JPWO2008149542A1 - 微生物発酵によるdha含有リン脂質の製造方法 - Google Patents

微生物発酵によるdha含有リン脂質の製造方法 Download PDF

Info

Publication number
JPWO2008149542A1
JPWO2008149542A1 JP2009517720A JP2009517720A JPWO2008149542A1 JP WO2008149542 A1 JPWO2008149542 A1 JP WO2008149542A1 JP 2009517720 A JP2009517720 A JP 2009517720A JP 2009517720 A JP2009517720 A JP 2009517720A JP WO2008149542 A1 JPWO2008149542 A1 JP WO2008149542A1
Authority
JP
Japan
Prior art keywords
medium
microorganism
dha
labyrinthula
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009517720A
Other languages
English (en)
Other versions
JP5371750B2 (ja
Inventor
英登志 奥山
英登志 奥山
善丈 折笠
善丈 折笠
孝伸 西田
孝伸 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROM CO., LTD.
Hokkaido University NUC
Original Assignee
ROM CO., LTD.
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROM CO., LTD., Hokkaido University NUC filed Critical ROM CO., LTD.
Priority to JP2009517720A priority Critical patent/JP5371750B2/ja
Publication of JPWO2008149542A1 publication Critical patent/JPWO2008149542A1/ja
Application granted granted Critical
Publication of JP5371750B2 publication Critical patent/JP5371750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6481Phosphoglycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/10Protozoa; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/10Protozoa; Culture media therefor
    • C12N1/105Protozoal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/90Protozoa ; Processes using protozoa

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

微生物を用いた、ω3系不飽和脂肪酸特にDHAを構成脂質とするDHAリン脂質をより簡便に製造する方法を提供する。本発明は、炭素源を含む培地でω3系不飽和脂肪酸生産能を有する微生物を増殖させる工程、及び増殖させた前記微生物を、炭素源を含まない培地でさらに培養する工程を含む、ω3系不飽和脂肪酸を構成脂質とするリン脂質の製造方法。本発明の方法によれば、ω3系不飽和脂肪酸生産能を有する微生物を用いて、ω3系不飽和脂肪酸を構成脂質とする高付加価値のリン脂質を大量に生産することができる。

