JPWO2006011222A1 - 半導体装置および書き込み方法 - Google Patents

半導体装置および書き込み方法 Download PDF

Info

Publication number
JPWO2006011222A1
JPWO2006011222A1 JP2006527752A JP2006527752A JPWO2006011222A1 JP WO2006011222 A1 JPWO2006011222 A1 JP WO2006011222A1 JP 2006527752 A JP2006527752 A JP 2006527752A JP 2006527752 A JP2006527752 A JP 2006527752A JP WO2006011222 A1 JPWO2006011222 A1 JP WO2006011222A1
Authority
JP
Japan
Prior art keywords
write
signal
circuit
writing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006527752A
Other languages
English (en)
Other versions
JP4750034B2 (ja
Inventor
重和 山田
重和 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spansion Japan Ltd
Original Assignee
Spansion Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion Japan Ltd filed Critical Spansion Japan Ltd
Publication of JPWO2006011222A1 publication Critical patent/JPWO2006011222A1/ja
Application granted granted Critical
Publication of JP4750034B2 publication Critical patent/JP4750034B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1096Write circuits, e.g. I/O line write drivers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2216/00Indexing scheme relating to G11C16/00 and subgroups, for features not directly covered by these groups
    • G11C2216/12Reading and writing aspects of erasable programmable read-only memories
    • G11C2216/14Circuits or methods to write a page or sector of information simultaneously into a nonvolatile memory, typically a complete row or word line in flash memory

Abstract

半導体装置は、複数の異なるしきい値を持つ多値メモリセルを含むメモリセルアレイと、複数ワードの入力情報中の情報をラッチする第1のラッチ回路と、前記複数ワードの入力情報中の情報を前記多値メモリセルの各レベルに応じた情報に変換した書き込み情報をラッチする第2のラッチ回路と、前記書き込み情報を応じて、同時に書き込めるメモリセル数に対応したグループごとに前記多値メモリセルに情報を書き込む書き込み回路と、前記メモリセルアレイへの書き込みを制御する制御回路とを含む。複数ワードの入力情報を分割したグループごとに同時に情報を書き込むので、単位ワードあたりの書き込み時間を実質上短くできる。これにより、多値メモリセルの書き込みで、プログラムとベリファイを何度も繰り返さなければならない場合であっても、書き込み時間が増加することがない。

