JPWO2003042652A1 - 波長分散測定システムおよび方法 - Google Patents

波長分散測定システムおよび方法 Download PDF

Info

Publication number
JPWO2003042652A1
JPWO2003042652A1 JP2003544436A JP2003544436A JPWO2003042652A1 JP WO2003042652 A1 JPWO2003042652 A1 JP WO2003042652A1 JP 2003544436 A JP2003544436 A JP 2003544436A JP 2003544436 A JP2003544436 A JP 2003544436A JP WO2003042652 A1 JPWO2003042652 A1 JP WO2003042652A1
Authority
JP
Japan
Prior art keywords
chromatic dispersion
light
incident
intensity ratio
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003544436A
Other languages
English (en)
Other versions
JP3976733B2 (ja
Inventor
裕明 里村
裕明 里村
真也 藤田
真也 藤田
潤一 浮田
潤一 浮田
渡辺 克彦
克彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of JPWO2003042652A1 publication Critical patent/JPWO2003042652A1/ja
Application granted granted Critical
Publication of JP3976733B2 publication Critical patent/JP3976733B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3172Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3163Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR by measuring dispersion

Abstract

波長分散の値とその符号の測定が可能であり、しかもその測定に要する手間と時間を低減することができる波長分散測定システムを提供することを目的とする。波長分散測定システムは、光源10、12、光アッテネータ14、16、光合波器18、位相変調器20、光増幅器22、26、音響光学変調器24、サーキュレータ28、光受信装置30を備える。2つの波長の強度比を1対2に設定して光ファイバ100の戻り光に含まれるストーク光あるいはアンチストーク光を光受信装置30によって検出することにより波長分散が測定される。また、2つの波長の強度比を変更して波長分散を測定し、その変化の様子を観察することにより、光受信装置30によって波長分散の符号が判定される。