Description

本発明は、高付加価値を有するリン脂質を製造する方法に関する。より詳細には、本発明は、ω3系不飽和脂肪酸の生産能を有する微生物を用いた、ω3系不飽和脂肪酸、特にドコサヘキサエン酸(DHA)を構成脂質とするリン脂質の製造方法に関する。
ω3系不飽和脂肪酸、特にエイコサペンタエン酸(EPA)やドコサヘキサエン酸(DHA)は、血中脂質低下作用、脳視覚機能の改善などの生理効果を示すことから、機能性脂質と言われている。いずれもヒトに不可欠の栄養分であるが、食品からの摂取が不足しがちであるために、必要摂取量を補うためのEPAやDHAを含む健康食品素材あるいはサプリメントが広く市販されている。また、EPAについては、高純度のEPAエチルエステルが脂質低下剤などの医薬としても利用されている。さらに、EPAとDHAを成分とする健康食品が厚生労働省により特定健康用食品として2004年に認可されて以来、EPAやDHAを初めとするω3系不飽和脂肪酸の利用と市場は、より一層拡大するものと予想されている。
一方、脂肪酸そのものではなく、脂肪酸を構成脂質とするリン脂質についても、種々の有用な生理活性を有することが数多く報告されている。例えば、ホスファチジルセリン(PS)の脳機能改善効果(非特許文献1)、ホスファチジルコリン(PC)の動脈硬化症や神経機能障害の改善効果が、それぞれ報告されている。さらに最近は、健康補助食品への利用を目的として、PSやPCにとどまらず、ホスファチジルエタノールアミン(PE)を含むリン脂質全般が注目を集めている。
この様な背景の下、ω3系不飽和脂肪酸を構成脂質とするリン脂質、例えばDHAを構成脂質とするPCやPE(それぞれをDHA−PC、DHA−PEといい、以下、DHAを構成脂質とするリン脂質全体をDHAリン脂質という)の抗腫瘍性や抗酸化性などの生理機能が、培養細胞を使った系にとどまらず、動物生体を使った系でも明らかになってきている。
例えば、Kafrawyら(非特許文献2)によれば、DHA−PC、特にPC1分子中に2分子のDHAをもつもの(DHA/DHA−PC)が癌化した動物細胞(マウス白血病細胞)に選択的毒性を示すことを報告している。したがって、ω3系不飽和脂肪酸、特にDHAを構成脂質とするリン脂質に対する需要は今後さらに高まっていくと期待される。
ω3系不飽和脂肪酸を構成脂質とするリン脂質の代表的な例であるDHAリン脂質の主な供給源は、イカ(特にムラサキイカの皮)や魚油、あるいはこれらの魚油の給餌により得られる鶏卵(特許文献1)などである。ムラサキイカは、リン脂質を多く含む上、そのリン脂質の50%を占めるホスファチジルコリン(PC)の構成脂質の50%がDHAであり、脂質中のDHAリン脂質の含有比率は高いという特徴を有している。
しかし、DHAリン脂質の工業的な生産を考えた場合、ムラサキイカや魚油等の海産物をDHAリン脂質の供給源とすることは、漁獲高に依存した供給量の不安定性、季節や気候の変化を原因とする品質の不均一性、海洋汚染を原因とする安全性などの他に、魚油独自の臭気(いわゆる魚臭さ)による最終製品の品質や価値の低下、各種の構造類似の長鎖高度不飽和脂肪酸が魚油中に含まれることによる高い精製コスト等の多くの問題を抱えることになる。また鶏卵は、卵黄脂質の30%がリン脂質であり、リン脂質の含有比率は高いが、総脂質量は低く、また卵黄のエタノール抽出物中のDHA含量は12%程度に過ぎない。
上記の魚油や鶏卵の利用とは異なるω3系不飽和脂肪酸の供給源としては、ω3系不飽和脂肪酸生産能を有する微生物、特にDHA生産能を有する微生物が知られている。微生物を用いたDHAの製造方法は、アメリカ合衆国等では実用化されており、DHA含有脂質の原料や、高DHA含有飼料等が製品化されている。具体的には、例えば、トラウストキトリウム属、シゾキトリウム属の生育技術(特許文献2)、トロウストチトリアレ類から抽出されるω3系不飽和脂肪酸の利用技術(特許文献3)等が挙げられる。
日本国内においても、ラビリンチュラ類をDHAの供給源として用いる技術は種々開発されている。具体的には、例えば、ラビリンチュラ属の微生物であるS3−2株を利用する技術(特許文献4〜特許文献6)、シゾキトリウム属の微生物 であるSR21株およびその利用技術(特許文献7〜特許文献9)等が挙げられる。
しかし、上記の微生物を用いた方法で製造されるDHAは、いずれもリン脂質の構成脂質ではなく、単なる脂肪(トリグリセリド)の構成脂質としてのDHAであり、DHAリン脂質を構成するものではない。
本発明者らは、非光合成性の単細胞微生物であるラビリンチュラ類に属する新規微生物12B株を単離し、これがDHAリン脂質を製造することを見いだし、特許出願を行った(特許文献10)。しかしながら、この微生物は、微生物の全脂肪に対して40%を超えるDHAを蓄積するが、DHAリン脂質の含有量は、微生物の全脂肪に対して12〜13%程度に過ぎない。
また、生物材料から調製されるDHAリン脂質のほとんどは、リン脂質分子中に1分子のDHAを持つだけであり、構成脂質としてのDHAの含有量が50%を超える、生物材料由来のリン脂質はほとんど報告されていない。従って、リン脂質中のDHA含量を高めることは、機能性食品の他に、医薬としての利用価値も高めることができる、重要な課題である。
酒井正士ら、「ホスファチジルセリンと脳機能」、2002年、オレオサイエンス、第2巻、第2号、第23−28頁 Kafrawy Oら、Cancer Lett.、1998年、第132巻(1−2)、第23−29頁 特開昭59−39258号公報 特表平8−202405号公報 特表平8−509355号公報 特開2001−275656号公報 特開2004−298798号公報 特開2003−000292号公報 特開平9−000284号公報 特開平10−072590号公報 特開平10−310556号公報 特開2006−230403号公報