Description

本発明は、半導体装置および書き込み方法に関する。より特定すれば、本発明は多値メモリセルを有する半導体装置および多値メモリセルにデータを書き込む方法に関する。
半導体メモリは、その電源を消去すると情報も消えてしまう揮発性のものと、電源を消しても情報が保持される不揮発性のものとに大別される。後者の不揮発性メモリの代表として、データ消去を一斉に行うことで書き換え時間を短縮化したフラッシュメモリが知られている。
図1はSLC(Single Level Cell)用のライトバッファを有しないフラッシュメモリにおける書き込み時のブロック図である。このフラッシュメモリでは、1ワード(16ビット)毎にプログラムが行われる。図1に示されるように、フラッシュメモリ1は、入力バッファ2、書き込みラッチ回路3、書き込み電圧印加回路4、メモリセルアレイ5、センスアンプ回路6、比較回路7、制御回路8を含む。入力バッファ2は、ユーザー書き込みデータを保持する。書き込みラッチ回路3は、入力バッファ2から来るユーザー書き込みデータをラッチする。
書き込み電圧印加回路4は、書き込みデータに対応するメモリセルにデータを書き込む。センスアンプ回路6は、ベリファイ期間にてメモリセルのデータを読み出し、比較回路7はその読み出しデータと外部から入力された書き込みデータを比較する。書き込みラッチ回路3は、書き込みが十分であると判断された場合、書き込みデータを書き込みラッチ回路3内のラッチにて反転させ、書き込みを終了される。一方、書き込みラッチ回路3は、書き込みが不十分であると判断された場合は、引き続き書き込み動作を行う。比較回路7は、全ビットがパスしたかどうかを判定し、制御回路8は、全ビットがパスしたら次のレベルの書き込み動作を制御する。
また、従来、多値メモリセル(MLC:Multi Level Cell)を有するフラッシュメモリが提案されている。多値メモリを有する品種にはメモリセルの閾値レベルがレベル1、レベル2、レベル3、レベル4と4つ存在し、上のレベルに行くに従って閾値は高く設定される。この4つのレベルが二つの出力(又は入力)データを構成する。レベル4のデータを書き込む時にも、レベル1〜レベル3の各レベルを経てレベル4に到達する書き込み手法が一般的に多く使用される。
また、特許文献1では、入力された書き込みデータを保持するバイナリデータレジスタを有する半導体記憶装置が提案されている。また、特許文献2では、外部からの書き込みデータをラッチするデータラッチ回路と、書き込み制御情報をラッチするセンスラッチ回路を有する半導体装置が提案されている。
日本国公開特許公報 特開平11−73790号 日本国公開特許公報 特開平11−232886号
しかしながら、多値メモリセルへの書き込みでは、レベルを超えてしまうオーバープログラムの懸念があるため、しきい値Vthを少しずつ上げながら書き込む必要があるが、このような書き込み方式ではプログラムとベリファイを何度も繰り返さなければならないため、書き込み時間が増加してしまうという問題がある。また特許文献1および2の文献に記載の装置では、書き込み時間が増加してしまうという上記問題点は解決されない。
そこで、本発明は前述した従来における課題を解決し、単位ワード当たりの書き込み時間を短くできる半導体装置またはデータ書き込み方法を提供することを目的とする。
本発明は、複数ワードの入力情報を多値メモリセルの各レベルに応じて変換させた複数ワードの書き込み情報をラッチする第1のラッチ回路と、前記複数ワードの書き込み情報を同時に書き込めるメモリセル数に対応したグループごとに前記多値メモリセルに書き込む書き込み回路とを含む半導体装置である。本発明によれば、複数ワードの入力情報を分割したグループごとに同時に情報を書き込むので、単位ワードあたりの書き込み時間を実質上短くできる。これにより、多値メモリセルの書き込みで、書き込みとベリファイを何度も繰り返さなければならない場合であっても、書き込み時間が増加することがない。
本発明は、上記構成において更に、前記複数ワードの入力情報を前記複数ワードの書き込み情報に変換して前記第1のラッチ回路に転送する第2のラッチ回路を含む。本発明によれば、複数ワードの入力情報を多値メモリセルの各レベルに応じた情報に変換できる。
本発明は、上記構成において、前記第1のラッチ回路は、前記グループ毎に前記書き込み情報を前記書き込み回路に転送する。本発明によれば、複数ワードの入力情報を分割したグループごとに同時書き込みが可能となる。
本発明は、上記構成において、前記第1のラッチ回路は、前記第2のラッチ回路と同数の回路で構成され、かつ、前記書き込み回路よりも多い数の回路で構成される。
本発明は、上記構成において、更に、前記グループ単位にベリファイおよび書き込みを行う信号を生成する制御回路を含む。本発明によれば、グループ単位にベリファイ動作および書き込み動作を行うことにより、単位ワードあたりの書き込み時間を実質上短くできる。また本発明は、上記構成において、更に、前記複数のグループ単位にベリファイおよび書き込みを繰り返す信号を生成する制御回路を含む。グループ毎にベリファイおよびプログラムを繰り返す場合と比べ、複数のグループ毎にベリファイ動作およびプログラム動作を繰り返すことで、複数のグループ単位での処理が可能となる。
本発明は、上記構成において更に、所定のグループに対するベリファイがパスしたかどうかを判定する判定回路を含み、前記制御回路は、前記判定回路の判定結果に応じて、ベリファイがパスしたグループに対して以後のベリファイおよび書き込みをパスする信号を生成する。本発明によれば、不必要なグループのベリファイおよび書き込みを省略できる。これによりワード当たりの実質的な書き込み速度を高速化できる。
本発明は、上記構成において更に、前記グループ内で選択されていないワードに対するベリファイをパスする信号を生成する制御回路を含む。本発明によれば、グループ内のユーザーがアクセスしていないワードをメモリセルから読み出したベリファイデータにかかわらず強制的にベリファイをパスするので、単位ワードあたりの書き込み時間を実質上短くできる。
本発明は、上記構成において更に、前記多値メモリセルの所定レベルに対する書き込みが十分である場合、次のレベルの書き込みを行う信号を生成する制御回路を含む。本発明によれば、所定のレベルを多値メモリに書き込むことができる。
本発明は、複数ワードの入力情報を多値メモリセルの各レベルに応じた複数ワードの書き込み情報に変換する変換ステップと、前記複数ワードの書き込み情報を同時に書き込めるメモリセル数に対応したグループごとに前記多値メモリセルに書き込む書き込みステップとを含む書き込み方法である。本発明によれば、複数ワードの入力情報を分割したグループごとに同時に情報を書き込むので、単位ワードあたりの書き込み時間を実質上短くできる。これにより、多値メモリセルの書き込みで、書き込みとベリファイを何度も繰り返さなければならない場合であっても、書き込み時間が増加することがない。
本発明は、上記構成において更に、前記グループ単位にベリファイおよび前記書き込みを繰り返すステップを含む。本発明によれば、グループ単位でベリファイ動作および書き込み動作を繰り返すことで、単位ワードあたりの書き込み時間を実質上短くできる。本発明は、上記構成において、更に、前記複数のグループ単位にベリファイおよび前記書き込みを繰り返すステップを含む。グループ毎にベリファイおよびプログラムを繰り返す場合と比べ、複数のグループ毎にベリファイおよびプログラムを繰り返すことで、複数のグループ単位での処理が可能となる。
本発明は、上記構成において更に、前記多値メモリセルの所定レベルに対するベリファイがパスしたかどうかを判定する判定ステップと、前記判定結果に応じて、ベリファイがパスしたグループに対して以後のベリファイおよび書き込みをパスするステップとを含む。本発明によれば、不必要なグループのベリファイおよび書き込みを省略できる。これによりワード当たりの実質的な書き込み速度を高速化できる。