Description

技術分野
本発明は、光ファイバの波長分散とその符号を測定する波長分散測定システムに関する。
背景技術
一般に、通信等の用途に用いられる光ファイバは、長手方向に波長依存性がある。このため、特に線路長が長い通信路に用いられる光ファイバを用いて正確に信号の伝送を行うためには、この波長依存性を考慮する必要がある。この波長依存性を表すものが「分散マップ」である。この分散マップとは、光ファイバの長手方向の距離と波長分散との関係を示すものである。分散マップを測定する従来技術としては、特開平10−83006号公報に開示された装置が知られている。
この装置の動作原理は、波長λ、λを有する2種類の光が含まれるパルス光を光ファイバに入射して得られる戻り光の中からストーク光あるいはアンチストーク光を検出し、この検出出力の周波数に基づいて波長分散Dを求めている。この方法を用いることにより、OTDR(Optical Time Domain Reflectometry)的手法によって、光ファイバの長手方向に沿った距離zとその箇所における波長分散Dとの関係を示す分散マップを正確かつ容易に作成することが可能になる。
ところで、上述した公報に開示された装置を用いた波長分散Dの算出は、検出光の強度振幅の周波数に基づいて算出しているため、絶対値が求まるだけであり、符号まではわからないという問題があった。しかし、実際に通信路として光ファイバを使用する場合には、波長分散Dの符号も必要になる。例えば、所定の波長分散を有する2種類以上の光ファイバを接続して、全体としてほぼ波長分散が無視できる程度の通信路を設計する場合には、波長分散が正の値を有するか負の値を有するかが重要となる。上述した公報に開示された方法では波長分散の符号はわからなかったため、別の方法で波長分散の符号を測定することになり、光ファイバを接続する装置を切り替えたり、分散マップとは別に波長分散の符号を測定する装置を用意する必要があり、測定に手間と時間がかかっていたという問題があった。
発明の開示
本発明は、このような点に鑑みて創作されたものであり、その目的は、波長分散の値とその符号の測定が可能であり、しかもその測定に要する手間と時間を低減することができる波長分散測定システムを提供することにある。
本発明の波長分散測定システムは、所定間隔を有する2つの波長成分の強度比が可変に設定されるパルス光を被測定ファイバの一方端に入射する入射機構と、この入射機構に対して2つの波長成分の強度比を設定する強度比設定手段と、被測定ファイバの一方端から出射される戻り光の中からストーク光およびアンチストーク光の少なくとも一方を検出して電気的な検出信号を生成する検出手段と、検出信号の周波数を算出する周波数算出手段と、周波数算出手段によって算出された周波数に基づいて被測定ファイバの波長分散を算出する波長分散算出手段と、2つの波長成分の強度比が強度比設定手段によって変更された前後に行われた周波数算出手段による波長分散の複数回の算出結果に基づいて波長分散の符号を判定する符号判定手段とを備えている。
被測定ファイバに入射する2種類の波長成分の強度比を可変して波長分散の測定を繰り返すだけで、波長分散とその符号を求めることができる。特に、波長分散とその符号を別々の装置で測定する場合に比べて、測定の手間と時間を大幅に低減することが可能になる。
また、上述した強度比設定手段によって2つの波長成分の強度比を1対2に設定して波長分散算出手段によって波長分散を求めるとともに、強度比設定手段によって2つの波長成分の強度比を1対2以外に設定して波長分散計算手段によって計算した値を波長分散の値と比較することにより、符号判定手段による波長分散の符号判定を行うことが望ましい。2つの波長成分の強度比を1対2に設定したときに正確な波長分散が求まる場合に、この強度比を1対2以外に設定することにより、波長分散の符号に応じた方向にズレが発生するため、このズレの発生状態を調べることにより、波長分散の符号を容易に知ることができる。
また、上述した入射機構は、2つの波長成分のそれぞれの光を別々に発生する2つの光源と、2つの光源から出力された光を合成する光合波器と、光合波器の出力光をパルス化するパルス化装置と、2つの光源から光合波器までの間に挿入されて2つの光源の少なくとも一方から出力される光の強度を可変する光アッテネータとを備えることが望ましい。あるいは、上述した入射機構は、2つの波長成分のそれぞれの光を別々に発生する2つの光源と、2つの光源から出力された光を合成する光合波器と、光合波器の出力光をパルス化するパルス化装置と、2つの光源から光合波器までの間に挿入されて2つの光源の少なくとも一方から出力される光を調整可能に減衰させる変調器とを備えることが望ましい。あるいは、上述した入射機構は、強度が調整可能な2つの波長成分のそれぞれの光を別々に発生する2つの光源と、2つの光源から出力された光を合成する光合波器と、光合波器の出力光をパルス化するパルス化装置と備えることが望ましい。これらの方法により、2つの波長成分の光の強度比を任意に設定することが可能になり、動作途中で特別な構成を追加したり、被測定ファイバの接続を切り替えたりすることなく、波長分散の測定とその符号判定を行うことができる。
また、上述した入射機構は、光合波器の出力光を被測定ファイバの一方端に入射するとともに、この一方端から出射される戻り光を検出手段に入射するサーキュレータをさらに備えることが望ましい。これにより、少ないロスでパルス光を被測定ファイバに入射するとともに被測定ファイバからの戻り光を検出手段に導くことができる。
また、上述した検出手段は、戻り光に含まれる検出対象となっているストーク光あるいはアンチストーク光を抽出する光学フィルタと、光学フィルタを通すことにより抽出された光成分の強度を検出して検出信号を生成する検出信号生成手段とを備えることが望ましい。これにより、波長分散の測定に必要な光成分のみを抽出してその強度を検出することが可能になる。
また、上述した符号判定手段による判定結果としての符号を視覚的に識別可能に表示する表示手段をさらに備えることが望ましい。これにより、波長分散の符号を確認する作業が容易となる。