本発明は、魚油や鶏卵を原料とせず、微生物を用いたω3系不飽和脂肪酸を構成脂質とするリン脂質、特にDHAを構成脂質とするDHAリン脂質をより簡便に製造する方法を提供することを目的とする。
本発明者らは、ラビリンチュラ類12B株に代表されるω3系不飽和脂肪酸生産能を有する微生物を、炭素源を含む通常の培地で培養するだけでなく、この様な培地で増殖させた微生物を、炭素源を含まない培地でさらに培養することによって、脂質全体におけるDHAリン脂質の含有量ひいてはDHAリン脂質の生産量自体も高めることができることを見いだし、下記の各発明を完成した。
(1)炭素源を含む培地でω3系不飽和脂肪酸生産能を有する微生物を増殖させる工程、及び増殖させた前記微生物を、炭素源を含まない培地でさらに培養する工程を含む、ω3系不飽和脂肪酸を構成脂質とするリン脂質の製造方法。
(2)ω3系不飽和脂肪酸生産能を有する微生物がラビリンチュラ類微生物又はトロウストチトリアレ類微生物である、(1)に記載の製造方法
(3)ラビリンチュラ類微生物がラビリンチュラ12B株である、(2)に記載の製造方法。
(4)ラビリンチュラ類微生物が、ラビリンチュラ属微生物、トラウストキトリウム属微生物、及びシゾキトリウム属微生物よりなる群から選ばれる、(2)に記載の製造方法。
(5)ラビリンチュラ類微生物がラビリンチュラ属S3−2株又はシゾキトリウム属SR21株である、(4)に記載の製造方法。
(6)ω3系不飽和脂肪酸がドコサヘキサエン酸である、(1)〜(5)の何れかに記載の製造方法。
(7)強制通気を行いながら炭素源を含まない培地での培養を行う、(1)〜(6)の何れかに記載の製造方法。
本発明の方法によれば、ω3系不飽和脂肪酸生産能を有する微生物を用いて、ω3系不飽和脂肪酸を構成脂質とする高付加価値のリン脂質を大量に生産することができる。
本発明にいうω3系不飽和脂肪酸としては、リノレン酸、オクタデカテトラエン酸、エイコサテトラエン酸、EPA、DHA酸を挙げることができるが、本発明で好ましいω3系不飽和脂肪酸は、EPA又はDHAであり、特に好ましくはDHAである。
ω3系不飽和脂肪酸生産能を有する微生物としては、Mortierella alpinaなどのモルティエレラ(Mortierella)属微生物、Desmarestia acculeataなどのデスマレスティア(Desmarestia)属微生物、Crypthecodinium cohnii等の渦鞭毛藻、ラビリンチュラ(Labyrinthula)類微生物等を挙げることができる。ラビリンチュラ類微生物の具体例としては、ラビリンチュラ科のラビリンチュラ(Labyrinthula)属、例えばラビリンチュラ属S3−2株(受託番号FERM BP−7090)、ヤブレツボカビ科のラビリンチュロイド(Labyrinthuloides)属、コラロキトリウム(Corallochytrium)属、アプラノキトリウム(Aplanochytrium)属、アルトルニア(Althornia)属、ジャポノキトリウム(Japonochytrium)属、ウルケニア(Ulkenia)属、トラウストキトリウム(Thraustochytrium)属、およびシゾキトリウム(Schizochytrium)属、例えばシゾキトリウム属SR21株(受託番号FERM BP−5034)等を挙げることができる。
また、本発明者らが単離し、日本国千葉県木更津市かずさ鎌足2−5−8に所在する、独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)に平成17年1月24日に受託番号NITE P−68として寄託した、ラビリンチュラ類微生物であるラビリンチュラ12B株を挙げることができる。本発明の製造方法において特に好ましい微生物は、このラビリンチュラ12B株である。ラビリンチュラ12B株の詳細な性状は、特許文献(特開2006−230403)に記載されている。
本発明の製造方法は、炭素源を含む培地でω3系不飽和脂肪酸生産能を有する微生物を培養する工程を含む。この工程における培養は、特別な条件下で行う培養ではなく、利用するω3系不飽和脂肪酸生産能を有する微生物にとって、その細胞数を増加させ、菌体内にトリグリセリドや脂肪酸、リン脂質その他の脂肪を蓄積させることのできる、糖その他の炭素源を含む培地を用いた標準的な条件で行われる培養である。従って、使用する微生物毎に報告されている当該微生物が良好に増殖する培養条件、例えば温度、培地組成、培地のpH、酸素濃度、光、振蕩速度、培養時間等に従い、当該微生物の増殖に好適な炭素源を含む培地を適宜選択して使用すればよい。
培地の例としては、ラビリンチュラ科微生物に対してはPY培地(約50%の塩濃度をもつ人工海水1L当りポリペプトン1g、酵母抽出物0.5g、Kumonら、Appl. Microbiol. Biotechnol.、2002年、第60巻、第275−280頁)等を、ヤブレツボカビ科微生物に対しては酵母抽出物‐ペプトン‐ブドウ糖‐海水培地(水1L当りそれぞれ10g、10g、80g、500mL)等を、また渦鞭毛藻に対しては酵母抽出物‐ブドウ糖‐海水塩培地(水1L当りそれぞれ2g、9g、25g)等を利用することができる。培地は、液体、固形、または形状保持性を有する半固形の何れかの形状を有していればよい。また、上記培養工程では、培地の形状が固形である場合に、当該培地に添加する水分量の下限を45%(v/w)以上とすることが好ましく、水分量の上限を60%(v/w)以下とすることが好ましい。特に好ましくは45〜50%の範囲内が好ましい。
炭素源は、上記の培地に予め添加する、及び/又は培養と共に培地に炭素源を添加することができる。また炭素源の量は、使用する微生物の細胞数が培養時間と共に増加し、菌体内にトリグリセリドや脂肪酸、リン脂質その他の脂肪を蓄積するに十分な量であればよい。また、上記培養工程では、静置培養または振盪培養の何れかを適宜選択することができる。