本発明は、上記構成において更に、前記グループ内で選択されていないワードに対するベリファイをパスするステップを含む。本発明によれば、グループ内のユーザーがアクセスしていないワードをメモリセルから読み出したベリファイデータにかかわらず強制的にベリファイをパスするので、単位ワードあたりの書き込み時間を実質上短くできる。
本発明は、上記構成において更に、前記多値メモリセルの所定レベルに対する書き込みが十分である場合、次のレベルの書き込み動作を行う信号を生成するステップを含む。本発明によれば、所定のレベルを多値メモリに書き込むことができる。
本発明によれば、単位ワード当たりの書き込み時間を短くできる半導体装置またはデータ書き込み方法を提供することができる。
従来の半導体装置における書き込み時のブロック図である。 本実施例に係る半導体装置の書き込み時のブロック図である。 制御回路18におけるライトバッファの様々な制御信号を発生させるコントロールロジックの一例を示す図である。 本実施例に係る入力ラッチ回路を示す図である。 多値メモリセル書き込みラッチ回路を示す図である。 多値メモリセル書き込み電圧印加回路を示す図である。 多値メモリセルの比較回路を示す図である。 多値メモリセルの書き込み制御方式の概念を示す図である。 16ワードライトバッファにおける4ワードグループのインクリメントカウンターを示す図である。 インクリメントカウンターにて使用されているシフトレジスターの一例を示す図である。 ライトバッファの全体動作を示すタイミング図である。 第1の動作タイミング図である。 第2の動作タイミング図である。
以下、添付の図面を参照して本発明の実施例を説明する。
図2は、本実施例に係る半導体装置10の書き込み時のブロック図である。図2に示されるように、半導体装置10は、入力バッファ2、入力ラッチ回路11、書き込みラッチ回路13、書き込み電圧印加回路14、メモリセルアレイ5、センスアンプ回路6、比較回路17、制御回路18を含む。以下2ビットの多値メモリセルについて説明する。2ビットの多値メモリセルにおいては、レベル1、レベル2、レベル3、レベル4をそれぞれ(1,1)、(0,1)、(1,0)、(0,0)と二つの入出力データと定義する。
この半導体装置10は、ライトバッファを使用する多値メモリセル用の書き込み回路を含む。また半導体装置10がデータの書き込み方法を実行する。この半導体装置10は単独でパッケージされたフラッシュメモリ等の半導体記憶装置であってもよいし、システムLSIのように半導体装置の一部として組み込まれたものであってもよい。入力バッファ2は、外部から16本のI/O端子を介して入力される1ワード分の入力データを保持する。
入力ラッチ回路11は、入力バッファ2を介して外部から順次入力されて来る複数ワードの入力データ中の情報をそのままラッチする。つまり、入力ラッチ回路11は、(1,1)、(0,1)、(1,0)、(0,0)からなる入力情報をそのままラッチする。一つの入力ラッチ回路11は、2ビットのデータをラッチできるように構成されている。このため、1ワードが16ビットのデータをラッチするには、8個の入力ラッチ回路11が必要となる。16ワード分のデータをラッチするには、16×8=128個の入力ラッチ回路11が必要となる。本実施例では、入力ラッチ回路11は、書き込みラッチ回路13と同数の回路で構成され、かつ、書き込み電圧印加回路14よりも多い数の回路で構成されている。この入力ラッチ回路11、書き込みラッチ回路13及び書き込み電圧印加回路14で本発明のライトバッファを構成する。
入力ラッチ回路11は、複数ワードの入力データにおいて、奇数番目のI/O端子と偶数番目のI/O端子から入力されるデータを一つのペアとして扱い、複数ワードの入力データを多値メモリセルの各レベルに応じて複数ワードの書き込みデータに変換し、書き込みラッチ回路3に転送する。ここで、各レベルには、レベル1、レベル2、レベル3、レベル4が含まれる。多値メモリセルは、フローティングゲートにその大きさが異なる電荷をストアすることで4つの情報を記憶するタイプ、または、フローティングゲートの代わりに窒化膜等の電荷トラップ層を備えるタイプなどが使用される。
書き込みラッチ回路13は、入力ラッチ回路11から送られる書き込み情報をラッチする。書き込みラッチ回路13は、書き込みデータをメモリセルのレベルとしてラッチする。1ワードが16ビットのデータは8個の書き込み情報に変換されるので、これらを16ワード分ラッチするには、16×8=128個の書き込みラッチ回路13が必要となる。書き込みラッチ回路13は、同時に書き込めるメモリセルの個数に応じて、ライトバッファが保持する複数ワード情報を分割して1グループごとに順次書き込み電圧印加回路4に転送する。ここでは、書き込みラッチ回路13は、16ワードを各4ワードの4グループに分割し、1グループごとに書き込みデータを書き込み電圧印加回路4に順次転送する。つまり、書き込みラッチ回路13は4ワードローディングを行う。
書き込み電圧印加回路14は、書き込みラッチ回路13から転送される書き込み情報を同時に書き込めるメモリセル数に対応したグループごとに多値メモリセルに書き込む。多値メモリセルの書き込み方式ではしきい値Vthを少しずつ上げるため、多くの書き込み電流を消費しない。このため、従来よりも多くのセルを同時に書き込むことが可能となる。そこで、ライトバッファがデータを保持できるワード数を16、書き込み可能なセル数を32セルとし、書き込み電圧印加回路14は、一回の書き込み動作において4回書き込みパルスを印加する方式を採用する。このように、書き込み電圧印加回路14は、1グループで32セル同時書き込みを行う。
メモリセルアレイ5は、複数の異なるしきい値を持つ多値メモリセルトランジスタの配列、ワード線、ビット線等を含み、各メモリセルトランジスタにデータを記憶する。データ読み出し時には、活性化ワード線で指定されるメモリセルからのデータが、ビット線に読み出される。プログラム或はイレーズ時には、ワード線およびビット線をそれぞれの動作に応じた適当な電位に設定することで、メモリセルに対する電荷注入或は電荷抜き取りの動作を実行する。
センスアンプ回路6は、メモリセルアレイから供給される指定されたメモリセルのデータの電流を電圧に変換し、その読み出しデータを比較回路17と書き込みラッチ回路13に送る。比較回路17は、その読み出しデータと書き込みデータを比較し、比較結果を制御回路18に送る。書き込み電圧印加回路14は、書き込みが不十分であると判断された場合に再び書き込みを行う。書き込み電圧印加回路14は、所定レベルへの書き込みが十分である場合、内部の書き込みデータを反転させ、一つの書き込み動作を終了させる。比較回路17は各グループに対するベリファイがパスしたかどうかを判定する。
制御回路18は、外部からの制御信号を受けると共に、コマンドレジスタ(図示省略)からのコマンドを受け、ステートマシーンとして動作し、半導体装置10の各部を制御する。特に、この制御回路18は、メモリセルアレイ5への書き込みを制御する。
制御回路18は、多値メモリセルの所定レベルへの書き込みが十分である場合、次のレベルの書き込み制御信号を発生させ、入力ラッチ回路11に送る。入力ラッチ回路11は、格納してある複数ワードの入力データを書き込みデータに変換して書き込みラッチ回路13に転送する。制御回路18は、上記の処理を繰り返し実行して、ユーザー書き込みデータとメモリセルデータが完全に一致した時に全ての書き込み動作を終了させる。
次に制御回路18について説明する。図3はライトバッファに様々な制御信号を発生させるコントロールロジックの一例を示す図である。図3に示されるように、制御回路18は、回路81乃至回路85を含む。回路81は、NAND回路811を含む。この回路81は、信号DLOADBおよび信号STARTから信号STRAT_PULSEを生成する。信号START_PULSEは、それぞれの書き込みフローの開始時に発生する短いパルスであり、書き込みラッチ回路13に入力される。