また、本発明の波長分散測定方法は、所定間隔を有する2つの波長成分の強度比が可変に設定されるパルス光を被測定ファイバの一方端に入射するステップと、2つの波長成分の強度比を設定するステップと、被測定ファイバの一方端から出射される戻り光の中から、ストーク光およびアンチストーク光の少なくとも一方を検出して電気的な検出信号を生成するステップと、検出信号の周波数を算出するステップと、検出信号の算出された周波数に基づいて、被測定ファイバの波長分散を算出するステップと、2つの波長成分の強度比が変更された前後に行われた波長分散の複数回の算出結果に基づいて、波長分散の符号を判定するステップとを含んでいる。この波長分散測定方法を実施することにより、被測定ファイバに入射する2種類の波長成分の強度比を可変して波長分散の測定を繰り返すだけで、波長分散とその符号を求めることができる。特に、波長分散とその符号を別々の装置で測定する場合に比べて、測定の手間と時間を大幅に低減することが可能になる。
発明を実施するための最良の形態
以下、本発明を適用した波長分散測定システムについて、図面を参照しながら説明する。
図1は、一実施形態の波長分散測定システムの構成を示す図である。図1に示す波長分散測定システムは、被測定ファイバFUT(Fiber Under Test)としての光ファイバ100の波長分散Dとその符号を測定するためのものである。この波長分散測定システムは、光源10、12、光アッテネータ14、16、光合波器18、位相変調器20、光増幅器22、26、音響光学変調器(AOM)24、サーキュレータ28、光受信装置30を備えている。
2つの光源10、12のそれぞれは、互いにδλだけずれた波長λ、λのCW光(連続光)を出力する。光アッテネータ14は、通過させる光の減衰量を可変することにより、一方の光源10から入射した波長λの光の強度を調整して出射する。同様に、光アッテネータ16は、通過させる光の減衰量を可変することにより、他方の光源12から入射した波長λの光の強度を可変して出射する。
光合波器18は、2つの光アッテネータ14、16のそれぞれから出射される2種類の波長λ、λの光を合成する。位相変調器20は、光合波器18から入射される光に対して位相変調を行う。この位相変調によって光の線幅が広くなる。光増幅器22は、位相変調器20から出射される光を増幅する。音響光学変調器24は、光増幅器22から入射される連続光をパルス化する。光増幅器26は、音響光学変調器24によってパルス化された光を増幅して、大振幅のパルス光を生成する。このパルス光は、サーキュレータ28を介して光ファイバ100の一方端に入射される。
サーキュレータ28は、光増幅器26の出射端が接続された入射端aと、光ファイバ100の一方端が接続された入出射端bと、光受信装置30が接続された出射端cとを有している。入射端aに入射された光が入出射端bから出射されるとともに、入出射端bに入射された光が出射端cから出射される。したがって、サーキュレータ28は、光増幅器26から入射されたパルス光を光ファイバ100側に出射するとともに、この光ファイバ100のレーレイ後方散乱によって発生した戻り光を光受信装置30に向けて出射する。サーキュレータ28を用いることにより、少ないロスで、パルス光を光ファイバ100の一方端に入射するとともにこの光ファイバ100からの戻り光を光受信装置30に導くことができる。
光受信装置30は、サーキュレータ28から出射される光ファイバ100の戻り光に基づいて、光ファイバ100の波長分散およびその符号を測定する。このために、光受信装置30は、パルス生成器32、ERファイバ増幅器34、可調狭バンド光学フィルタ36、光検出器(DET)38、電流/電圧(I/V)変換器40、バンドパスフィルタ(BPF)42、増幅器44、オシロスコープ46、波長分散計算部48、符号判定部50、表示部52、制御部60を備えている。
パルス生成器32は、音響光学変調器24に入力するパルス信号を生成する。
ERファイバ増幅器34は、エルビウムが添加された光ファイバ増幅器であり、サーキュレータ28から入射された戻り光を増幅する。本実施形態の波長分散測定では、光ファイバ100から出射される戻り光に含まれるストーク光あるいはアンチストーク光が用いられるが、これらは4光波混合による光の三次非線形現象によって生じるものであり非常に微小であり、これをERファイバ増幅器34で増幅している。
可調狭バンド光学フィルタ36は、波長分散測定の対象となるストーク光の波長λあるいはアンチストーク光の波長λの光のみを選択的に通過させる。光検出器38は、可調狭バンド光学フィルタ36を通過した光(ストーク光あるいはアンチストーク光)を検出する。例えば、光検出器38からは、検出した光の強度に比例した値の電流が出力される。電流/電圧変換器40は、光検出器38の出力電流を電圧に変換する。
バンドパスフィルタ42は、電流/電圧変換器40によって電圧に変換された検出信号が入力され、例えば50kHzから300kHzまでの周波数成分を通過させる。これにより、ストーク光あるいはアンチストーク光の測定に必要な成分のみが抽出される。増幅器44は、バンドパスフィルタ42を通過した検出信号を電気的に増幅する。このように、可調狭バンド光学フィルタ36によって抽出された光の強度を光検出器38で検出した後電気的に増幅することにより、波長分散の測定に必要な光成分のみを抽出してその強度を検出することが可能になる。
オシロスコープ46は、増幅器44によって増幅された検出信号を、所定周波数のデジタルサンプリングによって取り込んで保持するとともに、その内容を表示する。また、このオシロスコープ46は、同じ条件下で繰り返し得られた検出信号のデータを取り込んで累積するストレージ機能と、この累積したデータを外部に出力する機能を有している。
波長分散計算部48は、オシロスコープ46によって保持されたデータに基づいて、波長λあるいはλに対応する光ファイバ100の波長分散を計算する。符号判定部50は、波長分散計算部48によって計算された波長分散に基づいて、この波長分散の符号を判定する。表示部52は、波長分散計算部48による計算結果や符号判定部50による判定結果を表示する。この判定結果(波長分散の符号)の表示は、利用者が一見しただけで容易に識別可能な状態で行われる。例えば、波長分散の符号が正の場合には所定の表示領域を赤にした表示が行われ、負の場合にはこの表示領域を青にした表示が行われる。あるいは、波長分散の符号が正の場合には「+」のマークが画面上の所定位置に表示され、負の場合には「−」のマークがこの所定位置に表示される。これにより、波長分散の符号を確認する作業が容易となる。
制御部60は、パルス生成器32に対してパルスの出力指示を送ることにより波長分散の開始タイミングを制御したり、2つの光アッテネータ14、16のそれぞれによる光強度の可変量を制御する。