本発明の製造方法は、上記工程によって増殖させた微生物を、炭素源を含まない培地でさらに培養する工程を含む。以下の推察に拘束されるものではないが、炭素源を含む培地で良好に生育し、ω3系不飽和脂肪酸を含む多くの脂肪を菌体に蓄えたω3系不飽和脂肪酸生産能を有する微生物を、炭素源を含まない培地で更に培養することによって、菌体に蓄積された脂肪をω3系不飽和脂肪酸を構成脂質とするリン脂質へと生物変換させ、リン脂質全体におけるω3系不飽和脂肪酸を構成脂質とするリン脂質の含有量ひいてはω3系不飽和脂肪酸を構成脂質とするリン脂質の生産量自体も高めることができるものと推察される。
本発明にいう「炭素源を含まない培地」とは、グルコースやデンプンに代表される糖類だけでなく、米糠やふすま、酢酸やエタノールなどを含め、本発明で使用される微生物が菌体内に蓄積された脂肪に先んじて利用を優先するような炭素源を含まない培地を意味する。また、本発明にいう「炭素源を含まない培地」とは、字句通りに炭素源を全く含まない培地のみを意味するものではなく、微生物をして菌体内に蓄積された脂肪を利用して増殖を行わせ、ω3系不飽和脂肪酸を構成脂質とするリン脂質を生成させることができる限りにおいて、少量の炭素源が含まれる培地も意味するものである。例えば、「炭素源を含む培地」で増殖させた微生物を回収してそのまま利用する際の、いわゆる前培養からの持ち込みとしての炭素源、あるいは培地を構成するペプトンその他の成分に混在する微量の炭素源などを含む培地は、本発明にいう「炭素源を含まない培地」に該当する。
上記の意味における炭素源を含まないことの他は、本発明にいう「炭素源を含まない培地」は、微生物の増殖にとって必要あるいは良好な栄養素を含む培地であることが好ましく、その様な培地、培養条件及びそれらの例は、前記の「炭素源を含む」培地と、これを用いて微生物を培養して菌体に脂肪を蓄積させるときの培養条件と同じであってよい。また、炭素源を除くその他の培地を構成する成分、組成などは、使用する微生物に応じて、当該微生物に好適な成分や組成を採用して用いればよい。
本発明で特に好ましい態様は、微生物としてラビリンチュラ12B株を利用したDHAリン脂質の製造方法である。ラビリンチュラ12B株は、炭素源としてグルコースを含む培地を用いて30℃で培養すると、約15g/Lもの脂質(脂肪酸として)を細胞内に蓄積させることから、炭素源を含まない培地で増殖させる際に、炭素源として利用可能な脂肪(トリグリセリド)を豊富に含んでいる点で有利である。また、炭素源を含む培地で増殖させたラビリンチュラ12B株に蓄積される脂肪酸の40%以上がDHAであり、当該DHAを利用してDHAリン脂質へと変換する上でも、好適な微生物である。
またラビリンチュラ12B株は、比較的単純な組成からなる培地、例えば50%海水、1%ペプトン、1%酵母エキス、8%グルコースを含む培地(以下、F培地と表す)においても良好に増殖し、製造コストを抑制することができる点でも、本発明において有利な微生物である。
ラビリンチュラ12B株を利用したDHAリン脂質の製造方法において、上記のF培地は「炭素源を含む培地」の好適な例として使用することができる。また「炭素源を含まない培地」としては、上記のF培地からグルコースを抜き、他に米糠などの炭素源として利用可能な成分を含まない培地(以下、Z1培地と表す)を好適な例として使用することができる。
ラビリンチュラ12B株を利用したDHAリン脂質の製造方法としては、適当量のF培地にラビリンチュラ12B株細胞を接種し、30℃で24時間〜72時間、振蕩培養を行ってラビリンチュラ12B株を増殖させた後、この培養液の一部を、あるいは培養液から遠心分離等で回収した細胞を適当量のZ1培地に加え、さらに30℃で24時間〜72時間培養を行うことを例示することができる。この方法により、F培地で培養を終了した時点に比べて、ラビリンチュラ12B株の細胞内にDHAリン脂質をより多く含ませることができる。特に、「炭素源を含まない培地」における培養工程は、強制通気を行いながら培養することが好ましい。
本発明の製造方法は、上記の工程で得られたω3系不飽和脂肪酸を構成脂質とするリン脂質を菌体から抽出ないし回収する工程、さらに必要に応じて当該リン脂質を精製する工程を含んでいてもよい。微生物菌体内に蓄積したリン脂質の回収並びに精製は、例えばBlighら(Can.J.Biochem.Physiol.、1959年、第37巻、第911−917頁)に記載の方法に従って行うことが出来る。
また、本発明によって製造されるω3系不飽和脂肪酸を構成脂質とするリン脂質は、そのまま食品、食品添加物、飼料用添加物、医薬品等として用いることができ、また食品、サプリメント、飼料、医薬品又はこれらの原料に添加して利用してもよい。
本発明について、実施例を示してさらに詳しく説明するが、本発明はこの実施例に限定されるものではなく、当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。なお、以下の実施例では、重量%は単に「%」と記載する。
<実施例1>
By+培地(0.1%ペプトン、0.1%酵母エキス、0.5%ブドウ糖、50%海水、1.0%寒天)を含む寒天平板培地で保存しているラビリンチュラ12B株細胞の1白金耳(約1mg)を、10mLのF培地(50%海水、1%ペプトン、1%酵母エキス、8%グルコース)に接種し、30℃で72時間培養した。培養後の培養液の濁度(OD600)は約36であった。この培養液4mLを、Z1培地(F培地からグルコースを除いた培地)25mLに接種し、30℃で48時間、培養を行った。培養中は経時的に培養液のOD600を測定し、また培養終了後の細胞の乾燥重量、乾燥細胞から抽出した全脂質の量、全脂質中のTGの量、リンの量、リンの量から算出されるリン脂質量と全脂質に対する比、及び全脂質脂肪酸中のDHAの含量を求めた(表1)。