回路82は、インバータ821乃至823およびNAND回路824を含む。この回路82は、信号STRATおよび信号MATCH1Bから信号DLOADBを生成する。信号DLOADBは、書き込み動作の初期段階にのみLowとなる信号である。この信号DLOADBを受けて入力バッファ2からユーザー入力データが入力ラッチ回路11に転送される。
回路83は、NMOSトランジスタ831、PMOSトランジスタ832、NOR回路833およびインバータ834乃至837を含む。この回路83は、アドレスADDRESS(3:0)Xおよび信号DLOADBから信号SELB(k)および信号SELB_LATCHB(k)を生成する。ここで、kは0乃至15の値をとり、16ワード中のどのワードに対応する信号かを示す。16ワードのライトバッファを制御するには、回路83が16個必要となる。アドレスADDRESS(3:0)Xに応じて、ユーザーによりどのワードが選択されたかの情報がインバータ835および836からなるラッチにセットされる。ここにアドレスADDRESS(3:0)Xは、ユーザーが入力するワード選択アドレスであり、アドレスADDRESS(3:0)とその相補信号アドレスADDRESS(3:0)Bのすべての組み合わせ(16通り)を意味している。信号SELB_LATCHB(k)は、ユーザーがk番目のワードを選択するとローレベルにセットされる。非選択のワードに対応するSELB_LATCHB(k)はハイレベルにセットされる。これは、4ワードの書き込みグループ内において、ユーザーがアクセスしていないワードをメモリセルから読み出したベリファイデータにかかわらず制御的にベリファイパスさせる信号であり、比較回路17に入力される。
信号SELB(k)は、ライトバッファのワードデコード信号であり、ワード選択アドレスADDRESS(3:0)に応じて1つのワードを選択し、選択する場合はローレベルとなる。書き込み時に、ユーザーが順次ワードアドレスを入力しデータを入力していくと、その都度対応する信号SELB(n)はローレベルとなり入力ラッチ回路11に順次書き込みデータが格納されていく。
回路84は、NMOSトランジスタ841、PMOSトランジスタ842、NOR回路843、NAND回路844およびインバータ845乃至847を含む。この回路84は、信号START、信号PASS_ALL、および信号PGM2NDから信号MATCH1Bを生成する。信号PASS_ALLは全てのセルのベリファイがPASSした時にhighとなる信号である。インバータ845および846でラッチされたデータは、信号MATCH1Bとしてインバータ847から出力される。
回路85は、NMOSトランジスタ851、PMOSトランジスタ852、NOR回路853、NAND回路854およびインバータ855乃至857を含む。この回路85は、信号STRAT、信号PASS_ALLおよび信号PGM3NDから信号MATCH2Bを生成する。インバータ855および856でラッチされたデータは、信号MATCH2Bとしてインバータ857から出力される。信号MATCH1Bおよび信号MATCH2Bは、入力ラッチ回路11に入力される。
次に入力ラッチ回路11について説明する。図4は本実施例に係る入力ラッチ回路11を示す図である。図4に示されるように、入力ラッチ回路11は、回路21乃至23を含む。入力ラッチ回路11は、二つの入力データを一つの書き込みデータPLOADpに変換する回路である。16ワード分のデータをラッチするには、128個の入力ラッチ回路11が必要となる。以下、レベル1からレベル2への書き込みフローをPGM2ND、レベル2からレベル3への書き込みフローを、PGM3RD、レベル3からレベル4への書き込みフローをPGM4THと定義して説明する。
信号DLOADBは、書き込み動作の初期段階にのみLowとなる信号である。この信号DLOADBを受けて入力バッファ2からユーザー入力データが入力ラッチ回路11に転送される。信号SELB(k)は、ライトバッファのワードデコード信号であり、制御回路18から送られる。16ワードのバッファでは16本の信号SELB(k)が存在する。信号IN_EVENmおよび信号IN_ODDmは、入力バッファ2から送られてくるユーザー入力データにより変化する信号である。ここでmは0から7の値をとる。信号IN_EVENmがhigh、IN_ODDmがhighで、レベル1を表し、信号IN_EVENmがlow、IN_ODDmがhighで、レベル2を表し、信号IN_EVENmがhigh、IN_ODDmがlowで、レベル3を表し、信号IN_EVENmがlow、IN_ODDmがlowで、レベル4を表す。
信号MATCH1Bは、PGM2NDが終了するとlowとなる信号である。信号MATCH2Bは、PGM3NDが終了するとlowとなる信号である。信号MATCH1Bおよび信号MATCH2Bは制御回路18から供給される。回路22は、NMOSトランジスタ221乃至223、PMOSトランジスタ224、NOR回路225、インバータ226乃至229を含む。信号RESETBがlowのとき、信号DLOADBおよび信号SELB(k)がlow、信号DSELがhighで、ユーザー入力データが信号IN_EVENm、IN_ODDmとして入力され、インバータ226および227からなるラッチにラッチされる。インバータ228は信号DINaを生成し、インバータ229は信号DINaBを生成する。信号DINaおよび信号DINaBは変換回路21に入力される。
回路23は、NMOSトランジスタ231乃至233、PMOSトランジスタ234、インバータ235乃至238を含む。信号RESETBがlowのとき、信号DLOADBおよび信号SELBnがlow、信号DSELがhighで、ユーザー入力データが信号IN_EVENm、IN_ODDmとして入力され、インバータ235および236からなるラッチにラッチされる。インバータ237は信号力DINbを生成し、インバータ238は信号DINbBを生成する。信号力DINbおよび信号DINbBは変換回路21に入力される。
変換回路21は、NAND回路211乃至214を含む。変換回路21は、奇数I/O端子と偶数I/O端子からのデータを一つの書き込みデータPLOADに変換する回路である。信号PLOADがhighで、その書き込みフローにおいての書き込み実行命令となる。PGM2NDでは、信号MATCH1Bと信号MATCH2Bは共にhighであり、(0,1)、(1,0)、(0,0)の何れかのユーザー入力データでは信号PLOADpがhighとなる。PGM3RDでは、信号MATCH1Bはlow、信号MATCH2Bはhighとなり、(1,0)、(0,0)のどちらかのユーザー入力データでは、信号PLOADpがhighとなる。PGM4THでは、信号MATCH1Bはlow、信号MATCH2Bはlowとなり、(0,0)のユーザー入力データのみ信号PLOADpがhighとなる。このように、上のレベルへのプログラムは、それより下のレベルへのプログラムを経ながら行っていく。PLOADpは、PLOAD(3:0)とも示され、各々のPLOAD(n)は、一度に書き込みができるメモリセル数分(例として、4ワードのメモリセル数)の32の信号を含む。
次に書き込みラッチ回路13について説明する。図5は、多値メモリセル書き込みラッチ回路13を示す図である。図5に示されるように、各書き込みラッチ回路13は、NMOSトランジスタ31および32、PMOSトランジスタ33乃至35、並びにインバータ36および37を含む。16ワード分のデータをラッチするには、128個の書き込みラッチ回路13が必要となる。
書き込みラッチ回路13は、16ワードを各4ワードの4グループに分割し、1グループごとに書き込み電圧印加回路14に順次転送するように動作する。信号DATAxは、センスアンプ回路6から来るベリファイデータであり、プログラムをパスするとlowとなる。信号SELECT(n)は、同時に書き込めるメモリセルの個数に応じてライトバッファが保持する複数ワード情報を分割する信号である。信号SELECT(n)は制御回路18から供給される。信号START_PULSEは、それぞれの書き込みフローの開始時に発生する短いパルスである。それぞれのレベルの書き込み動作の開始時に、入力ラッチ回路11から信号PLOADpが転送される。