上述した光源10、12、光アッテネータ14、16、光合波器18、位相変調器20、光増幅器22、26、音響光学変調器24、サーキュレータ28が入射機構に対応する。また、光受信装置30内の制御部60が強度比設定手段に、ERファイバ増幅器34、可調狭バンド光学フィルタ36、光検出器38、電流/電圧変換器40、バンドパスフィルタ42、増幅器44が検出手段にそれぞれ対応する。波長分散計算部48が周波数算出手段、波長分散算出手段に、符号判定部50が符号判定手段にそれぞれ対応する。音響光学変調器24がパルス化装置に対応する。光検出器38、電流/電圧変換器40、バンドパスフィルタ42、増幅器44が検出信号生成手段に対応する。表示部52が表示手段に対応する。
本実施形態の波長分散測定システムはこのような構成を有しており、次にその動作を説明する。
(1)波長分散測定の原理
本実施形態の波長分散測定は、基本的には特開平10−83006号公報に開示された測定原理にしたがっている。まず、概略的な測定原理を説明する。なお、以下では、波長λに対応する光ファイバ100の波長分散を測定するためにストーク光を検出する場合を例にとって説明するが、波長λに対応する光ファイバ100の波長分散についてはアンチストーク光を用いて同じ手順で実施することができる。
光受信装置30内で検出されるストーク光の強度は、以下の式で表される空間周波数で発振する。
Figure 2003042652
ここで、δkは第1のミキシングプロセスと第2のミキシングプロセスにおける波ベクトルミスマッチである。第1のミキシングプロセスとは、波長λの2つのフォトンと波長λの1つのフォトンとが組み合わされて波長λのストークフォトンを形成するプロセスであり、第2のミキシングプロセスとは、波長λの2つのフォトンと波長λの1つのフォトンとが組み合わされて波長λΛのアンチストークフォトンを形成するプロセスである。cは光速、δλは2つの光源10、12から出力される光の波長λとλの差である。また、D(λ)は波長λの光に対応する光ファイバ100の波長分散である。
したがって、ストーク光の強度発振の周波数Fs(z)を測定することにより、空間解像度Λsを有する分散マップ(λ.z)を得ることができる。
ところで、上述した周波数Fs(z)は、光ファイバ100の入射端からの距離zに着目して、ストーク光の強度発振の周波数を示したものであるが、図1に示した波長分散測定システムにおいて検出可能な信号は、戻り光に含まれるストーク光の強度発振の周波数である。光ファイバ100にパルス光を入射してから戻り光を検出するまでの時間をtとし、検出されるストーク光の強度発振の周波数をfsigとすると、この周波数fsigと上述した空間周波数Fsとの間には、以下の関係がある。
Figure 2003042652
光ファイバ100の屈折率をnとすると、時間tと距離zとの間にはt=2nz/cの関係がある。この関係を考慮して、(1)式と(2)式を変形すると、波長分散Dは、
Figure 2003042652
となる。
すなわち、時間tに対応するストーク光の周波数fsigの値を測定することにより、この時間tに対応する距離zと波長分散Dとの関係を求めることができる。このようにして、距離zを横軸に、対応する波長分散Dの値を縦軸にしてグラフ化したものが分散マップである。
(2)波長分散の符号判定の原理
上述した(1)式に含まれる波ベクトルミスマッチδkには、非線形の寄与分δkn1が存在する。したがって、実際の波ベクトルミスマッチδk’は、
Figure 2003042652
となる。また、ストーク光に対応する第1のミキシングプロセスに関する非線形の寄与分は、以下の式で表すことができる。
Figure 2003042652
ここで、Pは光ファイバ100に入射される光パルスに含まれる波長λの成分の強度である。Pは光ファイバ100に入射される光パルスに含まれる波長λの成分の強度である。
また、(5)式に含まれるγは以下の式で表される。
Figure 2003042652
ここで、Aeffは光ファイバ100のコアの有効面積である。nは非線形屈折率係数である。
上述した測定原理にしたがって波長分散を測定する際には、非線形の寄与分δkn1がゼロとなるように、これらの比(P:P)が1対2に設定されている。
ところで、実際の波長分散Dは符号を有しており、本実施形態では、2種類の光の強度比(P:P)を1対2以外の値に設定したときに、波長分散の値がどのように変化するかを観察することにより、波長分散の符号を判定している。
具体的には、(6)式で表されているγは必ず正となる。このため、(5)式で表されているδkn1は、PとPの比を1対2以外に設定したときに、正あるいは負となる。例えば、PとPの比を1対1にすると、δkn1は必ず正となる。
一方、波ベクトルミスマッチδkと波長分散Dとの間には、符号を考慮すると、以下に示す関係がある。
Figure 2003042652
すなわち、δkと波長分散Dは互いに反対の符号を有しており、δkが負のときに波長分散Dは正で、反対にδkが正のときに波長分散Dは負となる。
したがって、仮に波長分散Dの符号が正であると考えると、波ベクトルミスマッチδkの符号が負になる。このため、PとPの比を1対1にした場合には、(4)式から、負のδkから正のδknlを減算することになり、実際の波ベクトルミスマッチδk’の絶対値が大きくなる。このため、(1)式からわかるように、波長分散Dが大きくなる。
図2は、波長分散の符号が正である場合に、PとPの比を1対2にして測定した波長分散と1対1にして測定した波長分散との関係を示す図である。同図において、AはPとPの比が1対2の場合の波長分散を示しており、Bはこれらの比が1対1の場合の波長分散を示している。条件を変えて行った2回の測定結果がこのような関係になった場合には、波長分散Dの符号が正であることがわかる。
反対に、仮に波長分散Dの符号が負であると考えると、波ベクトルミスマッチδkの符号が正になる。このため、PとPの比を1対1にした場合には、(4)式から、負のδkから負のδknlを減算することになり、実際の波ベクトルミスマッチδk’の絶対値が小さくなる。このため、(1)式からわかるように、波長分散Dが小さくなる。
図3は、波長分散の符号が負である場合に、PとPの比を1対2にして測定した波長分散と1対1にして測定した波長分散との関係を示す図である。同図において、AはPとPの比が1対2の場合の波長分散を示しており、Cはこれらの比が1対1の場合の波長分散を示している。条件を変えて行った2回の測定結果がこのような関係になった場合には、波長分散Dの符号が正であることがわかる。
(3)具体的な測定動作手順
図4は、上述した測定原理に基づいて波長分散Dの測定とその符号判定を行う波長分散測定システムの動作手順を示す流れ図であり、主に光受信装置30の動作手順が示されている。
まず、制御部60は、光ファイバ100の入射光の強度設定を行う(ステップ100)。具体的には、制御部60によって光アッテネータ14、16の減衰量を可変して、光ファイバ100に入射される波長λの光の強度Pと波長λの光の強度Pの比を1対2に設定する。例えば、波長λが1535nmに、波長λが1530nmに設定されており、これらの強度比が1対2に設定される。
次に、光受信装置30内の制御部60は、パルス生成器32にパルス信号の出力指示を送る。これにより、このパルス信号の出力タイミングに対応して音響光学変調器24によってパルス光が生成され、光増幅器26で増幅された後、サーキュレータ28を介して光ファイバ100に向けて出射される(ステップ101)。
このようにして光パルスが光ファイバ100に入射された後、光受信装置30による戻り光の強度測定が行われる(ステップ102)。上述したように、波長λ、λのそれぞれの光の強度比を1対2に設定したときに、波長λに対する波長分散Dを測定するためには、波長λのストーク光を検出する必要がある。このため、可調狭バンド光学フィルタ36では、サーキュレータ28を介して入射される戻り光の中から波長λの成分のみを抽出し、この成分の強度を表す検出信号が増幅器44から出力される。この検出信号は、オシロスコープ46のストレージ機能によって保存される。実際には、この検出信号は非常に微弱であるため、同じ条件下での測定が複数回繰り返された結果がオシロスコープ46によって累積される。
次に、波長分散計算部48は、オシロスコープ46のストレージ機能によって保存されたデータを読み出して、ストーク光の強度発振の周波数fsigを検出する(ステップ103)。また、波長分散計算部48は、上述した(3)式を用いて、この周波数fsigに基づいて、距離zに対応する波長分散Dを計算する(ステップ104)。これにより、波長λに対応する光ファイバ100の波長分散Dを求めることができ、分散マップが作成される。このようにして計算された波長分散Dの値や分散マップは、必要に応じて制御部60によって表示部52の画面に表示される。
次に、制御部60は、上述した波長分散の計算が2回終了したか否かを判定する(ステップ105)。波長分散の計算が1回終了しただけである場合には否定判断が行われ、制御部60は、2回目の波長分布測定のために、2つの光アッテネータ14、16の減衰量を制御して入射光の強度比を変更する(ステップ106)。(5)式で示したストーク光に対応する第1のミキシングプロセスに関する非線形の寄与分が0以外の値を持つように、強度比が1対2以外の値、例えば1対1に設定される。その後、ステップ101に戻って光パルスの出力動作以降が繰り返され、2回目の波長分散の計算が行われる。
2回目の波長分散の計算が終了すると、ステップ105の判定において肯定判断が行われる。次に、符号判定部50は、2種類の入射光の強度比が1対2である場合に対応する1回目の波長分散の計算結果と、この強度比が1対1である場合に対応する2回目の波長分散の計算結果とを比較して、波長分散の符号判定を行う(ステップ107)。具体的には、図2に示したように、符号Aに対応する1回目の測定結果としての波長分散の値よりも、符号Bに対応する2回目の測定結果としての波長分散の値の方が大きい場合には、波長分散の符号が正であると判定される。反対に、図3に示したように、符号Aに対応する1回目の測定結果としての波長分散の値よりも、符号Cに対応する2回目の測定結果としての波長分散の値の方が大きい場合には、波長分散の符号が正であると判定される。このようにして判定された波長分散の符号に対応する表示(符号を色や、「+」および「−」等の各種記号を用いて表示したもの)が表示部52を用いて行われる。
なお、上述した波長分散の符号判定を行う場合には、必ずしも光ファイバ100の全長についての波長分散を求めて分散マップを作成する必要はなく、ストーク光に対応する第1のミキシングプロセスに関する非線形の寄与分の影響が大きな光ファイバ100の入射端近傍の1箇所あるいは数箇所において波長分散の比較を行うようにしてもよい。
このように、本実施形態の波長分散測定システムでは、光ファイバ100に入射する2種類の波長λ、λの光の強度比を可変してストーク光を測定することにより、波長分散とその符号を得ることができる。特に、波長分散とその符号を別々の装置で測定する場合に比べて、測定の手間と時間を大幅に低減することが可能になる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上述した実施形態では、2つの波長λ、λのそれぞれの強度比を1対2に設定するとともにストーク光を検出して波長λに対応する光ファイバ100の波長分散を求めたが、2つの波長λ、λそれぞれの強度比を2対1に設定するとともにアンチストーク光を検出して波長λに対応する光ファイバ100の波長分散を求めるようにしてもよい。
また、上述した実施形態では、2つの光源10、12のそれぞれの後段に光アッテネータ14、16を備えたが、これら2つの光アッテネータ14、16のいずれか一方のみを備えるようにしてもよい。また、光合波器18は、2つの波長成分の光を合成することができればよいことから、位相変調器20、光増幅器22、音響光学変調器24のそれぞれの後段に配置してもよい。
また、上述した光アッテネータ14、16を用いたが、2つの波長成分の強度が調整可能な他の手法を用いるようにしてもよい。例えば、アッテネータ14、16の代わりに変調器を用いて入射光に対して調整可能なロスを与えたり、アッテネータ14、16の代わりに光増幅器を用いて入射光に対して調整可能な増幅を行うようにしてもよい。あるいは、光アッテネータ14、16を省略して、代わりに出力光強度が調整可能な2つの光源を用い、それぞれの光源の出力光強度を光受信装置30内の制御部60で制御するようにしてもよい。
産業上の利用可能性
上述したように、この発明によれば、被測定ファイバに入射する2種類の波長成分の強度比を可変して波長分散の測定を繰り返すだけで、波長分散とその符号を求めることができる。特に、波長分散とその符号を別々の装置で測定する場合に比べて、測定の手間と時間を大幅に低減することが可能になる。
【図面の簡単な説明】
図1は、一実施形態の波長分散測定システムの構成を示す図、
図2は、波長分散の符号が正である場合に、2つの波長成分の強度比を1対2にして測定した波長分散と1対1にして測定した波長分散との関係を示す図、
図3は、波長分散の符号が負である場合に、PとPの比を1対2にして測定した波長分散と1対1にして測定した波長分散との関係を示す図、
図4は、波長分散の測定とその符号判定を行う波長分散測定システムの動作手順を示す流れ図である。

Claims (11)

  1. 所定間隔を有する2つの波長成分の強度比が可変に設定されるパルス光を被測定ファイバの一方端に入射する入射機構と、
    前記入射機構に対して前記2つの波長成分の強度比を設定する強度比設定手段と、
    前記被測定ファイバの一方端から出射される戻り光の中から、ストーク光およびアンチストーク光の少なくとも一方を検出して電気的な検出信号を生成する検出手段と、
    前記検出信号の周波数を算出する周波数算出手段と、
    前記周波数算出手段によって算出された周波数に基づいて、前記被測定ファイバの波長分散を算出する波長分散算出手段と、
    前記2つの波長成分の強度比が前記強度比設定手段によって変更された前後に行われた前記周波数算出手段による波長分散の複数回の算出結果に基づいて、波長分散の符号を判定する符号判定手段と、
    を備えることを特徴とする波長分散測定システム。
  2. 前記強度比設定手段によって前記2つの波長成分の強度比を1対2に設定して前記波長分散算出手段によって波長分散を求めるとともに、前記強度比設定手段によって前記2つの波長成分の強度比を1対2以外に設定して前記波長分散計算手段によって計算した値を前記波長分散の値と比較することにより、前記符号判定手段による前記波長分散の符号判定を行うことを特徴とする請求の範囲第1項記載の波長分散測定システム。
  3. 前記入射機構は、
    前記2つの波長成分のそれぞれの光を別々に発生する2つの光源と、
    前記2つの光源から出力された光を合成する光合波器と、
    前記光合波器の出力光をパルス化するパルス化装置と、
    前記2つの光源から前記光合波器までの間に挿入され、前記2つの光源の少なくとも一方から出力される光の強度を可変する光アッテネータと、
    を備えていることを特徴とする請求の範囲第1項記載の波長分散測定システム。
  4. 前記入射機構は、
    前記2つの波長成分のそれぞれの光を別々に発生する2つの光源と、
    前記2つの光源から出力された光を合成する光合波器と、
    前記光合波器の出力光をパルス化するパルス化装置と、
    前記2つの光源から前記光合波器までの間に挿入され、前記2つの光源の少なくとも一方から出力される光を調整可能に減衰させる変調器と、
    を備えていることを特徴とする請求の範囲第1項記載の波長分散測定システム。
  5. 前記入射機構は、
    強度が調整可能な前記2つの波長成分のそれぞれの光を別々に発生する2つの光源と、
    前記2つの光源から出力された光を合成する光合波器と、
    前記光合波器の出力光をパルス化するパルス化装置と、
    を備えることを特徴とする請求の範囲第1項記載の波長分散測定システム。
  6. 前記入射機構は、前記光合波器の出力光を前記被測定ファイバの一方端に入射するとともに、この一方端から出射される前記戻り光を前記検出手段に入射するサーキュレータをさらに備えることを特徴とする請求の範囲第3項記載の波長分散測定システム。
  7. 前記入射機構は、前記光合波器の出力光を前記被測定ファイバの一方端に入射するとともに、この一方端から出射される前記戻り光を前記検出手段に入射するサーキュレータをさらに備えることを特徴とする請求の範囲第4項記載の波長分散測定システム。
  8. 前記入射機構は、前記光合波器の出力光を前記被測定ファイバの一方端に入射するとともに、この一方端から出射される前記戻り光を前記検出手段に入射するサーキュレータをさらに備えることを特徴とする請求の範囲第5項記載の波長分散測定システム。
  9. 前記検出手段は、
    前記戻り光に含まれる検出対象となっている前記ストーク光あるいは前記アンチストーク光を抽出する光学フィルタと、
    前記光学フィルタを通すことにより抽出された光成分の強度を検出して前記検出信号を生成する検出信号生成手段と、
    を備えることを特徴とする請求の範囲第1項記載の波長分散測定システム。
  10. 前記符号判定手段による判定結果としての前記符号を視覚的に識別可能に表示する表示手段をさらに備えることを特徴とする請求の範囲第1項記載の波長分散測定システム。
  11. 所定間隔を有する2つの波長成分の強度比が可変に設定されるパルス光を被測定ファイバの一方端に入射するステップと、
    前記2つの波長成分の強度比を設定するステップと、
    前記被測定ファイバの一方端から出射される戻り光の中から、ストーク光およびアンチストーク光の少なくとも一方を検出して電気的な検出信号を生成するステップと、
    前記検出信号の周波数を算出するステップと、
    前記検出信号の算出された周波数に基づいて、前記被測定ファイバの波長分散を算出するステップと、
    前記2つの波長成分の強度比が変更された前後に行われた波長分散の複数回の算出結果に基づいて、波長分散の符号を判定するステップと、
    を含むことを特徴とする波長分散測定方法。
JP2003544436A 2001-11-13 2002-11-12 波長分散測定システムおよび方法 Expired - Lifetime JP3976733B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001347897 2001-11-13
JP2001347897 2001-11-13
PCT/JP2002/011758 WO2003042652A1 (fr) 2001-11-13 2002-11-12 Systeme de sondage de dispersion de longueur d'onde

Publications (2)

Publication Number Publication Date
JPWO2003042652A1 true JPWO2003042652A1 (ja) 2005-03-10
JP3976733B2 JP3976733B2 (ja) 2007-09-19

Family

ID=19160820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003544436A Expired - Lifetime JP3976733B2 (ja) 2001-11-13 2002-11-12 波長分散測定システムおよび方法

Country Status (4)

Country Link
US (1) US7020360B2 (ja)
JP (1) JP3976733B2 (ja)
DE (1) DE10297428T5 (ja)
WO (1) WO2003042652A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345170A (en) * 1992-06-11 1994-09-06 Cascade Microtech, Inc. Wafer probe station having integrated guarding, Kelvin connection and shielding systems
US6232789B1 (en) * 1997-05-28 2001-05-15 Cascade Microtech, Inc. Probe holder for low current measurements
US5729150A (en) * 1995-12-01 1998-03-17 Cascade Microtech, Inc. Low-current probe card with reduced triboelectric current generating cables
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6002263A (en) * 1997-06-06 1999-12-14 Cascade Microtech, Inc. Probe station having inner and outer shielding
US6034533A (en) * 1997-06-10 2000-03-07 Tervo; Paul A. Low-current pogo probe card
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US6578264B1 (en) * 1999-06-04 2003-06-17 Cascade Microtech, Inc. Method for constructing a membrane probe using a depression
US6838890B2 (en) * 2000-02-25 2005-01-04 Cascade Microtech, Inc. Membrane probing system
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
DE20114544U1 (de) 2000-12-04 2002-02-21 Cascade Microtech Inc Wafersonde
AU2002327490A1 (en) * 2001-08-21 2003-06-30 Cascade Microtech, Inc. Membrane probing system
US6951846B2 (en) * 2002-03-07 2005-10-04 The United States Of America As Represented By The Secretary Of The Army Artemisinins with improved stability and bioavailability for therapeutic drug development and application
US6861856B2 (en) * 2002-12-13 2005-03-01 Cascade Microtech, Inc. Guarded tub enclosure
US7057404B2 (en) * 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
DE202004021093U1 (de) 2003-12-24 2006-09-28 Cascade Microtech, Inc., Beaverton Aktiver Halbleiterscheibenmessfühler
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
KR20070058522A (ko) 2004-09-13 2007-06-08 캐스케이드 마이크로테크 인코포레이티드 양측 프루빙 구조
JP4690690B2 (ja) * 2004-10-15 2011-06-01 古河電気工業株式会社 光ファイバの波長分散値及び非線形定数の測定方法、光ファイバの波長分散値及び非線形定数の測定装置、ファイバ製造方法、分散分布測定方法、測定誤差補償方法、測定条件特定方法
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US20070294047A1 (en) * 2005-06-11 2007-12-20 Leonard Hayden Calibration system
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
WO2010059247A2 (en) 2008-11-21 2010-05-27 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
CN103261868B (zh) * 2010-10-18 2015-08-19 株式会社藤仓 波长色散测定装置以及使用了该波长色散测定装置的波长色散测定方法
FR2971108A1 (fr) * 2011-01-31 2012-08-03 France Telecom Systeme de determination d'un temps de propagation d'un signal optique entre deux equipements optiques au moyen d'une liaison optique
JP7200932B2 (ja) * 2017-05-11 2023-01-10 住友電気工業株式会社 非線形性測定方法および非線形性測定装置
CN110301898B (zh) * 2018-03-27 2022-07-15 佳能株式会社 生物信息测量设备、方法、系统和计算机可读介质
US11799546B2 (en) * 2019-03-27 2023-10-24 Ciena Corporation Optical fiber characterization using a nonlinear skirt measurement
JP2022180151A (ja) * 2021-05-24 2022-12-06 浜松ホトニクス株式会社 分散測定装置及び分散測定方法
JP2022180146A (ja) * 2021-05-24 2022-12-06 浜松ホトニクス株式会社 分散測定装置及び分散測定方法
JPWO2022249660A1 (ja) * 2021-05-24 2022-12-01
US20220390321A1 (en) * 2021-06-04 2022-12-08 Exfo Inc. Spectral averaging of otdr traces

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956131A (en) * 1996-07-17 1999-09-21 Lucent Technologies Inc. System and method for mapping chromatic dispersion in optical fibers
US6011615A (en) * 1997-06-09 2000-01-04 Lucent Technologies Inc. Fiber optic cable having a specified path average dispersion
JP3805505B2 (ja) 1997-11-19 2006-08-02 本田技研工業株式会社 エンジンユニットのブリーザ構造
JP2972885B1 (ja) * 1998-10-08 1999-11-08 郵政省通信総合研究所長 光ファイバ分散測定方法
JP2002168732A (ja) * 2000-11-29 2002-06-14 Ando Electric Co Ltd 光ファイバ波長分散分布測定器及び測定方法
JP2002168733A (ja) * 2000-11-29 2002-06-14 Ando Electric Co Ltd 光ファイバ波長分散分布測定器及び測定方法
JP2002228550A (ja) * 2001-02-02 2002-08-14 Ando Electric Co Ltd 波長分散分布測定器、及び測定方法
JP2002236077A (ja) * 2001-02-06 2002-08-23 Ando Electric Co Ltd 波長分散分布測定器、及びその測定方法
JP2002243589A (ja) * 2001-02-22 2002-08-28 Ando Electric Co Ltd 波長分散分布測定装置及び方法
JP2002257682A (ja) * 2001-03-02 2002-09-11 Ando Electric Co Ltd 波長分散分布測定器、及び測定方法

Also Published As

Publication number Publication date
DE10297428T5 (de) 2005-01-27
WO2003042652A1 (fr) 2003-05-22
US20050094936A1 (en) 2005-05-05
JP3976733B2 (ja) 2007-09-19
US7020360B2 (en) 2006-03-28

Similar Documents

Publication Publication Date Title
JP3976733B2 (ja) 波長分散測定システムおよび方法
EP1959247A2 (en) Spectral measurement apparatus and measurement method utilizing Brillouin scattering
WO2020050076A1 (ja) 光ファイバ特性測定装置及び光ファイバ特性測定方法
JP5169835B2 (ja) 光雑音指数算出装置、光雑音指数算出方法および光サンプリングオシロスコープ
JP4463828B2 (ja) 光導波路の波長分散の測定方法、測定装置及び測定プログラム
JP2739685B2 (ja) 単一モード光ファイバーのカー非線形性係数を測定する方法及び装置
JP7396382B2 (ja) 光ファイバセンサ及びブリルアン周波数シフト測定方法
JP6747998B2 (ja) 光ファイバ電界分布非破壊測定装置及び光ファイバ電界分布非破壊測定方法
US7016023B2 (en) Chromatic dispersion measurement
US20030081199A1 (en) Measuring method and measuring apparatus of wavelength dispersion distribution characteristics of optical fiber
JP3222046B2 (ja) 光ファイバ歪測定装置
JP7424360B2 (ja) 光ファイバ特性測定装置及び光ファイバ特性測定方法
JP7351365B1 (ja) 光ファイバセンサ及びブリルアン周波数シフト測定方法
JP6764247B2 (ja) 光線路特性解析装置及び信号処理方法
JP2003185534A (ja) 分散分布測定方法および測定装置
JP3334480B2 (ja) 光ファイバ伝送特性測定装置および測定方法
JP2022039684A (ja) 光ファイバ歪測定装置及び光ファイバ歪測定方法
JP2022096792A (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP2004125522A (ja) 非線形定数測定方法
JP5442357B2 (ja) ラマン光増幅特性評価装置
JP3211850B2 (ja) 光ファイバの波長分散測定装置
JP2006170629A (ja) 光ファイバの特性評価方法および装置
JP2003156410A (ja) 光ファイバの特性評価方法および装置
JP2003279447A (ja) 光ファイバの特性評価方法および装置
JPH0472540A (ja) 後方散乱光測定方式

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150