1白金耳のラビリンチュラ12B株細胞は、乾燥重量に換算して約0.5mgの菌体重量に相当する。この菌体を10mLのF培地に接種し、72時間培養した場合の菌体の乾燥重量は、OD値から換算して246mgとなる。一方、1白金耳のラビリンチュラ12B株細胞を10mLのZ1培地へ直接接種して72時間30℃で培養したが、培養終了時のOD値から換算した細胞の乾燥重量は16.3mgであり、F培地で培養した場合の7%であった。このことから、Z1培地を用いて直接培養を行ったときのラビリンチュラ12B株の増殖性は極めて低いと考えられる。
一方、F培地で72時間培養した培地4mLに含まれるラビリンチュラ12B株細胞の乾燥重量(換算値)は90.6mgであるが、これを接種したZ1培地で48時間培養して最終的に得られるラビリンチュラ12B株細胞の乾燥重量(換算値)は235mgと、2.6倍に増加していた。また、Z1培地を用いた48時間の培養において、細胞から抽出される全脂質量は38.8mgから22.0mgへと約43%減少し、全脂質中のTG(脂肪酸量として)は66.8%から5.4%へと減少していた。
これらの結果は、炭素源を含まないZ1培地における培養によって、ラビリンチュラ12B株細胞に蓄積されていた内在性脂質、特にTGが、ラビリンチュラ12B株の増殖のために消費されたことを示唆していると考えられる。
その一方、Z1培地で48時間培養後のラビリンチュラ12B株細胞の細胞内全脂質中のリン脂質含量(リンの量からの換算値)は、5.0mgから14.8mgへと約3倍増加し、全脂質中のリン脂質含量は12.9%から67.3%へと約5倍増加した。また、全脂質中のDHAの含量は、F培地で培養した細胞では44.7%であるのに対して、Z1培地で培養した細胞では培養時間に応じて増加し、48時間培養した場合は約57%であり、ラビリンチュラ12B株細胞において、リン脂質の構成脂質としてのDHA含量の上昇したことを示す。
<実施例2>
実施例1と同様にラビリンチュラ12B株細胞を培養したF培地の培養液4mLを、Z1培地のペプトンと酵母エキスを2%としたZ2培地、及びZ1培地のペプトンと酵母エキスを4%としたZ4培地各25mLに接種し、30℃で48時間培養した。培養後の濁度、回収された細胞の乾燥重量、乾燥細胞から抽出した全脂質量、全脂質中のリン量、リン量から算出されるリン脂質量とそれらの比及びDHA含量を求めた(表1)。リン脂質の定量はホスファチジルセリン(シグマ)を標準品として無機リン量を定量することにより求めた。
その結果、ペプトン、酵母エキスの含量を高めることでラビリンチュラ12B株細胞の細胞収量は増加し(Z1培地で235mg、Z2培地で243mg、Z4培地で339mg)、Z4培地では、接種時(F培地で培養した培養液4mL中の細胞乾燥重量90.6mg)の約4倍となった。また、全培養終了後の細胞から回収される全脂質量は、Z2培地とZ4培地でそれぞれ28.5mgと40.0mgであった。
また、Z2培地、Z4培地で培養したラビリンチュラ12B株の細胞全脂質中のリン脂質含量はそれぞれ14.9mg、20.8mgであり、Z1培地で培養した場合の14.8mgよりも増加したが、割合はZ2培地、Z4培地でそれぞれ52.3%及び52.0%であり、Z1培地の場合の67.3%より低下した。また、全脂質に占めるTGの割合もZ培地のペプトンや酵母エキスの濃度が上昇するにつれて増加した。
すなわち、Z培地のペプトンや酵母エキス濃度を上げることは、全脂質に対するリン脂質の割合は低下させるが、細胞の増殖量の増加によってリン脂質の生産量を高めることが確認された。
<実施例3>
Z1培地に、1mM KPO、1mM KPOと1mMセリン、1mM KPOと1mMエタノールアミンをそれぞれ添加した培地(以下、それぞれZ1p、Z1ps、Z1paと表す)を用意し、実施例1と同様の培養を行って、培養後の濁度、回収された細胞の乾燥重量、乾燥細胞から抽出した全脂質量、全脂質中のリン量、リン量から算出されるリン脂質量とそれらの比及びDHA含量を求めた。
その結果、Z1psにおいてリン脂質量の増加(15.2mg)が認められた。この結果は培地に無機リン及びアミノ酸を添加することにより、リン脂質の生産量を増加させることができることが確認された。
上記実施例1〜3における分析結果を表1に示す。
<実施例4>
1)BY+培地の寒天プレートに保存しているラビリンチュラ12B株の細胞の1白金耳分を500mLフラスコ中の200mLのF培地に接種し、30℃、3日間前培養を行った。この前培養液100mLを、625mLのZ1培地/2.5L容積のジャーファーメンター(JF:東京理科器械社製)に加え、JFの上部空間(ヘッドスペース)に対して通気(1000mL/分)しながら、30℃、攪拌速度300rpmで24時間培養した。この培養条件によって、消泡剤を使用することなく培養液の発泡による損失を抑制することができる。培養液30mLを回収し、細胞の乾燥重量、全脂質量、全リン脂質量を求め、全培養液当りに換算した。DHA含量の含量は、全脂質をメタノリシス後、GCにより求めた。また、容器をフラスコとし、通気を行なわずに培養時間を48時間とした以外は上記と条件で培養したフラスコ培養を対照として用意した。
上記の培養条件において、培養後の培養液の細胞濃度は5.7mg/mLとなり、時間当りのリン脂質量は565μg/mL/24時間であった。この値は、対照(フラスコ培養:225μg/mL/24時間)の約2倍であった。
2)JFの撹拌速度を500rpmとした他は上記1)と同じ条件で培養を行ったところ、培養後の培養液の細胞濃度は6.9mg/mLに達し、時間当りのリン脂質量は642μg/mL/24時間となった。
3)JFの上部空間(ヘッドスペース)に加えて、培地中にも通気(110mL/分)を行った他は、上記1)と同じ条件で培養を行ったところ、培養後の培養液の細胞濃度は7.7mg/mLとなり、リン脂質量の生成速度は755μg/mL/24時間(対照であるフラスコ培養の約3倍)に上昇した。
上記1)、2)、3)の結果を表2に示す。
<分析方法>
上記の実施例における各種の分析は、次に示すとおりに行った。
1)全脂質の抽出
乾燥菌体よりクロロホルム−メタノールを用いた定法(非特許文献11)によって抽出される脂質を全脂質とした。全脂質中の脂肪と極性脂質を分離するために、全脂質サンプル100μgを、シリカゲルプレート(メルク社製シリカゲルG60)を用いて1次元薄層クロマトグラフィー(TLC)を行った。展開溶媒の組成はヘキサン−エーテル−酢酸(50:50:1、体積比)である。展開後、プリムリンをプレートに噴霧し、UV照射下でスポットの位置を確認した。TGの同定は標準物質とRf値の比較により行った。
2)リン脂質の同定
全脂質(1mg)を、クロロホルム−メタノール−水(65:25:4,体積比)を展開溶媒Aとした1次元展開、次いでクロロホルム−アセトン−メタノール−酢酸−水(50:20:10:10:1,体積比)を展開溶媒Bとした2次元展開による二次元TLCを行い、極性基に特異的な試薬を吹きつけた。対象となるスポットをプレートからかきとり、クロロホルム−メタノール混液を用いてリン脂質を抽出した。リン脂質の同定は、TLCプレート上での検出試薬との反応性、及び抽出物とリン脂質標準物質との異なる3種類の展開溶媒(展開溶媒A、B及びクロロホルム−メタノール−アンモニア水(50:20:10、体積比)からなる溶媒C)を用いた1次元TLCにおけるRfの比較により行った。
F培地で30℃、72時間培養後、及びZ1培地で30℃、48時間培養後のラビリンチュラ12Bから抽出した全脂質の1次元TLCの結果を、図1に示す。スポット1がTG、スポット2が遊離脂肪酸である。原点(スポット3)が極性脂質である。TG、遊離脂肪酸、極性脂質、及びそれ以外の中性脂質の脂肪酸量を基にした割合を表2に示す。
F培地からZ培地への移行によりTGが減少し、遊離脂肪酸と極性脂質の割合が増加した。Z2培地、Z4培地で培養した場合もZ1培地で培養した場合と同様、TGの減少、極性脂質の増加の傾向を示したが、Z1培地の場合ほど顕著ではなかった。Z2培地を用いて培養した細胞の場合を除いて極性脂質のDHA含量はTGのDHA含量を上回っていた。
全脂質の2次元TLCの結果を図2に示す。図2aはプレートに蛍光物質(プリムリン)を噴霧した後に紫外線照射下で撮影したものであり、図2bは図2aを模式的に図示したものである。各スポットには図2bに示すように番号を付した。各スポットを与える脂質の検出試薬に対する反応性を調べた。脂質1、2、3、4、6、7、8、9はDittmer試薬に陽性であり、リン脂質であることがわかった。これらの脂質の他の検出試薬に対する反応性から、脂質2はホスファチジルイノシトール(PI)、脂質3と4はホスファチジルコリン(PC1とPC2)、脂質6と7はホスファチジルエタノールアミン(PE1とPE2)と同定された。この結果は、それぞれの標準物質とのR値の比較によって確認された。PC、PEともに2つのスポットを与えるのは、構成する脂肪酸(特にDHAの含量)が異なるためであると考えられる。他のリン脂質を含む極性脂質は未同定である。0は原点をあらわし、スポット5と番号のないスポットはDittmer試薬に対して陰性の脂質である。
3)リン脂質の組成とDHA含量
Z1培地で30℃48時間培養後のラビリンチュラ12B株細胞から抽出した全脂質に対して二次元TLCを行った後、Z1培地由来の脂質の全スポットをかきとり、Istokovicsらの方法 (Can.J.Microbiol.、1988年、第44巻、第1051−1059頁)に従ってリンを定量した。全リン脂質中、PCは61.3%、PEは11.9%、PIは12.5%、その他が14.6%であった。PCとPEについて脂肪酸量を基にした場合、PC1とPC2はそれぞれ46.0%、54.0%であり、PE1とPE2はそれぞれ46.7%、53.3%であった。
さらに、既知量(200μg)の内部標準物質となるheneicosanoic acidとともに定法によってメタノリシスし、脂肪酸メチルエステルをGCにより分析した。PC1とPC2は全脂肪酸の39.2%及び66.8%がDHA、PE1とPE2は全脂肪酸の23.0%、33.3%がDHAであった。PIのDHA含量は20.9%であった。このことからDHAがPC、特にPC2の構成脂質であることが分かった。計算で求めた全PC、全PEのDHA含量はそれぞれ54.0%と28.4%であった。以上の結果を表3に示す。なお、表3のリン脂質のDHA含量の値は、Z1培地で培養した細胞に由来する全脂質のDHA含量56.5%(表1)や極性脂質のDHA含量56.6%、TGのDHA含量(52.6%)に比べると低いが、これはTLCあるいはGCの過程で多価不飽和脂肪酸の分解が起きているためである。
F培地及びZ1培地で培養したラビリンチュラ12B株細胞の全脂質の1次元TLCのクロマトグラムを示す。レーン1:F培地で30℃、72時間後の全脂質(250μg)、レーン2:Z1培地で30℃、24時間培養後の全脂質(250μg)、レーン3:Z1培地で30℃、48時間培養後の全脂質(250μg)。 F培地及びZ1培地で培養したラビリンチュラ12B株細胞の全脂質の2次元TLCのクロマトグラム(プリムリンを噴霧後、UV照射下で撮影)を示す。パネル上:F培地で30℃、72時間培養後の全脂質(1mg)、パネル下:Z1培地で30℃、48時間培養後の全脂質(1 mg)。 図2aに示すクロマトグラムを模式的に記したものを示す。スポット1から9がリン脂質である。パネル上:F培地で30℃、72時間培養後の全脂質、パネル下:Z1培地で30℃、48時間培養後の全脂質。

Claims (7)

  1. 炭素源を含む培地でω3系不飽和脂肪酸生産能を有する微生物を増殖させる工程、及び増殖させた前記微生物を、炭素源を含まない培地でさらに培養する工程を含む、ω3系不飽和脂肪酸を構成脂質とするリン脂質の製造方法。
  2. ω3系不飽和脂肪酸生産能を有する微生物がラビリンチュラ類微生物又はトロウストチトリアレ類微生物である、請求項1に記載の製造方法
  3. ラビリンチュラ類微生物がラビリンチュラ12B株である、請求項2に記載の製造方法。
  4. ラビリンチュラ類微生物が、ラビリンチュラ属微生物、トラウストキトリウム属微生物、及びシゾキトリウム属微生物よりなる群から選ばれる、請求項2に記載の製造方法。
  5. ラビリンチュラ類微生物がラビリンチュラ属S3−2株又はシゾキトリウム属SR21株である、請求項4に記載の製造方法。
  6. ω3系不飽和脂肪酸がドコサヘキサエン酸である、請求項1〜5の何れかに記載の製造方法。
  7. 強制通気を行いながら炭素源を含まない培地での培養を行う、請求項1〜6の何れかに記載の製造方法。
JP2009517720A 2007-06-04 2008-06-03 微生物発酵によるdha含有リン脂質の製造方法 Active JP5371750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009517720A JP5371750B2 (ja) 2007-06-04 2008-06-03 微生物発酵によるdha含有リン脂質の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007148398 2007-06-04
JP2007148398 2007-06-04
PCT/JP2008/001394 WO2008149542A1 (ja) 2007-06-04 2008-06-03 微生物発酵によるdha含有リン脂質の製造方法
JP2009517720A JP5371750B2 (ja) 2007-06-04 2008-06-03 微生物発酵によるdha含有リン脂質の製造方法

Publications (2)

Publication Number Publication Date
JPWO2008149542A1 true JPWO2008149542A1 (ja) 2010-08-19
JP5371750B2 JP5371750B2 (ja) 2013-12-18

Family

ID=40093374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517720A Active JP5371750B2 (ja) 2007-06-04 2008-06-03 微生物発酵によるdha含有リン脂質の製造方法

Country Status (5)

Country Link
US (1) US8652814B2 (ja)
EP (1) EP2163641B1 (ja)
JP (1) JP5371750B2 (ja)
AT (1) ATE554177T1 (ja)
WO (1) WO2008149542A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903214B2 (ja) * 2011-01-26 2016-04-13 備前化成株式会社 微生物発酵によるdha含有ホスファチジルセリンの製造方法
CN104313068B (zh) * 2014-09-03 2017-08-25 江苏天凯生物科技有限公司 一种磷脂型dha的发酵制备方法
CN113584093B (zh) * 2021-07-30 2022-07-19 江南大学 一种高dha含量的结构脂质的制备方法及其产品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939258A (ja) 1982-08-25 1984-03-03 Nisshin Flour Milling Co Ltd 健康食品卵の生産方法
US5340742A (en) * 1988-09-07 1994-08-23 Omegatech Inc. Process for growing thraustochytrium and schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids
US5130242A (en) 1988-09-07 1992-07-14 Phycotech, Inc. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
US6451567B1 (en) * 1988-09-07 2002-09-17 Omegatech, Inc. Fermentation process for producing long chain omega-3 fatty acids with euryhaline microorganisms
JPH08202405A (ja) 1995-01-26 1996-08-09 Fanuc Ltd ロバスト適応制御方法
JP2764572B2 (ja) 1995-04-17 1998-06-11 工業技術院長 ドコサヘキサエン酸生産能を有する新規微生物及びそれを用いたドコサヘキサエン酸の製造方法
EP0823475B1 (en) 1995-04-17 2009-06-17 National Institute of Advanced Industrial Science and Technology Novel microorganisms capable of producing highly unsaturated fatty acids and process for producing highly unsaturated fatty acids by using the microorganisms
JP3985035B2 (ja) 1995-09-14 2007-10-03 独立行政法人産業技術総合研究所 (n−6)系ドコサペンタエン酸含有油脂ならびに該油脂の製造方法および用途
JPH10310556A (ja) 1997-05-12 1998-11-24 Y M Shii:Kk 微生物由来の多価不飽和脂肪酸エステルの分離精製方法
JP3425622B2 (ja) 2000-03-30 2003-07-14 独立行政法人産業技術総合研究所 ラビリンチュラ属菌を用いた高度不飽和脂肪酸含有培養物および高度不飽和脂肪酸含有油脂の製造方法
JP3502903B2 (ja) * 2000-05-02 2004-03-02 独立行政法人産業技術総合研究所 高度不飽和脂肪酸及び高度不飽和リン脂質の製造方法
JP3723822B2 (ja) 2001-06-22 2005-12-07 特許キャピタル株式会社 高度不飽和脂肪酸の製造方法
KR101208304B1 (ko) * 2002-06-19 2012-12-05 디에스엠 아이피 어셋츠 비.브이. 다가불포화 지방산을 함유하는 미생물 오일의 제조방법
JP4129831B2 (ja) * 2002-09-30 2008-08-06 独立行政法人産業技術総合研究所 液体培養による高度不飽和脂肪酸の製造方法及びそれに用いる新規な微生物
JP4280158B2 (ja) * 2002-12-27 2009-06-17 富士フイルム株式会社 ドコサヘキサエン酸生産能を有する微生物及びその利用
JP2004298798A (ja) 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology 食品廃棄物処理方法及びそれにより得られる動物飼料
JP4850060B2 (ja) 2004-03-01 2012-01-11 サントリーホールディングス株式会社 長鎖高度不飽和脂肪酸を構成要素として含むリン脂質の製造方法、およびその利用
JP2007209272A (ja) 2006-02-10 2007-08-23 Suntory Ltd 微生物発酵による長鎖高度不飽和脂肪酸を構成要素として含むリン脂質の製造方法

Also Published As

Publication number Publication date
US8652814B2 (en) 2014-02-18
ATE554177T1 (de) 2012-05-15
EP2163641A4 (en) 2010-05-26
WO2008149542A1 (ja) 2008-12-11
US20100105113A1 (en) 2010-04-29
EP2163641B1 (en) 2012-04-18
JP5371750B2 (ja) 2013-12-18
EP2163641A1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
AU2008338017B2 (en) Method for the cultivation of microorganisms of the order thraustochytriales
US20140088317A1 (en) Production of omega-3 fatty acids from crude glycerol
US20220372430A1 (en) Protists enriched with lipids rich in polyunsaturated fatty acids
CA2676556C (en) Method for increasing the content of docosahexaenoic acid in fat-containing materials or in fats and oils
Min et al. The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304
KR101521274B1 (ko) 신규 미세조류 오란티오키트리움(Aurantiochytrium sp.) LA3(KCTC12685BP) 및 이를 이용한 바이오오일의 제조방법
JP5371750B2 (ja) 微生物発酵によるdha含有リン脂質の製造方法
JP2006513713A (ja) ヤブレツボカビ科原生生物における多価不飽和脂肪酸の含量を高める方法
US20050019880A1 (en) Method of enhancing levels of polyunsaturated fatty acids in thraustochytrid protists
JP4813770B2 (ja) 動物プランクトン用飼料及びそれを用いた動物プランクトンの培養方法
JP3931219B2 (ja) 高度不飽和脂肪酸含有油脂の製造方法
KR100680906B1 (ko) 트라우스토키트리드 진균에서 다불포화 지방산의 수준을증가시키는 방법
JP4036595B2 (ja) n−4系及び/又はn−7系高度不飽和脂肪酸を含有する脂質及びその製造方法
AU2013395768A1 (en) Methods for the production of diatom biomass
JP5903214B2 (ja) 微生物発酵によるdha含有ホスファチジルセリンの製造方法
KR102023756B1 (ko) 신규 트라우스토키트리드〔Thraustochytrid〕 계 미세조류 트라우스토키트리움〔Thraustochytrium〕sp.LA6〔KCTC12389BP〕및 이를 이용한 바이오오일의 생산방법
TW202319535A (zh) 具有高細胞內油含量的新穎裂殖壺菌屬物種(Schizochytrium sp.)品系及使用其生產含ω-3之油的方法
Zarea ISOLATION AND CHARACTERIZATION OF OLEAGINOUS MARINE YEAST PRODUCING OF FATTY ACIDS
KR101540741B1 (ko) 미세조류를 이용한 도코사헥사엔산의 증진된 생산방법
WAH Growth Profile and Lipid Composition of Locally Isolated Benthic Diatom Amphora Subacutiuscula (Schoeman, 1972) Under Different Cultivation Conditions
NZ613593B (en) Methods for the production of diatom biomass
JP2006340733A (ja) n−4系及び/又はn−7系高度不飽和脂肪酸を含有する脂質及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250