信号START_PULSEがhigh、信号PLOADpがhighのとき、インバータ36および37からなるラッチに書き込みデータがセットされ、出力PGMqがhighとなり、プログラムする状態となる。ここで、信号PGMqはPGM(3:0)で表される。各々のPGM(n)は、一度に書き込みができるメモリセル数分(例として4ワード分)の32の信号を含む。センスアンプ回路6で書き込みが十分であると判断された場合、書き込みラッチ回路13は、lowのベリファイデータDATAxを受ける。ベリファイデータDATAxがlow、信号SELECT(n)がlowのとき、インバータ36およびインバータ37からなるラッチの書き込みデータが反転され、一つの書き込み動作を終了する。これにより、ベリファイをパスしたメモリセルに対してはプログラムが行われない。
次に書き込み電圧印加回路について説明する。図6は、多値メモリセル書き込み電圧印加回路14を示す図である。この回路は、一度に書き込みができるメモリセル数分(例として4ワード分の32個)だけ設けられる。図6に示されるように、書き込み電圧印加回路14は、インバータ41乃至45、トランスファーゲート46乃至49、NMOSトランジスタ50乃至52、PMOSトランジスタ53乃至55を含む。NMOSトランジスタ50のゲートは信号RESETにより、NMOSトランジスタ51および52のゲートは電源電圧VCCにより制御されている。
信号SELECT(3:0)は、同時に書き込めるメモリセルの個数に応じてライトバッファが保持する複数ワード情報を分割する信号であり、それぞれのグループを書き込み又はベリファイをする時にhighになる信号である。信号SELECT(3:0)は制御回路18により生成される。信号PGM(3:0)は、書き込みラッチ回路13からの書き込み入力データである。信号SELECTB(3:0)および信号SELECT(3:0)によって信号PGM(3:0)が選択される。ノードN1にlowの信号が入力されると、電源供給用のトランジスタ55がオンとなるため、書き込みパルスPGMPULSEzが選択されたメモリセルに供給される。ノードN1にhighの信号が入力されると、電源供給用のトランジスタ55はオフとなるため、書き込みパルスPGMPULSEzは供給されない。
次に比較回路17について説明する。図7は、多値メモリセルの比較回路17を示す図である。比較回路17は、入力ラッチ回路11からの信号PLOAD(3:0)、書き込みラッチ回路13からの信号PGM(3:0)、およびセンスアンプ回路6からのベリファイデータDATAxを入力として各ベリファイのPASS/FAILを判定する。信号SELECT(3:0)により、同時に書き込めるメモリセルの個数に応じてライトバッファのワード数を分割する。信号SELB_LATCHB(k)は、4ワードの書き込みグループ内において、ユーザーがアクセスしていないワードをメモリセルから読み出したベリファイデータにかかわらず強制的にベリファイパスとする信号である。
比較回路17は、回路71乃至75を含む。回路71は、インバータ711を含む。インバータ711は、センスアンプ回路6からのベリファイデータDATAxからデータDATABを生成する。このデータDATABは、回路73のトランスファーゲート734および735に入力される。回路72は、NAND回路721乃至725を含む。信号SELECT(n)乃至信号SELB_LATCHB(k)をNAND回路721乃至724でNAND処理し、この結果をNAND回路725でNAND処理し、信号FMATCH(w)を生成する。ここでwは、各々のグループにおけるワード指定番号であり、0から3の値をとる。回路72は簡略して示してあるが、例えばSELB_LATCHB(0)、SELB_LATCHB(4)、SELB_LATCHB(8)、SELB_LATCHB(12)に対し信号FMATCH(0)を生成し、同様にしてSELB_LATCHB(1)、SELB_LATCHB(5)、SELB_LATCHB(9)、SELB_LATCHB(13)に対し信号FMATCH(1)を生成する。
例として、0番目と1番目のワードがユーザーからアクセスされたケースでは、SELB_LATCHB(0)とSELB_LATCHB(1)がLowで、グループ0が書き込み対象のとき(SELECT(0)がHigh)、FMATCH(0)とFMATCH(1)はLow、FMATCH(2)とFMATCH(3)はHighとなる。よって、2番目と3番目のワードについては、トランジスタ736のゲート信号はすべてLowとなり、そのメモリセルから読み出したベリファイデータにかかわらず制御的にベリファイをパスする。これによりグループ内の選択されていないワードのベリファイをパスすることができる。ベリファイも書き込みと同様に32セル同時に行うため、このような強制パスの制御が必要となる。
回路74は、PMOSトランジスタ741、およびトランスファーゲート742乃至745を含む。信号SELECTB(3:0)乃至信号SELECT(3:0)により書き込みラッチ回路13からの信号PGM(3:0)が選択され、信号DVLOGが出力される。この信号DVLOGは、回路73のNOR回路732に入力される。回路75は、PMOSトランジスタ751、およびトランスファーゲート752乃至755を含む。信号SELECTB(3:0)乃至信号SELECT(3:0)により入力ラッチ回路11からの信号PLOAD(3:0)が選択され、信号PLDATAが出力される。この信号PLDATAは、回路73のインバータ731に入力される。
回路73は、インバータ731、NOR回路732および733、トランスファーゲート734および735、並びにNMOSトランジスタ736を含む。
信号FMATCH(w)および信号DVLOGをNOR回路732でNOR処理した信号と、信号FMATCH(w)および信号PLDATAを受けたインバータ731の出力をNOR回路733でNOR処理した信号を、信号DATAxおよび信号DATABで選択し、選択された信号によりNMOSトランジスタ736のゲートを制御し、信号MATCHXを制御回路18に出力する。このように、比較回路17は、ベリファイ期間にて読み出したデータと書き込みデータを比較し、比較結果を信号MATCHXとして出力する。回路73はwired−orの回路であり、点線で囲った部分が32個、端子MATCHXに接続されている。一つでもベリファイがFAILしていたら信号MATCHXがlowとなる。これにより再度プログラム動作が行われる。全ビットがパスした場合、信号MATCHXがhighとなる。制御回路18は、信号MATCHXを受けてベリファイがパスしたグループに対して以後のベリファイおよびプログラムをパスする信号を生成する。
図8は多値メモリセルの書き込み制御方式の概念を示す図である。図8において、6はセンスアンプ回路、13a乃至13dは書き込みラッチ回路、14は書き込み電圧印加回路、17は比較回路、18は制御回路をそれぞれ示す。32セル同時書き込み可能なため、図8に示すセンスアンプ回路6、書き込みラッチ回路13a乃至13d、書き込み電圧印加回路14、比較回路17はそれぞれ32個存在する。4つのグループに対し4回書き込みパルスを印加するケースでは、4つの書き込みラッチ回路13a乃至13dからデコーディング(SELECT(n))に応じた書き込み信号PGM(n)が選択され、メモリセルに順次書き込みパルスが印加される。
この構成により、書き込みラッチ回路13aは、16ワードを4グループに分割した第1グループの書き込みデータを書き込み電圧印加回路14に転送する。書き込み電圧印加回路14は、書き込みラッチ回路13aからの書き込みデータPGM(0)に応じてメモリセルにデータを書き込む。次に、書き込みラッチ回路13bは、第2グループの書き込みデータを書き込み電圧印加回路14に転送する。書き込み電圧印加回路14は、書き込みラッチ回路13bからの書き込みデータPGM(1)に応じてメモリセルにデータを書き込む。書き込みラッチ回路13cは、第3グループの書き込みデータを書き込み電圧印加回路14に転送する。書き込み電圧印加回路14は、書き込みラッチ回路13cからの書き込みデータPGM(2)に応じてメモリセルにデータを書き込む。書き込みラッチ回路13dは、第4グループの書き込みデータを書き込み電圧印加回路14に転送する。書き込み電圧印加回路14は、書き込みラッチ回路13dからの書き込みデータPGM(3)に応じてメモリセルにデータを書き込む。1グループ毎に32セル同時書き込みが実現できる。
図9は本発明の特徴の一つである16ワードライトバッファにおける4ワードグループのインクリメントカウンターを示す図である。図9において、17は比較回路、18は制御回路、91はシフトレジスターをそれぞれ示す。図10はインクリメントカウンターにて使用されているシフトレジスターの一例を示す図である。図10に示されるように、シフトレジスター91は、NMOSトランジスタ911乃至913、PMOSトランジスタ914、インバータ915乃至918を含む。
信号INPUTには前段の信号OUTPUTが入ることにより、信号SELECT(3:0)は順次インクリメントされる。信号CLKは図8の制御回路18からくる8つの制御信号に応じてクロックしていく。信号CLKがhighのときに、信号INPUTが入力されると、インバータ915および916からなるラッチにデータがセットされる。信号CLKBがhighのときに、インバータ915および916からなるラッチのデータがインバータ917および918からなるラッチにセットされる。
再度図9を参照すると、制御回路18は、比較回路17によるPASS/FAILの判定(MATCHX)を受けて、カウンターに行く様々な制御信号を発生させる。通常では、信号SELECTは0−1−2−3と順次インクリメントされる。ここで、次のベリファイでグループ2がパスした場合は信号SELECT(2)がパス(low)となり、以降のベリファイとプログラムでは信号SELECTが1−2−4というインクリメントとなる。この時、信号SELECT(3)のシフトレジスターの入力はinput2−3ではなく、input1−3となる。
更に、次にベリファイでグループ1がパスした場合は、信号SELECT(1)がパス(low)となり、以降のベリファイとプログラムは信号SELECTが0−3というインクリメントとなる。この時、信号SELECT(3)のシフトレジスターの入力はinput1−3ではなく、input0−3となる。更に、次のベリファイでグループ0がパスした場合はSELECT(0)がPASS(low)となり、以降のベリファイとプログラムはグループ4のみとなり、シフトレジスターのインクリメントは行わない。
このように、制御回路18は、所定のグループのベリファイがパスした場合、ベリファイをパスしたグループに対して以降のベリファイおよび書き込みをパスする信号を生成するので、不必要な4ワードグループのベリファイおよびプログラムを省略できる。これによりワード当たりの実質的な書き込み速度を高速化できる。ここで、4pulseという信号は4グループ全てベリファイおよびプログラムが必要であるという命令の信号であり、3pulseという信号は3グループのみ必要であるという信号である。これらの制御信号とどの4ワードグループがベリファイをPASSしたかという信号を組み合わせて、前述のインクリメントカウンターを実現できる。
次に、ライトバッファの動作について説明する。図11は、ライトバッファの全体動作のタイミング図である。信号DLOADBが書き込み動作の初期段階にのみLowとなり、入力バッファ2からユーザー入力データが入力ラッチ回路11に転送される。信号MATCH1Bと信号MATCH2Bが共にhighで、(0,1)、(1,0)、(0,0)の何れかのユーザー入力データに対し、PGM2NDが行われる。PGM2NDで、全てのセルのベリファイがパスすると、信号PASS_ALL(MATCHX)がhighとなり、信号MATCH1Bがlowとなる。
信号MATCH1Bがlow、信号MATCH2Bがhighで、(1,0)、(0,0)の何れかのユーザー入力データに対し、PGM3RDが行われる。PGM3RDで、全てのセルのベリファイがパスすると、信号PASS_ALLがhighとなり、信号MATCH2Bがlowとなる。信号MATCH1Bがlow、信号MATCH2Bがlowで、(0,0)のユーザー入力データに対し、PGM4THが行われる。PGM4THが終了すると、パルスDONEが立って処理が終了する。
図12は、すべてのグループについてベリファイを行う場合のタイミング図である。PGM2NDで、複数のグループ単位にベリファイとプログラムが交互に行なわれる。制御回路18は、信号SELECT(3:0)を順次インクリメントし、各グループごとにベリファイを行う。制御回路18は、信号SELECT(3:0)を順次インクリメントし、各グループごとに書き込み電圧印加回路14で書き込みパルスPGMPULSE(3:0)を発生させ、メモリセルにデータを書き込む。複数のグループごとに所定の回数だけベリファイとプログラムを繰り返す。
PGM2NDで、全てのセルのベリファイがパスすると、信号PASS_ALLがhighとなり、PGM3RDに移る。ここでは、信号4pulseに基づいて、4グループ全てベリファイおよびプログラムが行われる。
図13は、ベリファイをパスしたグループを考慮した場合のタイミング図である。PGM2NDで、複数のグループ単位にベリファイとプログラムが交互に実行される。制御回路18は、信号SELECT(3:0)を順次インクリメントし、各グループごとにベリファイを行う。制御回路18は、信号SELECT(3:0)を順次インクリメントし、各グループごとに書き込み電圧印加回路4で書き込みパルスPGMPULSE(3:0)を発生させ、メモリセルにデータを書き込む。
通常では、信号SELECTは0−1−2−3と順次インクリメントされる。ここで、はじめのベリファイでグループ1がパスした場合、信号SELECT(1)がパス(low)となり、以降ベリファイとプログラムでは、信号SELECTが0―2−3というインクリメントとなる。このとき、信号SELECT(2)のシフトレジスター91の入力は、input1―2ではなく、input0―2となる。更に、次にベリファイでグループ3がパスした場合は、信号SELECT(3)がパス(low)となり、以後のベリファイとプログラムでは、信号SELECTが0−2というインクリメントとなる。
このように、はじめのベリファイでは信号4pulseにより4グループ全てベリファイが行われ、はじめのベリファイでグループ1がパスした場合、以後ベリファイとプログラムは、信号3pulseにより3グループのみのベリファイおよびプログラムが行われ、さらにベリファイでグループ3がパスした場合、以降ベリファイとプログラムでは、信号2pulseにより2グループのみのベリファイとプログラムが行われる。
本回路を使用することにより、不要な4ワードグループのベリファイおよびプログラムを省略できる。これにより、ワード当たりの実質的な書き込み速度を高速化できる。
本実施例によれば、多値メモリ特有の書き込み手法を搭載したライトバッフ回路を提供することができ、単位ワードあたりの書き込み時間を実質上短くできる。なお、書き込みラッチ回路13、入力ラッチ回路11、書き込み電圧印加回路14、比較回路17が、請求の範囲における第1のラッチ回路、第2のラッチ回路、書き込み回路、判定回路にそれぞれ対応する。
以上本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。上記実施例では2ビットの多値メモリセルを例にとって説明したが本発明はこれに限定されない。

Claims (16)

  1. 複数ワードの入力情報を多値メモリセルの各レベルに応じて変換させた複数ワードの書き込み情報をラッチする第1のラッチ回路と、
    前記複数ワードの書き込み情報を同時に書き込めるメモリセル数に対応したグループごとに前記多値メモリセルに書き込む書き込み回路と
    を含む半導体装置。
  2. 前記半導体装置は更に、前記複数ワードの入力情報を前記複数ワードの書き込み情報に変換して前記第1のラッチ回路に転送する第2のラッチ回路を含む請求項1記載の半導体装置。
  3. 前記第1のラッチ回路は、前記グループ毎に前記書き込み情報を前記書き込み回路に転送する請求項1または請求項2記載の半導体装置。
  4. 前記第1のラッチ回路は、前記第2のラッチ回路と同数の回路で構成され、かつ、前記書き込み回路よりも多い数の回路で構成される請求項1から請求項3のいずれか一項に記載の半導体装置。
  5. 前記半導体装置は更に、前記グループ単位にベリファイおよび書き込みを行う信号を生成する制御回路を含む請求項1から請求項4のいずれか一項に記載の半導体装置。
  6. 前記半導体装置は更に、前記複数のグループ単位にベリファイおよび書き込みを繰り返す信号を生成する制御回路を含む請求項1から請求項4のいずれか一項に記載の半導体装置。
  7. 前記半導体装置は更に、所定のグループに対するベリファイがパスしたかどうかを判定する判定回路を含み、
    前記制御回路は、前記判定回路の判定結果に応じて、ベリファイがパスしたグループに対して以後のベリファイおよび書き込みをパスする信号を生成する請求項5または6記載の半導体装置。
  8. 前記半導体装置は更に、前記グループ内で選択されていないワードに対するベリファイをパスする信号を生成する制御回路を含む請求項1から請求項7のいずれか一項に記載の半導体装置。
  9. 前記半導体装置は更に、前記多値メモリセルの所定レベルに対する書き込みが十分である場合、次のレベルの書き込み動作を行う制御回路を含む請求項1から請求項8のいずれか一項に記載の半導体装置。
  10. 前記半導体装置は、半導体記憶装置である請求項1から請求項9のいずれか一項に記載の半導体装置。
  11. 複数ワードの入力情報を多値メモリセルの各レベルに応じた複数ワードの書き込み情報に変換する変換ステップと、
    前記複数ワードの書き込み情報を同時に書き込めるメモリセル数に対応したグループごとに前記多値メモリセルに書き込む書き込みステップと
    を含む書き込み方法。
  12. 前記書き込み方法は更に、前記グループ単位にベリファイおよび前記書き込みを繰り返すステップを含む請求項11記載の書き込み方法。
  13. 前記書き込み方法は更に、前記複数のグループ単位にベリファイおよび前記書き込みを繰り返すステップを含む請求項11記載の書き込み方法。
  14. 前記書き込み方法は更に、前記多値メモリセルの所定レベルに対するベリファイがパスしたかどうかを判定する判定ステップと、
    前記判定結果に応じて、ベリファイがパスしたグループに対して以後のベリファイおよび書き込みをパスするステップとを含む請求項11から請求項13のいずれか一項に記載の書き込み方法。
  15. 前記書き込み方法は更に、前記グループ内で選択されていないワードに対するベリファイをパスするステップを含む請求項11から請求項14のいずれか一項に記載の書き込み方法。
  16. 前記書き込み方法は更に、前記多値メモリセルの所定レベルに対する書き込みが十分である場合、次のレベルの書き込み動作を行う信号を生成するステップを含む請求項11から請求項15のいずれか一項に記載の書き込み方法。
JP2006527752A 2004-07-30 2004-07-30 半導体装置および書き込み方法 Expired - Fee Related JP4750034B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/010914 WO2006011222A1 (ja) 2004-07-30 2004-07-30 半導体装置および書き込み方法

Publications (2)

Publication Number Publication Date
JPWO2006011222A1 true JPWO2006011222A1 (ja) 2008-05-01
JP4750034B2 JP4750034B2 (ja) 2011-08-17

Family

ID=35785982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006527752A Expired - Fee Related JP4750034B2 (ja) 2004-07-30 2004-07-30 半導体装置および書き込み方法

Country Status (7)

Country Link
US (1) US7227778B2 (ja)
JP (1) JP4750034B2 (ja)
KR (1) KR101092012B1 (ja)
CN (1) CN100555460C (ja)
DE (1) DE112004002927B4 (ja)
GB (1) GB2431026B (ja)
WO (1) WO2006011222A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005003436B4 (de) * 2005-01-27 2017-05-18 Spansion Llc (N.D.Ges.D. Staates Delaware) Halbleiterbauelement, Adressenzuordnungsverfahren und Verifizierungsverfahren
GB2468051B (en) * 2005-01-27 2011-02-09 Spansion Llc Semiconductor device,address assignment method and verify method
US7751242B2 (en) * 2005-08-30 2010-07-06 Micron Technology, Inc. NAND memory device and programming methods
US7609559B2 (en) * 2007-01-12 2009-10-27 Micron Technology, Inc. Word line drivers having a low pass filter circuit in non-volatile memory device
KR100885912B1 (ko) * 2007-01-23 2009-02-26 삼성전자주식회사 기입된 데이터 값에 기초하여 데이터를 선택적으로검증하는 데이터 검증 방법 및 반도체 메모리 장치
JP5292052B2 (ja) * 2008-10-21 2013-09-18 力晶科技股▲ふん▼有限公司 不揮発性半導体記憶装置とその書き込み方法
EP2377129A4 (en) * 2008-12-09 2013-05-22 Rambus Inc NON-VOLATILE MEMORY DEVICE FOR SIMULTANEOUS AND OVERLAP MEMORY OPERATIONS
JP2011014195A (ja) * 2009-07-02 2011-01-20 Toshiba Corp フラッシュメモリ
US9007843B2 (en) * 2011-12-02 2015-04-14 Cypress Semiconductor Corporation Internal data compare for memory verification
KR20140076128A (ko) * 2012-12-12 2014-06-20 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 동작 방법과, 이를 포함하는 데이터 처리 시스템
US9653180B1 (en) * 2016-05-26 2017-05-16 Sandisk Technologies Llc System method and apparatus for screening a memory system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357682A (ja) * 2000-06-12 2001-12-26 Sony Corp メモリシステムおよびそのプログラム方法
JP2002025277A (ja) * 2000-06-30 2002-01-25 Fujitsu Ltd 多値データを記録する不揮発性メモリ
JP2004022112A (ja) * 2002-06-18 2004-01-22 Toshiba Corp 不揮発性半導体メモリ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0169267B1 (ko) 1993-09-21 1999-02-01 사토 후미오 불휘발성 반도체 기억장치
JP3226677B2 (ja) * 1993-09-21 2001-11-05 株式会社東芝 不揮発性半導体記憶装置
JP3170437B2 (ja) * 1995-09-20 2001-05-28 株式会社日立製作所 不揮発性半導体多値記憶装置
US5870335A (en) * 1997-03-06 1999-02-09 Agate Semiconductor, Inc. Precision programming of nonvolatile memory cells
JP3883687B2 (ja) * 1998-02-16 2007-02-21 株式会社ルネサステクノロジ 半導体装置、メモリカード及びデータ処理システム
JP3905979B2 (ja) 1998-06-03 2007-04-18 株式会社東芝 不揮発性半導体メモリ
JP3800466B2 (ja) 1998-06-29 2006-07-26 株式会社ルネサステクノロジ 半導体記憶装置
JPH1173789A (ja) * 1998-06-29 1999-03-16 Hitachi Ltd 半導体不揮発性メモリ
US6091631A (en) * 1998-07-01 2000-07-18 Advanced Micro Devices, Inc. Program/verify technique for multi-level flash cells enabling different threshold levels to be simultaneously programmed
JP2000251484A (ja) * 1999-02-26 2000-09-14 Sony Corp 不揮発性半導体記憶装置
IT1313197B1 (it) * 1999-07-22 2002-06-17 St Microelectronics Srl Metodo per la memorizzazione di byte in celle di memoria non volatilimultilivello.
US6771536B2 (en) * 2002-02-27 2004-08-03 Sandisk Corporation Operating techniques for reducing program and read disturbs of a non-volatile memory
US6847550B2 (en) * 2002-10-25 2005-01-25 Nexflash Technologies, Inc. Nonvolatile semiconductor memory having three-level memory cells and program and read mapping circuits therefor
JP3935139B2 (ja) * 2002-11-29 2007-06-20 株式会社東芝 半導体記憶装置
JP3920768B2 (ja) * 2002-12-26 2007-05-30 株式会社東芝 不揮発性半導体メモリ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357682A (ja) * 2000-06-12 2001-12-26 Sony Corp メモリシステムおよびそのプログラム方法
JP2002025277A (ja) * 2000-06-30 2002-01-25 Fujitsu Ltd 多値データを記録する不揮発性メモリ
JP2004022112A (ja) * 2002-06-18 2004-01-22 Toshiba Corp 不揮発性半導体メモリ装置

Also Published As

Publication number Publication date
US7227778B2 (en) 2007-06-05
KR101092012B1 (ko) 2011-12-09
CN101027728A (zh) 2007-08-29
GB2431026A (en) 2007-04-11
CN100555460C (zh) 2009-10-28
DE112004002927T5 (de) 2008-03-20
US20060176742A1 (en) 2006-08-10
WO2006011222A8 (ja) 2006-03-16
KR20070042538A (ko) 2007-04-23
GB0701433D0 (en) 2007-03-07
DE112004002927B4 (de) 2011-07-21
WO2006011222A1 (ja) 2006-02-02
JP4750034B2 (ja) 2011-08-17
GB2431026B (en) 2008-05-07

Similar Documents

Publication Publication Date Title
US7684238B2 (en) Methods of programming multi-bit flash memory devices and related devices
US7227778B2 (en) Semiconductor device and writing method
JP4977843B2 (ja) 面積が減少したページバッファ回路とその読み出し及びプログラム動作方法
US6400601B1 (en) Nonvolatile semiconductor memory device
US7180778B2 (en) Semiconductor storage device having page copying function
JP3993323B2 (ja) 不揮発性半導体記憶装置
JP4813175B2 (ja) フラッシュメモリ装置におけるプログラム動作の制御方法
KR100836762B1 (ko) 멀티 비트 플래시 메모리 장치 및 그것의 프로그램 방법
US7986552B2 (en) Nonvolatile memory device and method of operation to program/read data by encoding/decoding using actual data and random data for program/read operation
JPH09180471A (ja) 多値記憶式不揮発性半導体メモリ装置とそのデータ読出、プログラム及び検証方法
WO2009081745A1 (ja) 不揮発性半導体記憶装置
JP2013069408A (ja) 揮発性メモリ装置のマルチレベルセルプログラム方法
JP2009070539A (ja) 不揮発性メモリ装置及びそのマルチレベルセルプログラム方法
US8174883B2 (en) Semiconductor memory device capable of preventing a shift of threshold voltage
JP4560073B2 (ja) 不揮発性半導体記憶装置
US7394700B2 (en) Programming methods for a nonvolatile memory device using a Y-scan operation during a verify read operation
JP4724692B2 (ja) 高速プログラム型のmlcメモリ
JPH1125682A (ja) 多値メモリおよび半導体記憶装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100608

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100608

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4750034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees