518B2/ja
Publication of JP2008246354A publication Critical patent/JP2008246354A/ja
Application granted granted Critical
Publication of JP4999518B2 publication Critical patent/JP4999518B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

本発明は、除湿能力、加湿能力を有する除加湿装置、その装置を有する冷凍サイクル装置に関するものである。特に吸着剤を有する円筒状の除湿ロータを用いて除湿、加湿を行うものである。
空気調和装置等の冷凍サイクル装置においては、空気の温度を調整するだけでなく、例えば対象空間における空気を除湿または加湿して再度送り出すことが行われている。例えば、低温度、低湿度においても安定した除湿能力が得られ、かつ大量の空気の除湿が可能であり、かつ保守性に優れた除湿機能を有する機器として回転式除湿ロータ型除湿機が広く使用されている。
除湿機において用いられている吸着剤は、一般的に、水分をある程度吸着して飽和状態になると除湿能力が低下する。繰り返し用いるには、適宜脱着処理を施して再度吸着できるように再生する必要がある。回転式除湿ロータ型乾式除湿機では、除湿ロータを駆動手段により回転駆動し、除湿ロータに含浸された吸着剤を、所定の周期で吸着経路上と脱着経路上とに繰り返し移行させ、吸脱着を自動的に行えるようにしている。そして、このような除湿ロータに含浸された吸着剤は、除湿能力向上を目的に開発が進んでおり、シリカゲル・ゼオライト・ナノポーラスシリカ等多くの吸着剤が用いられている。
従来の回転式除湿ロータ型乾式除湿機では、除湿ロータにおける吸着部分と脱着部分とにおける面積比が3:1、1:1のものが多く採用されている。例えば、脱着空気温度が高温のときは脱着速度が増大するため、脱着部面積を減少させることができ、面積比を吸着部:脱着部=3:1とすることができる。一方、脱着空気温度が低温のときには吸着部:脱着部の比率を1:1にする。
また、被除湿空気の湿度が設定した空気絶対温度よりも低い場合には脱着経路上のファンの風量を増大させて、除湿ロータを通過する脱着空気の温度を下げるようにした除湿機も提案されている(例えば特許文献1参照)。
特開2005−161316号公報
このような除湿ロータにおいては、吸着剤の種類、吸着または脱着させようとする空気の温度、湿度、風量等により、除湿量が変わるため、これらの条件を適切に設定すれば、除湿量が大きくなる面積比等が求められることがわかっている。逆に面積比等から除湿量を大きくすることができる空気の風量等も設定できる。
しかしながら、設定のための基準となるものが決まっておらず、パラメータも多数存在することから、最適値を探すために莫大な回数の試験が必要となり、最適条件を導き出すことは困難であった。
本発明は、前記のような問題を解決するためになされたもので、除湿または加湿能力、省エネルギ性に優れた条件を得るために設定する基準を定め、その基準に基づいて定めた除湿ロータの除湿部分と脱着部分との面積比等に基づく除加湿装置、その装置を有する冷凍サイクル装置を得ることを目的とする。
本発明に係る除加湿装置は、吸着空気路と脱着空気路とを跨いで設けられ、軸を中心に周方向に回転自在に設置された円筒であって、円筒内に水分吸脱着手段が設けられ、吸着空気路上に位置する吸着部において吸着空気路を通過する空気中の水分を吸着し、脱着空気路上に位置する脱着部において脱着空気路を通過する空気に、吸着部において吸着した水分を脱着する除湿ロータと、除湿ロータを周方向に回転させるロータ駆動手段とを備える除加湿ユニットであって、除湿ロータにおける吸着部と脱着部との面積比を、略、所定量の水分を吸着する時間に係る吸着時定数の1/2乗と所定量の水分を脱着する時間に係る脱着時定数の1/2乗との比とする。
本発明によれば、除湿ロータにおける吸着部と脱着部との面積比を、略、吸着に係る吸着時定数の1/2乗と脱着に係る脱着時定数の1/2乗との比としたので、吸着と脱着とのバランスを効率よく図ることができ、除湿量を大きくすることができる。
実施の形態1.
図1は本発明の実施の形態1に係る除湿ロータ11を中心とする除加湿装置1の概略構成を表す図である。図1に基づいて、除湿ロータ11を使用した除加湿装置1の基本的な構成について説明する。除加湿装置1は、例えば、除湿機、空気調和装置等に設けられ、室内等の空調対象空間の除湿または加湿を行うユニットである。本実施の形態では対象空間を室内とし、除湿を行うものとして説明する。
円筒状の除湿ロータ(デシカントロータ)11は、円の中心軸を中心として円周方向に回転自在に設けられている。除湿ロータ11の円筒内部には、例えばゼオライト、シリカゲル、活性炭、メソポーラスシリカ等、細孔を有し、毛管凝縮により空気中の水分を吸着することができる多孔質の吸着剤(水分吸脱着手段)が、ハニカム構造(後述する図2)のセラミックペーパー等に含浸されている。この吸着剤に室内の空気中の水分を吸着させて除湿を行う。
吸着剤は水分を吸着して飽和状態に近くなると除湿能力が低下する。そのため、再度吸着できるように、吸着した水分を脱着させて再生させる必要がある(脱着は例えば対象空間外(室外)の空気に対して行う)。そこで、モータ等を有するロータ駆動手段18が制御手段10からの指示に基づいて、除湿ロータ11を円周方向に回転させる。そして、例えば除湿ロータ11の吸着剤が空気中の水分吸着を行う部分(以下、吸着部11Aという)にあるときは吸着させ、脱着を行う部分(以下、脱着部11Bという)にあるときは脱着させるようにする。これにより、吸着部11Aにおける水分吸着と脱着部11Bにおける水分脱着とを繰り返し行うことができる。除湿ロータ11における脱着部11Bと吸着部11Aの面積比については後述する。
除加湿装置1内では、除湿ロータ11の吸着部11Aおよび脱着部11Bに合わせて、例えば仕切壁19等で二分された吸着空気路16および脱着空気路17が形成されている。
吸着空気路16上には吸着用ファン(被除湿空気風量調整手段)12が設けられている。吸着用ファン12により、除湿を行う被除湿空気(室内空気、吸着空気)21を吸気して除湿ロータ11の吸着部11Aを通過させ、除湿した空気22を室内に送り出す空気の流れの経路(以下、吸着経路という)が形成される。ここで、吸着用ファン12は、制御手段10からの指示に基づいて回転数を変化することができる。そのため、吸着部11Aを通過する空気の風量(風速)を変化させることができる。ここで、一般的に、空気の相対湿度が高い方が吸着剤が水分を吸着しやすい。そのため、吸着空気路16上に冷却器(被除湿空気温度調整手段)15を設け、被除湿空気21を冷却して温度を下げ、相対湿度を高くして吸着部11Aを通過させるようにし、除湿能力の向上を図ってもよい。ここで、冷却器15の冷却について、制御手段10からの指示に基づいて冷却温度を変化させることができるものとする。
一方、脱着空気路17上には脱着用ファン(脱着空気風量調整手段)13が設けられている。脱着用ファン13により、室外空気23を吸気し、ヒータまたは凝縮器14で加熱した空気(加熱空気)24を、除湿ロータ11の脱着部11Bに通過させ、水分が放出されて加湿された空気25を室外に送り出す空気の流れの経路(以下、脱着経路という)が形成される。ここで、脱着用ファン13についても、制御手段10からの指示に基づいて回転数を変化することができる。そのため、脱着部11Bを通過する空気の風量(風速)を変化させることができる。ヒータまたは凝縮器(脱着空気温度調整手段)14は、室外空気23を加熱して温度を上げ、相対湿度を低くした加熱空気24により、吸着剤の水分を脱着させるようにするために設けられている。ヒータまたは凝縮器14の加熱についても、制御手段10からの指示に基づいて加熱温度を変化させることができるものとする。
図2は除湿ロータ11における吸脱着を行う部分の構造とその平板モデルを表す図である。除湿ロータ11の円筒内部は図2(a)のようなハニカム構造をしており、簡易的な平板モデルに置き換えると、図2(b)のように表すことができる。平板モデルにおいて、円筒内部の構造はバルク空気層31、境界層32および吸着剤層33で表され、さらに吸着剤層33には吸着剤細孔34による凹凸が形成されている。また、バルク空気層31と境界層32との間をバルク空気層−境界層間35とし、境界層32と吸着剤細孔34との間を境界層−吸着剤細孔間36とする。そして、吸着剤層33の厚さを吸着剤層厚さ37で表す。
吸着速度、脱着速度は、バルク空気層−境界層間35と境界層−吸着剤細孔間36とにおける二段階のH2O分子の流れを経由して決定される。ここで、統合物質伝達係数ktを用いて吸着速度、脱着速度を表すと次式(1)のようになる。そして、この(1)式の解析解として、一次遅れ系の応答となる(2)式が得られる。時定数Tは、除湿ロータ11が空気中の水分を吸脱着したときの量が、吸着剤1kgに対する平衡吸着水分量q* の1−e-1倍(約63.2%)に達するまでの時間を表すこととなる。
ここで、
q:任意時刻における水分吸脱量(kgH2O /kgads
t:任意時刻(s)
* :吸着剤1kgに対する平衡吸着水分量(kgH2O /kgads
kt:統合物質伝達移動係数(1/s)
T:時定数(s)(Tad:吸着時定数(s)またはTde:脱着時定数(s))
である。
Figure 0004999518
吸着速度、脱着速度を決定する要因である統合物質伝達係数ktは、図2に示すように、バルク空気層−境界層間35における物質移動抵抗と、吸着剤層内の表面張力による境界層−吸着剤細孔間36における物質移動抵抗の2段階メカニズムに起因し、次式(3)で表される。
ここで、
kt:統合物質伝達移動係数(1/s)
ka:バルク空気層−境界層間35の物質伝達移動係数(1/s)
kb1 :境界層−吸着剤細孔間36の物質伝達移動係数(1/s)
である。
1/kt=1/ka+1/kb1 …(3)
また、バルク空気層−境界層間35の吸着時の水分移動量Mad、脱着時の水分移動量Mdeは次式(4)で表される。バルク空気層−境界層間35の物質伝達移動係数kaはバルク空気層−境界層間35のH2O 分子の物質伝達係数αmに比例する。
ここで、
Mad:吸着時の水分移動量(kgH2O /(m2 ・s))
Mde:脱着時の水分移動量(kgH2O /(m2 ・s))
xa:バルク空気層絶対湿度(kgH2O /kgair
xc:境界層絶対湿度(kgH2O /kgair
ρa:バルク空気層空気密度(kgair /m3
ρc:境界層空気密度(kgair /m3
αm:バルク空気層と境界層間のH2O分子の物質伝達係数(m/s)
である。
吸着時:Mad=αm×(xa−xc)×ρa (xa>xc)
脱着時:Mde=αm×(xc−xa)×ρc (xc>xa) …(4)
さらに、バルク空気層−境界層間35のH2O分子の物質伝達係数αmは、単位面積あたりに飛び込んでくる分子数で表される凝縮頻度Jinと風速vの積に比例する。凝縮頻度Jinは次式(5)より算出される。また、(5)式に基づいて(6)式も得られる。
ここで、
αm:バルク空気層と境界層間のH2O分子の物質伝達係数(m/s)
Jin:凝縮頻度(個/(m2 ・s))
v:風速(m/s)
m:水分子の質量(kg/個)=3×10-26
k:ボルツマン定数(J/K)=1.38×10-23
T:絶対温度(K)
p:水蒸気分圧(N/m2
c1:係数(静特性実験等に基づいて得られる)
Ta:空気層絶対温度(K)
である。
Figure 0004999518
一方、吸着剤細孔34内の表面張力による境界層−吸着剤細孔間36の吸着速度、脱着速度は次式(7)により算出される。
ここで
q:任意時刻における吸着水分量(kgH2O /kgads
t:任意時刻(s)
dp:吸着剤平均粒子径(m)
Ds:吸着剤細孔34内の表面拡散係数(m2 /s)
* :吸着剤1kgに対する平衡吸着水分量(kgH2O /kgads
kb:境界層−吸着剤層細孔内の物質伝達移動係数(1/s)
ab:吸着剤層厚さ37(m)
である。
Figure 0004999518
また、(7)式における吸着剤細孔34内の表面拡散係数Dsは次式(8)により算出される。ただし、吸着剤層絶対温度Tbは短時間で空気層絶対温度Taとなるため、Tb≒Taとする。
ここで
Ds:吸着剤細孔内の表面拡散係数(m2 /s)
Ds0 :2.54×10-4(m2 /s)
Ea:活性化エネルギー(J/mol)=4.2×104
R0:気体常数(J/(mol・K))
Tb:吸着剤層絶対温度(K)
Figure 0004999518
吸着剤細孔34内の表面張力による境界層−吸着剤細孔間36の物質移動係数kb1 は吸着剤細孔34内の表面拡散係数Dsに比例する。よって次式(9)が得られる。
ここで
kb1 :境界層−吸着剤細孔内の物質伝達移動係数(1/s)
kb:境界層−吸着剤層細孔内の物質伝達移動係数(1/s)
ab:吸着剤層厚さ37(m)
c2:係数(静特性実験等に基づいて得られる)
Ds:吸着剤細孔34内の表面拡散係数(m2 /s)
である。
kb1 =kb/ab ∝c2×Ds …(9)
(2)式、(6)式および(9)式より、時定数Tは次式(10)により表される。また吸着時定数Tadおよび脱着時定数Tdeは(10)式に基づいて決定する。
ここで、
T:時定数(s)(Tad:吸着時定数(s)またはTde:脱着時定数(s))
ka:バルク空気層−境界層16間の物質伝達移動係数(1/s)
kb1 :境界層−吸着剤細孔内の物質伝達移動係数(1/s)
Ta:空気層絶対温度(K)
c1:係数(静特性実験等に基づいて得られる)
xa:バルク層絶対湿度(kgH2O /kgair
v:風速(m/s)
c2:係数(静特性実験等に基づいて得られる)
Ds:吸着剤細孔34内の表面拡散係数(m2 /s)
である。
Figure 0004999518
図3は吸脱着時間と吸脱着量との関係を表す図である。実際に空気調和装置に適用する場合には、例えば除湿ロータ11を用いた静特性実験を行い、上述した式に基づいて、吸着時定数Tadおよび脱着時定数Tdeの値等を決定する。
図4は静特性実験の工程を表すための図である。まず、吸着時定数Tadを決定するための実験等の一般的な例について説明する。ここで、上述したように、吸着用ファン42および脱着用ファン43の回転数(風量、風速)並びにヒータまたは凝縮器44による加熱温度および冷却器45による冷却温度(通過させる空気の温度、湿度)を所定の値にする制御については、制御手段10が行うものとする。
脱着用ファン43を回転し、ヒータまたは凝縮器44により目標とする温度および湿度の空気(加熱空気)を除湿ロータ11に通過させ、吸着剤から水分を脱着させて十分に乾燥させる(図4(a))。その後、吸着に係る実験を開始する。吸着用ファン42を回転し、冷却器45による冷却を行って、所定の温度および湿度の被除湿空気(吸着空気)を所定の風速で除湿ロータ11に送り込み、通過させる。その際には、吸着に係る実験を終了するまでの除湿ロータ11の質量を、例えば重量測定器(図示せず)により、経過時間と共に測定する(図4(b))。経過時間に対して、除湿ロータ11の質量と実験開始前の除湿ロータ11の質量との差(吸着水分量)をプロットしていくと図3の吸着特性として表れる。この図3の吸着特性は、一次遅れ系の応答として次式(11)で近似することができる。したがって、実験によって得られた経過時間と吸着水分量とを(11)式に当てはめて吸着時定数Tadを決定する。
ここで、
* :吸着剤1kgに対する平衡吸着水分量(kgH2O /kgads
q:任意時刻における吸着水分量(kgH2O /kgads
Tad:吸着時定数(s)
t:任意時刻(s)
である。
Figure 0004999518
次に、吸着に係る実験を終了した後に、脱着用ファン43を回転し、ヒータまたは凝縮器44により所定の温度および湿度の空気を所定の風速(風量)により、水分を吸着している除湿ロータ11に送り込み、通過させる(図4(a))。その際にも、脱着に係る実験を終了するまでの除湿ロータ11の質量を、例えば重量測定器(図示せず)により、経過時間と共に測定する。経過時間に対する除湿ロータ11の質量と実験開始前の(水分を吸着している)除湿ロータ11の質量との差の絶対値(水分脱着量)をプロットしていくと図3の脱着特性として表れる。図3の脱着特性も、一次遅れ系の応答として次式(12)で近似することができる。したがって、実験によって得られた経過時間と水分脱着量とを(12)式に当てはめて脱着時定数Tdeを決定する。
ここで、
* :吸着剤1kgに対する平衡水分脱着量(kgH2O /kgads
q:任意時刻における水分脱着量(kgH2O /kgads
Tde:脱着時定数(s)
t:任意時刻(s)
である。
Figure 0004999518
以上の吸着、脱着に係る実験を、例えば、風速(風量)または空気の温度若しくは湿度の条件を変化させて複数回行い、そのときの吸着時定数Tad、脱着時定数Tdeを決定する。そして、上述した(10)式に当てはめ、吸着時、脱着時におけるそれぞれの係数c1および係数c2を近似等に基づいて決定する。近似の方法については、例えば最小二乗法等を用いる方法があるが特に限定するものではない。これにより、除湿ロータ11において、空気の温度、湿度、風量に基づくパラメータにより吸着時定数Tad、脱着時定数Tdeを表すことができる。
吸着時定数Tad、脱着時定数Tdeは、それぞれ同じ分量の水分についての吸着または脱着するまでの時間を表すことになる。例えば吸着部11Aが大きすぎると、例えばある位置の吸着剤において、脱着部11Bで吸着した水分を脱着しきれないまま吸着部11Aに移動して吸着が行われることになり、吸着水分量が減っていく。また、脱着部11Bが大きすぎると、その分、吸着部11Aが少なくなるため、吸着水分量が減ってしまい無駄が多くなる。
そこで、除湿ロータ11においては、効率よく水分を吸着し、脱着することができるように、吸着時定数Tadの1/2乗と脱着時定数Tdeの1/2乗との比となるように、吸着部11Aと脱着部11Bの面積を分割する(吸着時定数Tadの1/2乗と脱着時定数Tdeの1/2乗との比となるのが最適であるが、厳密にこの比でなくてもよい)。これにより、吸着と脱着とのバランスの面から見た場合の除湿量を大きくすることができる。
図5は除湿ロータ11の回転に係る係数と除湿量比の関係を表す図である。例えば上述したように、吸着時定数Tadの1/2乗と脱着時定数Tdeの1/2乗との比により、吸着部11Aと脱着部11Bの面積を分割したとき、除湿ロータ11の回転数は次式(13)で表される。
ここで、
N:除湿ロータ11の(1時間あたりの)回転数(rph)
Tad:吸着時定数(s)
Tde:脱着時定数(s)
x:係数
N=3600/(Tad+Tde)x …(13)
図5に示すように、計算によるとxが0に近づくと除湿量が大きくなっていることがわかる。ロータ駆動手段18によって回転させることができる現実的な回転数を考慮すると、上述した制御手段10が、除湿ロータ11の1回転の時間が吸着時定数Tadと脱着時定数Tdeとの和(合計時間)の0.4〜0.8倍になるように、ロータ駆動手段18を駆動させ、回転数を制御すれば、除湿ロータ11の回転数から見た場合の除湿量を大きくすることができる。
以上のことから、例えば、決定した吸着時定数Tadと脱着時定数Tdeとが、Tad=180s、Tde=120sの場合には、除湿ロータ11の吸着部分と脱着部分との面積比は(180)1/2:(120)1/2=1.22:1となる。また、このとき、除湿ロータ11を15〜30rphの回転数で回転させれば、バランスの面からも回転数の面からも除湿量を大きくし、効率的な除湿を行うことができる。
以上のように実施の形態1の除加湿装置1では、除湿ロータ11について、吸着剤の種類、空気の温度、湿度、風量等で定まるその除湿および加湿能力に基づいて吸着時定数Tadと脱着時定数Tdeとを決定し、吸着時定数Tadの1/2乗と脱着時定数Tdeの1/2乗との比により、除湿ロータ11における吸着部11Aと脱着部11Bとの面積比を決定するようにしたので、吸着と脱着とのバランスを効率よくして除湿または加湿を行うことができ、除湿量を大きくすることができる。
また、吸着時定数Tadと脱着時定数Tdeとの合計時間の0.4〜0.8倍になるように除湿ロータ11の回転数を制御するようにしたので、さらに効率的な条件で除湿量を大きくすることができる。
そして、吸着する空気の温度および/または相対湿度、風量に基づいて吸着時定数Tadを決定することができ、脱着する空気の温度および/または相対湿度、風量に基づいて脱着時定数Tdeを決定することができるため、少ないパラメータで除湿ロータ11における吸着部11Aと脱着部11Bとの面積比を決定することができ、仕様決定等に必要な試験回数を減らすことができる。
さらに、例えば製品として設定された仕様に応じて、効率的に除湿または加湿能力が得られるように面積比および回転数を決定することができるため、例えば、吸着剤の量の削減、除湿ロータ11の小型化等を実現することができ、また、製品コストの低減を図ることができる。また、除湿量を効率よく大きくすることができるため、例えば、ヒータまたは凝縮器14による加熱、冷却器15による冷却等についても効率よく行うことができ、除湿に係るエネルギを少なくし、省エネルギを図ることができる。
実施の形態2.
図6は本発明の実施の形態2に係る冷凍サイクル装置の構成例を表す図である。本実施の形態では、上述の実施の形態で説明した除加湿装置を適用した冷凍サイクル装置について、空気調和装置を例として説明する。図6の空気調和装置は、熱源側ユニット(室外機)100と負荷側ユニット(室内機)200とを備え、これらが冷媒配管で連結され、主となる冷媒回路(以下、主冷媒回路という)を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管400とする。本実施の形態では、除加湿装置204が負荷側ユニット200内に設けられているものとする。
熱源側ユニット100は、本実施の形態においては、圧縮機101、油分離器102、四方弁103、熱源側熱交換機104、熱源側ファン105、アキュムレータ(気液分離器)106、熱源側絞り装置(膨張弁)107、冷媒間熱交換器108、バイパス絞り装置109および熱源側制御装置110の各装置(手段)で構成する。
圧縮機101は、例えばインバータ回路(図示せず)を備え、圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができる。また、油分離器102は、冷媒に混じって圧縮機101から吐出された潤滑油を分離させるものである。分離された潤滑油は圧縮機101に戻される。四方弁103は、熱源側制御装置111からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。また、熱源側熱交換器104は、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、熱源側絞り装置107を介して流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁103側から流入した圧縮機101において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。熱源側熱交換器104には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン105が設けられている。熱源側ファン105もインバータ回路を有してファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。
冷媒間熱交換器108は、冷媒回路の主となる流路を流れる冷媒と、その流路から分岐してバイパス絞り装置109(膨張弁)により流量調整された冷媒との間で熱交換を行う。特に冷房運転時において冷媒を過冷却する必要がある場合に、冷媒を過冷却して負荷側ユニット200に供給するものである。バイパス絞り装置109を介して流れる液体は、バイパス配管107を介してアキュムレータ106に戻される。アキュムレータ106は例えば液体の余剰冷媒を溜めておく手段である。熱源側制御装置111は、例えばマイクロコンピュータ等からなる。負荷側制御装置205と有線または無線通信することができ、例えば、空気調和装置内の各種検知手段(センサ)の検知に係るデータに基づいて、インバータ回路制御による圧縮機101の運転周波数制御等、空気調和装置に係る各手段を制御して空気調和装置全体の動作制御を行う。
一方、負荷側ユニット200は、負荷側熱交換器201、負荷側絞り装置(膨張弁)202、負荷側ファン203、除加湿装置204および負荷側制御装置205で構成される。負荷側熱交換器201は冷媒と空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能し、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(または気液二相化)させ、液配管400側に流出させる。一方、冷房運転時においては蒸発器として機能し、負荷側絞り装置202により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。また、負荷側ユニット200には、熱交換を行う空気の流れを調整するための負荷側ファン203が設けられている。この負荷側ファン203の運転速度は、例えば利用者の設定により決定される。負荷側絞り装置202は、開度を変化させることで、負荷側熱交換器201内における冷媒の圧力を調整するために設ける。
除加湿装置204は、実施の形態1で説明した除加湿装置1と基本的には同じである。例えば、除加湿装置204は室内に除湿した空気を送るだけでなく、あらかじめ除湿して潜熱を除去した空気を負荷側熱交換器201に送るため、また、負荷側熱交換器201の着霜防止を図るため、本実施の形態では空気の流れる方向に対して負荷側熱交換器201の上流側に設けられている。実施の形態1において説明した吸着用ファン12と負荷側ファン203とを兼用させるようにしてもよい。また、冷房運転の場合には負荷側ユニット200内には低温の冷媒が通過し、暖房運転の場合には高温の冷媒が通過するため、例えばこのような冷媒を利用して、実施の形態1において説明した冷却器15やヒータまたは凝縮器14を構成してもよい。
また、負荷側制御装置205もマイクロコンピュータ等からなり、例えば熱源側制御装置111と有線または無線通信することができる。熱源側制御装置111からの指示、居住者等からの指示に基づいて、例えば室内が所定の温度となるように、負荷側ユニット200の各装置(手段)を制御する。また、例えば、負荷側ユニット200に設けられた検知手段の検知に係るデータを含む信号を送信する。ここで負荷側制御装置205は、除加湿装置204の制御も行うものとする。そのため、上述の実施の形態1において説明した制御手段10による除湿ロータ11の回転制御等は、負荷側制御装置205が行うものとする。
次に空気調和装置の動作について説明する。まず、冷房運転時の主となる冷媒回路における基本的な冷媒循環について説明する。例えば3相電源からの電力供給により、圧縮機101が駆動し、冷媒を圧縮する。圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103から熱源側熱交換器104内を通過することで凝縮し、液冷媒となって熱源側ユニット100を流出する。液配管400を通って負荷側ユニット200に流入した冷媒は、負荷側絞り装置202の開度調整により圧力調整された低温低圧の液冷媒が負荷側熱交換器201内を通過して蒸発して流出する。そして、ガス配管300を通って熱源側ユニット100に流入し、四方弁103、アキュムレータ106を介して圧縮機101に吸入され、再度加圧され吐出することで循環する。
また、暖房運転時の主となる冷媒回路における基本的な冷媒循環について説明する。例えば3相電源からの電力供給により、圧縮機101が駆動し、冷媒を圧縮する。圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103からガス配管300を通って負荷側ユニット200に流入する。負荷側ユニット200においては、負荷側絞り装置202の開度調整により圧力調整され、負荷側熱交換器201内を通過することにより凝縮し、中間圧力の液体または気液二相状態の冷媒となって負荷側ユニット200を流出する。液配管400を通って熱源側ユニット100に流入した冷媒は、熱源側絞り装置107の開度調整により圧力調整され、熱源側熱交換器104内を通過することで蒸発し、ガスの冷媒となって四方弁103、アキュムレータ106を介して圧縮機101に吸入され、前述したように加圧され吐出することで循環する。
以上のように実施の形態2に係る空気調和装置では、除加湿装置204を負荷側ユニット200に設けるようにしたので、効率よく対象空間の除湿を行うことができる。また、負荷側熱交換器201への着霜を防止し、あらかじめ水分による潜熱を除去することができるので、例えば圧縮機101における圧縮比を小さくする等、冷媒回路におけるエネルギ性能を向上させることができる。
実施の形態3.
上述の実施の形態1、2では、空調対象空間を除湿することについて説明したが、これに限定するものではない。例えば、空調対象空間となる室内の空気が脱着空気路17を通るようにし、室外の空気が吸着空気路16を通るようにすれば、室内を加湿することができる。そして、除湿の場合と同様、最適な条件で効率よく加湿量を大きくすることができる。
実施の形態4.
図7は本発明の実施の形態4に係る除湿ロータ11を中心とする除加湿装置1Aの概略構成を表す図である。図7において、図1と同じ符号を付しているものは同様の動作を行うので説明を省略する。除加湿装置1Aは、固定仕切壁19A、可動仕切壁19B及び仕切壁駆動手段51を有している点で除加湿装置1と異なる。
本実施の形態では、吸着空気路16と脱着空気路17とを仕切る仕切壁を、固定仕切壁19Aと可動仕切壁19Bとで構成する。固定仕切壁19Aは固定されているが、可動仕切壁19Bは、仕切壁駆動手段51によって移動して位置が変化し、固定仕切壁19Aとの間の角度を変えることができる。仕切壁駆動手段51は、モータ等を備え、制御手段10からの指示に基づいて可動仕切壁19Bを仕切壁回転軸19Cを中心に回転駆動させて移動させ、所定の位置で停止させる。
本実施の形態の除加湿装置1Aは、可動仕切壁19Bの位置を変化させ、除湿ロータ11の吸着部11A及び脱着部11Bの面積比(吸着空気路16と脱着空気路17との風路の体積)を調整することができるようにしたものである。可動仕切壁19Bの位置については、制御手段10が、吸着側、脱着側における空気の温度、湿度、風量に基づいて、例えば上述した数式による演算等を行い、除湿ロータ11の吸着部11Aおよび脱着部11Bの最適な面積比を設定する。そして、その面積比に基づいて、可動仕切壁19Bの位置(可動仕切壁19Bとの角度)を決定し、仕切壁駆動手段51に指示のための信号を送信する。仕切壁駆動手段51が指示に基づいて可動仕切壁19Bを回転駆動させて所定の位置で停止させる。
このように、除湿ロータ11の吸着部11Aおよび脱着部11Bの面積比を最適にする位置に、可動仕切壁19Bの位置を変化できるようにしたので、吸着と脱着とのバランスを効率よく図ることができ、除湿量を大きくすることができる。このときにも吸着時定数Tadと脱着時定数Tdeとの合計時間の0.4〜0.8倍になるように除湿ロータ11の回転数を制御するようにすればさらによい。
実施の形態5.
上述の実施の形態2では冷凍サイクル装置として空気調和装置について説明したが、これに限るものではない。例えば、冷凍、冷蔵倉庫等に利用する冷却装置、ヒートポンプ装置等にも利用することができる。
除湿ロータ11を中心とする除加湿装置1の概略構成を表す図である。 除湿ロータ11の吸脱着を行う構造とその平板モデルを表す図である。 吸脱着時間と吸脱着量との関係を表す図である。 静特性実験の工程を表すための図である。 除湿ロータ11の回転に係る係数と除湿量比の関係を表す図である。 本発明の実施の形態2に係る冷凍サイクル装置の構成図である。 実施の形態4に係る除加湿装置1Aの概略構成を表す図である。
符号の説明
1 除加湿装置、10 制御手段、11 除湿ロータ、11A 吸着部、11B 脱着部、12,42 吸着用ファン、13,43 脱着用ファン、14,44 ヒータまたは凝縮器、15,45 冷却器、16 吸着空気路、17 脱着空気路、18 ロータ駆動手段、19 仕切壁、19A 固定仕切壁、19B 可動仕切壁、21 被除湿空気、22 除湿した空気、23 室外空気、24 加熱空気、25 加湿された空気、31 バルク空気層、32 境界層、33 吸着剤層、34 吸着剤細孔、35 バルク空気層−境界層間、36 境界層−吸着剤細孔間、37 吸着剤層厚さ、51 仕切壁駆動手段、100 熱源側ユニット、101 圧縮機、102 油分離器、103 四方弁、104 熱源側熱交換機、105 熱源側ファン、106 アキュムレータ、107 熱源側絞り装置、108 冷媒間熱交換器、109 バイパス絞り装置、110 熱源側制御装置、200 負荷側ユニット、201 負荷側熱交換器、202 負荷側絞り装置、203 負荷側ファン、204 除加湿装置、205 負荷側制御装置、300 ガス配管、400 液配管。

Claims (9)

  1. 吸着空気路と脱着空気路とを跨いで設けられ、軸を中心に周方向に回転自在に設置された円筒であって、該円筒内に水分吸脱着手段が設けられ、前記吸着空気路上に位置する吸着部において前記吸着空気路を通過する空気中の水分を吸着し、前記脱着空気路上に位置する脱着部において前記脱着空気路を通過する空気に、前記吸着部において吸着した水分を脱着する除湿ロータと、該除湿ロータを周方向に回転させるロータ駆動手段とを備える除加湿装置であって、
    前記除湿ロータにおける吸着部と脱着部との面積比を、略、所定量の水分を吸着する時間に係る吸着時定数の1/2乗と、前記所定量の水分を脱着する時間に係る脱着時定数の1/2乗との比とすることを特徴とする除加湿装置。
  2. 前記ロータ駆動手段は、前記吸着時定数と前記脱着時定数との合計時間の0.4〜0.8倍の時間で、前記除湿ロータを一回転させることを特徴とする請求項1記載の除加湿装置。
  3. 前記吸着空気路を通過させる前記空気の温度、湿度および/または前記空気の量に基づいて決定した前記吸着時定数と、前記脱着空気路を通過させる前記空気の温度、湿度および/または前記空気の量に基づいて決定した脱着時定数とに基づいて、前記吸着部と前記脱着部との面積比を変更するための面積比調整手段をさらに有することを特徴とする請求項1又は2記載の除加湿装置。
  4. 前記吸着時定数と前記脱着時定数に基づいて、前記吸着空気路を通過させる前記空気の量を調整するための被除湿空気風量調整手段をさらに備えることを特徴とする請求項1〜3のいずれかに記載の除加湿装置。
  5. 前記吸着時定数と前記脱着時定数に基づいて、前記吸着空気路を通過させる前記空気の温度および/または湿度を調整するための被除湿空気温度調整手段をさらに備えることを特徴とする請求項1〜4のいずれかに記載の除加湿装置。
  6. 前記吸着時定数と前記脱着時定数に基づいて、前記脱着空気路を通過させる前記空気の量を調整するための脱着空気風量調整手段をさらに備えることを特徴とする請求項1〜5のいずれかに記載の除加湿装置。
  7. 前記吸着時定数と前記脱着時定数に基づいて、前記脱着空気路を通過させる前記空気の温度および/または湿度を調整するための脱着空気温度調整手段をさらに備えることを特徴とする請求項1〜6のいずれかに記載の除加湿装置。
  8. 前記吸着空気路を通過させる前記空気の温度、湿度および/または前記空気の量に基づいて演算により決定した前記吸着時定数と、前記脱着空気路を通過させる前記空気の温度、湿度および/または前記空気の量に基づいて演算により決定した脱着時定数とを用いることを特徴とする請求項1〜7のいずれかに記載の除加湿装置。
  9. 請求項1〜8のいずれかに記載の除加湿装置と、
    冷媒を圧縮する圧縮機と、
    熱交換により前記冷媒を凝縮する凝縮器と、
    凝縮された冷媒を減圧させるための絞り装置と、
    減圧した前記冷媒と空気とを熱交換して前記冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成することを特徴とする冷凍サイクル装置。
JP2007089777A 2007-03-29 2007-03-29 除加湿装置および冷凍サイクル装置 Expired - Fee Related JP4999518B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089777A JP4999518B2 (ja) 2007-03-29 2007-03-29 除加湿装置および冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089777A JP4999518B2 (ja) 2007-03-29 2007-03-29 除加湿装置および冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2008246354A JP2008246354A (ja) 2008-10-16
JP4999518B2 true JP4999518B2 (ja) 2012-08-15

Family

ID=39971939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089777A Expired - Fee Related JP4999518B2 (ja) 2007-03-29 2007-03-29 除加湿装置および冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP4999518B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814671B2 (ja) * 2011-07-19 2015-11-17 株式会社日立製作所 除湿装置及びその制御方法
CN105757958A (zh) * 2016-04-06 2016-07-13 安徽机电职业技术学院 一种家用静音加湿除湿一体机
JP6956311B2 (ja) * 2017-02-28 2021-11-02 パナソニックIpマネジメント株式会社 除湿装置
SE543669C2 (en) * 2018-05-23 2021-05-25 Munters Europe Ab A partition device, a desiccant dehumidfier and a method, performed by a control device, for controlling a desiccant dehumidifier
TW202235783A (zh) * 2021-03-09 2022-09-16 日商夏普股份有限公司 除濕機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167427A (ja) * 1985-01-19 1986-07-29 Matsushita Electric Works Ltd 除湿機
JP4688561B2 (ja) * 2005-04-28 2011-05-25 三菱電機株式会社 空気調和機

Also Published As

Publication number Publication date
JP2008246354A (ja) 2008-10-16

Similar Documents

Publication Publication Date Title
TWI528001B (zh) Dehumidification device
JP5068235B2 (ja) 冷凍空調装置
JP5822931B2 (ja) 調湿装置、空気調和システム及び調湿装置の制御方法
JP4835688B2 (ja) 空気調和装置、空調システム
JP5631415B2 (ja) 空気調和システム及び調湿装置
WO2014167660A1 (ja) 除湿装置
US20230022397A1 (en) Air quality adjustment system
US20100170273A1 (en) Refrigerating and air conditioning apparatus
JP2001241693A (ja) 空気調和装置
JP5068293B2 (ja) 空気調和装置
JP7113659B2 (ja) 空気調和装置
WO2016046982A1 (ja) 除湿装置
JP5868416B2 (ja) 冷凍空調装置及び調湿装置
JPH08189667A (ja) 除加湿装置
JP4999518B2 (ja) 除加湿装置および冷凍サイクル装置
WO2015125250A1 (ja) 空気調和装置、及び、空気調和装置の制御方法
JP5127870B2 (ja) 空気調和装置
JP2012052782A (ja) デシカント式換気扇
WO2005123225A1 (ja) 除湿装置
JP5542777B2 (ja) 空気調和装置
JP2013130389A (ja) 空気熱源ヒートポンプ装置
WO2015125249A1 (ja) 空気調和装置
JP5111483B2 (ja) 空調装置及び空調システム
JP5404509B2 (ja) 除湿装置
JP6141508B2 (ja) 空気調和装置、及び、空気調和装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees